JP2001317887A - Thermal storage capsule - Google Patents

Thermal storage capsule

Info

Publication number
JP2001317887A
JP2001317887A JP2000137074A JP2000137074A JP2001317887A JP 2001317887 A JP2001317887 A JP 2001317887A JP 2000137074 A JP2000137074 A JP 2000137074A JP 2000137074 A JP2000137074 A JP 2000137074A JP 2001317887 A JP2001317887 A JP 2001317887A
Authority
JP
Japan
Prior art keywords
capsule
heat
heat storage
heat transfer
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000137074A
Other languages
Japanese (ja)
Inventor
Hiromi Hasegawa
浩巳 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2000137074A priority Critical patent/JP2001317887A/en
Publication of JP2001317887A publication Critical patent/JP2001317887A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To early release a supercooling degree of a latent heat thermal storage substance in a capsule by preventing a phase separation of the substance in the capsule by improving a heat transfer and thermal storage performance at a low cost. SOLUTION: The thermal storage capsule 1 seals the latent heat thermal storage substance therein and stores a heat exchanged with a heat conveying fluid 2 flowing in a circumference. The capsules 1 are easily uniformly dispersed in the fluid 2 by setting its specific gravity equal to that of the fluid 2. Thus, the capsules 1 are easily distributed in the fluid 2 without deviation. A wide heat transfer area is assured to easily efficiently heat exchange with the fluid. A capsule shape which flows, rotates and vibrates by flowing of the fluid 2 is formed. Thereby, a turbulence is generated in both the flows of the latent heat thermal storage substance liquid inside the capsule and the heat conveying fluid out of the capsule. The phase separation of the thermal storage substance is prevented, the supercooling degree is lowered, a heat transfer coefficient between the inner wall surface of the capsule and the thermal storage substance liquid is improved and a heat transfer coefficient between the outer wall surface of the capsule and the conveying fluid can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、蓄熱カプセルに関
する。さらに詳述すると、本発明は、蓄熱槽などに設け
られ、ブラインなどの熱搬送流体との対流によって熱交
換をし、内部の蓄熱潜熱物質を利用して蓄熱する蓄熱カ
プセルの伝熱性能・蓄熱性能の改良に関する。
TECHNICAL FIELD The present invention relates to a heat storage capsule. More specifically, the present invention provides heat transfer performance and heat storage of a heat storage capsule that is provided in a heat storage tank or the like, exchanges heat by convection with a heat transfer fluid such as brine, and stores heat using a heat storage latent heat substance inside. Improving performance.

【0002】[0002]

【従来の技術】(1)相分離の防止 多成分系や水和塩系の潜熱蓄熱物質は、蓄冷熱(または
放温熱)モードにより析出した一部の成分や水和数の異
なる物質の固体が、放冷熱(または蓄温熱)モードにな
っても固体のまま存在し続ける「相分離」という現象が
生じ易い。「相分離」が生じると、固液相変化温度(=
凝固・融解温度)が想定していた値と異なったり、所定
の融解潜熱が得られなくなってしまう。
2. Description of the Related Art (1) Prevention of phase separation A multi-component or hydrated salt latent heat storage material is a solid component of a substance having a different hydration number or a partial component precipitated in a cold storage (or heat release) mode. However, a phenomenon called "phase separation" which is likely to remain in a solid state even in the cooling heat (or heat storage heat) mode is likely to occur. When “phase separation” occurs, the solid-liquid phase change temperature (=
(Solidification / melting temperature) is different from the expected value, or a predetermined latent heat of fusion cannot be obtained.

【0003】相分離を防止するためには、析出した一部
の成分あるいは水和数の異なる物質の固体を蓄熱物質液
体中で攪拌してやれば良い。
[0003] In order to prevent phase separation, it is only necessary to agitate a part of the precipitated component or a solid of a substance having a different hydration number in a heat storage substance liquid.

【0004】(2)過冷却度の低減 各種潜熱蓄熱物質の多くは、蓄冷熱または放温熱時に融
点より温度が下がっても固体が析出しない(=凝固しな
い)「過冷却」という現象が生じ易い。特に、潜熱蓄熱
物質を封入している容器の容積が小さいほど、「過冷
却」は生じ易い。潜熱蓄熱物質の固体の析出・成長によ
って蓄冷熱または放温熱させるためには、実際に固体が
析出する温度(=凝固開始温度=凍結開始温度)と融点
との温度差である「最大過冷却度」が大きければ大きい
ほど、より低い温度の熱搬送流体で冷却してやる必要が
あるため、熱搬送流体を冷却する冷凍機の効率が低下し
てしまう。
(2) Reduction of degree of supercooling Many kinds of latent heat storage materials tend to cause a phenomenon called "supercooling" in which solids do not precipitate (= do not solidify) even when the temperature falls below the melting point during cold storage heat or heat release heat. . In particular, as the volume of the container enclosing the latent heat storage material is smaller, “supercooling” is more likely to occur. In order to perform cold storage heat or heat release by the precipitation and growth of a solid of a latent heat storage material, the “maximum supercooling degree” is a temperature difference between the melting point and the temperature at which the solid actually precipitates (= solidification start temperature = freezing start temperature). Is larger, the cooling with a lower temperature heat carrier fluid must be performed, so that the efficiency of the refrigerator for cooling the heat carrier fluid decreases.

【0005】そこで、過冷却度を低減するため、現状で
は潜熱蓄熱物質の結晶生成の核になりやすい異物質を添
加したり、電磁場や超音波等で衝撃を与えたりしてい
る。
Therefore, in order to reduce the degree of supercooling, at present, a foreign substance which is likely to be a nucleus for crystal formation of a latent heat storage material is added, or an impact is given by an electromagnetic field or ultrasonic waves.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、(1)
の相分離については、潜熱蓄熱物質を蓄熱カプセル内に
封入し、しかも蓄熱カプセルを蓄熱槽内において静止さ
せた状態で利用するのが一般的なため、実用上、カプセ
ル内の攪拌は不可能に近い。そこで現状では、相分離の
影響を小さくするために、ゲル化剤を添加することによ
って、析出した一部の成分あるいは水和数の異なる物質
の固体と残りの液体との接触面積を大きくしたり、拡散
の距離を小さくしたりしているが、反面、液体の対流を
抑制してしまい、伝熱性能を低下させてしまっている。
However, (1)
For phase separation, it is common to use a latent heat storage material enclosed in a heat storage capsule and to use the heat storage capsule stationary in the heat storage tank. near. At present, in order to reduce the influence of phase separation, the contact area between the remaining liquid and some of the precipitated components or substances with different hydration numbers can be increased by adding a gelling agent. Although the diffusion distance is reduced, the convection of the liquid is suppressed, and the heat transfer performance is reduced.

【0007】また(2)については、上記のように異物
質を添加したり、電磁場や超音波等で衝撃を与えたりす
るよりも低コストで信頼性が高く、しかも蓄熱材の廃棄
処理の容易な方法が望まれている。
[0007] The method (2) is more reliable at a lower cost than the method of adding a foreign substance or giving an impact by an electromagnetic field or an ultrasonic wave as described above. A new method is desired.

【0008】そこで本発明は、低コストで伝熱・蓄熱性
能を向上させることで相分離を防止し、カプセル内の潜
熱蓄熱物質の過冷却度を早期に解除することができる蓄
熱カプセルを提供することを目的とする。
Accordingly, the present invention provides a heat storage capsule capable of preventing phase separation by improving heat transfer and heat storage performance at low cost and quickly releasing the degree of supercooling of the latent heat storage material in the capsule. The purpose is to:

【0009】[0009]

【課題を解決するための手段】かかる目的を達成するた
め、請求項1記載の発明は、内部に潜熱蓄熱物質を封入
し、周囲を流れる熱搬送流体との間で交換した熱を蓄え
る蓄熱カプセルにおいて、カプセルの比重を熱搬送流体
と等しくしてこの熱搬送流体中に均一に分散しやすくな
るようにしたものである。
In order to achieve the above object, according to the first aspect of the present invention, there is provided a heat storage capsule for enclosing a latent heat storage material therein and storing heat exchanged with a heat carrier fluid flowing around. In the above, the specific gravity of the capsule is made equal to that of the heat transfer fluid so that the capsule is easily dispersed uniformly in the heat transfer fluid.

【0010】この場合、蓄熱カプセルは熱搬送流体中に
偏りなく分布し、広い伝熱面積を確保して熱搬送流体と
の間で効率よく熱交換することが可能となる。このた
め、各蓄熱カプセルが有する伝熱性能・蓄熱性能の低下
が防止され、全体としての伝熱・蓄熱性能が向上する。
[0010] In this case, the heat storage capsules are evenly distributed in the heat transfer fluid, and a wide heat transfer area can be secured to efficiently exchange heat with the heat transfer fluid. For this reason, the heat transfer performance / heat storage performance of each heat storage capsule is prevented from lowering, and the heat transfer / heat storage performance as a whole is improved.

【0011】したがって、この蓄熱カプセルによれば熱
搬送流体の対流を抑制してしまうようなことが不要とな
り、カプセルと熱搬送流体との間の伝熱性能を向上させ
ることが可能となる。
Therefore, according to the heat storage capsule, it is not necessary to suppress the convection of the heat transfer fluid, and the heat transfer performance between the capsule and the heat transfer fluid can be improved.

【0012】請求項2記載の発明は、内部に潜熱蓄熱物
質を封入し、周囲を流れる熱搬送流体との間で交換した
熱を蓄える蓄熱カプセルにおいて、熱搬送流体の流動に
よって流動・回転・振動するカプセル形状に形成したも
のである。
According to a second aspect of the present invention, there is provided a heat storage capsule for enclosing a latent heat storage material therein and storing heat exchanged with a surrounding heat transfer fluid, wherein the heat transfer fluid flows, rotates and vibrates due to the flow of the heat transfer fluid. It is formed in a capsule shape.

【0013】この場合、蓄熱カプセルは熱搬送流体の流
動のみによって流動・回転等し得る。このため、カプセ
ル内側の潜熱蓄熱物質液体とカプセル外側の熱搬送流体
の双方の流れに乱れを生じさせ、カプセル内の潜熱蓄熱
物質の相分離を防止することが可能となる。また、カプ
セル内の潜熱蓄熱物質の過冷却度を低減し、凝固開始温
度を融点に近づけることによって過冷却度を早期に解除
することも可能となる。さらに、カプセル内壁面と潜熱
蓄熱物質液体の間の熱伝達率、およびカプセル外壁面と
熱搬送流体の間の熱伝達率を向上させることが可能とな
る。
In this case, the heat storage capsule can flow and rotate only by the flow of the heat transfer fluid. For this reason, both the flow of the latent heat storage material liquid inside the capsule and the flow of the heat transfer fluid outside the capsule are disturbed, and the phase separation of the latent heat storage material inside the capsule can be prevented. In addition, the degree of subcooling of the latent heat storage material in the capsule is reduced, and the degree of supercooling can be released early by bringing the solidification start temperature close to the melting point. Furthermore, the heat transfer coefficient between the capsule inner wall surface and the latent heat storage material liquid and the heat transfer coefficient between the capsule outer wall surface and the heat transfer fluid can be improved.

【0014】請求項3記載の発明は、請求項1または2
記載の蓄熱カプセルにおいてカプセル形状を非真球とし
たものである。したがって、蓄熱カプセルは熱搬送流体
の流動によって流動・回転等しやすく、内部の潜熱蓄熱
物質を攪拌させやすい。このため、相分離の防止、過冷
却度の低減、及び熱伝達率の向上により、伝熱・蓄熱性
能を向上させやすくなる。また、各カプセルを異なる形
状とすることで個別の動きを生じさせることが可能とな
り、流れに乱れを生じさせて伝熱・蓄熱性能をさらに向
上させることもできるようになる。
According to a third aspect of the present invention, there is provided the first or second aspect.
In the heat storage capsule described above, the capsule shape is a non-spherical shape. Therefore, the heat storage capsule easily flows and rotates due to the flow of the heat transfer fluid, and easily agitates the internal latent heat storage material. For this reason, prevention of phase separation, reduction of the degree of supercooling, and improvement of the heat transfer coefficient facilitate the improvement of the heat transfer / heat storage performance. In addition, by making the capsules different in shape, it is possible to cause individual movement, and the turbulence of the flow is generated, so that the heat transfer / heat storage performance can be further improved.

【0015】請求項4記載の発明は、請求項1または2
記載の蓄熱カプセルを柱状とし、かつ熱搬送流体の流動
によってカプセルに軸回転を生じさせる羽根を周面に設
けたものである。この場合、蓄熱カプセルは流動によっ
て軸回転し、カプセル内側の潜熱蓄熱物質液体とカプセ
ル外側の熱搬送流体の双方の流れに乱れを生じさせ、カ
プセル内の潜熱蓄熱物質の相分離の防止と過冷却度の低
減、カプセル内壁面と潜熱蓄熱物質液体の間の熱伝達率
の向上、およびカプセル外壁面と熱搬送流体の間の熱伝
達率の向上を可能とする。
The invention according to claim 4 is the first or second invention.
The heat storage capsule described above is formed in a columnar shape, and blades for causing the capsule to rotate axially by the flow of the heat transfer fluid are provided on the peripheral surface. In this case, the heat storage capsule rotates by the flow, causing turbulence in the flow of both the latent heat storage material liquid inside the capsule and the heat transfer fluid outside the capsule, preventing phase separation of the latent heat storage material inside the capsule and overcooling. The heat transfer coefficient between the capsule inner wall surface and the heat transfer fluid can be improved, and the heat transfer coefficient between the capsule outer wall surface and the heat transfer fluid can be improved.

【0016】[0016]

【発明の実施の形態】以下、本発明の構成を図面に示す
実施の形態の一例に基づいて詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The configuration of the present invention will be described below in detail based on an example of an embodiment shown in the drawings.

【0017】図1に本発明の一実施形態を示す。本発明
の蓄熱カプセル1は、内部に公知または新規の潜熱蓄熱
物質を封入したものであり、図1に示すように熱媒体で
ある熱搬送流体(ブライン)2が流れる蓄熱槽4内に複
数設けられ、周囲を流れる熱搬送流体2との間で熱交換
してこの熱を内部に蓄熱する。
FIG. 1 shows an embodiment of the present invention. The heat storage capsule 1 of the present invention has a known or new latent heat storage material sealed therein, and a plurality of heat storage capsules 1 are provided in a heat storage tank 4 through which a heat transfer fluid (brine) 2 as a heat medium flows as shown in FIG. The heat is exchanged with the heat transfer fluid 2 flowing around and the heat is stored inside.

【0018】ここで、蓄熱カプセル1は、比重を熱搬送
流体2と等しくすることにより、熱搬送流体2中に均一
に分散しやすくなるようにする。この場合におけるカプ
セル比重は、熱搬送流体2と厳密に等しい場合のみなら
ず、蓄熱カプセル1が熱搬送流体2中に均一に分散する
程度に似通った比重である場合も含む。
The heat storage capsule 1 has a specific gravity equal to that of the heat transfer fluid 2 so that the heat storage capsule 1 can be easily dispersed uniformly in the heat transfer fluid 2. The capsule specific gravity in this case includes not only a case where the heat storage fluid 1 is exactly equal to the heat transfer fluid 2 but also a case where the heat storage capsule 1 has a specific gravity similar to the degree of uniform dispersion in the heat transfer fluid 2.

【0019】具体的には、一般的な熱搬送流体2の比重
は1よりも大きいのに対し、一般的なカプセル材質(例
えばポリエチレンなどのプラスチック)の比重は1より
も小さくなる。また、凝固・融解時の潜熱蓄熱物質の体
積変化によるカプセルの破壊を防ぐため、カプセル内に
数%〜十数%(体積割合)の空気を封入するようにして
もよい。
Specifically, the specific gravity of the general heat transfer fluid 2 is larger than 1, while the specific gravity of the general capsule material (for example, plastic such as polyethylene) is smaller than 1. Further, in order to prevent the capsule from being destroyed due to a change in the volume of the latent heat storage material during solidification and melting, air of several percent to ten and several percent (volume ratio) may be enclosed in the capsule.

【0020】このように、潜熱蓄熱物質の比重が熱搬送
流体2よりも小さい場合(例えば氷)、比重の大きい物
質を蓄熱カプセル1内に添加したり、カプセル表面にく
っつけてやる必要があるが、これによって熱搬送流体2
の流れを乱す効果を得ることも可能となる。逆に潜熱蓄
熱物質の比重が熱搬送流体2よりも大きい場合(例えば
各種水和塩)、比重の小さい物質の添加等が必要になる
が、この場合も流れを乱す効果を得ることが可能であ
る。
As described above, when the specific gravity of the latent heat storage substance is smaller than that of the heat transfer fluid 2 (for example, ice), it is necessary to add a substance having a higher specific gravity to the heat storage capsule 1 or to attach the substance to the capsule surface. , Whereby the heat transfer fluid 2
It is also possible to obtain the effect of disrupting the flow of air. Conversely, when the specific gravity of the latent heat storage substance is larger than that of the heat transfer fluid 2 (for example, various hydrated salts), it is necessary to add a substance having a small specific gravity. In this case, however, the effect of disturbing the flow can be obtained. is there.

【0021】カプセル比重を熱搬送流体2と等しくした
本実施形態の場合、蓄熱カプセル1は熱搬送流体2中に
偏りなく分布し、広い伝熱面積を確保して熱搬送流体と
の間で効率よく熱交換することが可能となる。このた
め、各蓄熱カプセル1が有する伝熱性能・蓄熱性能の低
下が防止され、全体としての伝熱・蓄熱性能が向上す
る。したがって、この蓄熱カプセル1によれば熱搬送流
体の対流を抑制してしまうようなことがなくなって、カ
プセルと熱搬送流体2との間の伝熱性能を向上させるこ
とが可能となる。
In the case of the present embodiment in which the capsule specific gravity is equal to that of the heat transfer fluid 2, the heat storage capsules 1 are distributed evenly in the heat transfer fluid 2 and a wide heat transfer area is secured to improve the efficiency between the heat storage capsule 1 and the heat transfer fluid. It becomes possible to exchange heat well. Therefore, a decrease in the heat transfer performance and heat storage performance of each heat storage capsule 1 is prevented, and the overall heat transfer and heat storage performance is improved. Therefore, according to the heat storage capsule 1, the convection of the heat transfer fluid is not suppressed, and the heat transfer performance between the capsule and the heat transfer fluid 2 can be improved.

【0022】さらに本実施形態では、この蓄熱カプセル
1を、周囲を流れる熱搬送流体2の流動によって流動・
回転・振動するよう非真球形状に形成している。これに
より、蓄熱カプセル1は図1に示すように熱搬送流体2
の流れを受けて流動・回転・振動などし、カプセル内側
の潜熱蓄熱物質液体とカプセル外側の熱搬送流体2の双
方の流れに乱れを生じさせる。したがって、カプセル内
の潜熱蓄熱物質の相分離を防止することが可能となる
し、カプセル内の潜熱蓄熱物質の過冷却度を低減し、凝
固開始温度を融点に近づけることによって過冷却度を早
期に解除することも可能となる。さらに、カプセル内壁
面と潜熱蓄熱物質液体の間の熱伝達率、およびカプセル
外壁面と熱搬送流体の間の熱伝達率を向上させることが
できる。
Further, in the present embodiment, the heat storage capsule 1 is caused to flow by the heat carrier fluid 2 flowing around it.
It is formed in a non-spherical shape so as to rotate and vibrate. Thereby, the heat storage capsule 1 is connected to the heat transfer fluid 2 as shown in FIG.
In response to the flow, the fluid flows, rotates, vibrates, and the like, causing turbulence in the flow of both the latent heat storage material liquid inside the capsule and the heat transfer fluid 2 outside the capsule. Therefore, the phase separation of the latent heat storage material in the capsule can be prevented, the degree of supercooling of the latent heat storage material in the capsule is reduced, and the degree of supercooling is quickly increased by bringing the solidification start temperature close to the melting point. It is also possible to cancel. Further, the heat transfer coefficient between the capsule inner wall surface and the latent heat storage material liquid and the heat transfer coefficient between the capsule outer wall surface and the heat transfer fluid can be improved.

【0023】なお、上述の実施形態は本発明の好適な実
施の一例ではあるがこれに限定されるものではなく本発
明の要旨を逸脱しない範囲において種々変形実施可能で
ある。例えば本実施形態では、蓄熱カプセル1を略球状
ではあるが真球でない形状とすることで流動・回転・振
動を起こさせるようにしたが、特に球状に限られること
はなく、例示すれば図2に示すように柱状とすることも
できる。
The above embodiment is an example of a preferred embodiment of the present invention, but the present invention is not limited to this, and various modifications can be made without departing from the gist of the present invention. For example, in the present embodiment, the heat storage capsule 1 is made to have a substantially spherical shape but a non-spherical shape to cause flow, rotation, and vibration. However, the shape is not particularly limited to a spherical shape. As shown in FIG.

【0024】ここでは、略円柱形状とした蓄熱カプセル
1の両端1aを、熱搬送流体2の流路壁5で回転可能か
つ移動可能に支持している。本実施形態では、蓄熱カプ
セル1の両端部1a,1aをそれぞれ凹状、凸状とし、
流路壁5の対向面に設けた凸部5aと凹部5bに係合さ
せることによって支持する。この場合、図示するように
両端部1a,1aと凸部5aおよび凹部5bとの間に隙
間を設け、緩い係合状態を形成することによって蓄熱カ
プセル1の流動動作、回転動作、振動動作などを妨げな
いようにしている。したがって、蓄熱カプセル1は可動
範囲内で流動・回転・振動などすることができる。
Here, both ends 1 a of the substantially cylindrical heat storage capsule 1 are rotatably and movably supported by the flow path wall 5 of the heat transfer fluid 2. In the present embodiment, both ends 1a, 1a of the heat storage capsule 1 are concave and convex, respectively.
The support is provided by engaging with the convex portion 5a and the concave portion 5b provided on the opposing surface of the flow path wall 5. In this case, as shown in the figure, a gap is provided between both end portions 1a, 1a and the convex portion 5a and the concave portion 5b to form a loosely engaged state so that the flow operation, the rotation operation, the vibration operation, etc. of the heat storage capsule 1 can be performed. I try not to disturb. Therefore, the heat storage capsule 1 can flow, rotate, vibrate, etc. within the movable range.

【0025】また、蓄熱カプセル1の周面には、熱搬送
流体2の流動によって回転動作を生じさせるための羽根
3を設ける。羽根3は、一定方向の回転作用を生じさせ
得る軸対称形とすることが好ましいが、非軸対称であっ
てもよい。本実施形態では、図示するように周方向に沿
って径を増す渦巻き状の2個1組の羽根3を各蓄熱カプ
セル1の周面に設けている。なお、ここで示した形態は
羽根3の一例にすぎず、形状や個数はこのようなものに
限られない。また、蓄熱カプセル1のカプセル形状も円
柱または円筒形状のものに限られることはない。
Further, on the peripheral surface of the heat storage capsule 1, there are provided blades 3 for causing a rotation operation by the flow of the heat carrier fluid 2. The blades 3 are preferably formed in an axially symmetrical shape capable of generating a rotating action in a certain direction, but may be non-axially symmetrical. In the present embodiment, as shown in the figure, a pair of spiral blades 3 whose diameter increases in the circumferential direction are provided on the peripheral surface of each heat storage capsule 1. In addition, the form shown here is only an example of the blade 3, and the shape and the number are not limited to such. Further, the capsule shape of the heat storage capsule 1 is not limited to a cylindrical or cylindrical shape.

【0026】次に、蓄熱カプセル1の第3の実施形態を
示す。上述した第2実施形態では、柱状の蓄熱カプセル
1を軸方向が熱搬送流体2の流れ方向と垂直となるよう
に支持したが、第3実施形態は蓄熱カプセル1の軸方向
を流れ方向に一致させるものである。この場合、蓄熱カ
プセル1の周面には図3に示すように螺旋状の羽根3を
設け、熱搬送流体の軸方向の流動によって蓄熱カプセル
1を軸中心に回転させるようにしている。これにより、
第2実施形態と同様、カプセル内側の潜熱蓄熱物質液体
とカプセル外側の熱搬送流体2の双方の流れに乱れを生
じさせてカプセル内壁面と潜熱蓄熱物質液体の間の熱伝
達率、およびカプセル外壁面と熱搬送流体の間の熱伝達
率を向上させることができる。なお、この場合、羽根3
は連続した螺旋形状としてもよいし、螺旋状に連なる部
分的羽根の集合としてもよい。
Next, a third embodiment of the heat storage capsule 1 will be described. In the above-described second embodiment, the columnar heat storage capsule 1 is supported so that the axial direction is perpendicular to the flow direction of the heat transfer fluid 2, but in the third embodiment, the axial direction of the heat storage capsule 1 matches the flow direction. It is to let. In this case, a spiral blade 3 is provided on the peripheral surface of the heat storage capsule 1 as shown in FIG. 3, and the heat storage capsule 1 is rotated around the axis by the axial flow of the heat transfer fluid. This allows
As in the second embodiment, the flow of both the latent heat storage material liquid inside the capsule and the heat transfer fluid 2 outside the capsule is disturbed, and the heat transfer coefficient between the inner wall surface of the capsule and the latent heat storage material liquid and the outside of the capsule The heat transfer coefficient between the wall surface and the heat transfer fluid can be improved. In this case, the blade 3
May be a continuous spiral shape or a set of partial blades connected in a spiral shape.

【0027】[0027]

【発明の効果】以上の説明より明らかなように、請求項
1記載の蓄熱カプセルによると、カプセルの比重を熱搬
送流体と等しくして均一分散しやすくしたため、蓄熱カ
プセルは熱搬送流体中に偏りなく分布し、広い伝熱面積
を確保して熱搬送流体との間で効率よく熱交換すること
が可能となる。このため、各蓄熱カプセルが有する伝熱
性能・蓄熱性能の低下が防止され、全体としての伝熱・
蓄熱性能が向上する。
As is apparent from the above description, according to the heat storage capsule according to the first aspect, the specific gravity of the capsule is made equal to that of the heat carrier fluid to facilitate uniform dispersion, so that the heat storage capsule is biased in the heat carrier fluid. The heat transfer fluid can be efficiently exchanged with the heat transfer fluid while securing a large heat transfer area. For this reason, the heat transfer performance / heat storage performance of each heat storage capsule is prevented from deteriorating.
The heat storage performance is improved.

【0028】したがって、この蓄熱カプセルによれば熱
搬送流体の対流を抑制してしまうようなことが不要とな
り、カプセルと熱搬送流体との間の伝熱性能を向上させ
ることが可能となる。しかも、低コストで信頼性が高
く、蓄熱材の廃棄処理も従来と異なるところがない。
Therefore, according to the heat storage capsule, it is not necessary to suppress the convection of the heat transfer fluid, and the heat transfer performance between the capsule and the heat transfer fluid can be improved. In addition, the reliability is low and the heat storage material is not discarded.

【0029】また、請求項2記載の蓄熱カプセルによる
と、熱搬送流体の流動によって流動・回転・振動するカ
プセル形状としたことから、カプセル内側の潜熱蓄熱物
質液体とカプセル外側の熱搬送流体の双方の流れに乱れ
を生じさせ、カプセル内の潜熱蓄熱物質の相分離を防止
することが可能となる。また、カプセル内の潜熱蓄熱物
質の過冷却度を低減し、凝固開始温度を融点に近づける
ことによって過冷却度を早期に解除することも可能とな
る。さらに、カプセル内壁面と潜熱蓄熱物質液体の間の
熱伝達率、およびカプセル外壁面と熱搬送流体の間の熱
伝達率を向上させることができる。しかも、低コストで
信頼性が高く、蓄熱材廃棄時の処理も従来と異なるとこ
ろがない。
According to the second aspect of the present invention, since the heat storage capsule has a capsule shape which flows, rotates and vibrates by the flow of the heat transfer fluid, both the latent heat storage material liquid inside the capsule and the heat transfer fluid outside the capsule are provided. Of the latent heat storage material in the capsule can be prevented from being separated. In addition, the degree of subcooling of the latent heat storage material in the capsule is reduced, and the degree of supercooling can be released early by bringing the solidification start temperature close to the melting point. Further, the heat transfer coefficient between the capsule inner wall surface and the latent heat storage material liquid and the heat transfer coefficient between the capsule outer wall surface and the heat transfer fluid can be improved. Moreover, the reliability is low at low cost, and there is no difference in the disposal of the heat storage material from the conventional one.

【0030】さらに請求項3記載の蓄熱カプセルによる
と、カプセル形状を非真球としたことから、熱搬送流体
の流動によって流動・回転等させ、内部の潜熱蓄熱物質
を攪拌させやすい。このため、相分離の防止、過冷却度
の低減、及び熱伝達率の向上により伝熱・蓄熱性能を向
上させやすくなる。
According to the third aspect of the present invention, since the shape of the capsule is non-spherical, it is easy to cause the heat transfer fluid to flow, rotate, etc., and to stir the internal latent heat storage material. For this reason, prevention of phase separation, reduction of the degree of supercooling, and improvement of the heat transfer coefficient facilitate the improvement of the heat transfer / heat storage performance.

【0031】また請求項4記載の蓄熱カプセルによる
と、カプセルを柱状とし、かつ熱搬送流体の流動によっ
てカプセルに軸回転を生じさせる羽根を周面に設けたた
め、流動によって軸回転させ、カプセル内側の潜熱蓄熱
物質液体とカプセル外側の熱搬送流体の双方の流れに乱
れを生じさせることができる。したがって、カプセル内
の潜熱蓄熱物質の相分離の防止と過冷却度の低減、カプ
セル内壁面と潜熱蓄熱物質液体の間の熱伝達率の向上、
およびカプセル外壁面と熱搬送流体の間の熱伝達率の向
上が可能となる。
According to the heat storage capsule of the present invention, the capsule is formed in a columnar shape, and the blade which causes the capsule to rotate axially by the flow of the heat transfer fluid is provided on the peripheral surface. The flow of both the latent heat storage material liquid and the heat transfer fluid outside the capsule can be disrupted. Therefore, prevention of phase separation of the latent heat storage material in the capsule and reduction of the degree of supercooling, improvement of the heat transfer coefficient between the capsule inner wall surface and the latent heat storage material liquid,
Further, the heat transfer coefficient between the capsule outer wall surface and the heat transfer fluid can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示す蓄熱槽の内部を示す
図である。
FIG. 1 is a diagram showing the inside of a heat storage tank showing one embodiment of the present invention.

【図2】本発明の第2の実施形態を示す図で、(A)柱
状の蓄熱カプセルを軸方向からみた様子、(B)流路壁
と蓄熱カプセルを側面からみた様子である。
FIGS. 2A and 2B are views showing a second embodiment of the present invention, in which (A) a column-shaped heat storage capsule is viewed from the axial direction, and (B) a flow path wall and the heat storage capsule are viewed from the side.

【図3】本発明の第3の実施形態を示す蓄熱カプセルの
斜視図である。
FIG. 3 is a perspective view of a heat storage capsule showing a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 蓄熱カプセル 2 熱搬送流体 3 羽根 DESCRIPTION OF SYMBOLS 1 Thermal storage capsule 2 Heat transfer fluid 3 Blade

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 内部に潜熱蓄熱物質を封入し、周囲を流
れる熱搬送流体との間で交換した熱を蓄える蓄熱カプセ
ルにおいて、カプセルの比重を前記熱搬送流体と等しく
してこの熱搬送流体中に均一に分散しやすくしたことを
特徴とする蓄熱カプセル。
1. A heat storage capsule for enclosing a latent heat storage material therein and storing heat exchanged with a surrounding heat transfer fluid, wherein the specific gravity of the capsule is equal to the heat transfer fluid, and A heat storage capsule characterized in that it is easy to disperse evenly.
【請求項2】 内部に潜熱蓄熱物質を封入し、周囲を流
れる熱搬送流体との間で交換した熱を蓄える蓄熱カプセ
ルにおいて、前記熱搬送流体の流動によって流動・回転
・振動するカプセル形状に形成したことを特徴とする蓄
熱カプセル。
2. A heat storage capsule which encloses a latent heat storage material therein and stores heat exchanged with a heat carrier fluid flowing therearound, wherein the capsule has a capsule shape which flows, rotates and vibrates due to the flow of the heat carrier fluid. A heat storage capsule characterized by the following.
【請求項3】 カプセル形状を非真球としたことを特徴
とする請求項1または2記載の蓄熱カプセル。
3. The heat storage capsule according to claim 1, wherein the capsule shape is a non-true sphere.
【請求項4】 カプセル形状を柱状とし、かつ前記熱搬
送流体の流動によってカプセルに軸回転を生じさせる羽
根を周面に設けたことを特徴とする請求項1または2記
載の蓄熱カプセル。
4. The heat storage capsule according to claim 1, wherein the capsule has a columnar shape, and blades are provided on a peripheral surface of the capsule to generate axial rotation by the flow of the heat transfer fluid.
JP2000137074A 2000-05-10 2000-05-10 Thermal storage capsule Pending JP2001317887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000137074A JP2001317887A (en) 2000-05-10 2000-05-10 Thermal storage capsule

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000137074A JP2001317887A (en) 2000-05-10 2000-05-10 Thermal storage capsule

Publications (1)

Publication Number Publication Date
JP2001317887A true JP2001317887A (en) 2001-11-16

Family

ID=18644914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000137074A Pending JP2001317887A (en) 2000-05-10 2000-05-10 Thermal storage capsule

Country Status (1)

Country Link
JP (1) JP2001317887A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015005085A1 (en) * 2013-07-12 2015-01-15 アイシン精機株式会社 Chemical thermal energy storage device
US10818944B2 (en) 2016-12-15 2020-10-27 Hyundai Motor Company Heat exchange device for cooling water of fuel cell and fuel cell system comprising the same
US11476474B2 (en) 2016-12-14 2022-10-18 Hyundai Motor Company Heat exchange apparatus for cooling water of fuel cell and fuel cell system including the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015005085A1 (en) * 2013-07-12 2015-01-15 アイシン精機株式会社 Chemical thermal energy storage device
JP2015017780A (en) * 2013-07-12 2015-01-29 アイシン精機株式会社 Chemical heat storage device
CN105378419A (en) * 2013-07-12 2016-03-02 爱信精机株式会社 Chemical thermal energy storage device
US9869518B2 (en) 2013-07-12 2018-01-16 Aisin Seiki Kabushiki Kaisha Chemical heat storage device
US11476474B2 (en) 2016-12-14 2022-10-18 Hyundai Motor Company Heat exchange apparatus for cooling water of fuel cell and fuel cell system including the same
US11777112B2 (en) 2016-12-14 2023-10-03 Hyundai Motor Company Heat exchange apparatus for cooling water of fuel cell and fuel cell system including the same
US10818944B2 (en) 2016-12-15 2020-10-27 Hyundai Motor Company Heat exchange device for cooling water of fuel cell and fuel cell system comprising the same

Similar Documents

Publication Publication Date Title
EP1208338A1 (en) Methods and apparatus for producing phase change ice particulate saline slurries
US4007601A (en) Tubular sublimator/evaporator heat sink
EP0074612B1 (en) Heat-storing apparatus
JP2001317887A (en) Thermal storage capsule
Geng et al. Extraordinary solidification mechanism of liquid alloys under acoustic levitation state
JP5136599B2 (en) Equipment with fluid agitation function
US20210009333A1 (en) Cold insulation tool
JP4665820B2 (en) Method for promoting solidification and melting of heat storage material and heat storage device
JPS59200191A (en) Subcooling preventable latent heat type heat storage tank
JPH0743235B2 (en) Heat storage device
JP2004003718A (en) Hydrate slurry preparing device
JPH05215369A (en) Cooling or heating method utilizing latent heat
JP2002263470A (en) Apparatus for manufacturing slurry of hydrate
JPH06185762A (en) Cooling or heating method
JPWO2021075040A1 (en) Heat storage type water heater
JPS6136696A (en) Steady heat generating heat exchanger
JP2006183970A (en) Heat storage device
JP2004053171A (en) Air conditioning system and operation method for the same
JPH03199835A (en) Ice cold accumulator
JPH0914705A (en) Fluid transferring device
JPH01159572A (en) Cold accumulation agent
JPS63273787A (en) Capsule for heat accumulating material
JP2018071960A (en) Heat storage device
JPS5937590Y2 (en) heat storage device
JP6523528B2 (en) Ice making apparatus and ice making method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040922

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050202