JP2001316727A - Method for manufacturing cold rolled steel sheet excellent in processability and having reduced anisotropy - Google Patents

Method for manufacturing cold rolled steel sheet excellent in processability and having reduced anisotropy

Info

Publication number
JP2001316727A
JP2001316727A JP2001055506A JP2001055506A JP2001316727A JP 2001316727 A JP2001316727 A JP 2001316727A JP 2001055506 A JP2001055506 A JP 2001055506A JP 2001055506 A JP2001055506 A JP 2001055506A JP 2001316727 A JP2001316727 A JP 2001316727A
Authority
JP
Japan
Prior art keywords
cooling
less
rolling
cold
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001055506A
Other languages
Japanese (ja)
Other versions
JP4069591B2 (en
Inventor
Yasuhide Ishiguro
康英 石黒
Tadashi Inoue
正 井上
Toru Inazumi
透 稲積
Yoichi Motoyashiki
洋一 本屋敷
Sadanori Imada
貞則 今田
Yoshiro Tsuchiya
義郎 土屋
Kenichi Mitsuzuka
賢一 三塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2001055506A priority Critical patent/JP4069591B2/en
Publication of JP2001316727A publication Critical patent/JP2001316727A/en
Application granted granted Critical
Publication of JP4069591B2 publication Critical patent/JP4069591B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method in which cold rolled steel sheets having an extra low carbon and nitrogen content, no problems on processing, etc., and excellent processability and anisotropy can be stably obtained, and to provide a manufacturing method in which the cold rolled steel sheets having uniform quality along longitudinal direction in addition to the above characteristics can be stably obtained. SOLUTION: In manufacturing the cold rolled steel sheet by subjecting a steel slab having an extra low carbon/nitrogen type composition to heating, hot rolling, cold rolling and annealing, finish rolling is applied under the following conditions: >45-70% total draft at the passes before the final pass; 5-35% draft at the final pass; and finishing temperature between the Ar3 transformation point and (Ar3 transformation point +50 deg.C). Subsequently, within 1 s or >0.5-1 s after the completion of the finish rolling, rapid cooling is started at (200 to 2,000) deg.C/s cooling rate. The amount of temperature fall during this rapid cooling from the finishing temperature at the above finish rolling is regulated to 50-250 deg.C, and cooling-finish temperature of this rapid cooling is regulated to 650-850 deg.C. After successive slow cooling at a rate of <=100 deg.C/s or air cooling, the resultant hot rolled steel strip is coiled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車、電気製
品、缶材、建材等の用途に好適な加工性に優れ、異方性
の小さい冷延鋼板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a cold-rolled steel sheet having excellent workability and small anisotropy, which is suitable for use in automobiles, electric products, cans, building materials and the like.

【0002】[0002]

【従来の技術】加工性を要求される冷延鋼板や表面処理
鋼板では、伸び、深絞り性に優れ、かつ、異方性の小さ
い機械的性質を有する必要がある。また、鋼板の形状、
製造時の熱延鋼帯の搬送性も、そのような鋼板を作る上
で重要な因子である。
2. Description of the Related Art A cold-rolled steel sheet or a surface-treated steel sheet which requires workability needs to have excellent elongation, deep drawability and mechanical properties with small anisotropy. Also, the shape of the steel sheet,
The transportability of the hot-rolled steel strip during production is also an important factor in producing such a steel sheet.

【0003】従来、極低炭素・窒素系の成分系で、Ti
やNb等の炭化物形成元素や窒化物形成元素の添加を行
うことによって、軟質高延性を目指してきた。その発想
の基本は、製鋼段階で、炭素、窒素等の侵入型元素をで
きる範囲で除去すること、その際に、除去できずに残存
するレベルの侵入型元素、もしくは除去することが経済
的に見合わないレベルの侵入型元素を、析出物として固
定して、鋼中に侵入型元素を存在させないことである。
[0003] Conventionally, an extremely low-carbon / nitrogen-based component system such as Ti
By adding a carbide-forming element or a nitride-forming element such as Nb or Nb, soft high ductility has been aimed at. The basis of this idea is to remove invasive elements such as carbon and nitrogen in the steelmaking stage to the extent possible, and at that time it is economical to remove invasive elements that cannot be removed and remain at a level that remains. The improper level of interstitial elements is fixed as precipitates so that no interstitial elements are present in the steel.

【0004】しかし、加工性の要求が厳しくなってくる
につれて、成分調整だけではかかる要求を満足する鋼板
を得ることができず、プロセス面からもさらなる材質の
向上を図る必要が生じている。すでに、冷却技術を有効
に活用することによって、熱延板の粒径を微細化させ、
冷延・焼鈍後の機械的性質を向上させることについては
概念的に知られている。その方法とは、熱間圧延終了
後から冷却を開始するまでの時間(以下、冷却開始時間
と記す。)を短くすること、および、冷却速度をでき
る限り速くすること、を同時に行うことにより熱延板の
微細化を図るというものである。
However, as the requirements for workability become more severe, it is not possible to obtain a steel sheet that satisfies such requirements only by adjusting the composition, and it is necessary to further improve the material from the process point of view. Already, by making effective use of cooling technology, the grain size of the hot-rolled sheet has been reduced,
It is conceptually known to improve mechanical properties after cold rolling and annealing. The method is to shorten the time from the end of hot rolling to the start of cooling (hereinafter, referred to as cooling start time) and to increase the cooling rate as fast as possible, thereby simultaneously performing heat. The aim is to reduce the size of the rolled sheet.

【0005】この技術の基本は、上記については、熱
間圧延完了後には仕上圧延時に導入された歪が回復再結
晶するとともにγ(オーステナイト)粒の成長が速やか
に生じるため(1)γ粒が微細なうちに冷却を開始し、
微細なγ粒界からのα(フェライト)粒の形成を行うこ
とによって微細化を図ること、あるいは、(2)さらに
短時間側で冷却を開始して熱間圧延時の加工歪がまだ十
分に解放されていない状態にて、γ粒中の変形帯を核と
してα粒の形成を行うことによって微細化を図るという
ことにある。
[0005] The basics of this technique are as follows. After the completion of hot rolling, the strain introduced during the finish rolling is recovered and recrystallized, and the growth of γ (austenite) grains occurs quickly. Start cooling while fine
Attempt to refine by forming α (ferrite) grains from the fine γ grain boundaries, or (2) Start cooling in a shorter time to sufficiently reduce the work distortion during hot rolling. In the unreleased state, miniaturization is achieved by forming α grains with the deformation zone in γ grains as nuclei.

【0006】上記については、冷却速度が遅い場合、
冷却時にγ粒の回復再結晶や粒成長、および、変態後に
α粒の粒成長が起こるので、冷却速度を大きくしてα粒
の微細化を図ることである。さらに、冷却速度を大きく
することにより、γ−α変態点を降下させ、変態後の温
度が低くなる分、変態後の粒成長が抑制される傾向にな
るという利点もある。
As for the above, when the cooling rate is low,
Since recovery and recrystallization and grain growth of γ grains occur during cooling, and grain growth of α grains occur after transformation, the cooling rate is increased to achieve finer α grains. Furthermore, by increasing the cooling rate, the γ-α transformation point is lowered, and there is an advantage that the growth after transformation tends to be suppressed as much as the temperature after transformation is lowered.

【0007】実験的には、例えば、材料とプロセス(v
ol.3,(1990)、p.785:木野ら)には、
仕上温度をAr変態点以上に確保して、熱間圧延終
了後0.1秒後に冷却を開始し、冷却速度を約180
℃/secとして冷却することによって熱延板の細粒化
を行うと、冷延・焼鈍後の機械的性質、特にr値を向上
することができるということが開示されている。
[0007] Experimentally, for example, materials and processes (v
ol. 3, (1990), p. 785: Kino et al.)
The finishing temperature was maintained at the Ar 3 transformation point or higher, and cooling was started 0.1 seconds after the completion of hot rolling.
It is disclosed that when the grain size of a hot-rolled sheet is reduced by cooling at a rate of ° C./sec, the mechanical properties after cold rolling and annealing, particularly the r value, can be improved.

【0008】また、熱延板細粒化を冷却によって行い、
材質向上を図ることに関して、既に様々な製造方法が開
示されている。例えば、特開平7−70650号公報に
は、鋼中C量が15ppm以下の極低炭素鋼板におい
て、r値:2.50以上の材質を達成する製造方法とし
て、Ar変態点以上で仕上圧延を完了後、冷却開始時
間を圧延終了後0.5秒以内に設定し、冷却開始温度か
ら(Ar変態点−60℃)までの温度域を、50〜4
00℃/secで冷却する技術が開示されている。ただ
し、この方法では、さらに熱延の仕上圧延出側3パスの
累積圧下率を50%以上に規定している。この方法は、
冷却技術による熱延板微細化と熱間圧延での加工歪の大
量蓄積により、r値:2.50以上および深絞り性を実
現しようというものである。
Further, the hot-rolled sheet is refined by cooling,
Various production methods have already been disclosed for improving the material quality. For example, Japanese Patent Application Laid-Open No. 7-70650 discloses a method for producing a material having an r value of 2.50 or more in an ultra-low carbon steel sheet having a C content in steel of 15 ppm or less, by finish rolling at an Ar 3 transformation point or higher. After the completion of the rolling, the cooling start time is set within 0.5 seconds after the end of the rolling, and the temperature range from the cooling start temperature to (Ar 3 transformation point −60 ° C.) is 50 to 4
A technique of cooling at 00 ° C./sec is disclosed. However, in this method, the cumulative rolling reduction in the three passes on the exit side of the finish rolling of hot rolling is further specified to be 50% or more. This method
By making the hot rolled sheet finer by the cooling technique and accumulating a large amount of processing strain in hot rolling, it is intended to realize an r value of 2.50 or more and deep drawability.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、前述し
た木野らの開示した技術や、上記公報において開示され
た技術では、いかなる条件においてもr値をはじめとす
る機械的性質がすべて向上できるわけではなく、条件に
よってはr値や伸び等の加工性が向上せず、劣化する場
合もある。また、熱間圧延で加工歪を大量蓄積する際
に、鋼板の形状が乱れ、鋼板の搬送性に問題が生じるこ
ともある。すなわち、鋼板の形状や搬送性に問題が生じ
ることなく、従来よりも格段に優れたr値や伸び等の加
工性を有する鋼板を安定して製造することができるプロ
セス条件は未だ得られていない。また、この種の鋼板で
は鋼板長手方向の均一性も重要であるが、上記従来技術
では鋼板長手方向の均一性については何ら考慮されてい
ない。
However, in the technology disclosed by Kino et al. And the technology disclosed in the above publication, not all the mechanical properties such as the r value can be improved under any conditions. Depending on conditions, workability such as r-value and elongation may not be improved and may be deteriorated. In addition, when a large amount of processing strain is accumulated by hot rolling, the shape of the steel sheet is disturbed, and a problem may occur in the transportability of the steel sheet. That is, the process conditions that can stably produce a steel sheet having workability such as significantly higher r-value and elongation than before without causing any problems in the shape and transportability of the steel sheet have not yet been obtained. . Further, in this type of steel sheet, the uniformity in the longitudinal direction of the steel sheet is also important, but in the above-described conventional technology, no consideration is given to the uniformity in the longitudinal direction of the steel sheet.

【0010】本発明は、かかる事情に鑑みてなされたも
のであって、極低炭素・窒素系の成分系を有し、鋼板の
形状性や搬送性に問題が生じることがない、加工性およ
び異方性に優れた冷延鋼板を安定して製造することがで
きる製造方法を提供することを目的とする。また、これ
ら特性に加えて、長手方向の材質が均一な冷延鋼板を安
定して製造することができる製造方法を提供することを
目的とする。
The present invention has been made in view of such circumstances, and has an extremely low-carbon / nitrogen-based component system and does not cause problems in the formability and transportability of a steel sheet. An object of the present invention is to provide a manufacturing method capable of stably manufacturing a cold-rolled steel sheet having excellent anisotropy. It is another object of the present invention to provide a manufacturing method capable of stably manufacturing a cold-rolled steel sheet having a uniform material in the longitudinal direction in addition to these characteristics.

【0011】[0011]

【課題を解決するための手段】本発明者らが検討を行っ
た結果、前述した木野らが提案した技術や、上記公報に
記載された技術では、急冷の温度降下量および冷却停止
温度が良好な範囲に制御されていないと機械的性質(r
値および伸び)を向上できないことが判明した。すなわ
ち、本発明者らがこれらの技術に基づいて実験を行った
ところ、急冷の温度降下量または冷却停止温度が良好な
範囲を外れている場合には、平均r値は高くても伸びが
向上せず、逆に伸びが低下することもあり、さらには、
平均r値も劣化することもあることが判明した。つま
り、急冷によって冷やしすぎることは機械的性質に悪影
響を及ぼし、また、ある指定した温度域を含んだ広範囲
の温度域(低温側に拡張した温度域)を急冷によって冷
却させるだけでは材質の向上はみられない。さらに、仕
上圧延の出側3パスの合計圧下率を高めて加工歪を大量
に蓄積して細粒化を行う場合には、これら3パスにおけ
る圧下を適切に配分しなければ鋼板の搬送性、形状性に
悪影響を及ぼすことが判明した。
As a result of investigations by the present inventors, the technique proposed by Kino et al. And the technique described in the above-mentioned publication have good quenching temperature drop and cooling stop temperature. If the mechanical properties (r
Value and elongation) could not be improved. That is, when the present inventors conducted experiments based on these techniques, when the rapid cooling temperature drop or the cooling stop temperature was out of the favorable range, the elongation was improved even if the average r value was high. Otherwise, the growth may be reduced,
It has been found that the average r value may also deteriorate. In other words, excessive cooling by quenching has an adverse effect on the mechanical properties, and the improvement of the material is not achieved simply by quenching a wide temperature range including a specified temperature range (temperature range extended to the low temperature side). I can't see it. Furthermore, in the case of increasing the total draft of the three passes on the exit side of finish rolling and accumulating a large amount of processing strain for grain refinement, if the reduction in these three passes is not appropriately distributed, the transportability of the steel sheet, It was found that the shape was adversely affected.

【0012】そこで、本発明者らは、このような問題を
解決するために研究を行った結果、極低炭素鋼を基本と
する成分系において、熱延の圧下条件を制御して、その
上で、熱延ランナウト冷却条件を制御することによっ
て、形状性や搬送性に問題が生じることなく、従来より
も格段に優れた加工性および異方性を有する冷延鋼板が
得られることを見出した。すなわち、鋼組成を極低炭素
系の特定組成に調整することに加えて、以下の知見を得
た。
The inventors of the present invention have conducted research to solve such a problem. As a result, in a component system based on ultra-low carbon steel, the rolling condition of hot rolling was controlled, and By controlling the hot-rolled runout cooling conditions, it was found that a cold-rolled steel sheet having much better workability and anisotropy than before can be obtained without causing problems in shape and transportability. . That is, in addition to adjusting the steel composition to a specific composition of an extremely low carbon system, the following findings were obtained.

【0013】(1)熱延の際の圧下条件に関しては、仕
上圧延の最終パスの圧下率および最終パス前の2パスの
圧下率を適切に設定することにより、鋼板の形状性、製
造時の熱延鋼板の搬送性に問題を生じさせず、熱間での
加工歪を問題ない範囲で多くして微細化を図ることがで
きる。
(1) Regarding the rolling reduction conditions during hot rolling, by appropriately setting the rolling reduction in the final pass of finish rolling and the rolling reduction in the two passes before the final pass, the shape of the steel sheet and the manufacturing The transferability of the hot-rolled steel sheet does not cause a problem, and the hot working distortion can be increased to the extent that there is no problem, thereby achieving fineness.

【0014】(2)仕上圧延後できるだけ短時間のうち
に所定の急速冷却を開始することが、熱延板細粒化およ
び機械的性質の向上のために有効である。ただし、短時
間すぎる場合、わずかな冷却開始時間のずれで細粒化の
度合いが異なることが多いため、板の長手方向で材質を
均一にするには、冷却開始時間には適正範囲がある。
(2) It is effective to start predetermined rapid cooling within as short a time as possible after the finish rolling in order to refine the hot rolled sheet and improve the mechanical properties. However, if the cooling time is too short, the degree of grain refinement often differs due to a slight difference in the cooling start time, so that the cooling start time has an appropriate range in order to make the material uniform in the longitudinal direction of the plate.

【0015】(3)上記急速冷却による温度降下量の範
囲を適切に設定することにより、急冷による冷やしすぎ
を抑え、伸び、深絞り性等の加工性および異方性を向上
させることができる。
(3) By appropriately setting the range of the amount of temperature drop by rapid cooling, excessive cooling by rapid cooling can be suppressed, and workability such as elongation and deep drawability and anisotropy can be improved.

【0016】(4)上記急速冷却の冷却停止温度を適切
に設定することにより、所望の微細組織を得ることがで
きる。
(4) By appropriately setting the cooling stop temperature of the rapid cooling, a desired fine structure can be obtained.

【0017】(5)急速冷却後の冷却を適切な徐冷却に
することにより、適切なポリゴナルフェライト粒の形成
が可能となる。
(5) By making the cooling after the rapid cooling an appropriate slow cooling, it is possible to form appropriate polygonal ferrite grains.

【0018】本発明は、上記の知見に基づいてなされた
ものであって、第1発明は、重量%で、C :0.00
03%以上0.01%以下、Si:0.05%以下、M
n:0.05%以上2.5%以下、P :0.003%
以上0.1%以下、S :0.0003%以上0.02
%以下、Sol.Al:0.005%以上0.1%以
下、N :0.0003%以上0.004%以下を含む
鋼からなるスラブを加熱し、熱間圧延し、冷間圧延し、
焼鈍して冷延鋼板を製造するにあたり、前記熱間圧延
は、仕上圧延において、最終パス前の2パスの合計圧下
率を45%超70%以下、かつ最終パスの圧下率を5%
以上35%以下とし、さらに、仕上温度をAr変態点
以上(Ar変態点+50℃)以下として仕上圧延を終
了し、次いで、仕上圧延終了後1秒以内に、200℃/
sec以上2000℃/sec以下の冷却速度で急速冷
却を開始して、この急速冷却における前記仕上圧延の仕
上温度からの温度降下量を50℃以上250℃以下と
し、かつこの急速冷却の冷却停止温度を650℃以上8
50℃以下とし、引き続いて、100℃/sec以下の
徐冷却または空冷を行った後、得られた熱延鋼帯を巻き
取ることを特徴とする加工性に優れ、異方性の小さい冷
延鋼板の製造方法を提供する。
The present invention has been made based on the above-mentioned findings, and the first invention is based on the following.
03% or more and 0.01% or less, Si: 0.05% or less, M
n: 0.05% or more and 2.5% or less, P: 0.003%
0.1% or less, S: 0.0003% or more and 0.02 or less
% Or less, Sol. A slab made of steel containing Al: 0.005% or more and 0.1% or less and N: 0.0003% or more and 0.004% or less is heated, hot-rolled, and cold-rolled.
In producing the cold-rolled steel sheet by annealing, in the finish rolling, the total rolling reduction in the two passes before the final pass is more than 45% and 70% or less, and the rolling reduction in the final pass is 5% in the finish rolling.
At least 35% or less, and further finish the finish rolling by setting the finishing temperature to the Ar 3 transformation point or more (Ar 3 transformation point + 50 ° C.) or less, and then within 200 seconds / 200 ° C.
Rapid cooling is started at a cooling rate of not less than 2000 sec / sec and not more than 50 ° C to not more than 250 ° C from the finishing temperature of the finish rolling in the rapid cooling. 650 ° C or higher 8
Cold-rolling with excellent workability, characterized by winding the resulting hot-rolled steel strip after slow cooling or air-cooling at 50 ° C or lower and subsequently at 100 ° C / sec or lower. Provided is a method for manufacturing a steel sheet.

【0019】第2発明は、重量%で、C :0.000
3%以上0.01%以下、Si:0.05%以下、M
n:0.05%以上2.5%以下、P :0.003%
以上0.1%以下、S :0.0003%以上0.02
%以下、Sol.Al:0.005%以上0.1%以
下、N :0.0003%以上0.004%以下を含む
鋼からなるスラブを加熱し、熱間圧延し、冷間圧延し、
焼鈍して冷延鋼板を製造するにあたり、前記熱間圧延
は、仕上圧延において、最終パス前の2パスの合計圧下
率を45%超70%以下、かつ最終パスの圧下率を5%
以上35%以下とし、さらに、仕上温度をAr変態点
以上(Ar変態点+50℃)以下として仕上圧延を終
了し、次いで、仕上圧延終了後0.5秒超1秒以内に、
200℃/sec以上2000℃/sec以下の冷却速
度で急速冷却を開始して、この急速冷却における前記仕
上圧延の仕上温度からの温度降下量を50℃以上250
℃以下とし、かつこの急速冷却の冷却停止温度を650
℃以上850℃以下とし、引き続いて、100℃/se
c以下の徐冷却または空冷を行った後、得られた熱延鋼
帯を巻き取ることを特徴とする加工性に優れ、異方性の
小さい冷延鋼板の製造方法を提供する。
In the second invention, C: 0.000% by weight.
3% or more and 0.01% or less, Si: 0.05% or less, M
n: 0.05% or more and 2.5% or less, P: 0.003%
0.1% or less, S: 0.0003% or more and 0.02 or less
% Or less, Sol. A slab made of steel containing Al: 0.005% or more and 0.1% or less and N: 0.0003% or more and 0.004% or less is heated, hot-rolled, and cold-rolled.
In producing the cold-rolled steel sheet by annealing, in the finish rolling, the total rolling reduction in the two passes before the final pass is more than 45% and 70% or less, and the rolling reduction in the final pass is 5% in the finish rolling.
Not less than 35% and the finishing temperature is not less than Ar 3 transformation point (Ar 3 transformation point + 50 ° C.) and the finish rolling is completed.
Rapid cooling is started at a cooling rate of 200 ° C./sec or more and 2000 ° C./sec or less, and the amount of temperature drop from the finishing temperature of the finish rolling in the rapid cooling is 50 ° C. or more to 250 ° C.
° C or less, and the cooling stop temperature of the rapid cooling is 650.
To 850 ° C or lower and subsequently 100 ° C / sec.
A method for manufacturing a cold-rolled steel sheet having excellent workability and low anisotropy, characterized in that the obtained hot-rolled steel strip is wound after performing slow cooling or air cooling of c or less.

【0020】第3発明は、上記第1発明または第2発明
の冷延鋼板の製造方法において、前記鋼は、さらに重量
%で、Ti,Nb,V,Zrのうちの1種以上を、合計
で0.005%以上0.1%以下含有することを特徴と
する。
According to a third invention, in the method for producing a cold-rolled steel sheet according to the first invention or the second invention, the steel further comprises one or more of Ti, Nb, V, and Zr in total by weight. In a content of 0.005% or more and 0.1% or less.

【0021】第4発明は、上記第1発明から第3発明の
いずれかの冷延鋼板の製造方法において、前記鋼は、さ
らに重量%で、Cuを0.015%以上0.08%以下
含有することを特徴とする。
According to a fourth invention, in the method for producing a cold-rolled steel sheet according to any one of the first to third inventions, the steel further contains 0.015% or more and 0.08% or less by weight of Cu. It is characterized by doing.

【0022】第5発明は、前記第1発明から第4発明の
いずれかの冷延鋼板の製造方法において、前記鋼は、さ
らに重量%で、Bを0.0001%以上0.001%以
下含有することを特徴とする。
According to a fifth aspect, in the method for producing a cold-rolled steel sheet according to any one of the first to fourth aspects, the steel further contains B in an amount of 0.0001% to 0.001% by weight. It is characterized by doing.

【0023】なお、従来の技術では、例えば特開平7−
70650号公報、特開平6−212354号公報、特
開平6−17141号公報には、Ar変態点を用いた
規定として、「仕上温度:Ar温度以上」というよう
に温度そのものを表す場合と、「・・・から(Ar
50℃)を、急速冷却する・・・」というように冷却の
際の温度規定に用いる場合の両方が存在するが、急速冷
却するほどAr変態点は降下するので、後者における
Ar変態点は前者におけるAr変態点とは同じ温度
ではなく、常に前者におけるAr変態点が低い温度を
示す。しかし、従来の技術では多くの場合、後者の文脈
での変態点と、前者の文脈での変態点とを同じ温度とし
て解釈しており、これは学術的にも正しくない。さら
に、冷却速度が速いほどAr変態点は下がるので、後
者の文脈で一概にAr変態点と言っても、実際にどの
ような数値を示すのか理解できない場合が多い。そのた
め、本発明では、急速冷却する場合の温度規定の際には
Ar変態点という曖昧な表現ではなく、数値により規
定している。
In the prior art, for example, Japanese Unexamined Patent Publication No.
JP-A-70650, JP-A-6-212354 and JP-A-6-17141 disclose a case where the temperature itself is expressed as "finishing temperature: Ar 3 temperature or higher" as a rule using the Ar 3 transformation point. , from the "··· (Ar 3 -
The 50 ° C.), so that both the case of using the prescribed temperature during cooling so that rapid cooling ... "are present, the higher the Ar 3 transformation point to rapid cooling drops, Ar 3 transformation point in the latter is not the same temperature as the Ar 3 transformation point in the former, always shows the temperature Ar 3 transformation point is lower in the former. However, in the prior art, the transformation point in the latter context and the transformation point in the former context are often interpreted as the same temperature, which is not academically correct. Further, since the Ar 3 transformation point as the cooling rate is fast drops, to say categorically Ar 3 transformation point in the latter context, if you can not actually understand what indicates what value is large. For this reason, in the present invention, the temperature in the case of rapid cooling is defined not by the ambiguous expression of the Ar 3 transformation point but by a numerical value.

【0024】[0024]

【発明の実施の形態】以下、本発明における冷延鋼板の
製造方法について、鋼組成と、プロセス条件とに分け
て、具体的に説明する。 1.鋼組成 本発明における鋼組成は、重量%で、C:0.0003
%以上0.01%以下、Si:0.05%以下、Mn:
0.05%以上2.5%以下、P:0.003%以上
0.1%以下、S:0.0003%以上0.02%以
下、Sol.Al:0.005%以上0.1%以下、
N:0.0003%以上0.004%以下を含有するも
のである。また、伸びフランジ性を向上させる観点か
ら、前記鋼組成に加えて、必要に応じてTi,Nb,
V,Zrのうちの1種以上を合計で0.005%以上
0.1%以下の範囲で添加する。さらに、固溶Sの悪影
響を低減する観点から、前記いずれかの鋼組成に加え
て、必要に応じてCuを0.015%以上0.08%以
下の範囲で添加する。さらにまた、鋼の耐縦割れ性を向
上させる観点から、前記いずれかの鋼組成に加えて、必
要に応じてBを0.0001%以上0.001%以下の
範囲で添加する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a method for producing a cold-rolled steel sheet according to the present invention will be specifically described with respect to steel composition and process conditions. 1. Steel composition The steel composition in the present invention is expressed by weight% and C: 0.0003.
% To 0.01%, Si: 0.05% or less, Mn:
0.05% to 2.5%, P: 0.003% to 0.1%, S: 0.0003% to 0.02%, Sol. Al: 0.005% or more and 0.1% or less,
N: 0.0003% or more and 0.004% or less. Further, from the viewpoint of improving the stretch flangeability, in addition to the steel composition, Ti, Nb,
One or more of V and Zr are added in a total range of 0.005% or more and 0.1% or less. Further, from the viewpoint of reducing the adverse effect of solid solution S, Cu is added in an amount of 0.015% or more and 0.08% or less as necessary in addition to any one of the steel compositions. Furthermore, from the viewpoint of improving the longitudinal crack resistance of the steel, B is added in an amount of 0.0001% or more and 0.001% or less, if necessary, in addition to any one of the above steel compositions.

【0025】C:0.0003%以上0.01%以下 Cは、極低炭素鋼や、固溶した侵入型元素が鋼中に存在
しないIF鋼(Interstitial-Free steel)ベースの鋼
を実現することができるレベルとする。ここでいうIF
鋼には、IF鋼をベースとしたBH鋼(Bake-Hard stee
l)を含む。C量が少ないほど延性および深絞り性が向
上するが、現状の製鋼条件のレベルを考慮してC含有量
の下限を0.0003%とした。一方、C含有量が0.
01%以下であれば、炭化物形成元素(Ti,Nb等)
で固定することにより、IF鋼として延性および深絞り
性を向上させることが可能となるので、C含有量を0.
01%以下とした。C含有量を0.002%以下とすれ
ば、伸び、深絞り性をより高いレベルにすることがで
き、炭化物形成元素の添加量を低減することができるた
め、C含有量は0.002%以下とすることが好まし
い。一方、C含有量が0.002%以上0.01%以下
の場合であっても、巻取温度を高めに設定したり、炭化
物形成元素としてTi,Nb等を添加することにより、
伸び、深絞り性をより高いレベルにすることができ、異
方性も低く抑えることができる。
C: 0.0003% or more and 0.01% or less C realizes extremely low carbon steel or IF steel (Interstitial-Free steel) based steel in which solid solution interstitial elements do not exist in the steel. To a level that can do it. IF here
BH steel (Bake-Hard stee) based on IF steel
l) Including. Although the ductility and deep drawability are improved as the C content is smaller, the lower limit of the C content is set to 0.0003% in consideration of the current steelmaking conditions. On the other hand, when the C content is 0.1.
If it is 01% or less, carbide forming elements (Ti, Nb, etc.)
By fixing with C, the ductility and deep drawability of the IF steel can be improved.
01% or less. When the C content is 0.002% or less, the elongation and deep drawability can be made higher, and the amount of the carbide-forming element added can be reduced. Therefore, the C content is 0.002%. It is preferable to set the following. On the other hand, even when the C content is 0.002% or more and 0.01% or less, the winding temperature can be set higher, or Ti, Nb, or the like can be added as a carbide-forming element.
Elongation and deep drawability can be made higher, and anisotropy can be kept low.

【0026】Si:0.05%以下 Siは、軟質高延性の特性に対して悪影響を及ぼす元素
であり、Znめっき等の表面処理に悪影響を及ぼす元素
であるが、脱酸元素としても利用される。Si量が0.
05%を超えると、材質や表面処理への悪影響が顕著と
なるため、0.05%以下とする。
Si: 0.05% or less Si is an element that has an adverse effect on the properties of soft and high ductility, and has an adverse effect on surface treatment such as Zn plating, but is also used as a deoxidizing element. You. Si content is 0.
If it exceeds 0.05%, the adverse effect on the material and the surface treatment becomes remarkable, so the content is made 0.05% or less.

【0027】Mn:0.05%以上2.5%以下 Mnは、鋼の靱性を向上させる元素であり、固溶強化に
有効に利用することができる元素であるが、添加しすぎ
ると加工性に悪影響を与える。一方、Mnは、SをMn
Sとして析出することにも有効に利用することができ
る。本発明では、伸びや深絞り性を発現することを優先
すると同時に、鋼の強化にも利用するためMn含有量を
2.5%以下とする。一方、製鋼でのSの除去コストと
の兼ね合いからMn含有量の下限を0.05%とする。
Mn: 0.05% or more and 2.5% or less Mn is an element that improves the toughness of steel and can be effectively used for solid solution strengthening. Adversely affect On the other hand, Mn converts S to Mn.
It can be effectively used for precipitation as S. In the present invention, the Mn content is set to 2.5% or less to give priority to the expression of elongation and deep drawability and to use the steel for strengthening. On the other hand, the lower limit of the Mn content is set to 0.05% in consideration of the cost of removing S in steelmaking.

【0028】P:0.003%以上0.1%以下 Pは、固溶強化元素であり、含有量の増加に伴って延性
が劣化する。そのため、P含有量を0.1%以下とす
る。一方、Pは除去するほどに延性が向上するが、製鋼
での除去コストと加工性との兼ね合いから、P含有量の
下限を0.003%とする。一層良好な加工性を得るた
めには、0.015%以下とすることが好ましいが、こ
の場合には粒成長が盛んになって熱延板の粒径細粒化が
難しくなるので、巻取温度を低めに設定するとよい。
P: 0.003% or more and 0.1% or less P is a solid solution strengthening element, and the ductility is deteriorated as the content increases. Therefore, the P content is set to 0.1% or less. On the other hand, although the ductility is improved as P is removed, the lower limit of the P content is set to 0.003% from the viewpoint of the balance between the removal cost in steelmaking and workability. In order to obtain better processability, the content is preferably 0.015% or less. However, in this case, the grain growth becomes active and it becomes difficult to reduce the grain size of the hot-rolled sheet. It is better to set the temperature lower.

【0029】S:0.0003%以上0.02%以下 Sは、赤熱脆性を引き起こす元素であるため、一般的に
Sを固定する機能を有するMn添加量に応じてその上限
が規定されるが、S含有量が多いと硫化物の析出が多く
なり、伸びや深絞り性が劣化するため、本発明ではその
点を考慮してS含有量を0.02%以下とする。一方、
S含有量は低いほど加工性には好ましいが、製鋼での除
去コストとの兼ね合いからS含有量の下限を0.000
3%とする。S含有量を0.012%以下とすれば、伸
び、深絞り性をより高いレベルにすることができ、硫化
物形成元素の添加量を少なくすることができるため、S
含有量を0.012%以下とすることが好ましい。ただ
し、この場合には粒成長が盛んになって熱延板の粒径細
粒化が難しくなるので、熱延後の巻取温度を低めに設定
するとよい。一方、Sが0.012%以上0.02%以
下の場合であっても、熱延後の巻取温度を高めに設定す
ることにより、伸び、深絞り性をより高いレベルにする
ことができ、異方性も低く抑えることができる。
S: 0.0003% or more and 0.02% or less Since S is an element causing red-hot embrittlement, its upper limit is generally defined according to the amount of Mn added having the function of fixing S. When the S content is large, the precipitation of sulfide increases, and elongation and deep drawability deteriorate. Therefore, in the present invention, the S content is set to 0.02% or less in consideration of such a point. on the other hand,
The lower the S content is, the better the workability is. However, the lower limit of the S content is set to 0.000 in consideration of the cost of removing steel.
3%. When the S content is 0.012% or less, the elongation and the deep drawability can be made higher, and the amount of the sulfide forming element can be reduced.
Preferably, the content is 0.012% or less. However, in this case, the grain growth becomes active and it becomes difficult to reduce the grain size of the hot-rolled sheet. Therefore, it is preferable to set the winding temperature after hot rolling to a lower temperature. On the other hand, even when S is 0.012% or more and 0.02% or less, elongation and deep drawability can be increased to a higher level by setting the winding temperature after hot rolling higher. , Anisotropy can also be kept low.

【0030】Sol.Al:0.005%以上0.1%
以下 Alは、溶鋼の脱酸元素として有効に作用するが、Al
を過剰に添加すると加工性に悪影響を及ぼすので、So
l.Al含有量を0.1%以下とした。一方、Al添加
量を脱酸のために必要最低限な量とした場合にも、鋼中
には0.005%以上のSol.Alが残存するため、
その点を考慮してSol.Alの下限を0.005%と
した。
Sol. Al: 0.005% or more and 0.1%
Hereinafter, Al effectively acts as a deoxidizing element of molten steel.
If too much is added, workability is adversely affected.
l. The Al content was set to 0.1% or less. On the other hand, even when the amount of Al added is the minimum necessary for deoxidation, 0.005% or more of Sol. Since Al remains,
Considering that point, Sol. The lower limit of Al was made 0.005%.

【0031】N:0.0003%以上0.004%以下 Nは、その量が少ないほど延性および深絞り性が向上す
るが、現状の製鋼条件のレベルを考慮してその下限を
0.0003%とした。一方、N含有量が0.004%
以下であれば、窒化物形成元素(Ti,Nb等)で固定
することにより、固溶した侵入型元素が鋼中に存在しな
いIF鋼として延性および深絞り性を向上させることが
可能となるので、N含有量を0.004%以下とした。
N含有量を0.002%以下とすれば、伸び、深絞り性
をより高いレベルにすることができ、窒化物形成元素の
添加量を低減することができるため、N含有量は0.0
02%以下が好ましい。ただし、この場合には粒成長が
盛んになって熱延板粒径の細粒化が難しくなるので、巻
取温度を低めに設定するとよい。一方、Nが0.002
%以上0.004%以下の場合であっても、巻取温度を
高めに設定することにより、伸びおよび深絞り性をより
高いレベルにすることができ、異方性も低く抑えること
ができる。
N: 0.0003% or more and 0.004% or less N decreases the amount of N to improve ductility and deep drawability. However, the lower limit of N is set to 0.0003% in consideration of the current steelmaking conditions. And On the other hand, the N content is 0.004%
In the following cases, by fixing with a nitride-forming element (Ti, Nb, etc.), it becomes possible to improve the ductility and deep drawability as an IF steel in which the interstitial element dissolved in the steel is not present in the steel. , N content is set to 0.004% or less.
When the N content is 0.002% or less, the elongation and deep drawability can be made higher, and the amount of the nitride-forming element added can be reduced.
02% or less is preferable. However, in this case, since the grain growth becomes active and it becomes difficult to reduce the grain size of the hot-rolled sheet, it is preferable to set the winding temperature lower. On the other hand, N is 0.002
% Or more, the elongation and deep drawability can be made higher and the anisotropy can be kept low by setting the winding temperature higher.

【0032】Ti,Nb,V,Zr:1種以上を合計で
0.005%以上0.1%以下 Ti,Nb,V,Zrは、炭化物、窒化物、硫化物を形
成することによって、鋼中に固溶するC,N,Sを析出
物として固定し、伸び、深絞り性を向上する元素であ
り、特にこれらの特性が要求される場合に、これらの1
種以上を添加することが好ましい。Ti,Nb,V,Z
rの合計量が0.005%未満では伸び、深絞り性の向
上効果が得られず、逆に0.1%を超えると、加工性の
劣化が起こる。これらのことから、Ti,Nb,V,Z
rの合計量を0.005%以上0.1%以下とする。
Ti, Nb, V, Zr: 0.005% or more and 0.1% or less in total of at least one kind Ti, Nb, V, and Zr are formed by forming carbides, nitrides, and sulfides. It is an element that fixes C, N, and S dissolved therein as precipitates, improves elongation, and improves deep drawability. In particular, when these properties are required, one of these elements is used.
It is preferred to add more than one species. Ti, Nb, V, Z
If the total amount of r is less than 0.005%, elongation occurs and the effect of improving the deep drawability cannot be obtained. Conversely, if the total amount exceeds 0.1%, the workability deteriorates. From these, Ti, Nb, V, Z
The total amount of r is set to 0.005% or more and 0.1% or less.

【0033】Cu:0.015%以上0.08%以下 Cuは、硫化物形成元素として有効にはたらき、固溶S
が材質に及ぼす悪影響を低減する元素であり、特にこの
ような作用が要求される場合に添加することが好まし
い。このような効果はCuを0.005%以上添加した
場合に得られるが、Cuは鋼に不純物レベルとして0.
01%未満含まれるので、Cu量を0.015%以上と
する。一方、Cu量が0.08%を超えると鋼が硬くな
ってしまうため、0.08%以下とする。
Cu: 0.015% or more and 0.08% or less Cu works effectively as a sulfide-forming element.
Is an element that reduces the adverse effect on the material, and is preferably added particularly when such an effect is required. Such an effect can be obtained when 0.005% or more of Cu is added.
Since the content is less than 01%, the Cu content is set to 0.015% or more. On the other hand, if the Cu content exceeds 0.08%, the steel becomes hard, so the content is set to 0.08% or less.

【0034】B:0.0001%以上0.001%以下 Bは、鋼の耐縦割れ性を向上する元素であり、特にこの
ような作用が要求される場合に添加することが好まし
い。Bが0.0001%未満では耐縦割れ性向上効果が
得られず、0.001%超では効果が飽和するため、B
を添加する場合にはその添加量を0.0001%以上
0.001%以下とする。
B: 0.0001% or more and 0.001% or less B is an element which improves the vertical cracking resistance of steel, and is preferably added when such an action is required. If B is less than 0.0001%, the effect of improving longitudinal crack resistance cannot be obtained, and if B exceeds 0.001%, the effect is saturated.
Is added, the amount of addition is 0.0001% or more and 0.001% or less.

【0035】2.プロセス条件 本発明においては、上記組成を有する鋼からなるスラブ
を加熱し、熱間圧延し、冷間圧延し、焼鈍して冷延鋼板
を製造するにあたり、前記熱間圧延は、仕上圧延におい
て、最終パス前の2パスの合計圧下率を45%超70%
以下、かつ最終パスの圧下率を5%以上35%以下と
し、さらに、仕上温度をAr変態点以上(Ar変態
点+50℃)以下として仕上圧延を終了し、次いで、仕
上圧延終了後1秒以内に、または0.5秒超1秒以内
に、200℃/sec以上2000℃/sec以下の冷
却速度で急速冷却を開始して、この急速冷却における前
記仕上圧延の仕上温度からの温度降下量を50℃以上2
50℃以下とし、かつこの急速冷却の冷却停止温度を6
50℃以上850℃以下とし、引き続いて、100℃/
sec以下の徐冷却または空冷を行った後、得られた熱
延鋼帯を巻き取る。以下、これらの条件について説明す
る。
2. In the process conditions of the present invention, a slab made of steel having the above composition is heated, hot-rolled, cold-rolled, and then subjected to annealing to produce a cold-rolled steel sheet. The total draft of the two passes before the final pass is more than 45% and 70%
In the following, the rolling reduction of the final pass is set to 5% or more and 35% or less, and the finishing temperature is set to the Ar 3 transformation point or more (Ar 3 transformation point + 50 ° C.) or less, and finish rolling is completed. Within two seconds or within one second and more than 0.5 seconds, rapid cooling is started at a cooling rate of 200 ° C./sec or more and 2000 ° C./sec or less, and a temperature drop from the finishing temperature of the finish rolling in the rapid cooling is performed. More than 50 ℃ 2
50 ° C. or less, and the cooling stop temperature of the rapid cooling is 6
50 ° C. or higher and 850 ° C. or lower, and subsequently 100 ° C. /
After slow cooling or air cooling for not more than sec, the obtained hot rolled steel strip is wound up. Hereinafter, these conditions will be described.

【0036】(1)仕上圧延の最終パス前の2パスの合
計圧下率:45%超70%以下、仕上圧延の最終パスの
圧下率:5%以上35%以下 このように規定するのは、熱延鋼帯の形状性および製造
時の熱延鋼帯の搬送性を確保した上で、熱延板を細粒化
するために十分な量の歪を蓄積させるためである。な
お、ここでいう最終パス前の2パスでの圧下率とは、仕
上圧延装置の最終パスの2個前のパスに鋼帯が入る前の
板厚(L2)と、最終パスの1個前のパスを通過した後
の板厚(L1)から、(L2−L1)/L2×100で
定義するものとする。
(1) Total rolling reduction of two passes before the final pass of finish rolling: more than 45% and 70% or less, rolling reduction of the final pass of finish rolling: 5% or more and 35% or less This is because, while ensuring the shape of the hot-rolled steel strip and the transportability of the hot-rolled steel strip during production, a sufficient amount of strain is accumulated to make the hot-rolled sheet finer. The rolling reduction in the two passes before the final pass here means the sheet thickness (L2) before the steel strip enters the two passes before the final pass of the finishing mill and the one before the final pass. From the plate thickness (L1) after passing through the path (L2) / L2 × 100.

【0037】熱延板の細粒化のためには、変態点直上近
傍で熱間加工により歪を蓄積することが望ましい。しか
し、熱間圧延工程では入側から出側へと進むにつれて板
温度は下降し、鋼帯は徐々に硬くなって加工抵抗が大き
くなるため、最終パスで大圧下を行うことには限界があ
る。すなわち、最終パスで大圧下を行うと、鋼板の形状
が乱れたり、鋼帯の搬送性に問題が生じてしまう。この
ため、鋼板の形状性や搬送性を確保した上で、加工歪を
蓄積して細粒化を行うためには、仕上圧延の最終パスお
よび最終パス前の2パスにおける圧下率を上記のように
規定して、適切な量の歪を、適切なタイミングで導入す
る必要がある。つまり、最終パス前の2パスでの合計圧
下率を高めにして歪を大量に蓄積させ、かつ、最終パス
でも歪を蓄積させるが、最終パスでは形状性および搬送
性の修正のために圧下率を低めにする。
In order to reduce the grain size of the hot rolled sheet, it is desirable to accumulate strain by hot working near the transformation point. However, in the hot rolling process, the sheet temperature decreases as it moves from the entry side to the exit side, and the steel strip gradually hardens and the processing resistance increases, so there is a limit to performing large reduction in the final pass. . That is, if a large reduction is performed in the final pass, the shape of the steel sheet will be disturbed, and problems will occur in the transportability of the steel strip. For this reason, in order to secure the shape and transportability of the steel sheet and to accumulate the processing strain and perform the grain refinement, the rolling reduction in the final pass of the finish rolling and the two passes before the final pass is set as described above. , It is necessary to introduce an appropriate amount of distortion at an appropriate timing. In other words, the total rolling reduction in the two passes before the final pass is increased to accumulate a large amount of strain, and the strain is also accumulated in the final pass. Lower.

【0038】具体的には、仕上圧延での最終パス前の2
パスでの合計圧下率について、70%以下とするのは、
加工歪を蓄積した上で、これらのパスでの鋼板の搬送性
および形状を確保するためである。一方、この合計圧下
率を45%超とするのは、熱間加工時の歪蓄積を十分に
行い、鋼板の軟質高延性、高加工性を確保するためであ
る。また、最終パス圧下率についても、加工歪導入の観
点では高い分には問題ないが、鋼板の搬送性および形状
性を問題のないレベルに確保するために35%以下と
し、加工歪導入と形状補正等のために必要最低限のレベ
ルである5%以上とする。上述のような熱間圧延の条件
を満たしていれば、熱延の粗圧延工程、および、仕上圧
延時の最終パスより3パス以前のパスの圧下率は特に問
題とならず、従来行われている範囲で十分である。
More specifically, 2 before the final pass in finish rolling
The reason why the total rolling reduction in the pass is 70% or less is as follows.
This is for ensuring the transportability and shape of the steel sheet in these passes after accumulating the processing strain. On the other hand, the reason why the total draft is more than 45% is to sufficiently perform strain accumulation during hot working and to ensure the soft high ductility and high workability of the steel sheet. Although the final pass rolling reduction is not problematic from the viewpoint of introducing processing strain, it is not problematic. However, in order to ensure the transportability and shape of the steel sheet at a level without any problem, the rolling reduction is set to 35% or less. 5% or more, which is the minimum level required for correction and the like. As long as the conditions of the hot rolling as described above are satisfied, the rough rolling process of the hot rolling, and the rolling reduction of the three passes before the final pass during the finish rolling are not particularly problematic, and conventionally performed. Is enough.

【0039】冷延焼鈍板にて、より優れた伸び、深絞り
性、および異方性を得るためには、仕上圧延での最終パ
ス前の2パスでの合計圧下率を55%以上70%以下と
して加工歪を大量に蓄積して熱延板の細粒化を図るこ
と、および、最終パスの圧下率を15%以上35%以下
として熱延板の細粒化を図ることの両方またはいずれか
一方を満足することが好ましい。なお、鋼板の形状性、
製造時の熱延鋼帯の搬送性を重視する場合には、最終パ
ス圧下率を5%以上15%以下にして形状を補正し、搬
送性を確保して、かつ、加工歪を導入することが好まし
い。
In order to obtain more excellent elongation, deep drawability and anisotropy in a cold-rolled annealed sheet, the total rolling reduction in two passes before the final pass in finish rolling should be 55% to 70%. Either one or both of accumulating a large amount of processing strain to reduce the grain size of the hot rolled sheet and / or reducing the final pass reduction rate to 15% or more and 35% or less to reduce the grain size of the hot rolled sheet. It is preferable that one of the two is satisfied. The shape of the steel sheet,
When importance is placed on the transportability of the hot-rolled steel strip during manufacturing, the final pass draft should be 5% or more and 15% or less to correct the shape, ensure transportability, and introduce processing strain. Is preferred.

【0040】本発明のように仕上圧延での圧下率が大き
い場合、一般的には形状異常が起こったり、搬送性を確
保できなかったり(蛇行したり)、ひいては、コイラー
に巻いた時にきれいに巻けずに、外側に出っ張ったり、
内側に凹んだりすることがある。また、幅方向で材質の
特性に異常が発生することがある。これらの現象は、熱
間圧延の際に、熱延鋼帯にわずかな温度ムラが生じて、
圧延時に板幅の中央部とエッジ部で伸び方が変わってし
まうため起こるものである。
When the rolling reduction in the finish rolling is large as in the present invention, in general, a shape abnormality occurs, transportability cannot be ensured (meandering), and thus, when the product is wound on a coiler, it can be wound neatly. Without protruding outside,
It may be dented inward. Further, an abnormality may occur in the properties of the material in the width direction. During hot rolling, these phenomena are caused by slight temperature unevenness in the hot-rolled steel strip,
This occurs because the elongation changes between the center and the edge of the sheet width during rolling.

【0041】本発明では、最終パスと、最終パス前の2
パスとの圧下率を分割して規定し、熱延鋼帯の形状性、
搬送性を確保しているが、形状性や搬送性を一層良好に
するためには、さらに、熱延鋼帯をオフラインまたはオ
ンラインで加熱して、板幅方向の温度分布を一様にして
おくことが好ましい。その方法としては、オンライン
で粗バー(粗圧延完了後の熱延鋼帯)を誘導加熱装置で
加熱する装置、粗バーを巻き取ってからコイルBox
で加熱する装置、仕上圧延装置内に設置した誘導加熱
装置等を用いて、板幅方向の温度分布を一様にすること
が挙げられる。
In the present invention, the last pass and the two
The reduction ratio with the pass is divided and specified, and the shape of the hot rolled steel strip,
Although transportability is ensured, in order to further improve the shape and transportability, the hot-rolled steel strip is further heated offline or online, and the temperature distribution in the sheet width direction is made uniform. Is preferred. As the method, a device for heating a rough bar (hot-rolled steel strip after the completion of rough rolling) by an induction heating device online, a method for winding the rough bar, and then a coil Box
The temperature distribution in the sheet width direction is made uniform by using a device for heating in the above, an induction heating device installed in a finish rolling device, or the like.

【0042】また、仕上圧延前の粗バー段階での厚みは
20mm以上であることが望ましい。粗バー厚みをこの
ようにすることにより圧下の絶対量を大きくすることが
でき、圧延での材質の作り込みが容易になるからであ
る。しかしながら、このような粗バー厚みとすることは
必須ではなく、例えば、薄スラブ用の連続鋳造機と熱間
圧延装置が直結された熱間圧延装置によっても、仕上圧
延の所定のパスが上記の条件を満足すれば、以下の条件
を満足するようにプロセスを制御することを条件に、従
来の方法で作られた材質(冷延焼鈍後の材質)よりも優
れた材質を実現することができる。
The thickness at the coarse bar stage before the finish rolling is desirably 20 mm or more. This is because by setting the thickness of the rough bar in this manner, the absolute amount of reduction can be increased, and the material can be easily formed by rolling. However, it is not essential to have such a rough bar thickness.For example, even with a hot rolling device in which a continuous casting machine for thin slabs and a hot rolling device are directly connected, the predetermined pass of finish rolling is as described above. If the conditions are satisfied, it is possible to realize a material superior to the material produced by the conventional method (material after cold rolling annealing), provided that the process is controlled to satisfy the following conditions. .

【0043】(2)仕上温度:Ar変態点以上(Ar
変態点+50℃)以下 仕上温度をこのように規定するのは、仕上圧延をγ域で
終了し、γ域での加工歪の蓄積と、細粒γ粒とを利用し
て熱延板を十分に細粒化するためである。仕上温度をA
変態点未満とするとα域圧延となって、結晶粒の粗
大化が起こってしまう。一方、仕上温度が(Ar変態
点+50℃)を超えると圧延終了後にγ粒成長が起こ
り、熱延板の細粒化に不利になるため、仕上温度を(A
変態点+50℃)以下とする。
(2) Finishing temperature: Ar 3 transformation point or more (Ar
(3 transformation point + 50 ° C.) or less The reason for defining the finishing temperature in this way is that finish rolling is completed in the γ region, the working strain is accumulated in the γ region, and the hot rolled sheet is formed by utilizing fine γ grains. This is for sufficiently reducing the particle size. Finishing temperature is A
If the transformation point is less than the r 3 transformation point, the rolling becomes α region, and the crystal grains become coarse. On the other hand, if the finishing temperature exceeds (Ar 3 transformation point + 50 ° C.), γ-grain growth occurs after the end of rolling, which is disadvantageous for grain refinement of the hot-rolled sheet.
r 3 transformation point + 50 ° C) or less.

【0044】(3)冷却速度:200℃/sec以上2
000℃/sec以下 仕上圧延終了後の冷却速度を200℃/sec以上とす
るのは、熱延板の細粒化、および、得られた冷延鋼板の
機械的性質向上のためである。本発明では、主に、ラミ
ナー方式による冷却で見られるような水蒸気を上げなが
ら冷却する方法(膜沸騰モードでの冷却)ではなく、冷
却時に鋼板表面に形成される蒸気膜を破壊しながら冷却
する方法(核沸騰モードでの冷却)を主体とした冷却を
意図しており、そのような冷却方式では、必然的に冷却
速度は200℃/sec以上となる。また、核沸騰モー
ドの冷却における、おおよその理論限界値から、冷却速
度の上限を2000℃/secとする。このような冷却
速度を実現可能な装置としては、多孔噴流方式、超近接
ノズル+高圧+大量水量方式をはじめとして、核沸騰モ
ードの冷却を実施することのできるものであれば、どの
ような方式のものを利用してもよい。
(3) Cooling rate: 200 ° C./sec or more 2
2,000 ° C./sec or less The reason why the cooling rate after the finish rolling is 200 ° C./sec or more is to reduce the grain size of the hot-rolled sheet and to improve the mechanical properties of the obtained cold-rolled steel sheet. In the present invention, the cooling is performed while breaking up the steam film formed on the surface of the steel sheet during cooling, instead of the method of cooling while raising the water vapor (cooling in the film boiling mode) as seen in the cooling by the laminar method. The cooling is intended mainly for the method (cooling in the nucleate boiling mode), and in such a cooling method, the cooling rate is necessarily 200 ° C./sec or more. In addition, the upper limit of the cooling rate is set to 2000 ° C./sec from the approximate theoretical limit in the cooling in the nucleate boiling mode. As a device capable of realizing such a cooling rate, any system capable of performing nucleate boiling mode cooling, such as a perforated jet system, a super-proximity nozzle + high pressure + large water volume system, etc. May be used.

【0045】冷却速度は板厚に応じて異なるため、より
正確に冷却速度を規定するためには、例えば「板厚2.
5mm以上3.5mm以下の鋼板を200℃/sec以
上2000℃/sec以下の速度で冷却する」というよ
うに規定することが考えられるが、本発明では板厚にか
かわらずこのような冷却速度を有していればよく、その
ために、通常の熱延鋼板であれば板厚を問わずこのよう
な冷却速度で冷却可能な冷却能力を有する装置を用いる
ことが好ましい。冷却速度のさらに好ましい範囲は40
0℃/sec以上2000℃/sec以下である。この
範囲で冷却することにより冷延焼鈍板の伸び、深絞り性
がより向上し、異方性をより低く抑制することができ
る。
Since the cooling rate varies depending on the sheet thickness, in order to more accurately define the cooling rate, for example, “sheet thickness 2.
The steel sheet having a size of 5 mm or more and 3.5 mm or less may be cooled at a rate of 200 ° C./sec or more and 2000 ° C./sec or less. For this reason, it is preferable to use a device having a cooling capacity capable of cooling at such a cooling rate regardless of the thickness of a normal hot-rolled steel sheet. A more preferred range of the cooling rate is 40
0 ° C./sec or more and 2000 ° C./sec or less. By cooling in this range, the elongation and the deep drawability of the cold-rolled annealed sheet are further improved, and the anisotropy can be suppressed lower.

【0046】なお、本発明において、仕上圧延後の冷却
速度は、900℃から700℃までの200℃を冷却す
る際に要する時間(Δt)を使って、200/Δtと定
義する。本発明における急速冷却は、「Ar変態点以
上(Ar変態点+50℃)以下で仕上圧延完了後1秒
以内」に開始されるものであり、スラブの鋼組成によっ
ては実際に冷却を開始する温度が900℃未満の場合も
あるが、この場合にも冷却速度はこの定義に従うものと
する。つまり、冷却速度は、その鋼帯を仮に900℃か
ら700℃まで冷却した場合に決定される値である。実
際に冷却が開始される温度が900℃以下になっていて
もよく、また、急冷を停止する温度が700℃以下であ
っても一向に構わない。
In the present invention, the cooling rate after finish rolling is defined as 200 / Δt using the time (Δt) required for cooling 200 ° C. from 900 ° C. to 700 ° C. The rapid cooling in the present invention is started “within the Ar 3 transformation point or more (Ar 3 transformation point + 50 ° C.) or less and within one second after the completion of finish rolling”, and actually starts cooling depending on the steel composition of the slab. The cooling temperature may be lower than 900 ° C., but also in this case, the cooling rate follows this definition. That is, the cooling rate is a value determined when the steel strip is temporarily cooled from 900 ° C. to 700 ° C. The temperature at which cooling is actually started may be 900 ° C. or less, and the temperature at which rapid cooling is stopped may be 700 ° C. or less.

【0047】(4)冷却開始時間:仕上圧延終了後1秒
以内または0.5秒超1秒以内 冷却開始時間をこのように規定するのは、上記のように
冷却速度を大きくした上で、冷却開始時間を短くするこ
とにより、熱延板粒径が十分に微細化するためである。
これによって、伸び、深絞り性を高め、異方性も小さく
する効果が得られる。冷却開始時間が1秒を超えると通
常のラミナー冷却や、ラボ実験での空冷における熱延板
粒径とほとんど変わらず、熱延板粒径を十分に微細化す
ることができない。
(4) Cooling start time: Within 1 second after finishing rolling or within 0.5 second and within 1 second The cooling start time is defined in this way after increasing the cooling rate as described above. This is because the particle size of the hot-rolled sheet is sufficiently reduced by shortening the cooling start time.
This has the effect of increasing elongation, deep drawability, and reducing anisotropy. If the cooling start time exceeds 1 second, the particle diameter of the hot rolled sheet is almost the same as that of ordinary laminar cooling or air cooling in a laboratory experiment, and the particle diameter of the hot rolled sheet cannot be sufficiently reduced.

【0048】本発明では冷却開始時間の下限について
は、特に規定しないが、圧延速度を上げて、かつ、仕上
圧延の出側直近で冷却を開始しようとしても、冷却装置
のハウジングや圧延ロール半径分の出っ張りなどを考慮
すると、0.01秒が実質的にを冷却開始時間の下限と
なる。
In the present invention, the lower limit of the cooling start time is not particularly defined. However, even if the rolling speed is increased and the cooling is started immediately near the exit side of the finish rolling, the cooling device housing or the rolling roll radius is not required. In consideration of the protrusion of the cooling, 0.01 second is substantially the lower limit of the cooling start time.

【0049】冷却開始時間1秒以内であっても、冷却開
始時間によって発現する特性は異なっており、冷却開始
時間を0.5秒以内とした場合には特に深絞り性および
異方性が優先的に向上し、冷却開始時間を0.5秒以上
1秒以内とした場合には特に伸びが優先的に向上する。
このように発現する特性に差がある理由は、冷延焼鈍板
段階でのわずかなフェライト粒径が異なるためと考えら
れるが、そのメカニズムは明らかではない。
Even if the cooling start time is less than 1 second, the characteristics developed depending on the cooling start time are different. When the cooling start time is set within 0.5 second, the deep drawability and the anisotropy are particularly preferred. When the cooling start time is set to 0.5 seconds or more and 1 second or less, elongation is particularly preferentially improved.
The reason for the difference in the properties developed in this way is probably due to the slight difference in ferrite grain size at the stage of the cold-rolled annealing plate, but the mechanism is not clear.

【0050】また、鋼板長手方向における材質の均一化
を図るためには、冷却開始時間は0.5秒超1秒以内と
することが好ましい。冷却開始時間を0.5秒以下とし
た場合にも、熱延板の細粒化による材質向上は期待でき
るが、冷却開始時間のわずかなずれによって材質が大き
く変化するため鋼板長手方向で材質の不均一が生じるお
それがある。
In order to make the material uniform in the longitudinal direction of the steel sheet, it is preferable that the cooling start time is more than 0.5 seconds and less than 1 second. Even when the cooling start time is set to 0.5 seconds or less, the improvement of the material by refining the hot-rolled sheet can be expected. Non-uniformity may occur.

【0051】冷却開始時間を1秒以内にするためには、
例えば、圧延速度(圧延時の熱延鋼帯の搬送速度)が1
300m/min以下の場合には、冷却装置(例えば前
述した核沸騰モードでの冷却を行うことが可能な冷却装
置)を、圧延速度に応じて、仕上圧延装置の最終パス出
側の直近から15m以内の近傍に設置する。すなわち、
圧延速度が速い場合には、この範囲の後側に設置しても
構わないし、圧延速度が遅い場合には、この範囲の前側
に設置して1秒以内の冷却開始時間を実現する。また、
圧延速度が1300m/minを超える高速圧延が可能
になった場合には、冷却装置の設置位置は、最終パス出
側からさらに遠い位置になることが予測できる。
In order to make the cooling start time within 1 second,
For example, the rolling speed (conveying speed of the hot-rolled steel strip during rolling) is 1
In the case of 300 m / min or less, a cooling device (for example, a cooling device capable of performing the cooling in the nucleate boiling mode described above) is set at 15 m from the nearest side from the final pass exit side of the finish rolling device according to the rolling speed. Install in the vicinity of That is,
If the rolling speed is high, it may be installed behind this range. If the rolling speed is low, it may be installed before this range to realize a cooling start time of 1 second or less. Also,
When high-speed rolling at a rolling speed exceeding 1300 m / min becomes possible, it can be predicted that the installation position of the cooling device will be farther from the exit side of the final pass.

【0052】また、鋼板長手方向の材質を均一化する観
点からは、コイル長手方向で冷却開始時間は一定値であ
る方がより望ましいが、現状の熱間圧延機において急冷
を行う冷却装置を一つの制御単位とすると、コイル長手
方向で冷却開始時間が変化してしまうおそれがある。そ
の理由として、熱間圧延は常に一定の速度で行われるわ
けではないことが挙げられる。すなわち、鋼帯の先頭部
分がコイラーに巻き付くまでには低い圧延速度で圧延が
行われ、その後鋼帯がコイラーに巻き付き、鋼帯に張力
がかかった後に、段々と圧延速度を一定速度まで上げて
いき、その状態のままコイル後端まで圧延が行われるた
め、この圧延速度の変動により冷却開始時間が変化して
しまうのである。
From the viewpoint of equalizing the material in the longitudinal direction of the steel sheet, it is more preferable that the cooling start time is constant in the longitudinal direction of the coil. However, a cooling device for performing rapid cooling in the existing hot rolling mill is required. If one control unit is used, the cooling start time may change in the longitudinal direction of the coil. The reason is that hot rolling is not always performed at a constant speed. In other words, rolling is performed at a low rolling speed until the head of the steel strip winds around the coiler, and thereafter the steel strip winds around the coiler, and after tension is applied to the steel strip, the rolling speed is gradually increased to a constant speed. Since the rolling is performed to the rear end of the coil in this state, the cooling start time changes due to the change in the rolling speed.

【0053】このような細粒化および材質のばらつきを
回避するためには、冷却装置を小さな単位に分割し、そ
れぞれの単位を圧延速度と連動させてON/OFF制御
を行うとよい。この場合には、圧延速度が遅めであるコ
イル先端部では最終パス側の単位を用いて冷却を行い、
その後、段々と加速される圧延速度に応じて、冷却を行
う単位をコイラー側に設置されている単位へとずらして
いくことにより、コイル長手方向での冷却開始時間を均
一化し、細粒化および材質を均質化することができる。
In order to avoid such grain refinement and variation in the material, it is preferable to divide the cooling device into small units and perform ON / OFF control in conjunction with each unit in association with the rolling speed. In this case, at the tip of the coil where the rolling speed is slow, cooling is performed using the unit on the final pass side,
Then, according to the rolling speed that is gradually accelerated, by shifting the unit of cooling to the unit installed on the coiler side, the cooling start time in the longitudinal direction of the coil is made uniform, and fine-graining and The material can be homogenized.

【0054】(5)急速冷却の温度降下量:50℃以上
250℃以下 このように急速冷却を行うのは、熱延板の細粒化を最適
に行って、冷延焼鈍板の伸び、深絞り性を向上し、異方
性を低く抑えるためである。上述したように、「冷却速
度を200℃/sec以上2000℃/sec以下とす
る」、「冷却開始時間を1秒以内とする」という2つの
条件を満足する場合、最終パス後の温度降下はわずかで
あり、冷却開始温度と仕上温度とをほぼ同じ温度と見な
せるため、このように「仕上温度からの温度降下量」を
規定する。
(5) Temperature drop of rapid cooling: not less than 50 ° C. and not more than 250 ° C. Such rapid cooling is performed by optimally refining the hot-rolled sheet, elongating the cold-rolled annealed sheet, This is because the drawability is improved and the anisotropy is suppressed low. As described above, when the two conditions of “the cooling rate is set to 200 ° C./sec or more and 2000 ° C./sec or less” and “the cooling start time is set to 1 second or less” are satisfied, the temperature drop after the final pass is Since the cooling start temperature and the finishing temperature can be regarded as substantially the same temperature, the “temperature drop from the finishing temperature” is defined in this way.

【0055】熱延板細粒化を最適に行うためには、単に
指定した温度領域を、上述のように急速冷却すればよい
というわけではなく、特に、急速冷却による温度降下量
を適正な範囲とすることが必要である。この急冷による
温度降下量が適正な範囲を超えると、ポリゴナルなフェ
ライト粒を実現できず、圧延方向に伸びた粒や、焼き入
れ組織状の粒となってしまい、優れた加工性および異方
性が得られなくなる。このため、本発明においては、上
述したように急速冷却による温度降下量を規定した。
In order to perform hot-rolled sheet refining optimally, it is not only necessary to rapidly cool the specified temperature range as described above. It is necessary to If the amount of temperature drop due to this quenching exceeds an appropriate range, polygonal ferrite grains cannot be realized, resulting in grains extending in the rolling direction and grains having a quenched structure, resulting in excellent workability and anisotropy. Can not be obtained. For this reason, in the present invention, the amount of temperature drop by rapid cooling is specified as described above.

【0056】急速冷却による温度降下量を50℃以上と
したのは、前述した冷却速度でγ−α変態点を横切って
冷却するためには、最低でも50℃の温度降下量が必要
なためである。また、温度降下量を250℃以下とした
のは、温度降下量が250℃を超えると冷やしすぎによ
る悪影響が顕著となるためである。特に、冷延焼鈍板の
伸びを向上させたい場合には、温度降下量を150℃以
下とすることが好ましい。
The reason why the temperature drop due to the rapid cooling is set to 50 ° C. or more is that at least the temperature drop of 50 ° C. is required for cooling across the γ-α transformation point at the above-mentioned cooling rate. is there. Further, the reason why the temperature drop amount is set to 250 ° C. or less is that when the temperature drop amount exceeds 250 ° C., an adverse effect due to excessive cooling becomes remarkable. In particular, when it is desired to improve the elongation of the cold-rolled annealed sheet, it is preferable that the temperature drop is 150 ° C. or less.

【0057】急速冷却による温度降下量を上記の範囲に
制御するためには、核沸騰モードで急冷を行う前記冷却
装置を、圧延方向に小さな単位に分割し、圧延速度と連
動してそれぞれの単位における冷却をON/OFF制御
することが有効である。急冷による温度降下量は、急冷
を行う冷却装置の冷却速度と、冷却装置の急冷を行う部
分の長さと、圧延速度(鋼帯の搬送速度)とによって決
まるため、このようにして制御しなければ、急冷による
温度降下量を上記の範囲に収めることは難しく、また、
コイルの長手方向全長にわたって温度降下量を一定にす
ることができずに冷延焼鈍板の特性にばらつきが生じて
しまう。
In order to control the amount of temperature drop by rapid cooling within the above range, the cooling device for performing rapid cooling in the nucleate boiling mode is divided into small units in the rolling direction, and each unit is linked to the rolling speed. It is effective to perform ON / OFF control of the cooling in. The amount of temperature drop due to rapid cooling is determined by the cooling speed of the cooling device that performs rapid cooling, the length of the portion of the cooling device that performs rapid cooling, and the rolling speed (transport speed of the steel strip). It is difficult to keep the amount of temperature drop due to quenching within the above range,
The amount of temperature drop cannot be made constant over the entire length in the longitudinal direction of the coil, so that the characteristics of the cold-rolled annealed sheet vary.

【0058】より具体的に説明すると、核沸騰モードに
よる急冷の冷却速度は、板厚に応じて変化し、厚い板で
は遅くなり、薄い板では速くなる。また、圧延速度がコ
イル全長にわたって一定であることは少なく、鋼帯がコ
イラーに巻き付くまでの速度は遅めにし、その後、鋼帯
に張力がかかった状態で加速して一定速度となるよう
に、圧延速度をとる場合が多い。そのため、冷却装置を
小さな単位に分割し、上記のように変動する圧延速度に
応じて、冷却を行う単位の数と、その単位の位置を決め
て、それぞれの単位のON/OFF制御を行うことによ
り、急速冷却による温度降下量を適正に制御することが
できる。
More specifically, the rapid cooling rate in the nucleate boiling mode changes according to the thickness of the sheet, and is slower for a thicker sheet and faster for a thinner sheet. In addition, the rolling speed is rarely constant over the entire length of the coil, so the speed until the steel strip is wound around the coiler is slowed down, and then the steel strip is accelerated under tension so that the speed becomes constant. Often, the rolling speed is taken. Therefore, the cooling device is divided into small units, and the number of units to be cooled and the positions of the units are determined according to the rolling speed that fluctuates as described above, and ON / OFF control of each unit is performed. Accordingly, the amount of temperature drop due to rapid cooling can be appropriately controlled.

【0059】さらに加えて重要なことは、急速冷却に使
用した水を、すばやく除去することである。例えば、水
が冷却装置の出側以降に流れ出したりした場合には、残
存した水量に応じて鋼板の冷却が継続してしまう。冷却
装置の出側で鋼板上に水が必要以上に残った場合、その
エリアにおける冷却モードは、鋼板にあたる水圧および
圧延速度等によっても異なるが、核沸騰モードと膜沸騰
モードとが混じり合ったモードか、膜沸騰モードの冷却
へ移行していく過程のモードとなる。いずれのモードに
せよ、単なる膜沸騰モードよりも冷却速度の大きい冷却
が継続することになる。このことは、急速冷却によって
発現する鋼板の特性向上効果のばらつきに直結し、ま
た、冷やしすぎた場合にはポリゴナルなフェライト粒を
実現できないため、材質劣化に結びつく。これを防止す
るためには、冷却装置の出側に、水切り装置、水切りロ
ール、エアカーテン等を設置するとよい。
It is additionally important that the water used for rapid cooling be quickly removed. For example, if water flows out after the outlet side of the cooling device, the cooling of the steel sheet continues according to the amount of remaining water. If more water than necessary remains on the steel sheet at the exit side of the cooling device, the cooling mode in that area differs depending on the water pressure and rolling speed of the steel sheet, etc., but a mode in which the nucleate boiling mode and the film boiling mode are mixed. Or, it is a mode of a process of shifting to the cooling of the film boiling mode. In either mode, cooling at a higher cooling rate than in the simple film boiling mode is continued. This is directly related to the variation in the effect of improving the properties of the steel sheet, which is manifested by rapid cooling, and if the temperature is excessively cooled, polygonal ferrite grains cannot be realized, leading to deterioration of the material. In order to prevent this, a draining device, a draining roll, an air curtain, or the like may be installed on the outlet side of the cooling device.

【0060】(6)急速冷却の冷却停止温度:650℃
以上850℃以下 急速冷却の冷却停止温度をこのように規定するのは、上
述した「冷却速度」、「冷却開始時間」、および「急冷
による温度降下量」の条件と相俟って、熱延板の細粒化
を適切に行うためである。冷却停止温度が850℃を超
えると、冷却停止後の粒成長が無視できない場合があ
り、熱延板の細粒化の観点から好ましくない。一方、冷
却停止温度が650℃未満になると、上述した「冷却速
度」、「冷却開始時間」、および「急冷による温度降下
量」の条件を満たしていても、焼き入れ組織状になって
しまう場合があり、その場合には冷延焼鈍板の特性を向
上することができない。なお、急冷停止温度は急速冷却
装置を出てきたときの板温度であり、(仕上温度)−
(急速冷却による温度降下量)で与えられる。また、急
冷停止温度は、当然、巻取温度以上に設定しなければな
らない。なお、急冷停止温度とは、実質的には急速冷却
装置を出てきた時の板温度であるが、例えば、冷却装置
を多バンク構成とした場合には、冷却に使用したバンク
を鋼帯が通過した時の温度を上記の適正範囲に制御して
もよい。冷却停止温度を上記の範囲に制御するために
は、冷却装置の出側に水切り装置、水切りロール、エア
ーカーテンなどを設置し、これらにより冷却停止温度を
制御するとよい。
(6) Cooling stop temperature of rapid cooling: 650 ° C.
Not less than 850 ° C. The cooling stop temperature of the rapid cooling is defined in this manner in combination with the above-mentioned conditions of “cooling rate”, “cooling start time”, and “amount of temperature drop by rapid cooling”. This is for appropriately reducing the size of the plate. If the cooling stop temperature exceeds 850 ° C., the grain growth after the cooling stop may not be ignored, which is not preferable from the viewpoint of making the hot-rolled sheet finer. On the other hand, if the cooling stop temperature is lower than 650 ° C., a quenched structure may be formed even if the above-described conditions of “cooling rate”, “cooling start time”, and “amount of temperature drop due to rapid cooling” are satisfied. In such a case, the properties of the cold-rolled annealed sheet cannot be improved. The quenching stop temperature is the plate temperature at the time of exiting the rapid cooling device, and is (finish temperature) −
(Temperature drop due to rapid cooling). In addition, the quenching stop temperature must be set to be equal to or higher than the winding temperature. The quenching stop temperature is substantially the plate temperature at the time of exiting the rapid cooling device.For example, when the cooling device has a multi-bank configuration, the steel band is used for cooling. The temperature at the time of passing may be controlled in the above-mentioned appropriate range. In order to control the cooling stop temperature within the above range, a draining device, a draining roll, an air curtain, or the like may be installed on the outlet side of the cooling device, and the cooling stop temperature may be controlled by these.

【0061】(7)急速冷却後の冷却:100℃/se
c以下の徐冷却または空冷 以上のようにして行われた熱延ランナウトでの急速冷却
の後、巻取温度まで100℃/sec以下の徐冷却また
は空冷を行うのは、上述したようにポリゴナルで、か
つ、微細化したフェライト粒を作り込んで冷延焼鈍板の
特性を向上するためである。急速冷却のみで巻取温度ま
で冷却すると冷やしすぎによる悪影響が見られ、所望の
組織が得られないため、100℃/sec以下の徐冷却
または空冷は必須である。冷却速度が100℃/sec
を超えるとポリゴナルなフェライト粒の作り込みが難し
くなる。
(7) Cooling after rapid cooling: 100 ° C./sec
After the rapid cooling in the hot rolled runout performed as described above, the slow cooling or the air cooling of 100 ° C./sec or less to the winding temperature is performed by the polygonal as described above. In addition, it is for improving the characteristics of the cold-rolled annealed sheet by producing fine ferrite grains. If cooling to the winding temperature is performed only by rapid cooling, adverse effects due to excessive cooling are observed and a desired structure cannot be obtained. Therefore, slow cooling at 100 ° C./sec or less or air cooling is essential. Cooling rate is 100 ° C / sec
If it exceeds 2,000, it will be difficult to produce polygonal ferrite grains.

【0062】(8)巻取温度 巻取温度は特に限定されないが、550℃以上750℃
以下とすることが望ましい。巻取温度が550℃未満で
は鋼が硬化する。また、前述したように急冷を行う場合
には必然的に巻取温度は750℃以下とならざるを得
ず、かつ、巻取温度を750℃超としても特性の向上が
みられない。
(8) Winding Temperature The winding temperature is not particularly limited, but is 550 ° C. or more and 750 ° C.
It is desirable to make the following. If the winding temperature is lower than 550 ° C., the steel hardens. In addition, as described above, when quenching is performed, the winding temperature is inevitably lower than 750 ° C., and even if the winding temperature is higher than 750 ° C., no improvement in characteristics is observed.

【0063】また、鋼中C,S,N量が多い場合、すな
わち、C:0.002%以上0.01%以下、S:0.
012%以上0.02%以下、または、N:0.002
%以上0.004%以下である場合には、巻取温度を6
30℃以上750℃以下とすることが好ましい。この範
囲とすることにより、析出物の形成・成長を促し、冷延
焼鈍板のフェライト粒成長を阻害するような因子(微細
析出物)を除去することができる。
When the C, S and N contents in the steel are large, ie, C: 0.002% or more and 0.01% or less;
012% or more and 0.02% or less, or N: 0.002
% Or more and 0.004% or less, the winding temperature is 6
It is preferable that the temperature be 30 ° C. or more and 750 ° C. or less. By setting the content within this range, a factor (fine precipitate) that promotes the formation and growth of precipitates and inhibits ferrite grain growth of the cold-rolled annealed sheet can be removed.

【0064】一方、鋼中C,S,P,N量が少ない場
合、すなわち、C:0.0003%以上0.002%以
下、S:0.0003%以上0.012%以下、P:
0.003以上0.015%以下、または、N:0.0
003%以上0.002%以下である場合には、巻取温
度を550℃以上680℃以下とすることが好ましい。
この範囲とすることにより、これらの元素が少ないため
に極めて盛んな粒成長を抑制し、熱延板粒径の細粒化を
有効に行うことができる。
On the other hand, when the amounts of C, S, P, and N in the steel are small, that is, C: 0.0003% or more and 0.002% or less, S: 0.0003% or more and 0.012% or less, and P:
0.003 or more and 0.015% or less, or N: 0.0
When it is 003% or more and 0.002% or less, the winding temperature is preferably 550 ° C or more and 680 ° C or less.
By setting the content within this range, extremely active grain growth can be suppressed because these elements are small, and the grain size of the hot-rolled sheet can be effectively reduced.

【0065】(9)冷間圧延 冷間圧延の条件は特に限定されないが、その際の圧下率
(冷圧率)を50%以上90%以下とすることが好まし
い。冷圧率をこの範囲とすることにより、上述のように
して得られた細粒化された熱延板からの特性向上効果が
大きい。
(9) Cold Rolling The conditions for the cold rolling are not particularly limited, but the rolling reduction (cold rolling ratio) at that time is preferably 50% or more and 90% or less. By setting the cooling pressure ratio in this range, the effect of improving the characteristics from the finely grained hot-rolled sheet obtained as described above is large.

【0066】(10)焼鈍 冷延板を焼鈍する際の条件は特に限定されないが、特性
向上および肌荒れ防止の観点から、700℃以上850
℃以下の温度で焼鈍することが好ましい。焼鈍は、連続
焼鈍やバッチ焼鈍等の、どういった方法で行ってもよ
い。
(10) Annealing The conditions for annealing the cold-rolled sheet are not particularly limited. However, from the viewpoint of improving properties and preventing roughening of the surface, the temperature is 700 ° C. or more and 850 ° C.
It is preferable to anneal at a temperature of not more than ℃. Annealing may be performed by any method such as continuous annealing or batch annealing.

【0067】本発明においては、連続鋳造したスラブを
加熱炉にて加熱することなく熱間圧延する方法、連続鋳
造したスラブの温度が室温まで下がりきらない状態で、
加熱炉にて所定の温度に加熱してから熱間圧延する方
法、スラブの温度が室温まで下がってから加熱炉にて所
定の温度に加熱してから熱間圧延する方法、薄スラブ連
続鋳造装置と熱間圧延装置が連結した装置で熱間圧延す
る方法、インゴット製造したスラブを、手入れ後、加熱
炉にて加熱して熱間圧延する方法等の、いずれの方法を
用いた場合であっても、前記組成の鋼に上記のプロセス
条件を適用することにより、好ましい材質を作り込むこ
とができる。
In the present invention, a method of hot rolling a continuously cast slab without heating it in a heating furnace, a method in which the temperature of the continuously cast slab cannot be reduced to room temperature,
A method of hot rolling after heating to a predetermined temperature in a heating furnace, a method of hot rolling to a predetermined temperature in a heating furnace after the temperature of the slab has dropped to room temperature, a continuous thin slab casting device And hot rolling with a device connected to a hot rolling device, the ingot manufactured slabs, after maintenance, such as a method of hot rolling by heating in a heating furnace, such as when using any method. Also, by applying the above process conditions to steel having the above composition, a preferable material can be produced.

【0068】本発明における冷延鋼板は、自動車用鋼
板、電気製品用鋼板、缶用鋼板、建材用鋼板等の、特に
加工性を要求される用途に好適に用いることができる
が、その他の用途に用いた場合にも十分にその特性を発
揮することができる。また、本発明における冷延鋼板
は、さらにZnめっきや合金化Znめっき等の表面処理
を施したものを含む。
The cold rolled steel sheet of the present invention can be suitably used for applications requiring workability, such as steel plates for automobiles, steel plates for electric products, steel plates for cans, and steel plates for building materials. The characteristics can be sufficiently exhibited even when used in the above. Further, the cold-rolled steel sheet according to the present invention includes those subjected to a surface treatment such as Zn plating or alloyed Zn plating.

【0069】[0069]

【実施例】以下、本発明の実施例について説明する。 [実施例1]表1に示した成分を有する鋼を連続鋳造に
より200〜300mm厚さのスラブとし、1180〜
1250℃に加熱して、表2に示した冷却条件をはじめ
とする熱延条件の熱間圧延により板厚2.8mmの熱延
板とし、板厚0.8mmに冷間圧延した後、昇温速度6
℃/sec以上20℃/sec以下で昇温し、表2に示
す焼鈍温度で90秒間連続焼鈍してNo.1〜18の冷
延鋼板を得た。熱間圧延に際しては、熱延鋼帯の搬送
性、形状性を問題のないレベルに確保するために、粗バ
ー(粗圧延を完了した熱延鋼帯)を、仕上圧延装置へ導
入する直前に誘導加熱装置により加熱して、鋼帯の板幅
方向の温度分布を一定にした。また、表2に「従来のラ
ミナー冷却」と示したものでは、仕上圧延の最終パスを
通過した熱延鋼帯に、水蒸気を上げながら冷却するラミ
ナー冷却を行った。一方、仕上圧延後に200℃/se
c以上の急冷を行ったものでは、膜沸騰モードの冷却で
は冷却の際に蒸気が発生し、また、蒸気膜が鋼板を包み
込んでしまい急冷を行うことができないので、多孔噴流
方式の冷却装置を用いて、蒸気膜を破壊しながら冷却を
行うためにフレッシュな水が常に鋼板にあたり、急速冷
却を行うことが可能な核沸騰モードの冷却を実現し、そ
の水量や水圧等を変化させて表2に示した種々の冷却速
度により急冷を行った。
Embodiments of the present invention will be described below. [Example 1] Steel having the components shown in Table 1 was continuously cast into a slab having a thickness of 200 to 300 mm, and
After heating to 1250 ° C., a hot-rolled sheet having a sheet thickness of 2.8 mm was formed by hot rolling under hot-rolling conditions including the cooling conditions shown in Table 2, and cold-rolled to a sheet thickness of 0.8 mm. Temperature speed 6
The temperature was raised at a temperature of not less than 20 ° C./sec and not more than 20 ° C./sec. 1 to 18 cold-rolled steel sheets were obtained. At the time of hot rolling, in order to ensure the transportability and shape of the hot-rolled steel strip to a level that does not cause any problems, a rough bar (hot-rolled steel strip that has undergone rough rolling) is introduced immediately before introduction into the finish rolling device. The steel strip was heated by an induction heating device to make the temperature distribution in the width direction of the steel strip constant. In the case of "conventional laminar cooling" shown in Table 2, laminar cooling was performed on the hot-rolled steel strip that passed through the final pass of finish rolling while cooling while raising steam. On the other hand, after finish rolling, 200 ° C / sec.
In the case of rapid cooling of c or more, steam is generated at the time of cooling in the cooling in the film boiling mode, and the steam film envelops the steel sheet and cannot be rapidly cooled. In order to perform cooling while destroying the vapor film, fresh water always hits the steel plate, realizing cooling in the nucleate boiling mode that allows rapid cooling, and changing the amount of water and water pressure. The quenching was carried out at various cooling rates shown in FIG.

【0070】これらの鋼板について、冷延鋼板の0.8
mm材にて全伸びを測定し、また、L方向(圧延方向に
対し0°方向)のr値であるr0、D方向(圧延方向に
対し45°方向)のr値であるr45、およびC方向
(圧延方向に対し90°方向)のr値であるr90をそ
れぞれ測定した。表2には、鋼板の加工性を評価するた
めの指標として全伸びおよび平均r値を示し、また、異
方性を評価するための指標として、r0,r45,r9
0のうちr45が一番低い傾向を示す鋼板ではΔrを示
し、r45がr0およびr90の中間の値をとる鋼板で
はr値の最大値−最小値の値を示す。ここで、平均r値
は、平均r値=(r0+2×r45+r90)/4によ
り規定される値である。また、Δrは、Δr=(r0+
r90−2×r45)/2により規定される値である。
For these steel sheets, 0.8% of the cold-rolled steel sheets
The total elongation was measured using a mm material, and r0, the r value in the L direction (0 ° direction to the rolling direction), r45, the r value in the D direction (45 ° direction to the rolling direction), and C R90, which is the r value in the direction (90 ° with respect to the rolling direction), was measured. Table 2 shows the total elongation and the average r value as indices for evaluating the workability of the steel sheet, and r0, r45, and r9 as indices for evaluating anisotropy.
Among steel sheets, r45 shows the lowest tendency among the steel sheets, in which r45 indicates Δr, and steel sheets in which r45 takes an intermediate value between r0 and r90 indicate the maximum value-minimum value of the r value. Here, the average r value is a value defined by the average r value = (r0 + 2 × r45 + r90) / 4. Δr is expressed as Δr = (r0 +
r90−2 × r45) / 2.

【0071】[0071]

【表1】 [Table 1]

【0072】[0072]

【表2】 [Table 2]

【0073】表2に示すように、急速冷却を行う本発明
のプロセス条件により製造されたNo.2,4,6,
8,10,12,14,16,18の鋼板は、いずれも
伸びおよび平均r値が極めて高く、かつ、Δrまたはr
値の最大値−最小値が極めて低く抑えられており、加工
性および異方性が極めて優れていた。これに対して、最
終パス後のランナウトテーブルにて鋼板の上下からラミ
ナー冷却を行ったNo.1,3,5,7,9,11,1
3,15,17の鋼板は、いずれかの特性が劣ってい
た。
As shown in Table 2, No. 1 was manufactured under the process conditions of the present invention in which rapid cooling was performed. 2,4,6
Each of the steel sheets of 8, 10, 12, 14, 16, and 18 has an extremely high elongation and an average r value, and has a Δr or r
The maximum value-minimum value was extremely low, and workability and anisotropy were extremely excellent. On the other hand, laminar cooling was performed from the top and bottom of the steel plate on the runout table after the final pass. 1,3,5,7,9,11,1
The steel sheets 3, 15, and 17 were inferior in any of the properties.

【0074】以上のように、本発明で規定された範囲の
組成を有する鋼を用いて、本発明で規定されたプロセス
条件により冷延鋼板を製造すれば、形状性や搬送性に優
れ、かつ、従来よりも格段に優れた加工性および異方性
を有する冷延鋼板を製造することができることが確認さ
れた。
As described above, if a cold-rolled steel sheet is manufactured using the steel having the composition in the range specified in the present invention under the process conditions specified in the present invention, the shape and transportability are excellent, and It was confirmed that a cold-rolled steel sheet having much better workability and anisotropy than the conventional one could be manufactured.

【0075】[実施例2]表3に示す成分を有する鋼を
連続鋳造により220mm厚さのスラブとし、このスラ
ブに手入れを行った後、1200℃に加熱し、表4に示
した条件で熱間圧延し、冷間圧延した後に、昇温速度1
0℃/sec以上20℃/sec以下で、840℃の焼
鈍温度で90秒間連続焼鈍してNo.19〜44の冷延
鋼板を得た。熱間圧延に際しては、熱延鋼帯の搬送性、
形状性を問題のないレベルに確保するために、粗バー
(粗圧延を完了した熱延鋼帯)を、仕上圧延装置へ導入
する直前に誘導加熱装置により加熱して、鋼帯の板幅方
向の温度分布を一定にした。この際、No.30につい
ては熱延板の板厚を1.5mm、冷延焼鈍板の板厚を
0.75mmとしたが、その他のNo.19〜29,3
1〜44については、いずれの場合も熱延板板厚を2.
8±0.2mm、冷延焼鈍板の板厚を0.8mmとし
た。また、表4に示したNo.30の冷却速度は熱延板
の板厚が1.5mmの場合の値であり、2.8〜3.5
mmの板厚材で冷却速度を確認したところ270±70
℃/secであった。以上のようにして得られた冷延鋼
板の特性を、実施例1と同様に評価した結果を表4に示
す。なお、表4中、No.30の全伸びについては、厚
さ0.75mmの冷延鋼板で測定された値を、Oliv
er則によって0.8mm材の伸びに変換した値を示
す。
Example 2 Steel having the components shown in Table 3 was cast into a slab having a thickness of 220 mm by continuous casting. The slab was cleaned, heated to 1200 ° C., and heated under the conditions shown in Table 4. After cold rolling and cold rolling, the heating rate is 1
After continuously annealing for 90 seconds at an annealing temperature of 840 ° C. at a temperature of 0 ° C./sec or more and 20 ° C./sec or less, 19 to 44 cold-rolled steel sheets were obtained. In hot rolling, the transportability of hot rolled steel strip,
In order to secure the shape to a level that does not cause any problem, the rough bar (hot-rolled steel strip after rough rolling) is heated by an induction heating device immediately before being introduced into the finish rolling device, and the width direction of the steel strip is measured. Was made constant. At this time, No. For No. 30, the thickness of the hot-rolled sheet was 1.5 mm and the thickness of the cold-rolled annealed sheet was 0.75 mm. 19-29,3
Regarding 1 to 44, the thickness of the hot-rolled sheet was 2.
8 ± 0.2 mm, and the thickness of the cold-rolled annealed sheet was 0.8 mm. In addition, No. shown in Table 4 The cooling rate of 30 is a value when the thickness of the hot-rolled sheet is 1.5 mm, and is 2.8 to 3.5.
When the cooling rate was checked with a thick material of
° C / sec. Table 4 shows the results of evaluating the characteristics of the cold-rolled steel sheet obtained as described above in the same manner as in Example 1. Note that, in Table 4, No. For a total elongation of 30, the value measured on a 0.75 mm thick cold rolled steel sheet was
The value converted into elongation of 0.8 mm material by the er rule is shown.

【0076】[0076]

【表3】 [Table 3]

【0077】[0077]

【表4】 [Table 4]

【0078】表4に示すように、本発明のプロセス条件
により製造されたNo.20,25〜30,33〜3
6,38〜40,44の鋼板は、いずれも鋼板の形状
性、搬送性が問題のないレベルに確保されており、しか
も、伸びおよび平均r値が極めて高く、かつ、Δrが極
めて低く抑えられており、加工性および異方性が極めて
優れていた。これに対して、いずれかの条件が本発明の
範囲外であるNo.19,21〜24,31,32,3
7,41〜43の鋼板では、いずれかの特性が劣ってい
た。
As shown in Table 4, No. 1 manufactured under the process conditions of the present invention. 20, 25-30, 33-3
The steel sheets of Nos. 6, 38 to 40, and 44 each have the shape and transportability of the steel sheets at a level at which there is no problem, and furthermore, the elongation and the average r value are extremely high, and the Δr is extremely low. And the workability and the anisotropy were extremely excellent. On the other hand, in the case of No. 1 in which any condition is out of the range of the present invention. 19, 21-24, 31, 32, 3
In the steel sheets of 7, 41 to 43, any of the characteristics was inferior.

【0079】具体的には、No.19では最終パス前2
パスの合計圧下率が本発明の範囲を超えたため、No.
21では最終パスの圧下率が本発明の範囲を超えたた
め、どちらの場合も製造時に蛇行したり、鋼板の形状お
よび搬送性が劣っており、安定的に製造することが困難
であった。表4には、製造することができた熱延コイル
の一部分より得られた冷延焼鈍板のサンプルの示した材
質特性の中で、最も良好なデータを示した。表4に示す
ように、No.19,21では優れた材質特性を示す場
合もあったが、製造自体が困難で、材質特性のバラツキ
も大きかった。
More specifically, No. 19 before the final pass 2
Since the total rolling reduction of the pass exceeded the range of the present invention, no.
In No. 21, since the rolling reduction of the final pass exceeded the range of the present invention, in both cases, meandering occurred during production, and the shape and transportability of the steel sheet were inferior, and it was difficult to produce stably. Table 4 shows the best data among the material properties of the sample of the cold rolled annealed sheet obtained from a part of the hot rolled coil that could be manufactured. As shown in Table 4, 19 and 21 exhibited excellent material properties in some cases, but the production itself was difficult and the dispersion of the material properties was large.

【0080】また、No.22では仕上温度が本発明範
囲よりも低くα域圧延になってしまったため、特に全伸
びの劣化が顕著であった。一方、No.23では仕上温
度が本発明範囲を超えたため、特性が劣化しているが、
これは急冷を行うまでにγ粒の成長が進行したためと考
えられる。No.24では、冷却速度が本発明範囲より
も低かったため、急冷が十分でなく、熱延板の細粒化が
できず、γ値の向上効果が十分に得られなかった。N
o.31およびNo.32では、冷却開始時間が本発明
範囲を超えたために、粒成長してしまったものと考えら
れ、熱延板の微細化が十分でなく、加工性および異方性
の向上効果が十分に得られなかった。No.37では、
急冷の温度降下量が本発明範囲よりも小さく、急冷停止
温度が本発明範囲よりも高かったため、熱延板の細粒化
が十分でなく、r値の向上効果が十分に得られなかっ
た。No.41では、急冷の温度降下量が本発明範囲を
超えて大きく、また、急冷停止温度が本発明範囲よりも
低かく、かつ、巻取温度も本発明の好ましい範囲よりも
低かったため、熱延板の組織が焼き入れ組織状の粒にな
ってしまい、特性値の劣化が顕著であった。No.42
では、急冷停止温度が本発明範囲よりも低かったため、
熱延板の組織がポリゴナルな細粒とならず、特性値が劣
化してしまった。No.43では、急冷後の冷却速度が
本発明範囲を超えて高かったため、熱延板の段階でポリ
ゴナルな微細粒が得られず、いずれの特性値も劣ってい
た。
In addition, No. In No. 22, since the finishing temperature was lower than the range of the present invention and the α-region rolling was performed, the total elongation was particularly deteriorated. On the other hand, No. In No. 23, since the finishing temperature exceeded the range of the present invention, the characteristics were deteriorated.
This is presumably because the growth of γ grains progressed before rapid cooling. No. In No. 24, since the cooling rate was lower than the range of the present invention, rapid cooling was not sufficient, the hot-rolled sheet could not be refined, and the effect of improving the γ value was not sufficiently obtained. N
o. 31 and No. 31. In No. 32, since the cooling start time exceeded the range of the present invention, it was considered that the grains had grown, and the hot rolled sheet was not sufficiently refined, and the effects of improving workability and anisotropy were sufficiently obtained. I couldn't. No. 37,
Since the temperature drop during quenching was smaller than the range of the present invention and the quenching stop temperature was higher than the range of the present invention, the hot-rolled sheet was not sufficiently refined, and the effect of improving the r-value was not sufficiently obtained. No. In No. 41, the rapid cooling temperature drop was larger than the range of the present invention, the quenching stop temperature was lower than the range of the present invention, and the winding temperature was lower than the preferred range of the present invention. The structure became hardened structure-like grains, and the characteristic value was significantly deteriorated. No. 42
In, because the quenching stop temperature was lower than the range of the present invention,
The structure of the hot-rolled sheet did not become polygonal fine grains, and the characteristic values deteriorated. No. In No. 43, since the cooling rate after quenching was higher than the range of the present invention, polygonal fine particles could not be obtained at the stage of hot rolling, and all the characteristic values were inferior.

【0081】以上のように、本発明で規定された条件を
全て満たした製造方法によってはじめて、従来よりも格
段に優れた加工性および異方性を有する冷延鋼板を、形
状性や搬送性に問題を生じることなく製造することがで
きることが確認された。
As described above, a cold-rolled steel sheet having much better workability and anisotropy than the conventional one can be obtained only by a manufacturing method that satisfies all the conditions specified in the present invention. It has been confirmed that it can be manufactured without any problems.

【0082】[実施例3]冷却開始時間の効果を調べる
ため、表5に示した成分を有する鋼を連続鋳造により2
00〜300mm厚さのスラブとし、1180℃〜12
50℃に加熱して、表6に示した範囲の最終パス前2パ
スの合計圧下率、最終パス圧下率、仕上温度、冷却条件
および巻取温度にて熱間圧延を行い、板厚2.8mmの
熱延板とし、板厚0.8mmに冷間圧延した後、昇温速
度6℃/sec以上20℃/sec以下で昇温し、焼鈍
温度850℃で90秒間連続焼鈍して種々の冷延鋼板を
得た。この際、表6に「従来のラミナー冷却」と示した
ものでは、仕上圧延の最終パスを通過した熱延鋼帯に、
水蒸気を上げながら冷却するラミナー冷却を行った。一
方、仕上圧延後に200℃/sec以上の急冷を行った
ものにおいては、膜沸騰モードの冷却では冷却の際に蒸
気が発生して、蒸気膜が鋼板を包み込んでしまい急冷を
行うことができないので、多孔噴流方式の冷却装置を用
いて、蒸気膜を破壊しながら冷却を行うためにフレッシ
ュな水が常に鋼板にあたり、急速冷却を行うことが可能
な核沸騰モードの冷却を実現した。
Example 3 In order to investigate the effect of the cooling start time, steel having the components shown in Table 5 was continuously cast into
A slab with a thickness of 00 to 300 mm, 1180 ° C to 12
The sheet was heated to 50 ° C., and hot-rolled at a total draft of the two passes before the final pass, a final pass draft, a finishing temperature, a cooling condition, and a winding temperature in the range shown in Table 6 to obtain a sheet thickness of 2. 8 mm hot rolled sheet, cold-rolled to a sheet thickness of 0.8 mm, heated at a heating rate of 6 ° C./sec or more and 20 ° C./sec or less, and continuously annealed at an annealing temperature of 850 ° C. for 90 seconds for various kinds. A cold rolled steel sheet was obtained. At this time, in Table 6, "Conventional laminar cooling" indicates that the hot-rolled steel strip passed through the final pass of finish rolling was:
Laminar cooling was performed to cool while raising the steam. On the other hand, in the case of quenching at 200 ° C./sec or more after finish rolling, in the film boiling mode cooling, steam is generated at the time of cooling, and the steam film envelops the steel sheet and cannot be quenched. Using a multi-jet cooling system, fresh water always hits the steel plate to perform cooling while destroying the vapor film, realizing nucleate boiling mode cooling that enables rapid cooling.

【0083】これらの鋼板について、実施例1と同様
に、冷延鋼板の0.8mm材にて全伸びを測定し、ま
た、各方向のr値であるr0、r45、r90をそれぞ
れ測定した。測定された全伸びの値と冷却開始時間との
関係を図1に示し、測定されたr値から得られた平均r
値と冷却開始時間との関係を図2に示す。また、異方性
を評価するための指標としてΔrを用い、図2には一部
の鋼板についてΔrの値を併記する。
For these steel sheets, as in Example 1, the total elongation was measured using a 0.8 mm cold-rolled steel sheet, and the r values r0, r45, and r90 in each direction were measured. FIG. 1 shows the relationship between the measured total elongation value and the cooling start time, and the average r obtained from the measured r values.
FIG. 2 shows the relationship between the value and the cooling start time. In addition, Δr is used as an index for evaluating anisotropy, and FIG. 2 also shows the value of Δr for some steel sheets.

【0084】図1および図2に示すように、冷却開始時
間を0.5秒以下とした場合には、全伸びの挙動が一様
でなく大きく変動し、かつ、平均r値は冷却開始時間が
短くなるほど高い増加率で上昇している。このため、冷
却開始時間が0.5秒以下では冷却開始時間がわずかに
ずれるだけで材質が大きく変化してしまい、長手方向の
材質が均一な鋼板を工業的に製造することは難しい。
As shown in FIGS. 1 and 2, when the cooling start time is set to 0.5 seconds or less, the behavior of the total elongation is not uniform and greatly fluctuates. Is increasing at a higher rate as the is shorter. For this reason, if the cooling start time is 0.5 seconds or less, the material changes greatly even if the cooling start time is slightly shifted, and it is difficult to industrially manufacture a steel sheet having a uniform material in the longitudinal direction.

【0085】これに対して、冷却開始時間が0.5秒超
1秒以下の範囲とした場合には、全伸び、r値ともにほ
ぼ一定である。このため、冷却開始時間が多少ずれても
長手方向の材質が均一な鋼板を製造することができる。
また、膜沸騰モードのラミナー冷却を行った場合と比較
して全伸び、平均r値はともに向上している。
On the other hand, when the cooling start time is in the range of more than 0.5 seconds to 1 second, both the total elongation and the r value are almost constant. Therefore, even if the cooling start time is slightly shifted, a steel sheet having a uniform material in the longitudinal direction can be manufactured.
Further, both the total elongation and the average r value are improved as compared with the case where laminar cooling in the film boiling mode is performed.

【0086】一方、逆に冷却開始時間が1秒を超える
と、全伸び、r値ともに単調減少して材質レベルが膜沸
騰モードのラミナー冷却を行った場合と大差なくなる。
On the other hand, when the cooling start time exceeds 1 second, both the total elongation and the r value decrease monotonically, and the material level is not much different from the case where the laminar cooling in the film boiling mode is performed.

【0087】なお、Δrは全ての冷却開始時間について
は示さないが、図2に示すように、冷却によりr値が向
上した鋼板ではΔrが小さくなっている。このことから
r値が同レベルの条件ならばΔrもほぼ同じレベルと考
えてよい。したがって、冷却開始時間を0.5秒超1秒
以下の範囲とした場合には、従来のラミナー冷却を行っ
た場合と比較してΔrの値も安定的に向上するものと考
えられる。
Although Δr is not shown for all the cooling start times, as shown in FIG. 2, Δr is small in a steel sheet whose r value has been improved by cooling. From this, if the r value is at the same level, Δr may be considered to be at substantially the same level. Therefore, when the cooling start time is in the range of more than 0.5 seconds to 1 second or less, it is considered that the value of Δr is stably improved as compared with the case where the conventional laminar cooling is performed.

【0088】以上より、冷却開始時間を0.5秒超1秒
以下の範囲とした場合に、加工性に優れ、異方性が小さ
く、長手方向の材質が均一な冷延鋼板が製造できること
が確認された。
As described above, when the cooling start time is in the range of more than 0.5 seconds to 1 second, it is possible to produce a cold-rolled steel sheet having excellent workability, small anisotropy and uniform material in the longitudinal direction. confirmed.

【0089】[0089]

【表5】 [Table 5]

【0090】[0090]

【表6】 [Table 6]

【0091】[実施例4]表7に示した成分を有する鋼
を連続鋳造により200〜300mm厚さのスラブと
し、1180〜1250℃に加熱して、表8に示した冷
却条件をはじめとする熱延条件の熱間圧延により板厚
2.8mmの熱延板とし、板厚0.8mmに冷間圧延し
た後、昇温速度6℃/sec以上20℃/sec以下で
昇温し、表8に示す焼鈍温度で90秒間連続焼鈍してN
o.45〜64の冷延鋼板を得た。熱間圧延に際して
は、熱延鋼帯の搬送性、形状性を問題のないレベルに確
保するために、粗バー(祖圧延を終了した熱延鋼帯)
を、仕上圧延装置に導入する直前に誘導加熱装置により
加熱して、鋼帯の板幅方向の温度分布を均一にした。ま
た、表8に「従来のラミナー冷却」と示したものでは、
仕上圧延の最終パスを通過した熱延鋼帯に、水蒸気を上
げながら冷却するラミナー冷却を行った。一方、仕上圧
延後に200℃/sec以上の急冷を行ったものにおい
ては、膜沸騰モードの冷却では冷却の際に蒸気が発生
し、蒸気膜が鋼板を包み込んでしまい急冷を行うことが
できないので、多孔噴流方式の冷却装置を用いて、蒸気
膜を破壊しながら冷却を行うためにフレッシュな水が常
に鋼板にあたり、急速冷却を行うことが可能な核沸騰モ
ードの冷却を実現し、その水量や水圧を変化させて表8
に示した種々の冷却速度により冷却を行った。以上のよ
うにして得られた冷延鋼板の特性を、実施例1と同様に
評価した。その結果を表8に示す。
Example 4 A steel having the components shown in Table 7 was cast into a slab having a thickness of 200 to 300 mm by continuous casting, heated to 1180 to 1250 ° C., and cooled under the conditions shown in Table 8. A hot-rolled sheet having a thickness of 2.8 mm was formed by hot rolling under hot rolling conditions, cold-rolled to a thickness of 0.8 mm, and then heated at a heating rate of 6 ° C./sec or more and 20 ° C./sec or less. 8 for 90 seconds at the annealing temperature shown in FIG.
o. 45 to 64 cold-rolled steel sheets were obtained. In hot rolling, rough bars (hot-rolled steel strips that have finished rolling) are used to ensure the transportability and shape of the hot-rolled steel strips at a level that does not cause any problems.
Was heated by an induction heating device immediately before being introduced into the finish rolling device, so that the temperature distribution in the width direction of the steel strip was made uniform. Also, in Table 8, "Conventional laminar cooling" indicates:
The hot rolled steel strip that passed through the final pass of finish rolling was subjected to laminar cooling in which the steam was raised while cooling. On the other hand, in the case of quenching at 200 ° C./sec or more after the finish rolling, steam is generated at the time of cooling in the cooling in the film boiling mode, and the steam film wraps around the steel sheet and cannot be quenched. Using a multi-jet type cooling device, fresh water always hits the steel plate to perform cooling while destroying the vapor film, realizing nucleate boiling mode cooling that can perform rapid cooling, the amount of water and water pressure Table 8
The cooling was carried out at various cooling rates shown in FIG. The properties of the cold-rolled steel sheet obtained as described above were evaluated in the same manner as in Example 1. Table 8 shows the results.

【0092】[0092]

【表7】 [Table 7]

【0093】[0093]

【表8】 [Table 8]

【0094】表8に示すように、急速冷却を行う本発明
のプロセス条件により製造されたNo.46,48,5
0,52,54,56,58,62,64の鋼板は、い
ずれも伸びおよびr値が極めて高く、かつ、Δrまたは
r値の最大値−最小値が極めて低く抑えられており、加
工性および異方性が極めて優れていた。これに対して、
最終パス後のランナウトテーブルにて鋼板の上下からラ
ミナー冷却を行ったNo.45,47,49,51,5
3,55,57,59,61,63の鋼板は、いずれか
の特性が劣っていた。
[0094] As shown in Table 8, no. 46,48,5
Each of the steel sheets 0, 52, 54, 56, 58, 62, and 64 has extremely high elongation and r value, and the maximum value-minimum value of Δr or r value is extremely low. The anisotropy was extremely excellent. On the contrary,
The laminar cooling was performed from the top and bottom of the steel plate on the runout table after the final pass. 45, 47, 49, 51, 5
The steel sheets of 3, 55, 57, 59, 61 and 63 were inferior in any of the properties.

【0095】以上のように、本発明で規定された範囲の
組成を有する鋼を用いて、本発明で規定されたプロセス
条件により冷延鋼板を製造すれば、形状性や搬送性に優
れ、かつ、従来よりも格段に優れた加工性および異方性
を有する冷延鋼板を製造することができることが確認さ
れた。
As described above, if a cold-rolled steel sheet is manufactured using the steel having the composition in the range specified in the present invention under the process conditions specified in the present invention, the shape and transportability are excellent, and It was confirmed that a cold-rolled steel sheet having much better workability and anisotropy than the conventional one could be manufactured.

【0096】[実施例5]表9に示す成分を有する鋼を
連続鋳造により220mm厚さのスラブとし、このスラ
ブに手入れを行った後、1200℃に加熱し、表10に
示した条件で熱間圧延し、冷間圧延した後に、昇温速度
10℃/sec以上20℃/sec以下で、840℃の
焼鈍温度で90秒間連続焼鈍してNo.65〜82の冷
延鋼板を得た。熱間圧延に際しては、熱延鋼帯の搬送
性、形状性を問題のないレベルに確保するために、粗バ
ー(祖圧延を終了した熱延鋼帯)を、仕上圧延装置へ導
入する直前に誘導加熱装置により加熱して、鋼板の板幅
方向の温度分布を均一にした。この際、No.74につ
いては熱延板の板厚を1.5mm、冷延焼鈍板の板厚を
0.75mmとしたが、その他のNo.65〜73,7
5〜82については、いずれの場合も熱延板の板厚を
2.8±0.2mm、冷延焼鈍板の板厚を0.8mmと
した。また、表10に示したNo.74の冷却速度は熱
延板の板厚が1.5mmの場合の値であり、2.8〜
3.5mmの板厚材で冷却速度を確認したところ270
±70℃/secであった。以上のようにして得られた
冷延鋼板の特性を、実施例1と同様に評価した結果を表
10に示す。なお、表10中、No.74の全伸びにつ
いては、厚さ0.75mmの冷延鋼板で測定された値
を、Oliver則によって0.8mm材の伸びに変換
した値を示す。
Example 5 Steel having the components shown in Table 9 was continuously cast into a slab having a thickness of 220 mm. The slab was cleaned, heated to 1200 ° C., and heated under the conditions shown in Table 10. After cold rolling and cold rolling, the steel sheet was continuously annealed at an annealing temperature of 840 ° C. for 90 seconds at a heating rate of 10 ° C./sec or more and 20 ° C./sec or less, and No. 65 to 82 cold-rolled steel sheets were obtained. At the time of hot rolling, in order to ensure the transportability and shape of the hot-rolled steel strip at a level that does not cause any problems, a rough bar (hot-rolled steel strip after the end of rolling) is immediately introduced into the finishing mill. The sheet was heated by an induction heating device to make the temperature distribution in the sheet width direction of the steel sheet uniform. At this time, No. For No. 74, the thickness of the hot-rolled sheet was 1.5 mm and the thickness of the cold-rolled annealed sheet was 0.75 mm. 65-73,7
Regarding 5 to 82, in each case, the thickness of the hot-rolled sheet was 2.8 ± 0.2 mm, and the thickness of the cold-rolled annealed sheet was 0.8 mm. In addition, No. shown in Table 10 The cooling rate of 74 is a value when the thickness of the hot-rolled sheet is 1.5 mm and is 2.8 to
The cooling rate was confirmed to be 270 for a 3.5 mm thick material.
It was ± 70 ° C / sec. Table 10 shows the results of evaluating the properties of the cold-rolled steel sheets obtained as described above in the same manner as in Example 1. Note that in Table 10, No. Regarding the total elongation of 74, a value obtained by converting a value measured for a cold-rolled steel sheet having a thickness of 0.75 mm into an elongation of a 0.8 mm material according to Oliver's law is shown.

【0097】[0097]

【表9】 [Table 9]

【0098】[0098]

【表10】 [Table 10]

【0099】表10に示すように、本発明のプロセス条
件により製造されたNo.66,69〜74,76〜7
8,82の鋼板は、いずれも鋼板の形状性、搬送性が問
題ないレベルに確保されており、しかも、伸びおよび平
均r値が極めて高く、かつ、Δrが極めて低く抑えられ
ており、加工性および異方性が極めて優れていた。これ
に対して、いずれかの条件が本発明の範囲外であるN
o.65,67,68,75,79〜81の鋼板では、
いずれかの特性が劣っていた。
As shown in Table 10, No. 1 manufactured under the process conditions of the present invention. 66,69-74,76-7
Each of the steel sheets No. 8, 82 has a shape and transportability of the steel sheet at a level where there is no problem, and furthermore, the elongation and the average r value are extremely high, and the Δr is extremely low. And the anisotropy was extremely excellent. On the other hand, if any of the conditions is out of the scope of the present invention, N
o. In the steel plates of 65, 67, 68, 75, 79-81,
Either property was inferior.

【0100】具体的には、No.65では最終パス前2
パスの合計圧下率が本発明範囲を超えて高かったため、
No.67では最終パスの圧下率が本発明の範囲を超え
て高かったため、どちらの場合も製造時に蛇行したり、
鋼板の形状および搬送性が劣っており、安定的に製造す
ることが困難であった。表10には、製造することがで
きた熱延コイルの一部分より得られた冷延焼鈍板のサン
プルに示した材質の中で、もっとも良好なデータを示し
た。表10に示すように、No,65,67では優れた
材質特性を示す場合もあったが、製造自体が困難で、材
質特性のバラツキも大きかった。
More specifically, No. 65 before the last pass 2
Because the total rolling reduction of the pass was higher than the scope of the present invention,
No. In 67, since the rolling reduction of the final pass was higher than the range of the present invention, in either case, the meandering during manufacturing was
The shape and transportability of the steel sheet were inferior, and it was difficult to manufacture stably. Table 10 shows the best data among the materials shown in the sample of the cold-rolled annealed sheet obtained from a part of the hot-rolled coil that could be manufactured. As shown in Table 10, although No. 65 and 67 sometimes showed excellent material properties, the production itself was difficult and the dispersion of the material properties was large.

【0101】No.68では、冷却速度が本発明範囲よ
りも低かったため、急冷が十分でなく、熱延板の細粒化
ができず、γ値の向上効果が十分に得られなかった。N
o.75では、急冷の温度降下量が本発明範囲よりも小
さく、急冷停止温度が本発明範囲よりも高かったため、
熱延板の細粒化が十分でなく、r値の向上効果が十分に
得られなかった。No.79では、急冷の温度降下量が
本発明範囲を超えて大きく、急冷停止温度が本発明範囲
よりも低く、かつ、巻取温度も本発明の好ましい範囲よ
りも低かったため、熱延板組織が焼き入れ組織状の粒に
なってしまい、特性値の劣化が顕著であった。No.8
0では、急冷停止温度が本発明範囲よりも低かったた
め、熱延板の組織がポリゴナルな細粒とならず、特性値
が劣化してしまった。No.81では、急冷後の冷却速
度が本発明範囲を超えて高かったため、熱延板の段階で
ポリゴナルな微細粒が得られず、いずれの特性値も劣っ
ていた。
No. In No. 68, since the cooling rate was lower than the range of the present invention, rapid cooling was not sufficient, the grain size of the hot rolled sheet could not be reduced, and the effect of improving the γ value could not be sufficiently obtained. N
o. At 75, the rapid cooling temperature drop was smaller than the range of the present invention, and the rapid cooling stop temperature was higher than the range of the present invention.
The grain refinement of the hot rolled sheet was insufficient, and the effect of improving the r value was not sufficiently obtained. No. In No. 79, the rapid cooling temperature drop was larger than the range of the present invention, the quenching stop temperature was lower than the range of the present invention, and the winding temperature was lower than the preferred range of the present invention. The resulting grains were in a textured structure, and the characteristic values were significantly deteriorated. No. 8
At 0, the quenching stop temperature was lower than the range of the present invention, so that the structure of the hot-rolled sheet was not polygonal fine grains, and the characteristic values were degraded. No. In No. 81, since the cooling rate after quenching was higher than the range of the present invention, polygonal fine particles could not be obtained at the stage of hot-rolled sheet, and all the characteristic values were inferior.

【0102】以上のように、本発明で規定された条件を
全て満たした製造方法によってはじめて、従来よりも格
段に優れた加工性および異方性を有する冷延鋼板を、形
状性や搬送性に問題を生じることなく製造することがで
きることが確認された。
As described above, a cold-rolled steel sheet having much better workability and anisotropy than the conventional one can be obtained only by a manufacturing method that satisfies all the conditions specified in the present invention. It has been confirmed that it can be manufactured without any problems.

【0103】[0103]

【発明の効果】本発明によれば、従来の方法で作られた
同じ成分系のものと比較して、格段に優れた加工性およ
び異方性を有する冷延鋼板を、鋼板の形状性や搬送性に
問題を生じることなく製造することが可能となる。
According to the present invention, a cold-rolled steel sheet having remarkably excellent workability and anisotropy as compared with that of the same component system produced by a conventional method can be obtained. It can be manufactured without causing a problem in transportability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例3における全伸びの値と冷却開始時間と
の関係を示すグラフ。
FIG. 1 is a graph showing a relationship between a value of total elongation and a cooling start time in Example 3.

【図2】実施例3における平均r値と冷却開始時間との
関係を示すグラフ。
FIG. 2 is a graph showing a relationship between an average r value and a cooling start time in Example 3.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 稲積 透 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 本屋敷 洋一 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 今田 貞則 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 土屋 義郎 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 三塚 賢一 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toru Inazumi 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Within Nihon Kokan Co., Ltd. (72) Inventor Yoichi Honashiki 1-1-2, Marunouchi, Chiyoda-ku, Tokyo Inside Nippon Kokan Co., Ltd. (72) Inventor Sadanori Imada 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Japan Inside Nippon Kokan Co., Ltd. (72) Yoshiro Tsuchiya 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Japan Inside Kokan Co., Ltd. (72) Inventor Kenichi Mitsuka 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C :0.0003%以上
0.01%以下、Si:0.05%以下、Mn:0.0
5%以上2.5%以下、P :0.003%以上0.1
%以下、S :0.0003%以上0.02%以下、S
ol.Al:0.005%以上0.1%以下、N :
0.0003%以上0.004%以下を含む鋼からなる
スラブを加熱し、熱間圧延し、冷間圧延し、焼鈍して冷
延鋼板を製造するにあたり、 前記熱間圧延は、 仕上圧延において、最終パス前の2パスの合計圧下率を
45%超70%以下、かつ最終パスの圧下率を5%以上
35%以下とし、さらに、仕上温度をAr変態点以上
(Ar変態点+50℃以下)として仕上圧延を終了
し、 次いで、仕上圧延終了後1秒以内に、200℃/sec
以上2000℃/sec以下の冷却速度で急速冷却を開
始して、この急速冷却における前記仕上圧延の仕上温度
からの温度降下量を50℃以上250℃以下とし、かつ
この急速冷却の冷却停止温度を650℃以上850℃以
下とし、 引き続いて、100℃/sec以下の徐冷却または空冷
を行った後、得られた熱延鋼帯を巻き取ることを特徴と
する加工性に優れ、異方性の小さい冷延鋼板の製造方
法。
C .: 0.0003% to 0.01%, Si: 0.05% or less, Mn: 0.0% by weight.
5% or more and 2.5% or less, P: 0.003% or more and 0.1
%, S: 0.0003% to 0.02%, S
ol. Al: 0.005% or more and 0.1% or less, N:
In producing a cold-rolled steel sheet by heating, hot rolling, cold rolling, and annealing a steel slab containing 0.0003% or more and 0.004% or less, the hot rolling is performed in finish rolling. the total reduction ratio in the final pass prior to 2-pass than 45% to 70%, and the reduction ratio of the final pass to 35% or less than 5%, further, the finishing temperature than the Ar 3 transformation point (Ar 3 transformation point + 50 ° C or less) and finish rolling is completed. Then, within 1 second after finishing rolling, 200 ° C / sec.
Rapid cooling is started at a cooling rate of 2000 ° C./sec or less, a temperature drop from the finishing temperature of the finish rolling in the rapid cooling is set to 50 ° C. or more and 250 ° C. or less, and a cooling stop temperature of the rapid cooling is set to 650 ° C or higher and 850 ° C or lower, followed by slow cooling or air cooling at a rate of 100 ° C / sec or lower, and then winding the obtained hot rolled steel strip. Manufacturing method of small cold rolled steel sheet.
【請求項2】 重量%で、C :0.0003%以上
0.01%以下、Si:0.05%以下、Mn:0.0
5%以上2.5%以下、P :0.003%以上0.1
%以下、S :0.0003%以上0.02%以下、S
ol.Al:0.005%以上0.1%以下、N :
0.0003%以上0.004%以下を含む鋼からなる
スラブを加熱し、熱間圧延し、冷間圧延し、焼鈍して冷
延鋼板を製造するにあたり、 前記熱間圧延は、 仕上圧延において、最終パス前の2パスの合計圧下率を
45%超70%以下、かつ最終パスの圧下率を5%以上
35%以下とし、さらに、仕上温度をAr変態点以上
(Ar変態点+50℃以下)として仕上圧延を終了
し、 次いで、仕上圧延終了後0.5秒超1秒以内に、200
℃/sec以上2000℃/sec以下の冷却速度で急
速冷却を開始して、この急速冷却における前記仕上圧延
の仕上温度からの温度降下量を50℃以上250℃以下
とし、かつこの急速冷却の冷却停止温度を650℃以上
850℃以下とし、 引き続いて、100℃/sec以下の徐冷却または空冷
を行った後、得られた熱延鋼帯を巻き取ることを特徴と
する加工性に優れ、異方性の小さい冷延鋼板の製造方
法。
2. In% by weight, C: 0.0003% or more and 0.01% or less, Si: 0.05% or less, Mn: 0.0% or less.
5% or more and 2.5% or less, P: 0.003% or more and 0.1
%, S: 0.0003% to 0.02%, S
ol. Al: 0.005% or more and 0.1% or less, N:
In producing a cold-rolled steel sheet by heating, hot rolling, cold rolling, and annealing a steel slab containing 0.0003% or more and 0.004% or less, the hot rolling is performed in finish rolling. the total reduction ratio in the final pass prior to 2-pass than 45% to 70%, and the reduction ratio of the final pass to 35% or less than 5%, further, the finishing temperature than the Ar 3 transformation point (Ar 3 transformation point + 50 ° C or less) and finish rolling is completed.
The rapid cooling is started at a cooling rate of not less than 2000 ° C./sec and not more than 50 ° C. and not more than 250 ° C. in the rapid cooling. The stop temperature is set to 650 ° C. or higher and 850 ° C. or lower. Subsequently, after slow cooling or air cooling at 100 ° C./sec or lower, the obtained hot-rolled steel strip is wound up. Manufacturing method of cold-rolled steel sheet with small anisotropy.
【請求項3】 前記鋼は、さらに重量%で、Ti,N
b,V,Zrのうちの1種以上を、合計で0.005%
以上0.1%以下含有することを特徴とする請求項1ま
たは請求項2に記載の加工性に優れ、異方性の小さい冷
延鋼板の製造方法。
3. The steel according to claim 1, further comprising:
at least one of b, V, and Zr is 0.005% in total
The method for producing a cold-rolled steel sheet having excellent workability and low anisotropy according to claim 1 or 2, wherein the content is 0.1% or less.
【請求項4】 前記鋼は、さらに重量%で、Cuを0.
015%以上0.08%以下含有することを特徴とする
請求項1から請求項3のいずれか1項に記載の加工性に
優れ、異方性の小さい冷延鋼板の製造方法。
4. The steel according to claim 1, further comprising:
The method for producing a cold-rolled steel sheet having excellent workability and low anisotropy according to any one of claims 1 to 3, characterized by containing 015% or more and 0.08% or less.
【請求項5】 前記鋼は、さらに重量%で、Bを0.0
001%以上0.001%以下含有することを特徴とす
る請求項1から請求項4のいずれか1項に記載の加工性
に優れ、異方性の小さい冷延鋼板の製造方法。
5. The steel according to claim 1, further comprising:
The method for producing a cold-rolled steel sheet having excellent workability and low anisotropy according to any one of claims 1 to 4, wherein the cold-rolled steel sheet has a content of 001% or more and 0.001% or less.
JP2001055506A 2000-02-29 2001-02-28 Manufacturing method of cold-rolled steel sheet with excellent workability and low anisotropy Expired - Fee Related JP4069591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001055506A JP4069591B2 (en) 2000-02-29 2001-02-28 Manufacturing method of cold-rolled steel sheet with excellent workability and low anisotropy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-53730 2000-02-29
JP2000053730 2000-02-29
JP2001055506A JP4069591B2 (en) 2000-02-29 2001-02-28 Manufacturing method of cold-rolled steel sheet with excellent workability and low anisotropy

Publications (2)

Publication Number Publication Date
JP2001316727A true JP2001316727A (en) 2001-11-16
JP4069591B2 JP4069591B2 (en) 2008-04-02

Family

ID=26586377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001055506A Expired - Fee Related JP4069591B2 (en) 2000-02-29 2001-02-28 Manufacturing method of cold-rolled steel sheet with excellent workability and low anisotropy

Country Status (1)

Country Link
JP (1) JP4069591B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007162082A (en) * 2005-12-15 2007-06-28 Jfe Steel Kk Method for producing cold-rolled steel sheet having excellent strain aging-resistant property and less intra-plane anisotropy
JP2008540826A (en) * 2005-05-03 2008-11-20 ポスコ High yield ratio cold rolled steel sheet with low in-plane anisotropy and method for producing the same
KR100910467B1 (en) 2002-12-27 2009-08-04 주식회사 포스코 Method of manufacturing double reduced steel sheet with excellent formability
JP2010077512A (en) * 2008-09-29 2010-04-08 Sumitomo Metal Ind Ltd Method for producing cold-rolled steel sheet
JP2011202274A (en) * 2010-03-02 2011-10-13 Sumitomo Metal Ind Ltd Steel sheet, hot-dip galvanized steel sheet, and those manufacturing method
JP2011214068A (en) * 2010-03-31 2011-10-27 Sumitomo Metal Ind Ltd Method for manufacturing cold-rolled steel sheet
JP2012167374A (en) * 2012-03-16 2012-09-06 Sumitomo Metal Ind Ltd Method for manufacturing cold-rolled steel sheet
WO2012157581A1 (en) * 2011-05-13 2012-11-22 新日本製鐵株式会社 Hot stamp molded article, method for producing hot stamp molded article, energy absorbing member, and method for producing energy absorbing member
JP2013100606A (en) * 2013-01-10 2013-05-23 Nippon Steel & Sumitomo Metal Corp Method for producing cold-rolled steel sheet
JP2015172231A (en) * 2014-03-12 2015-10-01 新日鐵住金株式会社 Cold rolled steel sheet

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100910467B1 (en) 2002-12-27 2009-08-04 주식회사 포스코 Method of manufacturing double reduced steel sheet with excellent formability
JP2008540826A (en) * 2005-05-03 2008-11-20 ポスコ High yield ratio cold rolled steel sheet with low in-plane anisotropy and method for producing the same
JP2007162082A (en) * 2005-12-15 2007-06-28 Jfe Steel Kk Method for producing cold-rolled steel sheet having excellent strain aging-resistant property and less intra-plane anisotropy
JP4715496B2 (en) * 2005-12-15 2011-07-06 Jfeスチール株式会社 Method for producing cold-rolled steel sheets with excellent strain aging resistance and small in-plane anisotropy
JP2010077512A (en) * 2008-09-29 2010-04-08 Sumitomo Metal Ind Ltd Method for producing cold-rolled steel sheet
JP2011202274A (en) * 2010-03-02 2011-10-13 Sumitomo Metal Ind Ltd Steel sheet, hot-dip galvanized steel sheet, and those manufacturing method
JP2011214068A (en) * 2010-03-31 2011-10-27 Sumitomo Metal Ind Ltd Method for manufacturing cold-rolled steel sheet
WO2012157581A1 (en) * 2011-05-13 2012-11-22 新日本製鐵株式会社 Hot stamp molded article, method for producing hot stamp molded article, energy absorbing member, and method for producing energy absorbing member
JP5556961B2 (en) * 2011-05-13 2014-07-23 新日鐵住金株式会社 Hot stamp molded article, hot stamp molded article manufacturing method, energy absorbing member, and energy absorbing member manufacturing method
KR20170090517A (en) * 2011-05-13 2017-08-07 신닛테츠스미킨 카부시키카이샤 Hot stamp molded article, method for producing hot stamp molded article, energy absorbing member, and method for producing energy absorbing member
US10023925B2 (en) 2011-05-13 2018-07-17 Nippon Steel & Sumitomo Metal Corporation Hot stamped article, method of producing hot stamped article, energy absorbing member, and method of producing energy absorbing member
KR102059052B1 (en) * 2011-05-13 2019-12-24 닛폰세이테츠 가부시키가이샤 Hot stamp molded article, method for producing hot stamp molded article, energy absorbing member, and method for producing energy absorbing member
JP2012167374A (en) * 2012-03-16 2012-09-06 Sumitomo Metal Ind Ltd Method for manufacturing cold-rolled steel sheet
JP2013100606A (en) * 2013-01-10 2013-05-23 Nippon Steel & Sumitomo Metal Corp Method for producing cold-rolled steel sheet
JP2015172231A (en) * 2014-03-12 2015-10-01 新日鐵住金株式会社 Cold rolled steel sheet

Also Published As

Publication number Publication date
JP4069591B2 (en) 2008-04-02

Similar Documents

Publication Publication Date Title
KR100430981B1 (en) Method for producing cold rolled steel sheet having excellent deep drawing property
JP5893769B2 (en) Method for producing 550 MPa class high strength weathering steel strip by strip casting method
JP4650006B2 (en) High carbon hot-rolled steel sheet excellent in ductility and stretch flangeability and method for producing the same
CN106086638B (en) A kind of Galvanized Dual Phase Steel and its production method
JP4069591B2 (en) Manufacturing method of cold-rolled steel sheet with excellent workability and low anisotropy
JP4767652B2 (en) Hot-rolled steel strip for cold-rolled high-tensile steel sheet with small thickness variation after cold rolling and method for producing the same
JP7256383B2 (en) Method for manufacturing hot-rolled steel sheet
JP5093029B2 (en) Cold rolled steel sheet and method for producing the same
JP3915460B2 (en) High strength hot rolled steel sheet and method for producing the same
WO2020184372A1 (en) Hot-rolled steel sheet
JP4840270B2 (en) Hot-rolled steel sheet and manufacturing method thereof
JP7332859B2 (en) Slab manufacturing method
JP4901693B2 (en) Manufacturing method of cold-rolled steel sheet with excellent deep drawability with extremely small material variation
JP2002069534A (en) Thin steel sheet and method for producing the same
US7288158B2 (en) Manufacturing process for producing high strength steel product with improved formability
JP4069592B2 (en) Method for producing cold-rolled steel sheet having excellent shape and workability and low anisotropy
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
JP3997692B2 (en) Manufacturing method of cold-rolled steel sheet for deep drawing with excellent press-formability and less fluctuation of press-formability in the coil
JP3345540B2 (en) Manufacturing method of grain-oriented electrical steel sheet
CN113025887B (en) DH980 steel with high edge quality and preparation method thereof
JPS62161919A (en) Manufacture of hard sheet steel for can excellent in drawability and minimized in anisotropy
JP2001152255A (en) Method of manufacturing high strength thin steel sheet excellent in surface characteristic and workability
CN115029622B (en) High-surface-quality hot-rolled dual-phase steel and production process thereof
JP2001335893A (en) Hot rolled steel sheet excellent in surface characteristics and workability, and its production method
CN116479310A (en) Production method of high-carbon steel hot-rolled coil with low edge crack defect and high-carbon steel hot-rolled coil

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees