JP2001316517A - Processing method and equipment for waste plastics - Google Patents

Processing method and equipment for waste plastics

Info

Publication number
JP2001316517A
JP2001316517A JP2000133859A JP2000133859A JP2001316517A JP 2001316517 A JP2001316517 A JP 2001316517A JP 2000133859 A JP2000133859 A JP 2000133859A JP 2000133859 A JP2000133859 A JP 2000133859A JP 2001316517 A JP2001316517 A JP 2001316517A
Authority
JP
Japan
Prior art keywords
catalyst
tank
pyrolysis
waste plastic
gallium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000133859A
Other languages
Japanese (ja)
Other versions
JP4314546B2 (en
Inventor
Yoshio Uemichi
芳夫 上道
Akemi Shobu
明己 菖蒲
Masaaki Itou
正皓 伊東
Tsuneo Ayabe
統夫 綾部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2000133859A priority Critical patent/JP4314546B2/en
Publication of JP2001316517A publication Critical patent/JP2001316517A/en
Application granted granted Critical
Publication of JP4314546B2 publication Critical patent/JP4314546B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a processing method for waste plastics capable of enhancing efficiency of a catalyst reaction in a decomposition treatment of the waste plastics using a catalyst. SOLUTION: This processing method for waste plastics reclaims a catalytic reaction product by vaporizing waste plastics in a pyrolizing tank 2 by a pyrolysis reaction and then contacting the pyrolysis product gas with a silicate catalyst containing gallium in a catalytic reactor 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、都市ゴミ等の廃棄
物に含まれるポリエチレン、ポリプロピレン等の廃プラ
スチックを処理し、化学原料、例えばBTX(ベンゼ
ン、トルエン、およびキシレン)や水素などを回収する
方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention treats waste plastics such as polyethylene and polypropylene contained in waste such as municipal waste and recovers chemical raw materials such as BTX (benzene, toluene and xylene) and hydrogen. Method and apparatus.

【0002】[0002]

【従来の技術】従来、都市ゴミ等の廃棄物に含まれるポ
リエチレン、ポリプロピレンなどのポリオレフィン系プ
ラスチック等の廃プラスチックを再利用する試みとして
は、廃プラスチックを、鉄や白金を担持した活性炭触媒
等の触媒の存在下で加熱処理により熱分解させ、燃料や
化学原料などとして有用な処理物を得る方法がある。図
6は、従来の廃プラスチック処理方法の一例を実施可能
な処理装置を示すもので、この装置は、廃プラスチック
を溶融させ触媒51aに接触させる反応槽51と、触媒
反応生成物中の高沸点成分を分離するコンデンサ52を
備えている。反応槽51内には、上記触媒51aが収容
されている。この処理装置を用いて廃プラスチックの処
理を行うには、廃プラスチックPを、反応槽51内で上
記触媒51aの存在下でヒータ51bを用いて加熱し、
触媒反応生成物を経路53を通してコンデンサ52に導
き、分解生成物として回収する。
2. Description of the Related Art Conventionally, as an attempt to reuse waste plastic such as polyolefin plastic such as polyethylene and polypropylene contained in waste such as municipal waste, an attempt has been made to use waste plastic such as an activated carbon catalyst carrying iron or platinum. There is a method of thermally decomposing by heat treatment in the presence of a catalyst to obtain a processed product useful as a fuel or a chemical raw material. FIG. 6 shows a processing apparatus capable of implementing one example of a conventional waste plastic processing method. The processing apparatus includes a reaction tank 51 for melting waste plastic and contacting it with a catalyst 51a, and a high boiling point in a catalyst reaction product. A capacitor 52 for separating components is provided. The catalyst 51 a is contained in the reaction tank 51. In order to perform processing of waste plastic using this processing apparatus, waste plastic P is heated in a reaction tank 51 using a heater 51b in the presence of the catalyst 51a,
The catalyst reaction product is led to the condenser 52 through the path 53 and recovered as a decomposition product.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来技術にあっては、加熱処理により溶融した廃プラスチ
ックが触媒51a表面に付着した状態となり、この付着
プラスチックが、廃プラスチックPと触媒51aとの間
の効率のよい接触を妨げ、触媒反応の効率が低下する問
題があった。本発明は、上記事情に鑑みてなされたもの
で、廃プラスチックを触媒を用いて分解処理するにあた
り、触媒反応効率を高めることができる廃プラスチック
処理方法を提供することを目的とする。
However, according to the above-mentioned prior art, the waste plastic melted by the heat treatment adheres to the surface of the catalyst 51a, and the adhered plastic is formed between the waste plastic P and the catalyst 51a. This has hindered efficient contact of the catalyst and reduced the efficiency of the catalytic reaction. The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a waste plastic treatment method capable of increasing the catalytic reaction efficiency in decomposing waste plastic using a catalyst.

【0004】[0004]

【課題を解決するための手段】本発明の廃プラスチック
処理方法は、廃プラスチックを熱分解により気化させ、
得られた熱分解ガスをガリウム含有珪酸塩触媒に接触さ
せ、触媒反応生成物を回収することを特徴とする。この
処理方法にあっては、廃プラスチックを、液体に比べ流
動性に優れる熱分解ガスとするため、熱分解ガスを、効
率よく触媒に接触させることができる。従って、触媒反
応(熱分解ガスの分解、環化反応)の効率を高め、化学
原料として有用なBTXなどの芳香族炭化水素を高濃度
で含む処理物を回収することができる。また高濃度の水
素を含む処理物を回収することができる。ガリウム含有
珪酸塩としては、H型ガリウム珪酸塩を用いるのが好ま
しい。また本発明の廃プラスチック処理装置は、廃プラ
スチックを熱分解し気化させる熱分解槽と、熱分解槽内
で気化した熱分解ガスをガリウム含有珪酸塩触媒に接触
させる触媒反応槽とを備えていることを特徴とする。こ
の装置では、触媒分解槽に熱分解ガスが導入されるよう
になっているため、熱分解ガスを、容易かつ効率よくガ
リウム含有珪酸塩触媒に接触させることができる。従っ
て、触媒反応効率を高め、化学原料として有用なBTX
などの芳香族炭化水素を高濃度で含む処理物を容易に回
収することができる。また高濃度の水素を含む処理物を
容易に回収することができる。触媒反応槽は、熱分解槽
内に設けることによって、熱分解槽において廃プラスチ
ックを熱分解させる際の余熱によって触媒反応槽内を加
熱することができる。このため、触媒反応槽を独立に加
熱することが必要なく、設備コスト、加熱コストを低く
抑えることができる。また触媒反応槽は、熱分解槽外に
設けられ、かつ内部の温度を任意に設定することができ
るように構成することもでき、この場合には、この触媒
反応槽における触媒反応時の温度条件を任意に設定する
ことができる。このため、触媒反応時の温度条件を最適
化することが容易となり、触媒反応効率を高めることが
できる。また触媒反応槽は、ガリウム含有珪酸塩触媒
が、熱分解ガスによって流動するように構成することも
でき、この場合には、この触媒を流動させつつ熱分解ガ
スに接触させることができ、触媒のほぼ全表面を熱分解
ガスに接触させることができる。従って、熱分解ガスと
触媒との接触効率を高め、触媒反応効率を向上させるこ
とができる。
SUMMARY OF THE INVENTION According to the present invention, there is provided a method for treating waste plastic, comprising: vaporizing waste plastic by pyrolysis;
The obtained pyrolysis gas is brought into contact with a gallium-containing silicate catalyst, and a catalytic reaction product is recovered. In this treatment method, the waste plastic is made into a pyrolysis gas having better fluidity than liquid, so that the pyrolysis gas can be efficiently contacted with the catalyst. Therefore, the efficiency of the catalytic reaction (decomposition of thermal decomposition gas, cyclization reaction) can be enhanced, and a processed product containing aromatic hydrocarbons such as BTX at a high concentration useful as a chemical raw material can be recovered. In addition, a processed material containing high-concentration hydrogen can be recovered. As the gallium-containing silicate, it is preferable to use an H-type gallium silicate. Further, the waste plastic processing apparatus of the present invention includes a pyrolysis tank for thermally decomposing and vaporizing waste plastic, and a catalytic reaction tank for bringing the pyrolysis gas vaporized in the pyrolysis tank into contact with the gallium-containing silicate catalyst. It is characterized by the following. In this apparatus, since the pyrolysis gas is introduced into the catalyst decomposition tank, the pyrolysis gas can be easily and efficiently brought into contact with the gallium-containing silicate catalyst. Therefore, BTX useful as a chemical raw material is enhanced by increasing the catalytic reaction efficiency.
A treated product containing aromatic hydrocarbons at a high concentration can be easily recovered. Further, a processed material containing high-concentration hydrogen can be easily recovered. By providing the catalyst reaction tank in the pyrolysis tank, the inside of the catalyst reaction tank can be heated by residual heat when the waste plastic is thermally decomposed in the pyrolysis tank. For this reason, it is not necessary to heat the catalyst reaction tank independently, so that equipment costs and heating costs can be kept low. Further, the catalyst reaction tank may be provided outside the thermal decomposition tank and may be configured such that the internal temperature can be arbitrarily set. In this case, the temperature condition during the catalyst reaction in the catalyst reaction tank is used. Can be set arbitrarily. For this reason, it becomes easy to optimize the temperature conditions during the catalytic reaction, and the catalytic reaction efficiency can be increased. Further, the catalyst reaction tank may be configured such that the gallium-containing silicate catalyst flows by the pyrolysis gas. In this case, the catalyst can be brought into contact with the pyrolysis gas while flowing the catalyst, and Nearly all surfaces can be contacted with the pyrolysis gas. Therefore, the contact efficiency between the pyrolysis gas and the catalyst can be increased, and the catalytic reaction efficiency can be improved.

【0005】[0005]

【発明の実施の形態】図1は、本発明の廃プラスチック
処理装置の第1実施形態を示すもので、ここに示す処理
装置は、原料供給部1から供給された廃プラスチックを
熱分解させる熱分解槽2と、熱分解槽2内で熱分解され
気化した熱分解ガスをガリウム含有珪酸塩触媒8aに接
触させる触媒反応槽3と、触媒反応槽3で得られた触媒
反応生成物中の高分子成分を分離する還流器4と、還流
器4において高分子成分が分離された反応生成物中の高
沸点成分を凝縮させ分離する第1コンデンサ5と、第1
コンデンサ5を経た反応生成物中の低沸点成分をさらに
凝縮させ分離する第2コンデンサ6とを備えている。
FIG. 1 shows a first embodiment of a waste plastic processing apparatus according to the present invention. The processing apparatus shown in FIG. 1 is a thermal plasticizer for thermally decomposing waste plastic supplied from a raw material supply section 1. A cracking tank 2, a catalytic reaction tank 3 for bringing the pyrolysis gas thermally decomposed and vaporized in the pyrolysis tank 2 into contact with the gallium-containing silicate catalyst 8 a, and a catalyst reaction product obtained in the catalyst reaction tank 3. A reflux condenser 4 for separating a molecular component, a first condenser 5 for condensing and separating a high boiling point component in a reaction product from which a polymer component has been separated in the reflux condenser 4,
And a second condenser 6 for further condensing and separating low-boiling components in the reaction product passed through the condenser 5.

【0006】熱分解槽2は、ヒータ2aを備えており、
このヒータ2aによって、槽内の廃プラスチックを加熱
し熱分解させることができるようになっている。熱分解
槽2には攪拌機2bが設けられ、槽内の廃プラスチック
を攪拌しつつ加熱することができるようになっている。
熱分解槽2には、不活性ガス導入管14が接続され、熱
分解槽2内に窒素、ヘリウムなどの不活性ガスを導入す
ることができるようになっている。
[0006] The pyrolysis tank 2 is provided with a heater 2a.
The waste plastic in the tank can be heated and thermally decomposed by the heater 2a. The thermal decomposition tank 2 is provided with a stirrer 2b so that the waste plastic in the tank can be heated while stirring.
An inert gas introduction pipe 14 is connected to the pyrolysis tank 2 so that an inert gas such as nitrogen or helium can be introduced into the pyrolysis tank 2.

【0007】触媒反応槽3は、外筒7内に、ガリウム含
有珪酸塩触媒8aを充填した触媒層8を備えている。ガ
リウム含有珪酸塩としては、ガリウム珪酸塩を用いるこ
とができ、特にプラスチック分解効率の点から、xMI 2
O・yGa23・zSiO2・nH2O(M:Na、K
等)をイオン交換によりH型にしたH型ガリウム珪酸塩
を用いるのが好ましい。この触媒8aとしては、ガリウ
ム含有珪酸塩を、平均粒径が例えば0.2〜5mmの粒
状に成形したものを用いるのが好ましい。またガリウム
をゼオライトや活性炭等の坦体に担持させたもの(例え
ばGa−HZSM−5)を用いることができる。
The catalyst reactor 3 has a catalyst layer 8 in an outer cylinder 7 filled with a gallium-containing silicate catalyst 8a. As the gallium-containing silicate, gallium silicate can be used, and in particular, xM I 2
O.yGa 2 O 3 .zSiO 2 .nH 2 O (M: Na, K
And the like) are preferably used. As the catalyst 8a, it is preferable to use a gallium-containing silicate formed into a particle having an average particle size of, for example, 0.2 to 5 mm. Further, a material in which gallium is supported on a carrier such as zeolite or activated carbon (for example, Ga-HZSM-5) can be used.

【0008】触媒反応槽3は、熱分解槽2の内部に配置
されており、熱分解され気化した熱分解ガスを、熱分解
槽2内で触媒層8のガリウム含有珪酸塩触媒8aに接触
させることができるようになっている。
The catalytic reaction tank 3 is disposed inside the pyrolysis tank 2, and the pyrolysis gas which has been pyrolyzed and vaporized is brought into contact with the gallium-containing silicate catalyst 8 a of the catalyst layer 8 in the pyrolysis tank 2. You can do it.

【0009】還流器4には、触媒反応生成物から高沸点
成分を高分子成分として凝縮させ、凝縮した高分子成分
を他の成分から分離し経路10を通して熱分解槽2内に
戻すことができる構成を採用することができる。
The high-boiling point component is condensed as a polymer component from the catalyst reaction product in the reflux unit 4, the condensed polymer component is separated from other components, and returned to the pyrolysis tank 2 through the path 10. A configuration can be employed.

【0010】第1コンデンサ5は、還流器4を経た触媒
反応生成物を、冷却水流通経路12を流通する冷却水に
より冷却し、反応生成物中の高沸点成分を凝縮させるこ
とができるようになっている。第2コンデンサ6は、第
1コンデンサ5を経た触媒反応生成物を、冷却水流通経
路13を流通する冷却水により冷却し、反応生成物中の
低沸点成分を凝縮させることができるようになってい
る。
The first condenser 5 cools the catalyst reaction product having passed through the reflux condenser 4 with cooling water flowing through the cooling water flow path 12 so that high boiling components in the reaction product can be condensed. Has become. The second condenser 6 cools the catalyst reaction product that has passed through the first condenser 5 with cooling water flowing through the cooling water flow path 13 so that low boiling components in the reaction product can be condensed. I have.

【0011】以下、上記処理装置を用いた場合を例とし
て、本発明の廃プラスチック処理方法の一実施形態を説
明する。本発明の廃プラスチック処理方法の対象となる
廃棄物としては、都市ごみ、産業廃棄物等に由来する廃
プラスチック、例えばポリエチレン、ポリプロピレン等
のポリオレフィン系プラスチックを含むものを挙げるこ
とができる。
Hereinafter, an embodiment of the method for treating waste plastic of the present invention will be described with reference to an example in which the above-described processing apparatus is used. Examples of the waste to be treated by the waste plastic treatment method of the present invention include waste plastics derived from municipal solid waste and industrial waste, such as those containing polyolefin plastics such as polyethylene and polypropylene.

【0012】本実施形態の処理方法では、まず、好まし
くは適度の粒径に粉砕した廃プラスチックを、原料供給
部1を通して熱分解槽2内に投入し、この廃プラスチッ
クをヒータ2aを用いて好ましくは375〜550℃
(さらに好ましくは425〜500℃)に加熱し熱分解
させる。この温度が上記範囲未満であると、廃プラスチ
ックの熱分解が不十分となり、上記範囲を越えると、廃
プラスチックの熱分解(低分子化)が過剰となり、後述
する反応生成物中の芳香族炭化水素含有率が低下するた
め好ましくない。
In the processing method of this embodiment, first, waste plastic, preferably ground to an appropriate particle size, is charged into the pyrolysis tank 2 through the raw material supply unit 1, and the waste plastic is preferably heated using the heater 2a. Is 375-550 ° C
(More preferably 425 to 500 ° C.) to cause thermal decomposition. If this temperature is lower than the above range, the thermal decomposition of the waste plastic becomes insufficient, and if it exceeds the above range, the thermal decomposition (low molecular weight reduction) of the waste plastic becomes excessive, and aromatic carbon in the reaction product described later becomes excessive. It is not preferable because the hydrogen content decreases.

【0013】この加熱処理により、廃プラスチックは、
例えば炭素数が4〜10程度の炭化水素に低分子化され
て気化し、熱分解ガスとなる。なお廃プラスチックを熱
分解槽2内に投入する際には、予め窒素ガスなどの不活
性ガスを導入管14を通して熱分解槽2内に導入してお
き、不活性ガス雰囲気下で上記廃プラスチックを加熱す
るのが好ましい。
By this heat treatment, the waste plastic is
For example, hydrocarbons having about 4 to 10 carbon atoms are decomposed and vaporized to become pyrolysis gases. When the waste plastic is introduced into the pyrolysis tank 2, an inert gas such as nitrogen gas is introduced into the pyrolysis tank 2 through the introduction pipe 14 in advance, and the waste plastic is introduced under an inert gas atmosphere. Heating is preferred.

【0014】熱分解槽2内で生成した熱分解ガスは、触
媒反応槽3内に導入され、触媒反応槽3内を流れつつ、
触媒層8を構成するガリウム含有珪酸塩触媒8aに接触
する。熱分解ガスを上記触媒8aに接触させる際の温度
条件は、375〜550℃(好ましくは500〜550
℃)とするのが好ましい。この温度が上記範囲未満であ
ると、触媒反応が進行しにくくなり反応生成物中の芳香
族炭化水素含有率が低下し、上記範囲を越えると熱分解
ガスの分解が過剰となり反応生成物中の芳香族炭化水素
含有率が低下するため好ましくない。
The pyrolysis gas generated in the pyrolysis tank 2 is introduced into the catalyst reaction tank 3 and flows through the catalyst reaction tank 3,
It comes into contact with the gallium-containing silicate catalyst 8a constituting the catalyst layer 8. The temperature condition when bringing the pyrolysis gas into contact with the catalyst 8a is 375 to 550 ° C. (preferably 500 to 550 ° C.).
° C). If this temperature is less than the above range, the catalytic reaction becomes difficult to proceed, the aromatic hydrocarbon content in the reaction product decreases, and if it exceeds the above range, the decomposition of the pyrolysis gas becomes excessive and the reaction product contains It is not preferable because the aromatic hydrocarbon content is reduced.

【0015】熱分解ガスを触媒反応槽3に供給する速度
は、3〜15g熱分解ガス/g触媒・hr(Time
Factor(=W/F、W:触媒量、F:熱分解ガス
供給速度)=4〜20g触媒・min/g熱分解ガス)
となるように設定するのが好ましい。
The rate at which the pyrolysis gas is supplied to the catalyst reaction tank 3 is 3 to 15 g of the pyrolysis gas / g catalyst · hr (Time
Factor (= W / F, W: amount of catalyst, F: supply rate of pyrolysis gas) = 4 to 20 g catalyst · min / g pyrolysis gas)
It is preferable to set so that

【0016】触媒反応槽3においては、ガリウム含有珪
酸塩触媒8aの作用により熱分解ガスの一部がさらに分
解される。またこの分解物や熱分解ガスの一部は触媒8
aの作用により環化し芳香族炭化水素となる。このよう
に、触媒反応槽3において、熱分解ガスは触媒8aの作
用により分解、環化し、その結果、水素(H2)、炭素
数1〜4の炭化水素(以下、C1〜C4炭化水素とい
う)、芳香族炭化水素(ベンゼン、トルエン、キシレン
等)などの混合物である触媒反応生成物となる。なお以
下、ベンゼン、トルエン、およびキシレンをBTXと略
称する。
In the catalytic reactor 3, a part of the pyrolysis gas is further decomposed by the action of the gallium-containing silicate catalyst 8a. A part of the decomposition product and the pyrolysis gas is
A is cyclized by the action of a to become an aromatic hydrocarbon. Thus, in the catalyst reaction tank 3, the pyrolysis gas is decomposed and cyclized by the action of the catalyst 8a, and as a result, hydrogen (H 2 ), a hydrocarbon having 1 to 4 carbon atoms (hereinafter referred to as C1 to C4 hydrocarbon). ), Aromatic hydrocarbons (benzene, toluene, xylene, etc.). Hereinafter, benzene, toluene, and xylene are abbreviated as BTX.

【0017】次いで、触媒反応槽3を経た触媒反応生成
物を経路9を通して還流器4に導入し、ここで触媒反応
生成物を冷却することにより触媒反応生成物中の一部を
凝縮させ、凝縮物を他の部分から分離し、経路10を通
して熱分解槽2内に戻す。凝縮物は、触媒反応生成物中
に残留した未分解成分である高分子成分を多く含む。こ
の高分子成分は、再び熱分解槽2内において加熱処理さ
れ、熱分解される。
Next, the catalyst reaction product that has passed through the catalyst reaction tank 3 is introduced into the reflux unit 4 through the path 9, where the catalyst reaction product is cooled to condense a part of the catalyst reaction product and condense it. The material is separated from the other parts and returned to the pyrolysis tank 2 through the path 10. The condensate contains a large amount of a polymer component that is an undecomposed component remaining in the catalyst reaction product. This polymer component is again subjected to heat treatment in the thermal decomposition tank 2 to be thermally decomposed.

【0018】次いで、還流器4において高分子成分を分
離した触媒反応生成物を、経路11を通して第1コンデ
ンサ5に導入し、ここで冷却水流通経路12を流通する
冷却水により冷却し、この反応生成物中の高沸点成分を
凝縮させる。触媒反応生成物を冷却する際の冷却温度
は、高すぎれば高沸点成分中におけるBTX等の芳香族
炭化水素が凝縮しにくくなり、凝縮物中の芳香族炭化水
素の含有量が低くなり、低すぎれば低分子の炭化水素な
どが凝縮しやすくなるため、凝縮物中の上記芳香族炭化
水素の含有量が低くなる。このため、この冷却温度は、
30〜50℃とするのが好ましい。
Next, the catalytic reaction product from which the polymer component has been separated in the reflux unit 4 is introduced into the first condenser 5 through a path 11, where it is cooled by cooling water flowing through a cooling water flow path 12, High boiling components in the product are condensed. If the cooling temperature at the time of cooling the catalytic reaction product is too high, aromatic hydrocarbons such as BTX in the high-boiling components are difficult to condense, and the content of the aromatic hydrocarbons in the condensate becomes low. If the amount is too high, low molecular hydrocarbons and the like are easily condensed, so that the content of the aromatic hydrocarbons in the condensate becomes low. Therefore, this cooling temperature
The temperature is preferably 30 to 50 ° C.

【0019】凝縮した高沸点成分は、経路15を経て油
水分離器16に導入され、ここで水分が分離された後に
回収経路17を通して回収される。回収された高沸点成
分は、高濃度のBTXなどの芳香族炭化水素を含むもの
となる。
The condensed high-boiling components are introduced into an oil / water separator 16 via a path 15, where they are recovered through a recovery path 17 after water is separated. The recovered high-boiling components contain a high concentration of aromatic hydrocarbons such as BTX.

【0020】次いで、第1コンデンサ5を通過した反応
生成物を、経路18を通して第2コンデンサ6に導入
し、ここで冷却水流通経路13を流通する冷却水により
冷却する。第2コンデンサ6では、未凝縮のまま第1コ
ンデンサ5を通過したBTXなどの芳香族炭化水素を含
む低沸点成分が凝縮し、経路19を通して回収器20に
導入された後、回収経路21を通して回収される。
Next, the reaction product that has passed through the first condenser 5 is introduced into the second condenser 6 through a passage 18, where it is cooled by cooling water flowing through a cooling water passage 13. In the second condenser 6, low-boiling components including aromatic hydrocarbons such as BTX, which have passed through the first condenser 5 without being condensed, are condensed, introduced into the recovery unit 20 through the path 19, and then recovered through the recovery path 21. Is done.

【0021】次いで、第2コンデンサ6を通過した低沸
点成分を経路22を経てドレン32に導入し、ここで水
分などを分離した後、回収経路24を通して回収する。
回収された低沸点成分は、高濃度の水素(H2)および
C1〜C4炭化水素を含むものとなる。
Next, the low-boiling components that have passed through the second condenser 6 are introduced into the drain 32 through the path 22, where water and the like are separated, and then recovered through the recovery path 24.
Low-boiling component collected is that containing a high concentration of hydrogen (H 2) and C1~C4 hydrocarbons.

【0022】回収経路17、21を通して回収された成
分は、高濃度のBTXなどの芳香族炭化水素を含むた
め、化学原料として利用できる。また回収経路24を通
して回収された低沸点成分は、高濃度の水素(H2)を
含むため、燃料電池システム用水素含有ガスとして用い
ることができる。また石油系炭化水素の改質や石油脱硫
などに用いることができる。またこの低沸点成分は、C
1〜C4炭化水素を含むため、燃料ガスとしても使用可
能である。
The components recovered through the recovery paths 17 and 21 contain a high concentration of aromatic hydrocarbons such as BTX and can be used as chemical raw materials. The low-boiling components recovered through the recovery path 24 contain high-concentration hydrogen (H 2 ) and can be used as a hydrogen-containing gas for a fuel cell system. Further, it can be used for reforming petroleum hydrocarbons and petroleum desulfurization. The low boiling point component is C
Since it contains 1 to C4 hydrocarbons, it can be used as a fuel gas.

【0023】上記廃プラスチック処理方法にあっては、
熱分解槽2において廃プラスチックを熱分解により気化
させ、得られた熱分解ガスを触媒反応槽3に導き、触媒
反応槽3内で流通させて触媒層8を構成するガリウム含
有珪酸塩触媒8aに接触させる。この際、熱分解ガス
は、液体に比べ流動性に優れるガスであるため、触媒反
応槽3内を滞留することなく流通する。このため、熱分
解ガスを、効率よくガリウム含有珪酸塩触媒8aに接触
させることができる。従って、触媒反応(熱分解ガスの
分解、環化反応)の効率を高め、化学原料として有用な
BTXなどの芳香族炭化水素を高濃度で含む処理物を回
収することができる。これに対し、廃プラスチックを溶
融状態で触媒に接触させる従来法では、溶融したプラス
チックが触媒表面に付着してしまい、この付着プラスチ
ックが、廃プラスチックと触媒との間の効率のよい接触
を妨げ、触媒反応の効率が低下するおそれがある。
In the above waste plastic treatment method,
The waste plastic is vaporized by pyrolysis in the pyrolysis tank 2, and the obtained pyrolysis gas is led to the catalyst reaction tank 3 and circulated in the catalyst reaction tank 3 to the gallium-containing silicate catalyst 8 a constituting the catalyst layer 8. Make contact. At this time, since the pyrolysis gas is a gas having better fluidity than the liquid, the pyrolysis gas flows without staying in the catalyst reaction tank 3. Therefore, the pyrolysis gas can be efficiently brought into contact with the gallium-containing silicate catalyst 8a. Therefore, the efficiency of the catalytic reaction (decomposition of thermal decomposition gas, cyclization reaction) can be enhanced, and a processed product containing aromatic hydrocarbons such as BTX at a high concentration useful as a chemical raw material can be recovered. In contrast, in the conventional method of contacting the waste plastic with the catalyst in a molten state, the molten plastic adheres to the catalyst surface, and the adhered plastic prevents efficient contact between the waste plastic and the catalyst. The efficiency of the catalytic reaction may be reduced.

【0024】ガリウム含有珪酸塩触媒を用いることによ
ってBTXなどの芳香族炭化水素をを高収率で回収する
ことができるのは、ガリウム含有珪酸塩触媒が持つプラ
スチック分解能と分解物環化能との比率が、上記廃プラ
スチックを芳香族炭化水素に変化させるために適したも
のであるためであると考えられる。また回収経路24を
通して回収された低沸点成分が、高濃度の水素を含むも
のとなるのは、芳香族炭化水素生成時において、反応生
成物中の鎖状炭化水素がベンゼン環を形成する際に余剰
の水素が単体として生成しやすいためであると考えられ
る。
The use of a gallium-containing silicate catalyst to recover aromatic hydrocarbons such as BTX in high yield is attributable to the ability of the gallium-containing silicate catalyst to degrade plastic and cyclize decomposition products. It is believed that the ratio is suitable for converting the waste plastic into an aromatic hydrocarbon. Further, the reason why the low-boiling component recovered through the recovery path 24 contains high-concentration hydrogen is that when the chain hydrocarbon in the reaction product forms a benzene ring during the generation of the aromatic hydrocarbon, This is probably because surplus hydrogen is easily generated as a simple substance.

【0025】また、上記廃プラスチック処理装置にあっ
ては、廃プラスチックを熱分解させる熱分解槽2と、熱
分解槽2内で熱分解され気化した熱分解ガスをガリウム
含有珪酸塩触媒8aに接触させる触媒反応槽3と、触媒
反応生成物中の高分子成分を凝縮させ分離する還流器4
とを備えているので、廃プラスチックを熱分解槽2で熱
分解させた熱分解ガスを、触媒反応槽3において容易か
つ効率よくガリウム含有珪酸塩触媒8aに接触させるこ
とができる。従って、触媒反応(熱分解ガスの分解、環
化反応)の効率を高め、BTXなどの芳香族炭化水素を
高濃度で含む処理物を容易に回収することができる。ま
た高濃度の水素を含む処理物を容易に回収することがで
きる。
Further, in the waste plastic processing apparatus, the pyrolysis tank 2 for pyrolyzing the waste plastic and the pyrolysis gas pyrolyzed and vaporized in the pyrolysis tank 2 are brought into contact with the gallium-containing silicate catalyst 8a. A catalytic reaction tank 3 for causing the reaction and a reflux unit 4 for condensing and separating the polymer component in the catalytic reaction product
Therefore, the pyrolysis gas obtained by pyrolyzing the waste plastic in the pyrolysis tank 2 can be easily and efficiently brought into contact with the gallium-containing silicate catalyst 8a in the catalytic reaction tank 3. Therefore, the efficiency of the catalytic reaction (decomposition of thermal decomposition gas, cyclization reaction) can be enhanced, and a treated product containing aromatic hydrocarbons such as BTX at a high concentration can be easily recovered. Further, a processed material containing high-concentration hydrogen can be easily recovered.

【0026】また触媒反応槽3が熱分解槽2内に配置さ
れているので、熱分解槽2において廃プラスチックを熱
分解させる際の余熱によって触媒反応槽3内を加熱する
ことができる。このため、触媒反応槽3を独立に加熱す
ることが必要なく、触媒反応槽3専用のヒータが不要と
なり、設備コスト、加熱コストを低く抑えることができ
る。
Further, since the catalytic reaction tank 3 is disposed in the thermal decomposition tank 2, the inside of the catalytic reaction tank 3 can be heated by residual heat when the waste plastic is thermally decomposed in the thermal decomposition tank 2. For this reason, it is not necessary to heat the catalyst reaction tank 3 independently, and a heater dedicated to the catalyst reaction tank 3 is not required, and equipment costs and heating costs can be reduced.

【0027】図2は、本発明の廃プラスチック処理装置
の第2実施形態を示すもので、ここに示す処理装置は、
原料供給部1から供給された廃プラスチックを熱分解さ
せる熱分解槽2と、熱分解槽2内で熱分解され気化した
熱分解ガスをガリウム含有珪酸塩触媒28aに接触させ
る触媒反応槽23と、触媒反応槽23で得られた触媒反
応生成物中の高分子成分を分離する還流器4と、還流器
4において高分子成分が分離された反応生成物中の高沸
点成分を凝縮させ分離するコンデンサ25とを備えてい
る。触媒反応槽23は、外筒27内に触媒28aが充填
された触媒層28を備えており、熱分解槽2の外部に設
けられ、かつヒータ23aによって内部温度を任意に設
定できるようになっている。また、触媒反応槽23に
は、熱分解ガスを流通させる際に、外筒27内に充填さ
れたガリウム含有珪酸塩触媒28aが外筒27に対し変
位しない固定床方式を採用することができる。
FIG. 2 shows a waste plastic processing apparatus according to a second embodiment of the present invention.
A pyrolysis tank 2 for thermally decomposing waste plastic supplied from the raw material supply unit 1, a catalytic reaction tank 23 for bringing pyrolysis gas thermally decomposed and vaporized in the pyrolysis tank 2 into contact with the gallium-containing silicate catalyst 28a, A condenser 4 for separating the polymer component in the catalyst reaction product obtained in the catalyst reaction tank 23, and a condenser for condensing and separating the high boiling point component in the reaction product from which the polymer component has been separated in the condenser 4 25. The catalyst reaction tank 23 includes a catalyst layer 28 in which an outer cylinder 27 is filled with a catalyst 28a. The catalyst layer 28 is provided outside the pyrolysis tank 2 and the internal temperature can be arbitrarily set by a heater 23a. I have. Further, in the catalyst reaction tank 23, a fixed bed system in which the gallium-containing silicate catalyst 28a filled in the outer cylinder 27 is not displaced with respect to the outer cylinder 27 when flowing the pyrolysis gas can be adopted.

【0028】上記装置を用いて廃プラスチックの処理を
行うには、熱分解槽2において廃プラスチックを熱分解
により気化させ、得られた熱分解ガスを経路26を通し
て触媒反応槽23に導き、ここでガリウム含有珪酸塩触
媒28aに接触させ、得られた触媒反応生成物を還流器
4を経てコンデンサ25に導き、ここで高沸点成分を凝
縮させ回収経路29を通して回収し、低沸点成分を回収
経路30を通して回収する。
In order to treat the waste plastic using the above-mentioned apparatus, the waste plastic is vaporized by pyrolysis in the pyrolysis tank 2 and the obtained pyrolysis gas is led to the catalyst reaction tank 23 through the passage 26. The gallium-containing silicate catalyst 28a is brought into contact with the catalyst 28a, and the obtained catalyst reaction product is led to the condenser 25 via the reflux condenser 4, where the high-boiling components are condensed and recovered through the recovery path 29, and the low-boiling components are recovered through the recovery path 30. Collect through.

【0029】上記処理装置では、図1に示す第1実施形
態の処理装置と同様に、触媒反応効率を高め、化学原料
として有用なBTXなどの芳香族炭化水素を高濃度で含
む高沸点成分を容易に回収することができる。さらに、
本実施形態の処理装置では、触媒反応槽23が熱分解槽
2の外部に設けられ、かつ内部温度を任意に設定できる
ようになっているので、触媒反応槽23における触媒反
応時の温度条件を任意に設定することができる。このた
め、触媒反応時の温度条件の最適化により触媒反応効率
を高めることができる。
In the above processing apparatus, similarly to the processing apparatus of the first embodiment shown in FIG. 1, the catalytic reaction efficiency is increased, and a high boiling point component containing a high concentration of aromatic hydrocarbons such as BTX useful as a chemical raw material is contained. It can be easily collected. further,
In the processing apparatus of the present embodiment, the catalyst reaction tank 23 is provided outside the pyrolysis tank 2 and the internal temperature can be set arbitrarily. It can be set arbitrarily. For this reason, the catalytic reaction efficiency can be increased by optimizing the temperature conditions during the catalytic reaction.

【0030】図3は、本発明の廃プラスチック処理装置
の第3実施形態を示すもので、ここに示す処理装置で
は、触媒反応槽33に、熱分解ガスの流通によって粒状
のガリウム含有珪酸塩触媒38aが外筒37内で流動す
る流動床方式が採用されている。触媒反応槽33の後段
には、触媒反応槽33を経た触媒反応生成物とともに槽
外に流出した触媒を分離回収する分離部34が設けら
れ、回収した触媒を経路35を通して触媒反応槽33に
戻すことができるようになっている。
FIG. 3 shows a waste plastic processing apparatus according to a third embodiment of the present invention. In the processing apparatus shown in FIG. 3, a particulate gallium-containing silicate catalyst is supplied to a catalyst reaction tank 33 by flowing a pyrolysis gas. A fluidized bed system in which 38a flows in the outer cylinder 37 is adopted. At the subsequent stage of the catalyst reaction tank 33, there is provided a separation unit 34 for separating and collecting the catalyst that has flowed out of the tank together with the catalyst reaction product that has passed through the catalyst reaction tank 33, and returns the collected catalyst to the catalyst reaction tank 33 through a path 35. You can do it.

【0031】上記処理装置を用いて廃プラスチックの処
理を行うには、熱分解槽2において廃プラスチックを熱
分解により気化させ、得られた熱分解ガスを経路31を
通して触媒反応槽33に導き、ここでガリウム含有珪酸
塩触媒38aに接触させる。この際、触媒反応槽33に
導入され外筒37内を流通する熱分解ガスによって、ガ
リウム含有珪酸塩触媒38aは外筒37内で流動し、流
動しつつ熱分解ガスに接触する。次いで、触媒反応槽3
3を経た触媒反応生成物を、還流器4を経てコンデンサ
25に導き、ここで高沸点成分を凝縮させ回収経路29
を通して回収し、低沸点成分を回収経路30を通して回
収する。この際、触媒反応生成物とともに触媒反応槽3
3外に流出した触媒は、分離部34で回収し経路35を
通して触媒反応槽33に戻す。
In order to treat waste plastics using the above treatment apparatus, waste plastics are vaporized by pyrolysis in the pyrolysis tank 2 and the obtained pyrolysis gas is led to the catalyst reaction tank 33 through the path 31. To contact the gallium-containing silicate catalyst 38a. At this time, the gallium-containing silicate catalyst 38a flows in the outer cylinder 37 due to the pyrolysis gas introduced into the catalyst reaction tank 33 and flowing in the outer cylinder 37, and comes into contact with the pyrolysis gas while flowing. Next, the catalyst reaction tank 3
The catalyst reaction product passed through 3 is led to the condenser 25 through the reflux unit 4, where the high-boiling components are condensed and collected in the recovery path 29.
And the low-boiling components are recovered through the recovery path 30. At this time, the catalyst reaction vessel 3
The catalyst that has flowed out of the tank 3 is recovered by the separation unit 34 and returned to the catalyst reaction tank 33 through the path 35.

【0032】上記処理装置では、図1に示す第1実施形
態の処理装置と同様に、触媒反応効率を高め、化学原料
として有用なBTXなどの芳香族炭化水素を高濃度で含
む高沸点成分を容易に回収することができる。さらに、
本実施形態の処理装置では、触媒反応槽33に流動床方
式が採用されているので、粒状の触媒38aを外筒27
内で流動させつつ熱分解ガスに接触させることができ
る。このため、触媒38aのほぼ全表面を熱分解ガスに
接触させることができる。従って、熱分解ガスと触媒と
の接触効率を高め、触媒反応効率を向上させることがで
きる。
In the above processing apparatus, similarly to the processing apparatus of the first embodiment shown in FIG. 1, the catalytic reaction efficiency is increased, and a high boiling point component containing a high concentration of aromatic hydrocarbons such as BTX useful as a chemical raw material is contained. It can be easily collected. further,
In the processing apparatus of the present embodiment, since the fluidized bed system is adopted for the catalyst reaction tank 33, the granular catalyst 38a is
It can be brought into contact with the pyrolysis gas while flowing inside. Therefore, almost the entire surface of the catalyst 38a can be brought into contact with the pyrolysis gas. Therefore, the contact efficiency between the pyrolysis gas and the catalyst can be increased, and the catalytic reaction efficiency can be improved.

【0033】図4は、本発明の廃プラスチック処理装置
の第4実施形態を示すもので、ここに示す処理装置は、
原料供給部41から導入された廃プラスチックを溶融さ
せる溶融槽42と、溶融槽42内で溶融した溶融物を熱
分解、気化させ触媒に接触させる触媒反応槽43と、触
媒反応槽43で得られた触媒反応生成物中の高沸点成分
を凝縮させ分離するコンデンサ44とを備えている。触
媒反応槽43は、ガリウム含有珪酸塩触媒が充填された
触媒層45を備えている。触媒反応槽43には、熱分解
ガス流通時に触媒が変位しない固定床方式を採用するこ
とができる。コンデンサ44は、触媒反応生成物を導く
管路46内を冷却する冷媒44bを貯留する貯留槽44
aを備えている。
FIG. 4 shows a waste plastic processing apparatus according to a fourth embodiment of the present invention.
It is obtained in a melting tank 42 for melting waste plastic introduced from the raw material supply unit 41, a catalyst reaction tank 43 for thermally decomposing and vaporizing a molten material melted in the melting tank 42 and contacting with a catalyst, and a catalyst reaction tank 43. And a condenser 44 for condensing and separating high-boiling components in the catalyst reaction product. The catalyst reaction tank 43 has a catalyst layer 45 filled with a gallium-containing silicate catalyst. For the catalyst reaction tank 43, a fixed bed method in which the catalyst is not displaced when the pyrolysis gas flows can be adopted. The condenser 44 has a storage tank 44 for storing a refrigerant 44b for cooling the inside of a conduit 46 for leading a catalyst reaction product.
a.

【0034】上記処理装置を用いて廃プラスチックの処
理を行うには、溶融槽42において廃プラスチックを溶
融させ、得られた溶融物を触媒反応槽43に導き、ここ
で熱分解、気化させるとともにガリウム含有珪酸塩触媒
に接触させ、得られた触媒反応生成物を管路46を通し
てコンデンサ44に導き、ここで高沸点成分を凝縮さ
せ、回収する。また低沸点成分は回収経路47を通して
回収する。この際、経路48、49を通して不活性ガス
を溶融槽42、触媒反応槽43内に導入し不活性ガス雰
囲気下で上記熱分解および触媒反応を行うのが好まし
い。
In order to treat the waste plastic using the above-mentioned treatment apparatus, the waste plastic is melted in a melting tank 42, and the obtained melt is guided to a catalyst reaction tank 43, where it is thermally decomposed and vaporized, and gallium is added. The resulting catalyst reaction product is brought into contact with the silicate catalyst, and the resulting catalyst reaction product is led to a condenser 44 through a pipe 46, where the high-boiling components are condensed and recovered. The low-boiling components are recovered through a recovery path 47. At this time, it is preferable that an inert gas is introduced into the melting tank 42 and the catalyst reaction tank 43 through the paths 48 and 49, and the above-described thermal decomposition and catalytic reaction are performed in an inert gas atmosphere.

【0035】上記処理装置では、図1に示す第1実施形
態の処理装置と同様に、触媒反応効率を高め、プラスチ
ック原料などの化学原料として有用なBTXなどの芳香
族炭化水素を高濃度で含む高沸点成分を容易に回収する
ことができる。さらに、本実施形態の処理装置では、装
置構成が簡略であるため、設備コスト削減を図ることが
できる。
In the above-described processing apparatus, similarly to the processing apparatus of the first embodiment shown in FIG. 1, the catalytic reaction efficiency is increased and aromatic hydrocarbons such as BTX useful as chemical raw materials such as plastic raw materials are contained at a high concentration. High boiling components can be easily recovered. Further, in the processing apparatus according to the present embodiment, the apparatus configuration is simple, so that equipment costs can be reduced.

【0036】[0036]

【実施例】以下、具体例を示して本発明の効果を明確化
する。 (実施例)図4に示す処理装置を用いて以下に示す処理
試験を行った。ガリウム含有珪酸塩触媒としてはH型ガ
リウム珪酸塩(Si/Ga=25)を平均粒径0.8m
mの粒状に成形したものを用いた。ポリエチレンを溶融
槽42内で窒素ガス雰囲気下で270℃に加熱し溶融さ
せ、得られた溶融物を触媒反応槽43において425〜
525℃の条件で熱分解、気化させるとともに上記触媒
に接触させた。この際、溶融物を触媒反応槽43に供給
する速度は、3〜30gプラスチック/g触媒・hr
(Time Factor(=W/F、W:触媒量、
F:プラスチック供給速度)2〜20g触媒・min/
gプラスチック)となるように設定した。触媒反応槽4
3を経た触媒反応生成物をコンデンサ44に導き、高沸
点成分を回収し、BTXの含有量を測定した。
EXAMPLES The effects of the present invention will be clarified by showing specific examples. (Example) The following processing test was performed using the processing apparatus shown in FIG. As the gallium-containing silicate catalyst, H-type gallium silicate (Si / Ga = 25) has an average particle diameter of 0.8 m.
m was used. The polyethylene is heated and melted at 270 ° C. under a nitrogen gas atmosphere in the melting tank 42, and the obtained melt is 425 to 425 in the catalyst reaction tank 43.
It was thermally decomposed and vaporized at 525 ° C., and was brought into contact with the catalyst. At this time, the rate at which the melt is supplied to the catalyst reaction tank 43 is 3 to 30 g plastic / g catalyst · hr.
(Time Factor (= W / F, W: catalyst amount,
F: plastic feed rate) 2 to 20 g catalyst · min /
g plastic). Catalyst reaction tank 4
The catalyst reaction product passed through No. 3 was led to a condenser 44, high boiling components were recovered, and the content of BTX was measured.

【0037】(比較例)図6に示す処理装置を用いて以
下に示す処理試験を行った。2gのポリエチレンと1.
2gの触媒との混合物を、反応槽51内で上記触媒の存
在下で425〜500℃の条件で加熱し溶融させ、触媒
反応生成物を経路53を通してコンデンサ52に導き、
高沸点成分を回収し、成分分析に供した。なお反応槽5
1内は、経路54を通して導入された窒素ガスにより窒
素雰囲気とした。
(Comparative Example) The following processing tests were performed using the processing apparatus shown in FIG. 2 g of polyethylene and 1.
The mixture with 2 g of the catalyst is heated and melted in a reaction vessel 51 at 425 to 500 ° C. in the presence of the catalyst, and the catalyst reaction product is led to a condenser 52 through a path 53,
The high boiling components were collected and subjected to component analysis. Reaction tank 5
The inside of 1 was made a nitrogen atmosphere by a nitrogen gas introduced through a passage 54.

【0038】上記実施例および比較例において回収され
た生成物の成分分析結果を図5に示す。図5より、プラ
スチックを溶融状態で触媒に接触させる比較例では回収
物中のBTX含有量が低かったのに対し、プラスチック
を熱分解し気化させ熱分解ガスとして触媒に接触させた
実施例では、高いBTX収率が得られたことがわかる。
FIG. 5 shows the results of component analysis of the products recovered in the above Examples and Comparative Examples. From FIG. 5, in the comparative example in which the plastic was brought into contact with the catalyst in a molten state, the BTX content in the recovered material was low, whereas in the example in which the plastic was thermally decomposed and vaporized to contact the catalyst as a pyrolysis gas, It can be seen that a high BTX yield was obtained.

【0039】[0039]

【発明の効果】本発明の廃プラスチック処理方法では、
廃プラスチックを熱分解により気化させ、得られた熱分
解ガスをガリウム含有珪酸塩触媒に接触させるので、熱
分解ガスを、効率よくガリウム含有珪酸塩触媒に接触さ
せることができる。従って、触媒反応の効率を高め、化
学原料として有用なBTXなどの芳香族炭化水素を高濃
度で含む処理物を回収することができる。また高濃度の
水素を含む処理物を回収することができる。
According to the waste plastic treatment method of the present invention,
Since the waste plastic is vaporized by pyrolysis and the obtained pyrolysis gas is brought into contact with the gallium-containing silicate catalyst, the pyrolysis gas can be efficiently brought into contact with the gallium-containing silicate catalyst. Therefore, it is possible to enhance the efficiency of the catalytic reaction and to recover a treated product containing a high concentration of aromatic hydrocarbons such as BTX useful as a chemical raw material. In addition, a processed material containing high-concentration hydrogen can be recovered.

【0040】また本発明の廃プラスチック処理装置は、
廃プラスチックを熱分解し気化させる熱分解槽と、熱分
解槽内で気化した熱分解ガスをガリウム含有珪酸塩触媒
に接触させる触媒反応槽とを備えているので、熱分解ガ
スを、容易かつ効率よくガリウム含有珪酸塩触媒に接触
させることができる。従って、触媒反応効率を高め、化
学原料として有用なBTXなどの芳香族炭化水素を高濃
度で含む処理物を容易に回収することができる。また高
濃度の水素を含む処理物を容易に回収することができ
る。また、触媒反応槽を、熱分解槽内に設けることによ
って、熱分解槽において廃プラスチックを熱分解させる
際の余熱によって触媒反応槽内を加熱することができ
る。このため、触媒反応槽を独立に加熱することが必要
なく、設備コスト、加熱コストを低く抑えることができ
る。また触媒反応槽を、熱分解槽外に設けられ、かつ内
部温度を任意に設定することができるように構成するこ
とによって、この触媒反応槽における触媒反応時の温度
条件を任意に設定することができる。このため、触媒反
応時の温度条件の最適化により、触媒反応効率を高める
ことができる。また触媒反応槽を、ガリウム含有珪酸塩
触媒が、熱分解ガスによって流動するように構成するこ
とによって、この触媒を流動させつつ熱分解ガスに接触
させることができ、触媒のほぼ全表面を熱分解ガスに接
触させることができる。従って、熱分解ガスと触媒との
接触効率を高め、触媒反応効率を向上させることができ
る。
Further, the waste plastic processing apparatus of the present invention
Equipped with a pyrolysis tank for pyrolyzing and vaporizing waste plastics and a catalytic reaction tank for bringing the pyrolysis gas vaporized in the pyrolysis tank into contact with the gallium-containing silicate catalyst. Good contact with gallium-containing silicate catalysts. Therefore, it is possible to enhance the catalytic reaction efficiency and easily recover a treated product containing a high concentration of an aromatic hydrocarbon such as BTX which is useful as a chemical raw material. Further, a processed material containing high-concentration hydrogen can be easily recovered. Further, by providing the catalyst reaction tank in the thermal decomposition tank, the inside of the catalytic reaction tank can be heated by residual heat when the waste plastic is thermally decomposed in the thermal decomposition tank. For this reason, it is not necessary to heat the catalyst reaction tank independently, so that equipment costs and heating costs can be kept low. In addition, by configuring the catalyst reaction tank outside the pyrolysis tank and arbitrarily setting the internal temperature, it is possible to arbitrarily set the temperature conditions during the catalyst reaction in the catalyst reaction tank. it can. Therefore, by optimizing the temperature conditions during the catalytic reaction, the catalytic reaction efficiency can be increased. Also, by configuring the catalyst reaction tank so that the gallium-containing silicate catalyst flows by the pyrolysis gas, the catalyst can be brought into contact with the pyrolysis gas while flowing, and almost the entire surface of the catalyst is pyrolyzed. Can be contacted with gas. Therefore, the contact efficiency between the pyrolysis gas and the catalyst can be increased, and the catalytic reaction efficiency can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の廃プラスチック処理方法の一実施
形態を実施するために用いられる処理装置を示す概略構
成図である。
FIG. 1 is a schematic configuration diagram showing a processing apparatus used for carrying out an embodiment of a waste plastic processing method of the present invention.

【図2】 本発明の廃プラスチック処理方法の他の実
施形態を実施するのに好適に用いられる処理装置を示す
概略構成図である。
FIG. 2 is a schematic configuration diagram showing a processing apparatus suitably used for carrying out another embodiment of the waste plastic processing method of the present invention.

【図3】 本発明の廃プラスチック処理方法の他の実
施形態を実施するのに好適に用いられる処理装置を示す
概略構成図である。
FIG. 3 is a schematic configuration diagram showing a processing apparatus suitably used for carrying out another embodiment of the waste plastic processing method of the present invention.

【図4】 本発明の廃プラスチック処理方法の他の実
施形態を実施するのに好適に用いられる処理装置を示す
概略構成図である。
FIG. 4 is a schematic configuration diagram showing a processing apparatus suitably used for carrying out another embodiment of the waste plastic processing method of the present invention.

【図5】 試験結果を示すグラフである。FIG. 5 is a graph showing test results.

【図6】 従来の廃プラスチック処理方法の一例を実
施するのに好適に用いられる処理装置を示す概略構成図
である。
FIG. 6 is a schematic configuration diagram showing a processing apparatus suitably used for carrying out an example of a conventional waste plastic processing method.

【符号の説明】[Explanation of symbols]

2・・・熱分解槽、3、23、33、43・・・触媒反応槽、
8a、28a、38a・・・ガリウム含有珪酸塩触媒
2 ... thermal decomposition tank, 3, 23, 33, 43 ... catalyst reaction tank,
8a, 28a, 38a ... gallium-containing silicate catalyst

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C07C 15/06 C07C 15/06 15/08 15/08 C10G 1/10 C10G 1/10 (72)発明者 伊東 正皓 神奈川県横浜市磯子区新中原町1番地 石 川島播磨重工業株式会社機械・プラント開 発センター内 (72)発明者 綾部 統夫 東京都江東区豊洲三丁目1番15号 石川島 播磨重工業株式会社東京エンジニアリング センター基盤技術研究所内 Fターム(参考) 4F301 AA12 CA09 CA25 CA27 CA51 CA53 CA61 CA72 CA74 4G069 AA02 AA15 BA15A BA15B BC17A BC17B CB35 CB38 DA06 EA02Y EB18Y EC22X FB66 4H006 AA05 AC26 BA09 BA33 4H029 CA01 CA09 CA12 CA14 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C07C 15/06 C07C 15/06 15/08 15/08 C10G 1/10 C10G 1/10 (72) Inventor Masahiro Ito 1 Shin-Nakahara-cho, Isogo-ku, Yokohama-shi, Kanagawa Ishikawashima-Harima Heavy Industries Co., Ltd. 4F301 AA12 CA09 CA25 CA27 CA51 CA53 CA61 CA72 CA74 4G069 AA02 AA15 BA15A BA15B BC17A BC17B CB35 CB38 DA06 EA02Y EB18Y EC22X FB66 4H006 AA05 AC26 CA09 CA33 CA01 CA14

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 廃プラスチックを熱分解により気化さ
せ、得られた熱分解ガスをガリウム含有珪酸塩触媒に接
触させ、触媒反応生成物を回収することを特徴とする廃
プラスチック処理方法。
1. A method for treating waste plastic, comprising: evaporating waste plastic by pyrolysis; bringing the obtained pyrolysis gas into contact with a gallium-containing silicate catalyst; and collecting a catalyst reaction product.
【請求項2】 ガリウム含有珪酸塩として、H型ガリ
ウム珪酸塩を用いることを特徴とする請求項1記載の廃
プラスチック処理方法。
2. The method according to claim 1, wherein an H-type gallium silicate is used as the gallium-containing silicate.
【請求項3】 廃プラスチックを熱分解し気化させる
熱分解槽(2)と、熱分解槽内で気化した熱分解ガスを
ガリウム含有珪酸塩触媒(8a)に接触させる触媒反応
槽(3)とを備えていることを特徴とする廃プラスチッ
ク処理装置。
3. A pyrolysis tank (2) for thermally decomposing and vaporizing waste plastics, and a catalytic reaction tank (3) for bringing the pyrolysis gas vaporized in the pyrolysis tank into contact with the gallium-containing silicate catalyst (8a). Waste plastic processing equipment characterized by comprising:
【請求項4】 触媒反応槽(3)は、熱分解槽内に設
けられていることを特徴とする請求項3記載の廃プラス
チック処理装置。
4. The waste plastic processing apparatus according to claim 3, wherein the catalytic reaction tank (3) is provided in a pyrolysis tank.
【請求項5】 触媒反応槽(23)は、熱分解槽外に
設けられ、かつ内部温度を任意に設定することができる
ようにされていることを特徴とする請求項3記載の廃プ
ラスチック処理装置。
5. The waste plastics treatment according to claim 3, wherein the catalytic reaction tank (23) is provided outside the pyrolysis tank and the internal temperature can be set arbitrarily. apparatus.
【請求項6】 触媒反応槽(33)は、ガリウム含有
珪酸塩触媒(38a)が、熱分解ガスによって流動する
ようにされていることを特徴とする請求項3〜5のうち
いずれか1項記載の廃プラスチック処理装置。
6. The catalyst reactor (33) wherein the gallium-containing silicate catalyst (38a) is caused to flow by a pyrolysis gas. A waste plastic processing apparatus as described in the above.
JP2000133859A 2000-05-02 2000-05-02 Waste plastic processing method and apparatus Expired - Fee Related JP4314546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000133859A JP4314546B2 (en) 2000-05-02 2000-05-02 Waste plastic processing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000133859A JP4314546B2 (en) 2000-05-02 2000-05-02 Waste plastic processing method and apparatus

Publications (2)

Publication Number Publication Date
JP2001316517A true JP2001316517A (en) 2001-11-16
JP4314546B2 JP4314546B2 (en) 2009-08-19

Family

ID=18642263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000133859A Expired - Fee Related JP4314546B2 (en) 2000-05-02 2000-05-02 Waste plastic processing method and apparatus

Country Status (1)

Country Link
JP (1) JP4314546B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154313A (en) * 2003-11-21 2005-06-16 Ishikawajima Harima Heavy Ind Co Ltd Method for chemically recycling waste plastic
WO2011031320A3 (en) * 2009-09-09 2011-09-29 University Of Massachusetts Systems and processes for catalytic pyrolysis of biomass and hydrocarbonaceous materials for production of aromatics with optional olefin recycle, and catalysts having selected particle size for catalytic pyrolysis
US8864984B2 (en) 2008-03-04 2014-10-21 University Of Massachusetts Catalytic pyrolysis of solid biomass and related biofuels, aromatic, and olefin compounds
US8895790B2 (en) 2013-02-12 2014-11-25 Saudi Basic Industries Corporation Conversion of plastics to olefin and aromatic products
JP2014534192A (en) * 2011-10-13 2014-12-18 ビーエーエスエフ コーポレーション Method for producing ester
CN105238423A (en) * 2015-11-03 2016-01-13 北京工商大学 Method for preparing furan compound through selective pyrolysis of bagasse
US9428695B2 (en) 2013-02-12 2016-08-30 Saudi Basic Industries Corporation Conversion of plastics to olefin and aromatic products with product recycle
US9447332B2 (en) 2013-02-12 2016-09-20 Saudi Basic Industries Corporation Conversion of plastics to olefin and aromatic products using temperature control
WO2024038916A1 (en) * 2022-08-19 2024-02-22 株式会社北浜化学 Oil-liquefaction apparatus, and oil-liquefaction method using same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154313A (en) * 2003-11-21 2005-06-16 Ishikawajima Harima Heavy Ind Co Ltd Method for chemically recycling waste plastic
US8864984B2 (en) 2008-03-04 2014-10-21 University Of Massachusetts Catalytic pyrolysis of solid biomass and related biofuels, aromatic, and olefin compounds
CN102666796A (en) * 2009-09-09 2012-09-12 马萨诸塞大学 Systems and processes for catalytic pyrolysis of biomass and hydrocarbonaceous materials for production of aromatics with optional olefin recycle, and catalysts having selected particle size for catalytic pyrolysis
CN102666796B (en) * 2009-09-09 2016-06-29 马萨诸塞大学 Optionally employ olefin recycle catalysis pyrolysis biomass and hydrocarbon material for preparing the system and method for aromatic compounds and there is the catalyst for being catalyzed pyrolysis of selection granularity
KR20120104520A (en) * 2009-09-09 2012-09-21 아넬로테크, 인코퍼레이티드 Systems and processes for catalytic pyrolysis of biomass and hydrocarbonaceous materials for production of aromatics with optional olefin recycle, and catalysts having selected particle size for catalytic pyrolysis
JP2013504651A (en) * 2009-09-09 2013-02-07 ユニバーシティ オブ マサチューセッツ Systems and processes for catalytic pyrolysis of biomass and hydrocarbon feedstocks for the production of aromatics with optional olefin recycle, and catalysts having selected particle sizes for catalytic pyrolysis
US20120203042A1 (en) * 2009-09-09 2012-08-09 Anellotech, Inc. Systems and processes for catalytic pyrolysis of biomass and hydrocarbonaceous materials for production of aromatics with optional olefin recycle, and catalysts having selected particle size for catalytic pyrolysis
KR101666089B1 (en) * 2009-09-09 2016-10-13 아넬로테크, 인코퍼레이티드 Systems and processes for catalytic pyrolysis of biomass and hydrocarbonaceous materials for production of aromatics with optional olefin recycle, and catalysts having selected particle size for catalytic pyrolysis
US9169442B2 (en) 2009-09-09 2015-10-27 University Of Massachusetts Systems and processes for catalytic pyrolysis of biomass and hydrocarbonaceous materials for production of aromatics with optional olefin recycle, and catalysts having selected particle size for catalytic pyrolysis
WO2011031320A3 (en) * 2009-09-09 2011-09-29 University Of Massachusetts Systems and processes for catalytic pyrolysis of biomass and hydrocarbonaceous materials for production of aromatics with optional olefin recycle, and catalysts having selected particle size for catalytic pyrolysis
US9453166B2 (en) 2009-09-09 2016-09-27 University Of Massachusetts Systems and processes for catalytic pyrolysis of biomass and hydrocarbonaceous materials for production of aromatics with optional olefin recycle, and catalysts having selected particle size for catalytic pyrolysis
AU2010292998B2 (en) * 2009-09-09 2016-03-03 Anellotech, Inc. Systems and processes for catalytic pyrolysis of biomass and hydrocarbonaceous materials for production of aromatics with optional olefin recycle, and catalysts having selected particle size for catalytic pyrolysis
JP2014534192A (en) * 2011-10-13 2014-12-18 ビーエーエスエフ コーポレーション Method for producing ester
US9212318B2 (en) 2013-02-12 2015-12-15 Saudi Basic Industries Corporation Catalyst for the conversion of plastics to olefin and aromatic products
US9428695B2 (en) 2013-02-12 2016-08-30 Saudi Basic Industries Corporation Conversion of plastics to olefin and aromatic products with product recycle
US9447332B2 (en) 2013-02-12 2016-09-20 Saudi Basic Industries Corporation Conversion of plastics to olefin and aromatic products using temperature control
US8895790B2 (en) 2013-02-12 2014-11-25 Saudi Basic Industries Corporation Conversion of plastics to olefin and aromatic products
CN105238423A (en) * 2015-11-03 2016-01-13 北京工商大学 Method for preparing furan compound through selective pyrolysis of bagasse
CN105238423B (en) * 2015-11-03 2018-04-13 北京工商大学 A kind of bagasse is selectively pyrolyzed the method for producing furfuran compound
WO2024038916A1 (en) * 2022-08-19 2024-02-22 株式会社北浜化学 Oil-liquefaction apparatus, and oil-liquefaction method using same

Also Published As

Publication number Publication date
JP4314546B2 (en) 2009-08-19

Similar Documents

Publication Publication Date Title
JP2975208B2 (en) Polymer cracking
US5738025A (en) Method and apparatus for thermal cracking of waste plastics
JP2007529574A (en) Method and plant for converting waste material to liquid fuel
CN1126698A (en) Transport partial oxidation apparatus and method
JP4520095B2 (en) Waste plastic treatment method
JP2001316517A (en) Processing method and equipment for waste plastics
JPS60231792A (en) Manufacture of hydrocarbon from clarified sludge
JP4465851B2 (en) Chemical recycling method and apparatus for waste plastic
JPH02276889A (en) Method for treating temperature sensitive hydrocarbon flow containing undistillable component
JP2022509280A (en) Methods and equipment for plasma-induced water purification
JP4341162B2 (en) Waste plastic processing method and apparatus
JP4329507B2 (en) Waste plastic chemical recycling equipment
JP2005154510A (en) Chemical recycle apparatus for waste plastic
JP4337517B2 (en) Method and apparatus for chemical recycling of waste plastic
JP4103198B2 (en) Waste plastic processing equipment
JP4314542B2 (en) Waste plastic processing method
JP4916849B2 (en) Method and apparatus for producing pyrolysis oil from rubber waste
AU7822598A (en) System for quenching and scrubbing and cooling and washing hot partial oxidation gas
JPH09227877A (en) Method for converting waste plastic into oil
JP4329506B2 (en) Waste plastic chemical recycling equipment
CN220564546U (en) Device and system for simultaneously treating waste plastics and waste active adsorption materials
JPH09279157A (en) Liquefaction of plastic and apparatus therefor
JPH0724322A (en) Production of cracking catalyst
JPH1161149A (en) Removal of halogen compound in heat-decomposed gas
JPH11140460A (en) Thermal decomposition of plastics, and device and dechlorinating agent used therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees