JP2001316437A - Manufacturing method of rubber-modified styrenic resin - Google Patents

Manufacturing method of rubber-modified styrenic resin

Info

Publication number
JP2001316437A
JP2001316437A JP2000131960A JP2000131960A JP2001316437A JP 2001316437 A JP2001316437 A JP 2001316437A JP 2000131960 A JP2000131960 A JP 2000131960A JP 2000131960 A JP2000131960 A JP 2000131960A JP 2001316437 A JP2001316437 A JP 2001316437A
Authority
JP
Japan
Prior art keywords
rubber
styrene
polymerization reaction
component
styrenic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000131960A
Other languages
Japanese (ja)
Inventor
Takeshi Asada
健史 浅田
Tadashi Teranishi
直史 寺西
Koichi Umemoto
浩一 梅本
Hiroyoshi Yamaguchi
博敬 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP2000131960A priority Critical patent/JP2001316437A/en
Publication of JP2001316437A publication Critical patent/JP2001316437A/en
Pending legal-status Critical Current

Links

Landscapes

  • Graft Or Block Polymers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method which gives a rubber-modified styrenic resin having high impact resistance. SOLUTION: In manufacturing a rubber-modified styrenic resin by subjecting a solution comprising 75-98 wt.% of (A) starting material monomers comprising a styrenic monomer or a mixture of a styrenic monomer and a vinyl monomer copolymerizable therewith and (B) 25-2 wt.% of a rubbery polymer, a solution containing a part of the component (A) together with the component (B) is subjected to polymerization until rubber phase inversion occurs and subsequently the rest of the component (A) is added in a lump or in lots to the polymerization reaction system and further the polymerization reaction is continued.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐衝撃性、特にデ
ュポン衝撃強度が優れた成形品の原料となるゴム変性ス
チレン系樹脂の製造方法及び前記ゴム変性スチレン系樹
脂を含むゴム変性スチレン系樹脂組成物に関する。
The present invention relates to a method for producing a rubber-modified styrenic resin as a raw material of a molded article having excellent impact resistance, especially DuPont impact strength, and a rubber-modified styrenic resin containing the rubber-modified styrenic resin. Composition.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
ゴム変性スチレン系樹脂は、強度や成形加工性だけでな
く衝撃強度が優れていることから、食品容器、包装材
料、家電製品、OA機器等の様々な分野で使用されてい
るが、製品価格の低下の要請から、成形品の一層の薄肉
化や成形サイクルの高速化が求められており、それに応
えるためにも耐衝撃性の改良は重要である。
2. Description of the Related Art
Rubber-modified styrenic resins are used in various fields such as food containers, packaging materials, home appliances, and office automation equipment because of their excellent impact strength as well as strength and moldability. Due to the demand for reduction, further reduction in the thickness of the molded product and speeding up of the molding cycle are required, and improvement of impact resistance is important to meet the demand.

【0003】ゴム変性スチレン系樹脂に含まれるゴム粒
子は、その粒子径を大きくするほど耐衝撃性が高まる
が、逆に表面光沢等の外観が低下するため、一般的には
0.3〜5μm、好ましくは0.5〜4μm程度が最適で
あるとされている。また、耐衝撃性の向上には、ゴム変
性スチレン系樹脂のゴム粒子中に含まれている内包オク
ルージョン(ゴム粒子中に分散含有された、即ち吸蔵さ
れたスチレン系樹脂)の含有率も重要な要素であり、こ
の内包オクルージョンの含有率が高いほど、耐衝撃性を
向上させることができる。
[0003] The rubber particles contained in the rubber-modified styrenic resin have a higher impact resistance as the particle size is larger, but the outer appearance such as surface gloss is reduced. , Preferably about 0.5 to 4 μm. In addition, in order to improve the impact resistance, the content of the inclusion occlusion (the styrene resin dispersed and contained in the rubber particles, that is, the occluded styrene resin) contained in the rubber particles of the rubber-modified styrene resin is also important. The impact resistance can be improved as the content of the inclusion occlusion is higher.

【0004】従来、過酸化物を重合開始剤に用いて反応
初期のグラフト反応を促進させ、内包オクルージョンを
増大させる方法が知られている(例えば、Ounther E.
MolauやHenno.Keskkula(J.Polymer.Sci.A4,1595
(1966),J.Polymer.Sci.A3,4235(1965),Applied
Polymer Symposia 1,35(1968)参照)。しかし、過酸
化物を使用するとゴム粒子にグラフトしたスチレン系重
合体が多くなり、これがゴム粒子とスチレン系樹脂連続
相との界面活性剤として作用するため、ゴム粒子径が小
さくなってしまい、望みの粒子径に制御するのが困難で
ある。
[0004] Heretofore, there has been known a method in which a peroxide is used as a polymerization initiator to promote a graft reaction at an early stage of the reaction to increase inclusion occlusion (for example, Ounther E., et al.
Molau and Henno. Keskkula (J. Polymer. Sci. A4, 1595
(1966); Polymer. Sci. A3, 4235 (1965), Applied
Polymer Symposia 1, 35 (1968)). However, when a peroxide is used, the amount of the styrene-based polymer grafted on the rubber particles increases, and this acts as a surfactant between the rubber particles and the continuous phase of the styrene-based resin. Is difficult to control.

【0005】特開平10−330438号公報には、重
合反応途中の相反転以前に芳香族ビニル単量体を添加す
ることにより、粒子径の制御された、即ち、コアシェル
構造を有するゴム変性スチレン系樹脂が得られることが
開示されている。この方法では確かに粒子径が小さいた
め表面光沢に優れたゴム変性スチレン系樹脂が得られる
ものの、粒子径が0.4μm以下となるため、耐衝撃性
が著しく低下してしまう。
[0005] JP-A-10-330438 discloses a rubber-modified styrene-based polymer having a controlled particle size, that is, a core-shell structure, by adding an aromatic vinyl monomer before phase inversion during a polymerization reaction. It is disclosed that a resin is obtained. According to this method, a rubber-modified styrene-based resin having excellent surface gloss can be obtained because the particle diameter is small, but the impact resistance is remarkably reduced because the particle diameter is 0.4 μm or less.

【0006】特開平4−366116号公報には、主原
料溶液をゴムを含む第1の原料溶液とゴムを含まない第
2の原料溶液の2種類に分割し、第1の原料溶液を第1
反応器に連続的に供給し、そこで相反転前の状態に維持
し、その初期重合液と第2の原料溶液を一緒に第2反応
器に連続的に供給し、そこで相反転後の状態まで初期重
合を行い、この初期重合液を後続の主重合用反応器で後
重合を行うゴム変性スチレン系樹脂の連続的製造方法が
開示されている。しかし、この方法においてもゴムを含
まない原料溶液の添加は相反転前であり、最適なゴム粒
子径で内包オクルージョン量を増大させ、耐衝撃性をよ
り高めるには不十分である。
Japanese Patent Application Laid-Open No. 4-366116 discloses that the main raw material solution is divided into two types, a first raw material solution containing rubber and a second raw material solution containing no rubber, and the first raw material solution is divided into the first raw material solution.
It is continuously supplied to the reactor, where it is maintained in the state before phase inversion, and the initial polymerization solution and the second raw material solution are continuously supplied together to the second reactor, where it is brought to the state after phase inversion. A continuous production method of a rubber-modified styrenic resin in which initial polymerization is performed and the initial polymerization liquid is post-polymerized in a subsequent main polymerization reactor is disclosed. However, even in this method, the addition of the rubber-free raw material solution is before the phase inversion, and it is insufficient to increase the included occlusion amount at the optimum rubber particle diameter and further improve the impact resistance.

【0007】本発明は、内包オクルージョン量を増加さ
せ、耐衝撃性、特にデュポン衝撃強度が向上されたゴム
変性スチレン系樹脂の成形品を得ることができる、ゴム
変性スチレン系樹脂の製造法及びそれを含有するゴム変
性スチレン系樹脂組成物を提供することを目的とする。
The present invention relates to a method for producing a rubber-modified styrene-based resin which can increase the amount of encapsulated occlusion and obtain a molded article of a rubber-modified styrene-based resin having improved impact resistance, especially DuPont impact strength. It is an object of the present invention to provide a rubber-modified styrenic resin composition containing

【0008】[0008]

【課題を解決するための手段】本発明は、(A)スチレ
ン系単量体又はスチレン系単量体とこのスチレン系単量
体と共重合可能なビニル系単量体との混合物である原料
単量体75〜98重量%と(B)ゴム状重合体25〜2
重量%を含む溶液を重合してゴム変性スチレン系樹脂を
製造する際、(A)成分の一部と(B)成分を含む溶液
をゴム相反転の状態まで重合させた後、重合反応系に
(A)成分の残部を一括又は分割して添加し、引き続き
重合反応を行うことを特徴とするゴム変性スチレン系樹
脂の製造方法を提供する。
The present invention relates to (A) a starting material which is a styrene monomer or a mixture of a styrene monomer and a vinyl monomer copolymerizable with the styrene monomer. 75 to 98% by weight of monomer and (B) rubbery polymer 25 to 2
In producing a rubber-modified styrenic resin by polymerizing a solution containing 1% by weight, a solution containing a part of the component (A) and a solution containing the component (B) are polymerized to a state of inversion of the rubber phase, and then the polymerization reaction system is started. Provided is a method for producing a rubber-modified styrenic resin, which comprises adding the remainder of the component (A) in a lump or in a divided manner, and subsequently performing a polymerization reaction.

【0009】[0009]

【発明の実施の形態】本発明の製造方法は、(A)成分
を分割添加することと、(A)成分の分割添加時期に特
徴を有するものであり、他の要件、例えば重合手段や重
合条件は特に限定されるものではなく、公知の重合手段
及び重合条件を適用することができる。例えば、重合方
法としては塊状重合、懸濁重合を適用して、バッチ式又
は連続式で重合反応させることができ、重合温度は50
〜180℃、好ましくは90〜150℃にすることがで
きる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The production method of the present invention is characterized in that the component (A) is dividedly added and the timing of the component (A) is dividedly added. The conditions are not particularly limited, and known polymerization means and polymerization conditions can be applied. For example, as a polymerization method, a bulk polymerization or a suspension polymerization is applied, and a polymerization reaction can be performed in a batch system or a continuous system.
To 180 ° C, preferably 90 to 150 ° C.

【0010】本発明の製造方法においては、まず(A)
成分のスチレン系単量体又はスチレン系単量体とこのス
チレン系単量体と共重合可能なビニル系単量体との混合
物である原料単量体の一部と、(B)成分のゴム状重合
体、更に必要に応じて重合開始剤、溶剤等の他の成分を
使用してゴム相反転の状態まで重合反応を行う。
In the production method of the present invention, (A)
A part of a raw material monomer which is a styrene monomer as a component or a mixture of a styrene monomer and a vinyl monomer copolymerizable with the styrene monomer, and a rubber as a component (B) The polymerization reaction is carried out to the state of inversion of the rubber phase by using the polymer in the form and, if necessary, other components such as a polymerization initiator and a solvent.

【0011】このゴム相反転の状態とは、次の状態をい
う。原料溶液を投入し、反応を開始した初期の段階で、
スチレン系単量体とスチレン系重合体を含む溶液部分
(樹脂相)が、ゴム状重合体とスチレン系単量体を含む
溶液部分(ゴム相)から分離し、ゴム相が連続相で、樹
脂相が分散相という状態となる。その後、更に重合反応
を進行させると、生成したスチレン系重合体の量が増大
し、樹脂相が分散相として留まれなくなった時点で、樹
脂相が連続相となりゴム相が分散相となる(即ち、ゴム
状重合体が粒子化する)、いわゆる相反転が起こり、こ
のような相反転が起こった状態をゴム相反転の状態とい
う。
The state of rubber phase inversion means the following state. At the initial stage when the raw material solution was charged and the reaction started,
The solution portion (resin phase) containing the styrene-based monomer and styrene-based polymer separates from the solution portion (rubber phase) containing the rubber-like polymer and the styrene-based monomer, and the rubber phase is a continuous phase. The phase becomes a dispersed phase. Thereafter, when the polymerization reaction is further advanced, the amount of the generated styrene-based polymer increases, and when the resin phase cannot remain as a dispersed phase, the resin phase becomes a continuous phase and the rubber phase becomes a dispersed phase (ie, The rubber-like polymer becomes particles), so-called phase inversion occurs, and a state in which such phase inversion occurs is called a rubber phase inversion state.

【0012】ゴム相反転の時期は、例えば反応器のトル
クをモニターしておき、相反転によって、スチレン系重
合体相が連続相になり、ゴム粒子が形成されたことによ
るトルクの減少を観察する方法や、反応中にサンプリン
グした重合溶液を用い、レーザー回折・散乱式粒度分布
測定装置等で粒度分布曲線を観測する方法等により、相
反転によるゴム粒子の生成を確認することで判定でき
る。これらの方法によると、相反転はスチレン系重合体
の生成量がゴム状重合体量を超えて1.5倍程度となっ
た時点で起こっていることが確認できた。
At the time of the rubber phase inversion, for example, monitoring the torque of the reactor, and observing a decrease in the torque due to the formation of the rubber particles by the styrene polymer phase becoming a continuous phase due to the phase inversion. The determination can be made by confirming the generation of rubber particles due to phase inversion by a method or a method of observing a particle size distribution curve by a laser diffraction / scattering type particle size distribution measuring device or the like using a polymerization solution sampled during the reaction. According to these methods, it was confirmed that the phase inversion occurred when the amount of the styrene-based polymer exceeded the amount of the rubbery polymer and became about 1.5 times.

【0013】従って、本発明においては、(A)成分の
残部の重合反応系への添加時期は、スチレン系重合体の
生成量(Aw)とゴム状重合体量(Bw)の重量比(A
w/Bw)が、2〜5の範囲になったときが好ましい。
前記重量比が2以上であると、重合反応系内のゴム粒子
が安定に存在しているので、残部の(A)成分を添加す
ることによって、粒子径を制御することが容易となる。
重量比が5以下であると、重合反応系の粘度を適正に保
持することができるので、その後の重合反応時における
攪拌操作が円滑になされる。なお、ゴム状重合体量は、
仕込み時のゴム状重合体の重量である。
Therefore, in the present invention, the timing of adding the remaining component (A) to the polymerization reaction system depends on the weight ratio (Aw) of the amount of styrene-based polymer produced (Aw) to the amount of rubbery polymer (Bw).
(w / Bw) is preferably in the range of 2 to 5.
When the weight ratio is 2 or more, the rubber particles in the polymerization reaction system are stably present, so that it is easy to control the particle diameter by adding the remaining component (A).
When the weight ratio is 5 or less, the viscosity of the polymerization reaction system can be appropriately maintained, so that the stirring operation during the subsequent polymerization reaction is smoothly performed. Incidentally, the amount of rubbery polymer,
It is the weight of the rubbery polymer at the time of charging.

【0014】次に、ゴム相反転の状態まで重合反応を行
ったのち、(A)成分の残部を重合反応系に一括又は2
以上に分割して添加し、引き続き重合反応を行い、最終
的にゴム変性スチレン系樹脂を得る。なお、この段階で
重合開始剤や溶剤を添加することもできる。
Next, after the polymerization reaction is carried out until the rubber phase is inverted, the remainder of the component (A) is added to the polymerization
The above-mentioned portions are added in a divided manner, followed by a polymerization reaction to finally obtain a rubber-modified styrenic resin. At this stage, a polymerization initiator and a solvent can be added.

【0015】ここで添加する(A)成分の残部は、
(A)成分全量中の好ましくは10〜50重量%、より
好ましくは10〜40重量%である。10重量%以上で
あると内包オクルージョン量を増加させることができ、
50重量%以下であると重合反応液中におけるゴム粒子
の分散状態の制御が容易となる。
The balance of the component (A) added here is
It is preferably from 10 to 50% by weight, more preferably from 10 to 40% by weight, based on the total amount of the component (A). When the content is 10% by weight or more, the amount of inclusion occlusion can be increased,
When the content is 50% by weight or less, the dispersion state of the rubber particles in the polymerization reaction liquid can be easily controlled.

【0016】本発明で用いる(A)成分のスチレン系単
量体としては、スチレン、2−メチルスチレン、3−メ
チルスチレン、4−メチルスチレン、4−エチルスチレ
ン、4−t−ブチルスチレン、2,4−ジメチルスチレ
ン等のアルキル置換スチレン、α−メチルスチレン、α
−メチル−4−メチルスチレン等のα−アルキル置換ス
チレン、2−クロロスチレン、4−クロロスチレン等の
ハロゲン化スチレン等を挙げることができ、これらの中
でも、スチレン、4−メチルスチレン、α−メチルスチ
レンが好ましい。これらのスチレン系単量体は、1種又
は2種以上を組み合わせて用いることができる。
The styrene monomer of the component (A) used in the present invention includes styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-ethylstyrene, 4-t-butylstyrene, Alkyl-substituted styrenes such as 1,4-dimethylstyrene, α-methylstyrene, α
Α-alkyl-substituted styrenes such as -methyl-4-methylstyrene; halogenated styrenes such as 2-chlorostyrene and 4-chlorostyrene; and among these, styrene, 4-methylstyrene, α-methyl Styrene is preferred. These styrene monomers can be used alone or in combination of two or more.

【0017】スチレン系単量体と共重合可能な他の単量
体としては、アクリル酸又はメタクリル酸、アクリル酸
メチル又はメタクリル酸メチル、アクリル酸エチル又は
メタクリル酸エチル、アクリル酸ブチル又はメタクリル
酸ブチル、アクリル酸2−エチルヘキシル又はメタクリ
ル酸2−エチルヘキシル等のアクリル酸(C1〜C8)
エステル又はメタクリル酸(C1〜C8)エステル、ア
クリロニトリル、無水マレイン酸、マレイミド、N−メ
チルマレイミド、N−エチルマレイミドのようなN−置
換マレイミド等のマレイン酸又はその誘導体等を挙げる
ことができ、これらの中でもアクリル酸エステル又はメ
タクリル酸エステルが好ましく、特にメタクリル酸メチ
ルが好ましい。これらの単量体は、1種又は2種以上を
組み合わせて用いることができる。
Other monomers copolymerizable with the styrene monomer include acrylic acid or methacrylic acid, methyl acrylate or methyl methacrylate, ethyl acrylate or ethyl methacrylate, butyl acrylate or butyl methacrylate. , Acrylic acid (C1-C8) such as 2-ethylhexyl acrylate or 2-ethylhexyl methacrylate
Maleic acid such as ester or methacrylic acid (C1 to C8) ester, acrylonitrile, maleic anhydride, maleimide, N-methylmaleimide, N-substituted maleimide such as N-ethylmaleimide, and derivatives thereof; Among them, acrylates or methacrylates are preferred, and methyl methacrylate is particularly preferred. These monomers can be used alone or in combination of two or more.

【0018】スチレン系単量体と共重合可能な他の単量
体を併用する場合、スチレン系単量体の含有量は50〜
99重量%が好ましい。
When another monomer copolymerizable with the styrene-based monomer is used in combination, the content of the styrene-based monomer is 50 to 50%.
99% by weight is preferred.

【0019】本発明で用いる(B)成分のゴム状重合体
としては、ブタジエンゴム、ブタジエン−イソプレンゴ
ム、ブタジエン−アクリロニトリルゴム、エチレン−プ
ロピレンゴム、イソプレンゴム、アクリルゴム、エチレ
ン−酢酸ビニルゴム等の非スチレン系ゴム、スチレン−
ブタジエンゴム、スチレン−イソプレンゴム等のスチレ
ン系ゴムを挙げることができ、これらの中でも、ブタジ
エンゴム、スチレン−ブタジエンゴムのような分子内に
ブタジエン単位を含むゴムが好ましい。これらのゴム
は、1種又は2種以上を組み合わせて用いることができ
る。なお、ブタジエンゴムは、シス−1,4構造の含有
率の高いハイシス型のものであっても、シス−1,4構
造の含有率の低いローシス型のものであってもよい。ま
た、共重合体の場合の重合形態は特に限定されるもので
はなく、ブロック共重合体、ランダム共重合体、テーパ
ーブロック構造を有する共重合体であってもよい。
Examples of the rubbery polymer as the component (B) used in the present invention include non-polymers such as butadiene rubber, butadiene-isoprene rubber, butadiene-acrylonitrile rubber, ethylene-propylene rubber, isoprene rubber, acrylic rubber and ethylene-vinyl acetate rubber. Styrene rubber, styrene
Styrene-based rubbers such as butadiene rubber and styrene-isoprene rubber can be mentioned. Among them, rubbers containing a butadiene unit in a molecule such as butadiene rubber and styrene-butadiene rubber are preferable. These rubbers can be used alone or in combination of two or more. The butadiene rubber may be a high cis type having a high content of cis-1,4 structure or a low cis type having a low content of cis-1,4 structure. Further, the polymerization form in the case of the copolymer is not particularly limited, and may be a block copolymer, a random copolymer, or a copolymer having a tapered block structure.

【0020】(A)成分と(B)成分の使用量は、
(A)成分が75〜98重量%、好ましくは85〜98
重量%、より好ましくは90〜97重量%、(B)成分
が25〜2重量%、好ましくは15〜2重量%、より好
ましくは10〜3重量%である。(B)成分が2重量%
以上であると耐衝撃性を高めることができ、25重量%
以下であると剛性の低下が防止できる。(A)成分の使
用量は、全使用量を意味する。
The amounts of the components (A) and (B) used are as follows:
75-98% by weight of component (A), preferably 85-98%
% By weight, more preferably 90 to 97% by weight, and the component (B) content is 25 to 2% by weight, preferably 15 to 2% by weight, and more preferably 10 to 3% by weight. 2% by weight of component (B)
When it is more than the above, the impact resistance can be increased, and 25% by weight
When it is less than the above, a decrease in rigidity can be prevented. The amount of the component (A) used means the total amount used.

【0021】本発明においては、更に(A)及び(B)
成分と共に重合開始剤を添加することができる。この重
合開始剤としては、シクロヘキサノンパーオキサイド、
3,3,5−トリメチルシクロヘキサノンパーオキサイ
ド、メチルシクロヘキサノンパーオキサイド等のケトン
パーオキサイド類、ジ−t−ブチルパーオキシ−3,
3,5−トリメチルシクロヘキサン、1,1−ビス(t
−ブチルパーオキシ)シクロヘキサン、n−ブチル−
4,4−ビス(t−ブチルパーオキシ)バレレート等の
パーオキシケタール類、クメンハイドロパーオキサイ
ド、ジイソプロピルベンゼンパーオキサイド、2,5−
ジメチルヘキサン−2,5−ジハイドロパーオキサイド
等のハイドロパーオキサイド類、ジ−t-ブチルパーオキ
シジイソプロピルベンゼン、t−ブチルクミルパーオキ
サイド、α,α’−ビス(t−ブチルパーオキシ−m−
イソプロピル)ベンゼン、2,5−ジメチル−2,5−
ジ(t−ブチルパーオキシ)ヘキシン−3等のジアルキ
ルパーオキサイド類、デカノイルパーオキサイド、ラウ
ロイルパーオキサイド、ベンゾイルパーオキサイド、
2,4−ジクロロベンゾイルパーオキサイド等のジアシ
ルパーオキサイド類、ビス(t−ブチルシクロヘキシ
ル)パーオキシジカーボネート等のパーオキシカーボネ
ート類、t−ブチルパーオキシベンゾエート、2,5−
ジメチル−2,5−ジ(ベンゾイルパーオキシ)ヘキサ
ン等のパーオキシエステル類のような有機過酸化物を挙
げることができ、その他にも、2,2−アゾビス(2−
メチルブチロニトリル)、1,1−アゾビス(シクロヘ
キサン−1−カーボニトリルのようなアゾ化合物を挙げ
ることができる。これらの重合開始剤は、1種又は2種
以上を組み合わせて用いることができる。
In the present invention, (A) and (B)
A polymerization initiator can be added together with the components. As the polymerization initiator, cyclohexanone peroxide,
Ketone peroxides such as 3,3,5-trimethylcyclohexanone peroxide, methylcyclohexanone peroxide, di-t-butylperoxy-3,
3,5-trimethylcyclohexane, 1,1-bis (t
-Butylperoxy) cyclohexane, n-butyl-
Peroxy ketals such as 4,4-bis (t-butylperoxy) valerate, cumene hydroperoxide, diisopropylbenzene peroxide, 2,5-
Hydroperoxides such as dimethylhexane-2,5-dihydroperoxide, di-t-butylperoxydiisopropylbenzene, t-butylcumyl peroxide, α, α'-bis (t-butylperoxy-m-
Isopropyl) benzene, 2,5-dimethyl-2,5-
Dialkyl peroxides such as di (t-butylperoxy) hexine-3, decanoyl peroxide, lauroyl peroxide, benzoyl peroxide,
Diacyl peroxides such as 2,4-dichlorobenzoyl peroxide; peroxycarbonates such as bis (t-butylcyclohexyl) peroxydicarbonate; t-butylperoxybenzoate;
Organic peroxides such as peroxyesters such as dimethyl-2,5-di (benzoylperoxy) hexane can be mentioned. In addition, 2,2-azobis (2-
Examples thereof include azo compounds such as methylbutyronitrile) and 1,1-azobis (cyclohexane-1-carbonitrile) These polymerization initiators can be used alone or in combination of two or more.

【0022】重合開始剤の使用量は、(A)成分100
重量部に対して、好ましくは0.005〜1.0重量
部、特に好ましくは0.01〜0.2重量部である。
The amount of the polymerization initiator to be used is 100 parts of the component (A).
The amount is preferably from 0.005 to 1.0 part by weight, particularly preferably from 0.01 to 0.2 part by weight, based on part by weight.

【0023】本発明においては、更に(A)及び(B)
成分と共に溶剤を添加することができる。この溶剤とし
ては、反応に不活性なもの、例えば、ヘキサン、ヘプタ
ン、オクタン等の脂肪族炭化水素類、シクロヘキサン、
シクロヘプタン、シクロオクタン等の脂環式炭化水素
類、トルエン、キシレン、エチルベンゼン等の芳香族系
炭化水素類、ジメチルケトン、メチルエチルケトン、メ
チルイソブチルケトン等のケトン類、酢酸エチル等のエ
ステル類等を挙げることができる。これらの溶剤は、1
種又は2種以上を組み合わせて用いることができる。
In the present invention, (A) and (B)
A solvent can be added together with the components. As the solvent, those inert to the reaction, for example, hexane, heptane, aliphatic hydrocarbons such as octane, cyclohexane,
Alicyclic hydrocarbons such as cycloheptane and cyclooctane; aromatic hydrocarbons such as toluene, xylene and ethylbenzene; ketones such as dimethyl ketone, methyl ethyl ketone and methyl isobutyl ketone; and esters such as ethyl acetate. be able to. These solvents are:
Species or a combination of two or more can be used.

【0024】溶剤の使用量は、適度な重合反応速度を維
持し、溶剤回収にともなう負担を軽減するため、原料と
なるスチレン系モノマー1とゴムの合計量100重量部
に対して、好ましくは0.1〜50重量%であり、特に
好ましくは0.1〜20重量%である。
The amount of the solvent used is preferably 0 to 100 parts by weight of the total amount of the styrene monomer 1 and the rubber as raw materials in order to maintain an appropriate polymerization reaction rate and reduce the burden of recovering the solvent. 0.1 to 50% by weight, particularly preferably 0.1 to 20% by weight.

【0025】また、本発明においては、上記各成分の他
にも分子量調整剤として、α−メチルスチレンダイマ
ー、メルカプタン類、テルペン類、ハロゲン化合物等の
連鎖移動剤等を添加することができる。
In the present invention, in addition to the above components, chain transfer agents such as α-methylstyrene dimer, mercaptans, terpenes, and halogen compounds can be added as molecular weight regulators.

【0026】このようにして得られるゴム変性スチレン
系樹脂に含有されているゴム粒子は、樹脂中において、
コア/シェル構造又はカプセル構造のような単一オクル
ージョン構造、サラミ構造、迷路構造等の種々の形態で
分散含有されていてもよい。
The rubber particles contained in the rubber-modified styrenic resin thus obtained are contained in the resin.
It may be dispersedly contained in various forms such as a single occlusion structure such as a core / shell structure or a capsule structure, a salami structure, and a maze structure.

【0027】また、ゴム変性スチレン系樹脂に含まれて
いるゴム粒子の平均粒子径(体積平均粒子径)は、成形
品の耐衝撃性や表面光沢、さらには内包オクルージョン
の含有率を考慮して設定することが望ましい。ゴム粒子
の体積平均粒子径は、好ましくは0.01〜5.0μm
であり、より好ましくは0.5〜3.0μmである。
The average particle diameter (volume average particle diameter) of the rubber particles contained in the rubber-modified styrene resin is determined in consideration of the impact resistance and surface gloss of the molded article, and the content of the included occlusion. It is desirable to set. The volume average particle diameter of the rubber particles is preferably 0.01 to 5.0 μm.
And more preferably 0.5 to 3.0 μm.

【0028】ゴム粒子の粒子径分布は特に限定されるも
のではなく、単一のピークを有するような粒子径分布、
2峰性又は3峰性以上の複数ピークを有する粒子径分布
であってもよいが、単一の粒子径分布を有するものが好
ましい。
The particle size distribution of the rubber particles is not particularly limited, and a particle size distribution having a single peak,
A particle diameter distribution having a plurality of peaks having two or more peaks may be used, but a particle having a single particle diameter distribution is preferable.

【0029】このようなゴム変成スチレン系樹脂におけ
るゴム粒子の平均粒子径は、ゴムの種類及び分子量、ゴ
ムの使用量、連鎖移動剤の種類及び添加量、重合温度、
重合時における攪拌速度等の要素により、調整すること
ができる。
The average particle diameter of rubber particles in such a rubber-modified styrene resin is determined by the type and molecular weight of rubber, the amount of rubber used, the type and amount of chain transfer agent, the polymerization temperature,
It can be adjusted by factors such as the stirring speed during polymerization.

【0030】本発明の製造方法により得られたゴム変性
スチレン系樹脂は、他の成分を配合してゴム変性スチレ
ン系樹脂組成物とすることもできる。この場合の他の成
分としては、ステアリン酸亜鉛、ステアリン酸カルシウ
ム等の高級脂肪酸塩、高級脂肪酸アミド、エチレンビス
ステアリルアミド等のビスアミドのような滑剤、ミネラ
ルオイルのような可塑剤、フェノール系、リン系の酸化
防止剤、紫外線吸収剤、難燃剤、帯電防止剤、充填剤、
着色剤、シリコーンオイルのような離型剤等を挙げるこ
とができる。
The rubber-modified styrenic resin obtained by the production method of the present invention may be blended with other components to form a rubber-modified styrenic resin composition. Other components in this case include zinc stearate, higher fatty acid salts such as calcium stearate, higher fatty acid amides, lubricants such as bisamides such as ethylene bisstearyl amide, plasticizers such as mineral oil, phenolic compounds, and phosphorus compounds. Antioxidants, UV absorbers, flame retardants, antistatic agents, fillers,
Examples include a colorant and a release agent such as silicone oil.

【0031】本発明の組成物は、組成物から得られる成
形体が下記の性質の一方又は両方をを有しているものが
好ましい。
The composition of the present invention is preferably such that a molded article obtained from the composition has one or both of the following properties.

【0032】曲げ弾性率が1400MPa以上、好まし
くは1500MPa以上のものであること。
The flexural modulus is 1400 MPa or more, preferably 1500 MPa or more.

【0033】デュポン衝撃強度が1.0J以上、好まし
くは2.0J以上であること。
The DuPont impact strength is 1.0 J or more, preferably 2.0 J or more.

【0034】[0034]

【実施例】以下、実施例により本発明をさらに詳しく説
明するが、本発明はこれらにより限定されるものではな
い。以下における各測定方法は次のとおりである。 (1)スチレン系単量体のスチレン系重合体への転化率 適時サンプリングした重合反応液に残存する単量体をガ
スクロマトグラフィー(GC−14B、島津製作所製、
カラムPEG−20M)を用いて内部標準法により定量
し、単量体の減少率を重合体への転化率として算出し
た。スチレン系重合体の生成量は、この転化率と仕込み
原料注の単量体量から算出した。 (2)体積平均ゴム粒子径 メチルエチルケトン/アセトン=1/1(容量比)溶液
約200mlにゴム変性スチレン系樹脂約50mgを溶解
し、レーザー回折・散乱式粒度分布測定装置(堀場製作
所LA910)にて得られた粒度分布曲線から求めた。 (3)内包オクルージョンの含有率 ゴム変性スチレン系樹脂ペレット1.0gを精秤し、メ
チルエチルケトン/アセトン(容量比1/1)混合溶液
を35ml加えて、2時間振とうして溶解させた。この溶
液を冷却遠心分離器で20分間遠心分離した(−4℃、
15000rpm)。上澄み液を捨てて沈殿を取り出し、
60℃で3時間真空乾燥し、次式: ゲル含有量(%)=(乾燥ゲルの重量/樹脂ペレット重
量)×100 よりゲル含有量を求め、更に、下記式より、内包オクル
ージョン含有量を求めた。なお、滴定ゴム含有量はヨウ
素滴定法により求めた。 内包オクルージョン含有率(%)=〔ゲル含有量(%)
−滴定ゴム含有量(%)〕/滴定ゴム含有量(%) (4)曲げ弾性率、デュポン衝撃強度 曲げ弾性率は、JIS K7203に準拠して測定し、
デュポン衝撃強度は、JIS K7211に準じて、厚
さ2mmの試験片の50%破壊エネルギーを測定した。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto. Each measurement method described below is as follows. (1) Conversion rate of styrene-based monomer to styrene-based polymer The monomer remaining in the polymerization reaction solution sampled at appropriate times was subjected to gas chromatography (GC-14B, manufactured by Shimadzu Corporation).
Column PEG-20M) was used for the determination, and the reduction rate of the monomer was calculated as the conversion rate to the polymer. The production amount of the styrene-based polymer was calculated from the conversion rate and the monomer amount of the raw material charge. (2) Volume-average rubber particle diameter About 50 ml of a methyl ethyl ketone / acetone = 1/1 (volume ratio) solution was dissolved in about 50 mg of a rubber-modified styrene resin, and the resulting mixture was measured with a laser diffraction / scattering type particle size distribution analyzer (LA910, Horiba, Ltd.). It was determined from the obtained particle size distribution curve. (3) Content of inclusion occlusion 1.0 g of rubber-modified styrene resin pellets were precisely weighed, and 35 ml of a mixed solution of methyl ethyl ketone / acetone (volume ratio 1/1) was added thereto and shaken for 2 hours to dissolve. The solution was centrifuged in a refrigerated centrifuge for 20 minutes (-4 ° C,
15000 rpm). Discard the supernatant and remove the precipitate,
After vacuum drying at 60 ° C. for 3 hours, the gel content is determined from the following formula: gel content (%) = (weight of dried gel / weight of resin pellet) × 100, and further, the inclusion occlusion content is determined from the following formula. Was. The titration rubber content was determined by an iodine titration method. Inclusion occlusion content (%) = [gel content (%)
-Titration rubber content (%)] / Titration rubber content (%) (4) Flexural modulus, DuPont impact strength The flexural modulus is measured according to JIS K7203,
The DuPont impact strength was obtained by measuring a 50% breaking energy of a test piece having a thickness of 2 mm according to JIS K7211.

【0035】実施例1 1.1kgのポリブタジエン(旭化成工業(株)製,ジ
エン55AE)を、全量15.1kgのうちの10.0
kgのスチレン単量体及び1.8kgのエチルベンゼン
に溶解した原料溶液を反応器に仕込み、135℃に昇温
して重合反応を開始した。重合開始から1時間40分
後、スチレン単量体の転化率が30%となった時点で、
残部のスチレン単量体5.1kgを反応器中に添加し、
更に重合反応を続けた。転化率が70%を超えた段階
で、脱気機能付き押出機を用い、230℃で未反応の単
量体及び溶剤を取り除いた。溶融ストランドを冷却後に
切断し、ペレット状のゴム変性スチレン系樹脂を得た。
各測定結果を表1に示す。
Example 1 1.1 kg of polybutadiene (Diene 55AE, manufactured by Asahi Kasei Kogyo Co., Ltd.) was added to 10.0 kg of 15.1 kg.
A raw material solution dissolved in kg of styrene monomer and 1.8 kg of ethylbenzene was charged into a reactor, and the temperature was raised to 135 ° C. to start a polymerization reaction. One hour and 40 minutes after the start of the polymerization, when the conversion of the styrene monomer became 30%,
Add 5.1 kg of the remaining styrene monomer into the reactor,
Further, the polymerization reaction was continued. When the conversion exceeded 70%, unreacted monomers and solvents were removed at 230 ° C. using an extruder with a degassing function. The molten strand was cooled and cut to obtain a pellet-shaped rubber-modified styrene resin.
Table 1 shows the measurement results.

【0036】実施例2 1.1kgのポリブタジエン(旭化成工業(株)製,ジ
エン55AE)を、全量15.1kgのうちの11.3
kgのスチレン単量体及び1.8kgのエチルベンゼン
に溶解した原料溶液を反応器に仕込み、135℃に昇温
して重合反応を開始した。重合開始から1時間40分
後、スチレン単量体の転化率が32.5%となった時点
で、残部のスチレン単量体3.8kgを反応器中に添加
し、更に重合反応を続けた。転化率が70%を超えた段
階で、脱気機能付き押出機を用い、230℃で未反応の
単量体及び溶剤を取り除いた。溶融ストランドを冷却後
に切断し、ペレット状のゴム変性スチレン系樹脂を得
た。各測定結果を表1に示す。
Example 2 1.1 kg of polybutadiene (Diene 55AE, manufactured by Asahi Kasei Corporation) was used in 11.3 kg of 15.1 kg.
A raw material solution dissolved in kg of styrene monomer and 1.8 kg of ethylbenzene was charged into a reactor, and the temperature was raised to 135 ° C. to start a polymerization reaction. One hour and 40 minutes after the start of the polymerization, when the conversion of the styrene monomer reached 32.5%, 3.8 kg of the remaining styrene monomer was added into the reactor, and the polymerization reaction was further continued. . When the conversion exceeded 70%, unreacted monomers and solvents were removed at 230 ° C. using an extruder with a degassing function. The molten strand was cooled and cut to obtain a pellet-shaped rubber-modified styrene resin. Table 1 shows the measurement results.

【0037】実施例3 0.8kgのポリブタジエン(旭化成工業(株)製,ジ
エン55AE)を、全量15.4kgのスチレン単量体
うちの10.3kgのスチレン単量体及び1.8kgの
エチルベンゼンに溶解した原料溶液を反応器に仕込み、
135℃に昇温して重合反応を開始した。重合開始から
1時間20分後、スチレン単量体の転化率が25.1%
となった時点で、残部のスチレン単量体5.1kgを反
応器中に添加し、更に重合反応を続けた。転化率が70
%を超えた段階で、脱気機能付き押出機を用い、230
℃で未反応の単量体及び溶剤を取り除いた。溶融ストラ
ンドを冷却後に切断し、ペレット状のゴム変性スチレン
系樹脂を得た。各測定結果を表1に示す。
EXAMPLE 3 0.8 kg of polybutadiene (Diene 55AE, manufactured by Asahi Kasei Corporation) was converted into 10.3 kg of styrene monomer and 1.8 kg of ethylbenzene in a total amount of 15.4 kg of styrene monomer. Charge the dissolved raw material solution into the reactor,
The temperature was raised to 135 ° C. to start the polymerization reaction. One hour and 20 minutes after the start of the polymerization, the conversion of the styrene monomer was 25.1%.
At that time, 5.1 kg of the remaining styrene monomer was added to the reactor, and the polymerization reaction was continued. 70 conversion
%, The extruder with the degassing function was used,
Unreacted monomers and solvents were removed at ℃. The molten strand was cooled and cut to obtain a pellet-shaped rubber-modified styrene resin. Table 1 shows the measurement results.

【0038】実施例4 1.1kgのポリブタジエン(旭化成工業(株)製,ジ
エン55AE)を、全量15.1kgのスチレン単量体
うちの10.0kgのスチレン単量体及び1.8kgの
エチルベンゼンに溶解した原料溶液を反応器に仕込み、
135℃に昇温して重合反応を開始した。重合開始から
1時間40分後、スチレン単量体の転化率が29.3%
となった時点で、残部のスチレン単量体のうち2.6k
gを反応器中に添加し、更に15分後に残部のスチレン
単量体2.5kg添加し、重合反応を続けた。転化率が
70%を超えた段階で、脱気機能付き押出機を用い、2
30℃で未反応の単量体及び溶剤を取り除いた。溶融ス
トランドを冷却後に切断し、ペレット状のゴム変性スチ
レン系樹脂を得た。各測定結果を表1に示す。
Example 4 1.1 kg of polybutadiene (Diene 55AE, manufactured by Asahi Kasei Kogyo Co., Ltd.) was converted into 10.0 kg of styrene monomer and 1.8 kg of ethylbenzene in a total amount of 15.1 kg of styrene monomer. Charge the dissolved raw material solution into the reactor,
The temperature was raised to 135 ° C. to start the polymerization reaction. One hour and 40 minutes after the start of the polymerization, the conversion of the styrene monomer was 29.3%.
2.6 k of the remaining styrene monomer
g was added to the reactor, and after 15 minutes, the remaining 2.5 kg of the styrene monomer was added, and the polymerization reaction was continued. When the conversion exceeds 70%, use an extruder with a degassing function
At 30 ° C., unreacted monomers and solvent were removed. The molten strand was cooled and cut to obtain a pellet-shaped rubber-modified styrene resin. Table 1 shows the measurement results.

【0039】実施例5 1.1kgのポリブタジエン(旭化成工業(株)製,ジ
エン55AE)を、全量15.1kgのスチレン単量体
うちの10.0kgのスチレン単量体及び1.8kgの
エチルベンゼンに溶解した原料溶液を反応器に仕込み、
更にスチレン系単量体に対して200ppmのt−ブチ
ルパーオキシベンゾエート(日本油脂製,パーブチル
Z)を添加し、130℃に昇温して重合反応を開始し
た。重合開始から1時間15分後、スチレン単量体の転
化率が37.8%となった時点で、残部のスチレン単量
体5.1kgを反応器中に添加し、更に重合反応を続け
た。転化率が70%を超えた段階で、脱気機能付き押出
機を用い、230℃で未反応の単量体及び溶剤を取り除
いた。溶融ストランドを冷却後に切断し、ペレット状の
ゴム変性スチレン系樹脂を得た。各測定結果を表1に示
す。
Example 5 1.1 kg of polybutadiene (Diene 55AE, manufactured by Asahi Kasei Kogyo Co., Ltd.) was converted to 10.0 kg of styrene monomer and 1.8 kg of ethylbenzene in a total amount of 15.1 kg of styrene monomer. Charge the dissolved raw material solution into the reactor,
Further, 200 ppm of t-butyl peroxybenzoate (Perbutyl Z, manufactured by NOF Corporation) was added to the styrene-based monomer, and the temperature was raised to 130 ° C. to initiate a polymerization reaction. One hour and 15 minutes after the start of the polymerization, when the conversion of the styrene monomer reached 37.8%, 5.1 kg of the remaining styrene monomer was added to the reactor, and the polymerization reaction was further continued. . When the conversion exceeded 70%, unreacted monomers and solvents were removed at 230 ° C. using an extruder with a degassing function. The molten strand was cooled and cut to obtain a pellet-shaped rubber-modified styrene resin. Table 1 shows the measurement results.

【0040】実施例6 1.1kgのポリブタジエン(旭化成工業(株)製,ジ
エン55AE)を、全量15.1kgのうちの14.3
kgのスチレン単量体及び1.8kgのエチルベンゼン
に溶解した原料溶液を反応器に仕込み、135℃に昇温
して重合反応を開始した。重合開始から1時間30分
後、スチレン単量体の転化率が20.9%となった時点
で、残部のスチレン単量体0.8kgを反応器中に添加
し、更に重合反応を続けた。転化率が70%を超えた段
階で、脱気機能付き押出機を用い、230℃で未反応の
単量体及び溶剤を取り除いた。溶融ストランドを冷却後
に切断し、ペレット状のゴム変性スチレン系樹脂を得
た。各測定結果を表1に示す。
Example 6 1.1 kg of polybutadiene (available from Asahi Kasei Kogyo KK, diene 55AE) was used for 14.3 kg of 15.1 kg.
A raw material solution dissolved in kg of styrene monomer and 1.8 kg of ethylbenzene was charged into a reactor, and the temperature was raised to 135 ° C. to start a polymerization reaction. One and a half hours after the start of the polymerization, when the conversion of the styrene monomer reached 20.9%, 0.8 kg of the remaining styrene monomer was added into the reactor, and the polymerization reaction was further continued. . When the conversion exceeded 70%, unreacted monomers and solvents were removed at 230 ° C. using an extruder with a degassing function. The molten strand was cooled and cut to obtain a pellet-shaped rubber-modified styrene resin. Table 1 shows the measurement results.

【0041】比較例1 1.1kgのポリブタジエン(旭化成工業(株)製,ジ
エン55AE)を、15.1kgのスチレン単量体及び
1.8kgのエチルベンゼンに溶解した原料溶液を反応
器に仕込み、135℃に昇温して重合反応を行い、転化
率が70%を超えた段階で、脱気機能付き押出機を用
い、230℃で未反応の単量体及び溶剤を取り除いた。
溶融ストランドを冷却後に切断し、ペレット状のゴム変
性スチレン系樹脂を得た。各測定結果を表1に示す。
Comparative Example 1 A raw material solution obtained by dissolving 1.1 kg of polybutadiene (manufactured by Asahi Kasei Kogyo Co., Ltd., Diene 55AE) in 15.1 kg of a styrene monomer and 1.8 kg of ethylbenzene was charged into a reactor. The polymerization reaction was carried out by elevating the temperature to 70 ° C., and when the conversion exceeded 70%, unreacted monomers and solvents were removed at 230 ° C. using an extruder with a degassing function.
The molten strand was cooled and cut to obtain a pellet-shaped rubber-modified styrene resin. Table 1 shows the measurement results.

【0042】比較例2 0.8kgのポリブタジエン(旭化成工業(株)製,ジ
エン55AE)を、15.4kgのスチレン単量体及び
1.8kgのエチルベンゼンに溶解した原料溶液を反応
器に仕込み、135℃に昇温して重合反応を行い、転化
率が70%を超えた段階で、脱気機能付き押出機を用
い、230℃で未反応の単量体及び溶剤を取り除いた。
溶融ストランドを冷却後に切断し、ペレット状のゴム変
性スチレン系樹脂を得た。各測定結果を表1に示す。
Comparative Example 2 A raw material solution obtained by dissolving 0.8 kg of polybutadiene (manufactured by Asahi Kasei Kogyo Co., Ltd., Diene 55AE) in 15.4 kg of a styrene monomer and 1.8 kg of ethylbenzene was charged into a reactor. The polymerization reaction was carried out by elevating the temperature to 70 ° C., and when the conversion exceeded 70%, unreacted monomers and solvents were removed at 230 ° C. using an extruder with a degassing function.
The molten strand was cooled and cut to obtain a pellet-shaped rubber-modified styrene resin. Table 1 shows the measurement results.

【0043】比較例3 1.1kgのポリブタジエン(旭化成工業(株)製,ジ
エン55AE)を、全量15.1kgのうちの10.0
kgのスチレン単量体及び1.8kgのエチルベンゼン
に溶解した原料溶液を反応器に仕込み、135℃に昇温
して重合反応を開始した。重合開始から30分後、スチ
レン単量体の転化率が11.2%となった時点で、残部
のスチレン単量体5.1kgを反応器中に添加し、更に
重合反応を続けた。転化率が70%を超えた段階で、脱
気機能付き押出機を用い、230℃で未反応の単量体及
び溶剤を取り除いた。溶融ストランドを冷却後に切断
し、ペレット状のゴム変性スチレン系樹脂を得た。各測
定結果を表1に示す。
Comparative Example 3 1.1 kg of polybutadiene (available from Asahi Kasei Kogyo Co., Ltd., Diene 55AE) was added to 10.0 kg of 15.1 kg.
A raw material solution dissolved in kg of styrene monomer and 1.8 kg of ethylbenzene was charged into a reactor, and the temperature was raised to 135 ° C. to start a polymerization reaction. Thirty minutes after the start of the polymerization, when the conversion of the styrene monomer reached 11.2%, 5.1 kg of the remaining styrene monomer was added into the reactor, and the polymerization reaction was further continued. When the conversion exceeded 70%, unreacted monomers and solvents were removed at 230 ° C. using an extruder with a degassing function. The molten strand was cooled and cut to obtain a pellet-shaped rubber-modified styrene resin. Table 1 shows the measurement results.

【0044】[0044]

【表1】 [Table 1]

【0045】実施例1〜5は、(A)成分を分割添加
し、かつ後の添加をゴム相反転状態になった後に行って
いるため、ゴム粒子中の内包オクルージョン含有率を高
めることができた結果、曲げ弾性率を低下させることな
く、デュポン衝撃強度を高めることができた。実施例6
は、後の添加時における(A)成分の添加量が少なかっ
たため、内包オクルージョン含有率とデュポン衝撃強度
が他の実施例よりも低かった。
In Examples 1 to 5, since the component (A) was dividedly added and the subsequent addition was performed after the rubber phase had been inverted, the content of the occlusion included in the rubber particles could be increased. As a result, Dupont impact strength could be increased without lowering the flexural modulus. Example 6
Since the amount of the component (A) added at the time of the subsequent addition was small, the content of the included occlusion and the DuPont impact strength were lower than those of the other examples.

【0046】[0046]

【発明の効果】本発明の製造方法によれば、既存の製造
設備をそのまま利用して、高い剛性及び耐衝撃性を有す
る成形品の原料となるゴム変性スチレン系樹脂を得るこ
とができる。
According to the production method of the present invention, it is possible to obtain a rubber-modified styrenic resin as a raw material of a molded article having high rigidity and impact resistance by utilizing existing production equipment as it is.

フロントページの続き (72)発明者 山口 博敬 兵庫県姫路市福沢町157 Fターム(参考) 4F071 AA10X AA22X AA33X AA67 AA71 AA77 AC09 AC12 AE04 AE05 AE07 AE09 AE11 AE16 AE17 AE22 AF17Y AF23Y AH04 AH05 AH12 AH16 BC04 BC07 4J002 AE052 BN061 BN071 BN141 BN151 BN161 BN211 CP032 EG036 EG046 EP016 EP026 FD016 FD022 FD056 FD076 FD096 FD106 FD136 FD162 FD176 GG01 GG02 GQ00 4J026 AA12 AA13 AA17 AA38 AA49 AA68 AA69 AC01 AC04 AC10 AC11 AC12 AC16 AC32 BA05 BA06 BA08 BA27 BA31 BA35 BA38 BB01 BB03 DB02 DB12 DB15 DB23 DB40 FA07 GA02Continued on the front page (72) Inventor Hirotaka Yamaguchi 157 Fukuzawa-cho, Himeji-shi, Hyogo F-term (reference) 4F071 AA10X AA22X AA33X AA67 AA71 AA77 AC09 AC12 AE04 AE05 AE07 AE09 AE11 AE16 AE17 AE22 AF17Y AF23Y AH04 AH04 AH04 AH07 AE052 BN061 BN071 BN141 BN151 BN161 BN211 CP032 EG036 EG046 EP016 EP026 FD016 FD022 FD056 FD076 FD096 FD106 FD136 FD136 FD162 FD176 GG01 GG02 BA01AC02 DB15 DB23 DB40 FA07 GA02

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 (A)スチレン系単量体又はスチレン系
単量体とこのスチレン系単量体と共重合可能なビニル系
単量体との混合物である原料単量体75〜98重量%と
(B)ゴム状重合体25〜2重量%を含む溶液を重合し
てゴム変性スチレン系樹脂を製造する際、 (A)成分の一部と(B)成分を含む溶液をゴム相反転
の状態まで重合させた後、重合反応系に(A)成分の残
部を一括又は分割して添加し、引き続き重合反応を行う
ことを特徴とするゴム変性スチレン系樹脂の製造方法。
(A) 75 to 98% by weight of a raw material monomer which is a mixture of a styrene monomer or a styrene monomer and a vinyl monomer copolymerizable with the styrene monomer. When a rubber-modified styrene resin is produced by polymerizing a solution containing 25 to 2% by weight of the rubbery polymer (B), the solution containing a part of the component (A) and the component (B) is A method for producing a rubber-modified styrenic resin, which comprises polymerizing to a state, then adding the remainder of the component (A) to the polymerization reaction system in a lump or in a divided manner, and continuing the polymerization reaction.
【請求項2】 重合反応により生成したスチレン系重合
体の生成量(Aw)とゴム状重合体量(Bw)の重量比
(Aw/Bw)が2〜5の範囲にあるとき、(A)成分
の残部を重合反応系に添加する請求項1記載のゴム変性
スチレン系樹脂の製造方法。
2. When the weight ratio (Aw / Bw) of the amount (Aw) of the styrene-based polymer produced by the polymerization reaction and the amount (Bw) of the rubbery polymer is in the range of 2 to 5, (A) The method for producing a rubber-modified styrenic resin according to claim 1, wherein the remainder of the components is added to the polymerization reaction system.
【請求項3】 後で添加した(A)成分の残部の量が、
(A)成分全量中の10〜50重量%の範囲である請求
項1又は2記載のゴム変性スチレン系樹脂の製造方法。
3. The amount of the remaining component (A) added later is:
The method for producing a rubber-modified styrenic resin according to claim 1 or 2, wherein the amount is in the range of 10 to 50% by weight based on the total amount of the component (A).
【請求項4】 請求項1、2又は3記載の製造方法によ
り得られたゴム変性スチレン系樹脂を含むゴム変性スチ
レン系樹脂組成物。
4. A rubber-modified styrenic resin composition containing a rubber-modified styrenic resin obtained by the production method according to claim 1, 2 or 3.
【請求項5】 組成物から得られる成形体が、曲げ弾性
率が1400MPa以上のもの及び/又はデュポン衝撃
強度が1.0J以上のものである請求項4記載のゴム変
性スチレン系樹脂組成物。
5. The rubber-modified styrenic resin composition according to claim 4, wherein the molded article obtained from the composition has a flexural modulus of 1400 MPa or more and / or a DuPont impact strength of 1.0 J or more.
JP2000131960A 2000-05-01 2000-05-01 Manufacturing method of rubber-modified styrenic resin Pending JP2001316437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000131960A JP2001316437A (en) 2000-05-01 2000-05-01 Manufacturing method of rubber-modified styrenic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000131960A JP2001316437A (en) 2000-05-01 2000-05-01 Manufacturing method of rubber-modified styrenic resin

Publications (1)

Publication Number Publication Date
JP2001316437A true JP2001316437A (en) 2001-11-13

Family

ID=18640757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000131960A Pending JP2001316437A (en) 2000-05-01 2000-05-01 Manufacturing method of rubber-modified styrenic resin

Country Status (1)

Country Link
JP (1) JP2001316437A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125897A1 (en) * 2006-04-25 2007-11-08 Ps Japan Corporation Heat shrinkable film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125897A1 (en) * 2006-04-25 2007-11-08 Ps Japan Corporation Heat shrinkable film
JP5468254B2 (en) * 2006-04-25 2014-04-09 Psジャパン株式会社 Heat shrinkable film

Similar Documents

Publication Publication Date Title
JP4863536B2 (en) Impact-resistant aromatic vinyl polymers obtained from rubbers having groups that generate stable free radicals
JP2006206926A (en) Process for manufacture of composition comprising vinylaromatic polymer and rubber by polymerization in the presence of stable free radical
KR20000035598A (en) Rubber-Containing Styrenic Resin and Process for Producing the Same
JP3020112B2 (en) Monovinylidene aromatic polymer with improved properties and process for its preparation
JP2010523732A (en) Monovinyl aromatic polymer composition containing as a dispersed phase a polymer made from renewable resources
TW539687B (en) A process for making ABS polymeric blends
JP2001316437A (en) Manufacturing method of rubber-modified styrenic resin
JPH10195273A (en) High-impact styrene-based resin composition and its molding
JP4130268B2 (en) Manufacturing method of rubber-modified styrene resin
KR100272025B1 (en) Process for manufacturing rubber-modified styrene resin
JP2781335B2 (en) Rubber-modified styrenic resin composition and method for producing the same
JP4260304B2 (en) Method for producing rubber-modified aromatic vinyl resin composition
JP2001089620A (en) Rubber modified aromatic vinyl resin composition
AU4364100A (en) Bimodal rubbers and rubber modified high impact monovinylidene aromatic polymers produced therefrom
JPH05271363A (en) Rubber-modified vinyl aromatic resin composition
JP2001163929A (en) Rubber-containing styrene resin and method for manufacturing same
JP3589369B2 (en) Rubber-modified styrenic resin composition
WO2015041326A1 (en) Vinyl aromatic hydrocarbon polymer composition and method for producing vinyl aromatic hydrocarbon polymer composition
JPH06107743A (en) Production of graft copolymer
JPH061815A (en) Production of graft copolymer
JP3301850B2 (en) Rubber modified styrenic resin composition
JPH03140314A (en) Styrene-based resin composition
JP2000178403A (en) Rubber-modified aromatic vinyl resin composition and its production
JPH11166088A (en) Production of rubber-modified styrene-based resin composition
JPH0465451A (en) Styrene-based resin composition