JP2001316145A - Admixture for hydraulic composition consisting of chaff ash and its application - Google Patents

Admixture for hydraulic composition consisting of chaff ash and its application

Info

Publication number
JP2001316145A
JP2001316145A JP2000130476A JP2000130476A JP2001316145A JP 2001316145 A JP2001316145 A JP 2001316145A JP 2000130476 A JP2000130476 A JP 2000130476A JP 2000130476 A JP2000130476 A JP 2000130476A JP 2001316145 A JP2001316145 A JP 2001316145A
Authority
JP
Japan
Prior art keywords
rice husk
husk ash
admixture
concrete
mortar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000130476A
Other languages
Japanese (ja)
Inventor
Ichiro Wada
一朗 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maeta Techno Research Inc
Maeta Concrete Industry Ltd
Original Assignee
Maeta Techno Research Inc
Maeta Concrete Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maeta Techno Research Inc, Maeta Concrete Industry Ltd filed Critical Maeta Techno Research Inc
Priority to JP2000130476A priority Critical patent/JP2001316145A/en
Publication of JP2001316145A publication Critical patent/JP2001316145A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/10Burned or pyrolised refuse
    • C04B18/101Burned rice husks or other burned vegetable material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/2023Resistance against alkali-aggregate reaction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/23Acid resistance, e.g. against acid air or rain
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

PROBLEM TO BE SOLVED: To provide an admixture for a hydraulic composition with early development of strength, resistance to permeation of chloride ion and a controlled alkali-aggregate reaction. SOLUTION: The admixture consists of a chaff ash with the following properties: specific surface area (BET) is 20-200 m2/g, preferably 50-200 m2/g, ignition loss is <=5%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、比表面積が一定範
囲内の籾殻灰からなる水硬性組成物用混和材、およびこ
の混和材を配合した水硬性組成物とそのコンクリートま
たはコンクリート製品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydraulic composition admixture composed of rice husk ash having a specific surface area within a certain range, a hydraulic composition containing the admixture, and a concrete or concrete product thereof.

【0002】[0002]

【従来の技術】鉄筋コンクリート構造物の寿命は半永久
的なものとこれまでは考えられていたが、ここ数十年の
間に早期中性化、塩害、凍害、アルカリ骨材反応などに
よるコンクリート構造物の早期劣化現象が顕在化し、最
近はその耐久性が疑問視されつつある。塩害は海水やコ
ンクリートの骨材に含有される塩分の影響によってコン
クリートの鉄筋が腐食する現象であり、土木建築分野に
おいてはアルカリ骨材反応、中性化などと並んでコンク
リート構造物の劣化の主要因とされている。この塩害の
防止方法として、海砂などの骨材の徹底した水洗や、化
学混和剤や混練水の塩素イオン含有量の管理を行ってコ
ンクリート中の塩化物総量が規制値以内(0.30kg/m3
下)に納まるようにしている。
2. Description of the Related Art Reinforced concrete structures have long been considered to have a semi-permanent life. However, concrete structures due to early neutralization, salt damage, frost damage, alkali-aggregate reaction, etc. in recent decades have been considered. The phenomenon of early deterioration of steel has become apparent, and its durability has recently been questioned. Salt damage is a phenomenon in which concrete reinforcement corrodes due to the effects of salt contained in seawater and concrete aggregate.In the civil engineering and construction field, along with alkali-aggregate reaction and carbonation, deterioration of concrete structures is a major factor. It has been attributed. As a method of preventing this salt damage, thorough washing of aggregates such as sea sand, and control of the chloride ion content of chemical admixtures and kneading water ensure that the total amount of chloride in concrete is within the regulation value (0.30 kg / m 3 or less).

【0003】[0003]

【発明が解決しようとする課題】このような管理によっ
て塩化物イオンが混入する可能性は少なくなったが、塩
化物イオンの外部からの侵入に対しては対策が不十分で
あった。特に海岸付近の構造物や氷結防止剤として塩化
ナトリウムが使用される場合には塩化物イオンの侵入に
よる鉄筋の腐食が避けられない。この対策の一つとし
て、ポゾラン類を添加してコンクリート組織を緻密化
し、塩化物イオンの浸入を抑止する方法などが提案され
ている(特開平3−40946号公報)が、従来のポゾラ
ンはセメント水和物との反応に長時間を要し、このため
初期材齢強度が低く、工期が長くなるなどの理由からあ
まり利用されてこなかった。
Although the possibility of chloride ions being mixed is reduced by such management, measures against intrusion of chloride ions from the outside have been insufficient. In particular, when sodium chloride is used as a structure near the coast or as an anti-icing agent, corrosion of reinforcing steel due to intrusion of chloride ions is inevitable. As one of the countermeasures, there has been proposed a method of adding a pozzolan to densify a concrete structure to suppress the intrusion of chloride ions (Japanese Patent Laid-Open No. 3-40946). It takes a long time to react with the hydrate, and as a result, it has not been used much because the initial age strength is low and the construction period is long.

【0004】一方、籾殻灰は多量のシリカ分を含み高い
ポゾラン活性を有することから、これをセメント混和材
として利用する試みが従来からなされている。例えば、
コンクリート工学年次論文集(1993年,第15巻,1号)には
「高活性もみがら灰製造方法とそれを用いたコンクリー
トの性質」「籾殻灰を混和したモルタルの基礎性状」と
題し、普通ポルトランドセメントに籾殻灰を混合したコ
ンクリートについて、その混和量と圧縮強度等との関係
が報告されている。しかし、これらの報告は何れも主に
籾殻灰の混和量や製造(焼成)方法について検討したもの
であり、塩化物イオンに対する効果や、その比表面積な
どの影響については殆ど検討されていない。
On the other hand, since rice husk ash contains a large amount of silica and has a high pozzolanic activity, attempts have been made to utilize it as a cement admixture. For example,
The Journal of Concrete Engineering (1993, Vol. 15, No. 1) entitled "Highly active rice ash production method and properties of concrete using it" and "Basic properties of mortar mixed with rice husk ash" The relationship between the amount of concrete mixed with rice husk ash in ordinary Portland cement and its compressive strength has been reported. However, all of these reports mainly examine the mixing amount of the rice husk ash and the production (firing) method, and there is almost no study on the effect on chloride ions or the effect on the specific surface area.

【0005】本発明はこの籾殻灰について、コンクリー
ト等の圧縮強度や塩化物イオンに対する効果とその比表
面積の影響を検討することにより、好適なポゾラン性混
和材として利用できるようにしたものである。すなわち
本発明者等の検討によれば、籾殻灰は一定範囲の比表面
積を有するものと、この範囲を外れるものとは初期強度
の発現性、塩化物イオンの浸透に対する抵抗性などが顕
著に相違することが見出された。本発明はかかる知見に
基づき特定範囲の籾殻灰を水硬性組成物用の混和材とし
て利用するものである。
According to the present invention, the rice husk ash can be used as a suitable pozzolanic admixture by examining the effect on the compressive strength and chloride ion of concrete and the effect of its specific surface area. That is, according to the study of the present inventors, rice husk ash has a specific surface area within a certain range and a material outside this range has a remarkable difference in expression of initial strength, resistance to chloride ion penetration, and the like. Was found to work. The present invention utilizes a specific range of rice husk ash as an admixture for hydraulic compositions based on such findings.

【0006】また、最近は骨材資源の不足により反応性
骨材の使用を完全に排除することは困難になっている
が、本発明によれば反応性骨材を使用してもそのアルカ
リ骨材反応によるヒビ割れを防止することができるの
で、本発明は反応性骨材の使用を可能にするものでもあ
る。
In recent years, it has been difficult to completely eliminate the use of reactive aggregates due to a shortage of aggregate resources. The present invention also makes it possible to use reactive aggregates, since cracks due to the aggregate reaction can be prevented.

【0007】[0007]

【課題を解決する手段】すなわち、本発明は、(1)比
表面積(BET)20〜200m2/gの籾殻灰からなること
を特徴とする水硬性組成物用混和材に関する。この混和
材は、好ましくは、(2)比表面積(BET)50〜200
2/gおよび強熱減量5%以下の籾殻灰からなる水硬性
組成物用混和材である。また本発明は、(3)上記(1)
または(2)の籾殻灰混和材を配合したことを特徴とする
水硬性組成物、(4)上記(3)の水硬性組成物によって
製造されたコンクリートまたはコンクリート製品に関す
る。
That is, the present invention relates to (1) an admixture for hydraulic composition, which comprises rice husk ash having a specific surface area (BET) of 20 to 200 m 2 / g. The admixture preferably has (2) a specific surface area (BET) of 50 to 200.
It is an admixture for hydraulic composition composed of rice husk ash having m 2 / g and a loss on ignition of 5% or less. Further, the present invention provides (3) the above (1)
Or (2) a hydraulic composition comprising the rice hull ash admixture, (4) a concrete or concrete product produced by the hydraulic composition of (3).

【0008】本発明に係る籾殻灰からなる混和材を用い
たモルタルやコンクリートは、その初期強度の発現性が
向上し、また塩化物イオンの浸透に対して優れた抵抗性
を有する。また、アルカリ骨材反応に対する抑制効果が
高く耐酸性および耐磨耗性に優れる。
The mortar or concrete using the admixture of rice husk ash according to the present invention has improved initial strength development and excellent resistance to chloride ion penetration. Further, it has a high effect of suppressing the alkali-aggregate reaction, and is excellent in acid resistance and abrasion resistance.

【0009】[0009]

【発明の実施の形態】以下、本発明を実施形態に基づい
て詳細に説明する。本発明の混和材は比表面積が一定範
囲内の籾殻灰からなるものである。籾殻は600℃前後
の適温で燃焼するとポゾラン活性の高い籾殻灰が得られ
る。この籾殻灰の性質はポゾラン活性度や未燃炭素量等
によって大きく影響される。すなわち、燃焼温度が高す
ぎるとクリストバライトなどの鉱物が生成してポゾラン
活性が低下する。また、燃焼温度が低すぎる場合や燃焼
時間が短すぎる場合には、未燃炭素が増加する。籾殻灰
をコンクリートやモルタルに混和したときに、籾殻灰の
ポゾラン活性が低いとコンクリート等の強度を十分に高
めることができない。また、未燃炭素量が多いとAE減
水剤や減水剤等を吸着し、これら混和剤の効果を減じる
ので好ましくない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on embodiments. The admixture of the present invention is made of rice husk ash having a specific surface area within a certain range. When rice husks are burned at an appropriate temperature of about 600 ° C., rice husk ash having high pozzolanic activity is obtained. The properties of the rice husk ash are greatly affected by the pozzolan activity, the amount of unburned carbon, and the like. That is, if the combustion temperature is too high, minerals such as cristobalite are generated, and the pozzolan activity is reduced. When the combustion temperature is too low or the combustion time is too short, the unburned carbon increases. When rice husk ash is mixed with concrete or mortar, if the pozzolan activity of the rice husk ash is low, the strength of concrete or the like cannot be sufficiently increased. On the other hand, if the amount of unburned carbon is large, the AE water reducing agent, the water reducing agent and the like are adsorbed, and the effect of these admixtures is reduced, which is not preferable.

【0010】本発明の混和材は、BET法によって測定さ
れる比表面積(BET比表面積)が20m2/g〜200m2/
gの未燃炭素量の少ない籾殻灰からなるものである。比
表面積が20m2/g以上の籾殻灰はポゾラン活性が高
く、水硬性物質と急速に反応して初期強度を高める。な
お、比表面積が200m2/gを上回るものは製造が難し
いので、実用上20〜200m2/gの比表面積の籾殻灰
が適当である。好ましくは、比表面積が50m2/g以上
であって強熱減量5%以下のものが良い。実施例に示す
ように、比表面積と強熱減量が上記範囲内の籾殻灰はコ
ンクリートやモルタルに混和したときに、初期強度の発
現性に優れると共に塩化物イオンの浸透に対する抵抗性
およびアルカリ骨材反応に対する抑制効果が高く、耐酸
性および耐磨耗性に優れると云う効果を得ることができ
る。比表面積が50m2/g以上、好ましくは130m2/
g以上で強熱減量が2%以下のものは特にこの効果が優
れる。このような籾殻灰は、例えば、本発明者等の提案
する製造方法(特開平11−141825号公報)によっ
て得ることができる。
The admixture of the present invention has a specific surface area (BET specific surface area) measured by the BET method of from 20 m 2 / g to 200 m 2 / g.
g of rice husk ash with a low unburned carbon content. Rice husk ash having a specific surface area of 20 m 2 / g or more has a high pozzolanic activity and rapidly reacts with a hydraulic substance to increase the initial strength. Incidentally, those having a specific surface area exceeds 200 meters 2 / g because production is difficult, it is appropriate chaff ash specific surface area of practically 20 to 200 m 2 / g. Preferably, the specific surface area is 50 m 2 / g or more and the ignition loss is 5% or less. As shown in the examples, rice husk ash having a specific surface area and loss on ignition within the above ranges, when mixed with concrete or mortar, has excellent initial strength and resistance to chloride ion penetration and alkali aggregate. The effect of suppressing the reaction is high, and the effect of being excellent in acid resistance and abrasion resistance can be obtained. A specific surface area of 50 m 2 / g or more, preferably 130m 2 /
This effect is particularly excellent when the ignition loss is 2 g or less and the ignition loss is 2% or less. Such rice husk ash can be obtained, for example, by a production method proposed by the present inventors (Japanese Patent Application Laid-Open No. H11-141825).

【0011】[0011]

【実施例】本願発明の混和材および比較例の混和材を用
いて以下の実験を行った。試験に用いたセメントおよび
混和材を表1に示す。本発明に用いた籾殻灰は何れも比
較例の籾殻灰に比べて比表面積が大きく強熱減量が小さ
い。この強熱減量は未燃炭素量と相関性があり、強熱減
量が小さいほど未燃炭素量が少ない。強熱減量は規格(J
IS A 6201)に基づいて測定される。
EXAMPLES The following experiments were conducted using the admixture of the present invention and the admixture of the comparative example. Table 1 shows the cement and admixture used in the test. Each of the rice husk ash used in the present invention has a large specific surface area and a small ignition loss as compared with the rice husk ash of the comparative example. This ignition loss has a correlation with the unburned carbon amount, and the smaller the ignition loss is, the smaller the unburned carbon amount is. Ignition loss is to standard (J
It is measured based on IS A 6201).

【0012】[0012]

【表1】 [Table 1]

【0013】実施例1(強度発現試験) 本発明に係る籾殻灰からなる混和材と比較例の混和材を
用い、表2に示す配合に従ってモルタルを調製し、円柱
状(φ50×100mm)に成形して供試体とした。この供試体
について、1日間湿空(20℃,85%R.H.)養生した後に水
中(20℃)養生を行い、その材齢3日,7日,28日の圧縮
強度を測定した。圧縮強度は各供試体について材齢ごと
に4個測定して平均値を求めた。この結果を表2および
図1に示した。比表面積133.5m2/gの籾殻灰を混
和した試料(No.A1〜A3)は材齢28日の圧縮強度が何れ
も100N/mm2以上であり、他の試料に比べて格段に圧
縮強度が高い。また、比表面積53m2/gの籾殻灰を混
和した試料(No.A4〜A6)も比較的高い圧縮強度を示して
いる。一方、比表面積20m2/g以下で強熱減量5%以
上の籾殻灰を配合した試料(No.B2〜B4)の圧縮強度はシ
リカフューム(SF)や高炉スラグ(GFS)を配合したもの(N
o.B5〜B10)と同程度であり、材齢3日の圧縮強度は混和
材を配合しないプレーンモルタル(No.B1)よりも低く、
材齢28日の圧縮強度は大部分が90N/mm2台であっ
た。
Example 1 (Strength development test) Using the admixture of rice husk ash according to the present invention and the admixture of the comparative example, a mortar was prepared according to the composition shown in Table 2, and formed into a columnar shape (φ50 × 100 mm). The specimen was prepared. This specimen was cured in wet air (20 ° C., 85% RH) for one day, and then cured in water (20 ° C.), and its compressive strength was measured at 3, 7, and 28 days of age. The average compressive strength was obtained by measuring four specimens of each specimen for each material age. The results are shown in Table 2 and FIG. The sample (No.A1 to A3) mixed with rice husk ash having a specific surface area of 133.5 m 2 / g has compressive strength of 100 N / mm 2 or more at 28 days of age, and is much more compact than other samples. High strength. Samples (No. A4 to A6) mixed with rice husk ash having a specific surface area of 53 m 2 / g also show relatively high compressive strength. On the other hand, the compressive strength of the sample (No. B2 to B4) containing rice husk ash having a specific surface area of 20 m 2 / g or less and ignition loss of 5% or more was obtained by blending silica fume (SF) or blast furnace slag (GFS) (N
o.B5 ~ B10), the compressive strength of 3 days old is lower than plain mortar (No.B1) which does not contain admixture,
Most of the compressive strengths at the age of 28 days were 90 N / mm 2 units.

【0014】比較例の籾殻灰(RHA4)およびシリカフュー
ムの比表面積は何れも20m2/g以下でありポゾラン反応
の進行に時間がかかる。このため材齢3日強度はプレー
ンモルタル(No.B1)よりも低くなる。この傾向は従来の
ポゾランに共通しており、一般に従来のポゾランを混和
したコンクリートは初期強度が低く、材齢が経過してポ
ゾラン反応が進行した後になって長期材齢強度がプレー
ンコンクリートより高くなる。
The specific surface areas of the rice husk ash (RHA4) and silica fume of the comparative examples are all 20 m 2 / g or less, and it takes time for the pozzolan reaction to proceed. Therefore, the 3-day-old strength is lower than that of plain mortar (No. B1). This tendency is common to conventional pozzolans.Concrete mixed with conventional pozzolans generally has low initial strength, and the long-term age strength becomes higher than plain concrete after the age has passed and the pozzolanic reaction has progressed. .

【0015】一方、本発明の籾殻灰を混和したコンクリ
ートの圧縮強度は材齢3日においても混和材を配合しな
いプレーンコンクリートよりも高く、全ての材齢を通じ
て他の混和材を混和したコンクリートに比べて高い圧縮
強度を示す。これは、本発明では籾殻灰の比表面積が大
きいために、初期材齢から籾殻灰中のシリカとセメント
の水和物とのポゾラン反応が速やかに進行してケイ酸カ
ルシウム水和物が生成し、硬化体組織が緻密化して高い
圧縮強度を有するようになるからである。
On the other hand, the compressive strength of the concrete containing rice husk ash of the present invention is higher than that of plain concrete containing no admixture even at 3 days of age, and is higher than that of concrete mixed with other admixtures at all ages. High compressive strength. This is because, in the present invention, since the specific surface area of the rice husk ash is large, the pozzolanic reaction between the silica and the cement hydrate in the rice husk ash rapidly progresses from the initial age to produce calcium silicate hydrate. This is because the cured body structure becomes dense and has a high compressive strength.

【0016】[0016]

【表2】 [Table 2]

【0017】実施例2(塩化物イオン浸透性試験) 本発明に係る籾殻灰からなる混和材と比較例の混和材を
用い、表3の配合に従ってモルタルを調製し、圧縮強度
測定用の供試体(φ50×100mm)と積算通過電気料測定用
の供試体(φ100×200mm)に成形した。これらの供試体に
ついて1日間湿空(20℃,85%R.H.)養生した後に水中(20
℃)養生を行い、その材齢7日と28日の圧縮強度およ
び積算通過電気量を測定した。電気量測定用の供試体は
試験材齢1日前に供試体をほぼ中央で二分し、切断面を
研磨して円板状(φ100×50mm)とした。この供試体を水
中に浸漬したまま減圧容器内(1mmHgに減圧)に3時間保
持した後に大気圧に戻し、試験材齢まで水中に保持し
た。積算通過電気量の測定は米国の規格試験(AASHTO T
25912)[RCPT試験:Rapid Chloride Permeability Test]
に準じて行った。まず、円板状供試体の両端面(φ100m
m)に電極セル(約500cm3)を取り付け、陽極側セルを水酸
化ナトリウム水溶液(0.3N濃度)および陰極側セルを塩
化ナトリウム水溶液(3.0%濃度)で各々満たし、直流電
流(60.0±0.1V)を印加し、通電開始時から6時間経過
後までの電流値を30分毎に記録して積算通過電気量を
算出した。この電気量は各供試体について材齢ごとに2
個の供試体を測定して平均値を求めた。この結果を表4
に示した。積算通過電気量はコンクリート(モルタル)中
のイオン移動度が高いほど大きくなり、従って積算通過
電気量が小さいほどコンクリート(モルタル)に塩化物イ
オンが浸透し難い。
Example 2 (Chloride ion permeability test) Using the admixture composed of rice husk ash according to the present invention and the admixture of the comparative example, a mortar was prepared according to the composition shown in Table 3, and a specimen for measuring compressive strength was prepared. (φ50 × 100 mm) and a test specimen (φ100 × 200 mm) for measuring the accumulated passing electric charge. After curing these specimens for 1 day in wet air (20 ° C, 85% RH),
℃) Curing was performed, and the compressive strength and the accumulated amount of electricity passed were measured for the ages 7 and 28. The specimen for measuring the quantity of electricity was divided into two parts at about the center one day before the age of the test material, and the cut surface was polished into a disk shape (φ100 × 50 mm). The specimen was kept in a vacuum vessel (reduced pressure to 1 mmHg) for 3 hours while immersed in water, then returned to atmospheric pressure, and kept in water until the test material age. The measurement of the amount of accumulated passing electricity is based on the U.S. standard test (AASHTO T
25912) [RCPT: Rapid Chloride Permeability Test]
It went according to. First, both end faces (φ100m
m) with an electrode cell (approximately 500 cm 3 ), the anode cell is filled with an aqueous sodium hydroxide solution (0.3N concentration) and the cathode cell is filled with an aqueous sodium chloride solution (3.0% concentration), ) Was applied, and the current value from the start of energization to the lapse of 6 hours was recorded every 30 minutes to calculate the integrated amount of passing electricity. This quantity of electricity is 2 per age for each specimen.
An average value was obtained by measuring each of the test specimens. Table 4 shows the results.
It was shown to. The cumulative amount of passing electricity increases as the ion mobility in the concrete (mortar) increases, and therefore, the chloride ion hardly permeates the concrete (mortar) as the cumulative passing amount of electricity decreases.

【0018】モルタルの圧縮強度についてみると、比表
面積が50〜133.5m2/gの籾殻灰(RHA1〜RHA3)を
配合した試料(No.A20〜A28)は何れもプレーンモルタル
よりも高い圧縮強度を示すが、比表面積が20m2/g以
下の籾殻灰(RHA4)を用いた試料(No.B21〜B23)はプレー
ンモルタルに比べて材齢7日の圧縮強度が何れも低い。
また、この籾殻灰(RHA4)を用いたモルタルの材齢28日
圧縮強度は籾殻灰混和率の増加に伴う強度の向上は僅か
であるが、比表面積の大きい籾殻灰(RHA1〜RHA3)を用い
たモルタルでは籾殻灰の混和率に比例して大幅な強度増
加が認められる。
Regarding the compressive strength of the mortar, the samples (Nos. A20 to A28) containing rice husk ash (RHA1 to RHA3) having a specific surface area of 50 to 133.5 m 2 / g were all higher in compressibility than plain mortar. Although showing the strength, the samples (No. B21 to B23) using rice husk ash (RHA4) having a specific surface area of 20 m 2 / g or less have a lower compressive strength at 7 days of age than plain mortar.
The mortar using this rice hull ash (RHA4) has a compressive strength of 28 days of age, but the increase in rice husk ash admixture rate is only slight, but the rice husk ash (RHA1 to RHA3) with a large specific surface area is used. In the mortar, a large increase in strength was observed in proportion to the mixing ratio of rice husk ash.

【0019】積算通過電気量は、材齢および籾殻灰の種
類にかかわらず、籾殻灰を混和したモルタルの積算通過
電気量はプレーンモルタルに比べて小さく、籾殻灰混和
率の増加に伴って積算通過電気量が減少する傾向が認め
られる。籾殻灰を混和したモルタルの積算通過電気量
は、比表面積の大きい籾殻灰(RHA1)を用いたときに特に
小さくなる。また、籾殻灰の混和率が1%の場合(No.A2
0)や、比表面積の小さい籾殻灰(RHA4)を用いたモルタル
(No.B21〜B23)ではプレーンモルタルの積算通過電気量
と大きく変わらないものの、比表面積が大きい本発明の
籾殻灰(RHA1)を用いたものは積算通過電気量が大幅に低
下しており、塩化物イオンの浸透に対して高い抵抗性を
示している。
Regardless of the material age and the type of rice husk ash, the cumulative amount of electricity passed is smaller in mortars mixed with rice husk ash than in plain mortars. There is a tendency for the amount of electricity to decrease. The cumulative amount of electricity passing through the mortar mixed with rice husk ash becomes particularly small when rice husk ash (RHA1) having a large specific surface area is used. When the mixing ratio of rice husk ash is 1% (No.A2
Mortar using rice husk ash (RHA4) with small specific surface area
In (No.B21 to B23), although not significantly different from the accumulated passing electricity of plain mortar, those using the rice husk ash (RHA1) of the present invention having a large specific surface area have a significantly reduced accumulated passing electricity, It shows high resistance to chloride ion penetration.

【0020】このように、比表面積の大きい籾殻灰を混
和したモルタルおよびコンクリートが塩化物イオン浸透
に対して高い抵抗性を有し、かつ優れた強度発現性を示
すのは、この籾殻灰に含まれる非晶質シリカが、比表面
積の小さい籾殻灰に含まれるシリカよりも速やかにセメ
ント水和物と反応してケイ酸カルシウム水和物を生成
し、セメント硬化体組織を緻密化するためにモルタル中
に塩化物イオンが浸透し難くなるからである。
As described above, the mortar and concrete mixed with the rice husk ash having a large specific surface area have high resistance to chloride ion penetration and exhibit excellent strength development because of the rice hull ash contained therein. Amorphous silica reacts more quickly with cement hydrate than silica contained in rice husk ash with a small specific surface area to produce calcium silicate hydrate, and mortar to densify the cement cement structure. This is because it becomes difficult for chloride ions to penetrate therein.

【0021】[0021]

【表3】 [Table 3]

【0022】[0022]

【表4】 [Table 4]

【0023】実施例3(塩化物イオン浸透性試験2) 表5に示す配合のコンクリート(No.B30,A30,A31)をブロ
ック状(100×100×200mm)に成形し、これを1日間湿空
(20℃,85%R.H.)養生した後に27日間水中養生し、さ
らに1週間気乾(20℃,65%R.H.)養生した。この気乾養
生中にコンクリート型枠側面に接していた二側面(100×
200mm)を除く四面をエポキシ樹脂でコートした。これを
20℃の飽和塩化ナトリウム水溶液中に26週間浸漬し
た後に、乾式カッターによってエポキシ樹脂でコートし
ていない面から厚さ1cmに切断したものを粉砕して試料
とし、所定の電位差滴定法(JCI-SC4[硬化コンクリート
中に含まれる塩分の分析方法]の塩化物イオン選択性電
極を用いた電位差滴定法)によってコンクリート中の全
塩化物イオン量を測定した。この結果を表6および図
2、図3に示した。
Example 3 (Chloride ion permeability test 2) Concrete (No. B30, A30, A31) having the composition shown in Table 5 was formed into a block (100 × 100 × 200 mm), which was wet for one day. Sky
After curing at (20 ° C., 85% RH), it was cured in water for 27 days, and further air-dried (20 ° C., 65% RH) for one week. Two sides (100 ×
(200 mm) were coated with epoxy resin. This was immersed in a saturated sodium chloride aqueous solution at 20 ° C. for 26 weeks, then cut by a dry cutter to a thickness of 1 cm from the surface not coated with the epoxy resin, and crushed to obtain a sample, which was subjected to a predetermined potentiometric titration method (JCI The total chloride ion content in concrete was measured by -SC4 [potential difference titration method using chloride ion-selective electrode of [Method for analyzing salt content in hardened concrete]). The results are shown in Table 6 and FIGS.

【0024】籾殻灰の混和率にかかわらず、籾殻灰を混
和したコンクリートの塩化物イオン量は籾殻灰を混和し
ないコンクリートに比べて格段に少ない。籾殻灰を混和
しないコンクリート(No.B30)では表面から1.5cmの部
分の塩化物イオン量は約0.16%であるが、籾殻灰を
混和したコンクリート(No.A30,A31)では表面から1.5c
mの部分の塩化物イオン量は各々0.024%、0.02
0%である。この値は一般に鉄筋が腐食すると云われる
発錆限界値(0.025%)を下回る。また、表面から0.5cm
および1.5cmの部分の全塩化物イオン量に基づき、拡
散方程式によって求めた塩化物イオンの拡散係数を表6
に示した。この結果から明らかなように、本発明の籾殻
灰を混和したコンクリートの塩化物イオン拡散係数は、
これを混和しないものの拡散係数に対して概ね半減して
いる。
Regardless of the mixing ratio of rice husk ash, the amount of chloride ions in concrete mixed with rice husk ash is much smaller than that of concrete not mixed with rice husk ash. In the concrete (No.B30) which does not mix rice husk ash, the amount of chloride ion in the portion 1.5 cm from the surface is about 0.16%, but in the concrete (No.A30, A31) which mixes rice husk ash, 1.5c
The amount of chloride ions in the m part is 0.024% and 0.02%, respectively.
0%. This value is below the rust limit value (0.025%), which is generally said to cause corrosion of reinforcing steel. In addition, 0.5cm from the surface
Table 6 shows the chloride ion diffusion coefficient obtained by the diffusion equation based on the total chloride ion amount in the 1.5 cm portion.
It was shown to. As is clear from the results, the chloride ion diffusion coefficient of concrete mixed with the rice husk ash of the present invention is as follows:
Although this is not mixed, it is almost halved with respect to the diffusion coefficient.

【0025】また、表5に示す配合のコンクリート(B3
1,A32)(B32,A33)をブロック状(100×100×200mm)に成形
し、これを1日間湿空(20℃,85%R.H.)養生した後に2
7日間水中養生し、さらに1週間気乾(20℃,65%R.H.)
養生した。この気乾養生中にコンクリート型枠側面に接
していた二側面(100×200mm)を除く四面をエポキシ樹脂
でコートした。これを20%塩化ナトリウム水溶液に3
日間浸漬し、さらに20℃相対湿度50%で4日間の乾
燥を1サイクルとした乾湿繰り返し試験を13サイクル
(91日間)行った後に、乾式カッターによってエポキシ樹
脂でコートしていない面から厚さ1cmに切断したものを
粉砕して試料とし、上記測定法(JCI-SC4)によってコン
クリート中の全塩化物イオン量を測定した。この結果を
表6にまとめて示した。
Further, concrete (B3
(A32) (B32, A33) was molded into a block (100 × 100 × 200 mm), which was cured for 1 day in moist air (20 ° C., 85% RH).
Cured in water for 7 days, air-dried for 1 week (20 ℃, 65% RH)
Cured. During this air-drying curing, four sides except for two sides (100 × 200 mm) which were in contact with the side of the concrete form were coated with an epoxy resin. Put this in a 20% aqueous sodium chloride solution
13 days of repetition of the dry / humidity test with one cycle consisting of immersion for 20 days and drying for 4 days at 20 ° C. and 50% relative humidity.
(91 days), cut with a dry cutter from the surface not coated with epoxy resin to a thickness of 1 cm, pulverized into a sample, and the total chloride ion in the concrete was measured by the above measurement method (JCI-SC4). The amount was measured. The results are summarized in Table 6.

【0026】水結合材比にかかわらず、本発明の籾殻灰
を混和したコンクリートの全塩化物イオン量はこれを混
和しないコンクリートに比べて小さい。また、塩化物イ
オンの拡散係数も本発明の籾殻灰を混和したものは小さ
く、水結合材比0.53のコンクリートでは拡散係数
が、籾殻灰を混和しないものより半減している。このよ
うに、本発明の籾殻灰を混入したコンクリートは比較例
より塩化物イオンの浸透を抑制する効果が大きい。ま
た、本発明の籾殻灰を混入したモルタルやコンクリート
は比較例に比べて特に初期材齢の圧縮強度が高い。
Regardless of the water binder ratio, the total chloride ion content of the rice husk ash-mixed concrete of the present invention is smaller than that of concrete not mixed with it. In addition, the diffusion coefficient of chloride ions in the case where the rice husk ash of the present invention is mixed is small, and the diffusion coefficient of the concrete having a water binder ratio of 0.53 is reduced to half that in the case where the rice husk ash is not mixed. Thus, the concrete mixed with the rice husk ash of the present invention has a greater effect of suppressing chloride ion penetration than the comparative example. Moreover, the mortar and concrete mixed with the rice husk ash of the present invention have a particularly high compressive strength at the initial age compared to the comparative example.

【0027】[0027]

【表5】 [Table 5]

【0028】[0028]

【表6】 [Table 6]

【0029】実施例4(アルカリ骨材反応) アルカリ骨材反応はセメントに由来するアルカリイオン
(Na+,K+)と反応性骨材中の非晶質シリカとの反応によっ
てアルカリシリカゲルが生成し、このゲルが吸水して膨
張を引き起こす反応である。このアルカリ骨材反応につ
いて以下の試験を行った。粉砕したパイレックス(登録
商標)ガラスを反応性骨材として用い、表7の混和材を
配合してモルタル(JIS A 5308,付属書8に規定する配合)
を調整し、所定の測定法(JIS A 5308,付属書8)に準じて
モルタルバー長さの変化率を測定した。この結果を表7
および図4に示した。なお、所定の測定法(JIS A 5308,
付属書7:骨材のアルカリシリカ反応試験−化学法)によ
って測定した上記パイレックスガラスのアルカリ濃度減
少量(Rc)および溶解シリカ量(Sc)はそれぞれ132mmo
l/l、1918mmol/lであり、Rc≦Scであるのでこの骨
材は無害でない(有害)と判定される。
Example 4 (Alkali-aggregate reaction)
The reaction between (Na + , K + ) and the amorphous silica in the reactive aggregate generates alkaline silica gel, and the gel absorbs water to cause expansion. The following test was conducted for this alkali aggregate reaction. Using crushed Pyrex (registered trademark) glass as the reactive aggregate, blending the admixture shown in Table 7 with mortar (formulation specified in JIS A 5308, Appendix 8)
Was adjusted, and the rate of change in mortar bar length was measured according to a predetermined measurement method (JIS A 5308, Appendix 8). Table 7 shows the results.
And FIG. In addition, the prescribed measurement method (JIS A 5308,
Annex 7: The alkali concentration reduction amount (Rc) and the dissolved silica amount (Sc) of the Pyrex glass measured by the alkali silica reaction test of aggregate (chemical method) were each 132 mmo.
l / l and 1918 mmol / l, and Rc ≦ Sc, the aggregate was determined to be not harmful (harmful).

【0030】混和材を加えないプレーンモルタル(No.B4
0)の長さ変化率は測定材齢の経過に伴って急激に増加
し、材齢6ヶ月で0.50%の膨張を示す。これに対し
て混和材を混和したモルタルの長さ変化率は何れもプレ
ーンモルタルに比べて小さい。材齢6ヶ月の長さ変化率
はプレーンモルタルが最も大きく、No.B41(RHA4:10
%)、No.B44(高炉スラク゛:50%)、No.B42(RHA4:20%)、No.
B43(シリカフューム:10%)、No.A42(RHA2:10%)、No.A40(RHA1:
10%)、No.A43(RHA2:20%)、No.A41(RHA1:20%)の順に
小さくなる。特に、No.A41(RHA1:20%)およびNo.A43(RH
A2:20%)のモルタルは材齢6ヶ月まで殆ど長さ変化が認
められずアルカリ骨材反応に対して顕著な抑制効果が認
められる。因みに上記測定方法(JIS A 5308,付属書8)で
はモルタルバーの膨張率が材齢6ヶ月で0.10%を上
回る場合には使用した骨材が無害ではないと判定され
る。
Plain mortar without admixture (No.B4
0) The length change rate increases rapidly with the passage of the age of the measured material, and shows a 0.50% expansion at the age of 6 months. On the other hand, the length change rate of the mortar mixed with the admixture is smaller than that of the plain mortar. Plain mortar has the largest length change rate of 6 months, No.B41 (RHA4: 10
%), No.B44 (blast furnace slurries: 50%), No.B42 (RHA4: 20%), No.
B43 (silica fume: 10%), No.A42 (RHA2: 10%), No.A40 (RHA1:
10%), No.A43 (RHA2: 20%), and No.A41 (RHA1: 20%) in this order. In particular, No.A41 (RHA1: 20%) and No.A43 (RH
(A2: 20%) mortar shows almost no change in length until the age of 6 months, showing a remarkable inhibitory effect on the alkali-aggregate reaction. By the way, according to the above measuring method (JIS A 5308, Appendix 8), when the expansion rate of the mortar bar exceeds 0.10% at the age of 6 months, it is determined that the used aggregate is not harmless.

【0031】本発明の混和材(RHA1,RHA2)を混和したも
のは、上記測定法(化学法)で無害でないと判定される骨
材を用いた場合でもモルタルの膨張率は低く、材齢6ヶ
月における判定値(JIS:0.10%)を下回る。これまでも
ポゾランの混和によるアルカリ骨材反応抑制効果は報告
されているが、本発明が示す顕著な抑制効果を示すもの
は従来知られていない。
The admixture of the admixture of the present invention (RHA1, RHA2) has a low mortar expansion coefficient even when an aggregate determined to be not harmful by the above-mentioned measurement method (chemical method) is used, and a material age of 6 Less than the judgment value (JIS: 0.10%) in months. So far, the effect of inhibiting the alkali-aggregate reaction due to the incorporation of pozzolan has been reported.

【0032】比表面積の大きい籾殻灰が他のポゾランに
比べてアルカリ骨材反応に対して上述の優れた抑制効果
を示す理由は次のように考えられる。シリカはシロキサ
ン結合(Si-O-Si結合)の網目構造によって形成されてい
るが、その粒子表面はシロキサン結合が分断して生じた
シラノール基(Si-OH基)が多数存在している。従って比
表面積が大きいと云うことはシリカ中のシロキサン結合
(Si-O-Si結合)が少なく、シラノール基(Si-OH基)が多い
状態である。このため多数のシラノール基の水素イオン
(H+)が多くのアルカリイオンで置換されるので、骨材
と反応するアルカリ量を減少させる効果が大きくなる。
また、アルカリイオンによってシリカのシロキサン結合
が切断され、アルカリシリケートゲル(Si-ONa、Si-OK
等)が生成するが、比表面積の大きい籾殻灰では前述の
ようにシラノール基に多数のアルカリイオンが結合して
いるので、アルカリ・シリカモル比(R2O/SiO2:Rはアル
カリ金属)が高いゲルになる。このゲルは分子構造の末
端に多数のアルカリイオンが結合しているのでポリマー
度は低い。このようなゲルはその量が多くても吸水した
ときの膨張性が比較的低いので、これを含むモルタルや
コンクリートの膨張率は低くなる。
The reason why rice husk ash having a large specific surface area exhibits the above-mentioned excellent inhibitory effect on alkali-aggregate reaction as compared with other pozzolans is considered as follows. Silica is formed by a network structure of siloxane bonds (Si-O-Si bonds), and the surface of the particles has a large number of silanol groups (Si-OH groups) generated by breaking siloxane bonds. Therefore, the fact that the specific surface area is large means that siloxane bonds in silica
(Si-O-Si bonds) are small and silanol groups (Si-OH groups) are large. Therefore, many hydrogen ions of silanol groups
Since (H + ) is replaced by many alkali ions, the effect of reducing the amount of alkali that reacts with the aggregate increases.
In addition, siloxane bonds of silica are cleaved by alkali ions, and alkali silicate gels (Si-ONa, Si-OK
Etc.), but in rice husk ash with a large specific surface area, a large number of alkali ions are bonded to silanol groups as described above, so the alkali-silica molar ratio (R 2 O / SiO 2 : R is an alkali metal) It becomes a high gel. This gel has a low degree of polymerization because a large number of alkali ions are bonded to the ends of the molecular structure. Even if the amount of such a gel is large, its expandability upon absorbing water is relatively low, so that the mortar or concrete containing the gel has a low expansion coefficient.

【0033】[0033]

【表7】 [Table 7]

【0034】実施例5(耐酸性試験) 表8に示す配合のモルタルを調製して円柱状(φ50×100
mm)に成形して供試体とし、これを1日間湿空(20℃,85
%R.H.)養生した後に、材齢28日まで水中養生(20℃)
し、20℃の2%塩酸に26週間浸漬したときの供試体
の質量減少率を1週間毎に測定した。測定の際には、侵
食された部分をワイヤブラシで除去し、試験溶液は1週
間ごとに新しいものと取り替えた。この結果を表8およ
び図5に示した。配合にかかわらず、モルタルの質量は
浸漬期間の経過と共に減少する傾向にある。また、水結
合材比にかかわらず、全ての浸漬期間においてプレーン
モルタル(No.B50,B51)の質量減少率が最も大きく、籾殻
灰混和率の増加に伴い質量減少率は小さくなる傾向にあ
る。具体的には、プレーンモルタル(No.B50:水結合材比
0.30)(No.B51:水結合材比0.40)の浸漬期間26週間にお
ける質量減少率は各々約73%、約84%である。一
方、籾殻灰を混和したモルタル(No.A50〜A53)の浸漬期
間26週間における質量減少率はプレーンモルタルの値
の1/3以下であり、顕著な耐酸性を示す。籾殻灰を混
和したモルタルが塩酸に対して優れた抵抗性を有するの
は、籾殻灰のポゾラン反応によってモルタル中の水酸化
カルシウムが消費され、水酸化カルシウムよりも化学的
に安定なケイ酸カルシウム水和物が生成されるからであ
る。
Example 5 (Acid resistance test) A mortar having the composition shown in Table 8 was prepared and a mortar having a columnar shape (φ50 × 100 ) was prepared.
mm) to give a specimen, which was humid air (20 ° C, 85
% RH) After curing, water curing (20 ℃) until the age of 28 days
Then, the mass reduction rate of the specimen when immersed in 2% hydrochloric acid at 20 ° C. for 26 weeks was measured every week. During the measurement, the eroded portion was removed with a wire brush, and the test solution was replaced with a new one every week. The results are shown in Table 8 and FIG. Regardless of the formulation, the weight of the mortar tends to decrease over the immersion period. Regardless of the water binder ratio, the mass reduction rate of plain mortar (No. B50, B51) was the largest during all the immersion periods, and the mass reduction rate tended to decrease as the rice husk ash mixing ratio increased. Specifically, plain mortar (No.B50: water binder ratio
0.30) (No. B51: water binder ratio 0.40), the mass reduction rate during the immersion period of 26 weeks is about 73% and about 84%, respectively. On the other hand, the mortar mixed with the rice husk ash (No. A50 to A53) has a mass reduction rate of 1/3 or less of the value of the plain mortar during the immersion period of 26 weeks, indicating remarkable acid resistance. Mortar mixed with rice husk ash has excellent resistance to hydrochloric acid because calcium hydroxide in mortar is consumed by the pozzolanic reaction of rice husk ash, and calcium silicate water is chemically more stable than calcium hydroxide. This is because a hydrate is generated.

【0035】実施例6(耐摩耗性試験) 実施例5と同様のモルタルについて、擦り減り試験を規
格(ASTM C418)に準じて行った。具体的には、モルタル
を成形して供試体(40×40×160mm)とし、実施例5と同
様に養生を行った後、その型枠側面に接していた一方の
面(40×160mm)に開口部(φ28.7mm)を有するシールド板
を置き、噴射ノズルと供試体との距離を76±2.5mmに保
ち、開口部に向かって噴射ノズルから珪砂(粒径0.6〜08
5mm、600±25g)を所定の圧力(414±1 KPa)で1分間噴
射させ、摩耗した部分に油粘土を詰めて体積を測定し、
珪砂の衝突による擦り減り量を求めた。測定は1つの供
試体について9ヶ所行い、平均値を求めた。この結果を
表8に示した。水結合材比にかかわらず、籾殻灰の混和
によってモルタルの擦り減り量は若干減少する。具体的
には、プレーンモルタルの擦り減り量に対して籾殻灰を
混和したモルタルの擦り減り量は、水結合材比0.30
のとき約90%、水結合材比0.40のとき約83%で
あり、何れもモルタルの耐摩耗性が向上している。
Example 6 (Abrasion Resistance Test) A mortar similar to that in Example 5 was subjected to a rubbing test in accordance with the standard (ASTM C418). Specifically, a mortar was formed into a test specimen (40 × 40 × 160 mm), and after curing was performed in the same manner as in Example 5, one surface (40 × 160 mm) that was in contact with the side of the formwork was applied. Place a shield plate with an opening (φ 28.7 mm), keep the distance between the injection nozzle and the specimen at 76 ± 2.5 mm, and send silica sand (particle size 0.6 to 08) from the injection nozzle toward the opening.
5 mm, 600 ± 25 g) is sprayed at a predetermined pressure (414 ± 1 KPa) for 1 minute, the oiled clay is filled in the worn part and the volume is measured,
The abrasion loss due to the silica sand collision was determined. The measurement was performed at nine locations for one specimen, and the average value was determined. The results are shown in Table 8. Regardless of the water binder ratio, the incorporation of rice husk ash slightly reduces the amount of mortar abrasion. Specifically, the abrasion loss of the mortar mixed with rice husk ash with respect to the abrasion loss of the plain mortar is 0.30 relative to the water binder.
In this case, the mortar is about 90%, and when the water binder ratio is 0.40, it is about 83%.

【0036】実施例5および実施例6に用いた籾殻灰は
比表面積が約110m2/g、強熱減量が約1.8%のも
のであるが、強熱減量が2%以下であって比表面積が約
100m2/g以上の籾殻灰をモルタルやコンクリートに
混和することにより耐酸性および耐摩耗性を高めること
ができる。
The husk ash used in Examples 5 and 6 has a specific surface area of about 110 m 2 / g and a loss on ignition of about 1.8%, but the loss on ignition is less than 2%. By mixing rice husk ash having a specific surface area of about 100 m 2 / g or more with mortar or concrete, acid resistance and abrasion resistance can be enhanced.

【0037】[0037]

【表8】 [Table 8]

【0038】[0038]

【発明の効果】以上のように、本発明の水硬性組成物用
混和材は、比表面積が特定範囲の籾殻灰からなるもので
あり、この混和材によれば従来のシリカフュームや高炉
スラグよりもモルタルやコンクリートの初期強度の発現
性が良く、また塩化物イオンの浸透に対して顕著な抵抗
性を有する。さらに、本発明の混和材を配合したものは
アルカリ骨材反応に対する抑制効果が高く、耐酸性およ
び耐摩耗性にも優れる。
As described above, the admixture for hydraulic composition of the present invention is composed of rice husk ash having a specific surface area in a specific range. According to this admixture, the admixture is less than conventional silica fume or blast furnace slag. It has good initial strength of mortar and concrete, and has remarkable resistance to chloride ion penetration. Further, those containing the admixture of the present invention have a high effect of suppressing the alkali-aggregate reaction and are excellent in acid resistance and abrasion resistance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の結果を示すグラフFIG. 1 is a graph showing the results of Example 1.

【図2】実施例3の結果を示すグラフFIG. 2 is a graph showing the results of Example 3.

【図3】実施例3の結果を示すグラフFIG. 3 is a graph showing the results of Example 3.

【図4】実施例4の結果を示すグラフFIG. 4 is a graph showing the results of Example 4.

【図5】実施例5の結果を示すグラフFIG. 5 is a graph showing the results of Example 5.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 比表面積(BET)20〜200m2/gの籾
殻灰からなることを特徴とする水硬性組成物用混和材。
1. An admixture for hydraulic composition comprising rice husk ash having a specific surface area (BET) of 20 to 200 m 2 / g.
【請求項2】 比表面積(BET)50〜200m2/gおよ
び強熱減量5%以下の籾殻灰からなる請求項1の水硬性
組成物用混和材。
2. The admixture for hydraulic compositions according to claim 1, comprising rice husk ash having a specific surface area (BET) of 50 to 200 m 2 / g and a loss on ignition of 5% or less.
【請求項3】 請求項1または2の籾殻灰混和材を配合
したことを特徴とする水硬性組成物。
3. A hydraulic composition comprising the rice hull ash admixture of claim 1 or 2.
【請求項4】 請求項3の水硬性組成物によって製造さ
れたコンクリートまたはコンクリート製品。
4. A concrete or concrete product made with the hydraulic composition of claim 3.
JP2000130476A 2000-04-28 2000-04-28 Admixture for hydraulic composition consisting of chaff ash and its application Pending JP2001316145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000130476A JP2001316145A (en) 2000-04-28 2000-04-28 Admixture for hydraulic composition consisting of chaff ash and its application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000130476A JP2001316145A (en) 2000-04-28 2000-04-28 Admixture for hydraulic composition consisting of chaff ash and its application

Publications (1)

Publication Number Publication Date
JP2001316145A true JP2001316145A (en) 2001-11-13

Family

ID=18639573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000130476A Pending JP2001316145A (en) 2000-04-28 2000-04-28 Admixture for hydraulic composition consisting of chaff ash and its application

Country Status (1)

Country Link
JP (1) JP2001316145A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022345A1 (en) * 2015-07-31 2017-02-09 勝義 近藤 Cement-based material for radioactive-waste disposal site
JP6262897B1 (en) * 2017-03-01 2018-01-17 国立大学法人 岡山大学 Composition for mortar or concrete, molded product obtained by molding the same, and method for confirming quality of mortar or concrete
US20240059613A1 (en) * 2022-08-16 2024-02-22 Dalian University Of Technology Curing agent for disposal of municipal solid waste incineration (mswi) fly ash and preparation method and use method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02141448A (en) * 1988-02-24 1990-05-30 W R Grace & Co Improved rice hull ash admixture for concrete
JPH05508607A (en) * 1990-06-25 1993-12-02 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Highly durable cement products containing siliceous ash
JPH0848515A (en) * 1994-08-05 1996-02-20 Maeda Seikan Kk Production of amorphous silica from chaff as raw material
JPH08268740A (en) * 1995-03-28 1996-10-15 Chichibu Onoda Cement Corp Cement admixture, production of blended cement and device therefor
JPH09255964A (en) * 1996-03-22 1997-09-30 Maeda Seikan Kk Process and apparatus for producing highly active rice hull ash
JPH11141825A (en) * 1997-11-10 1999-05-28 Maeda Sentan Gijutsu Kenkyusho:Kk Method and device of manufacture of high active chaff ash

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02141448A (en) * 1988-02-24 1990-05-30 W R Grace & Co Improved rice hull ash admixture for concrete
JPH05508607A (en) * 1990-06-25 1993-12-02 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Highly durable cement products containing siliceous ash
JPH0848515A (en) * 1994-08-05 1996-02-20 Maeda Seikan Kk Production of amorphous silica from chaff as raw material
JPH08268740A (en) * 1995-03-28 1996-10-15 Chichibu Onoda Cement Corp Cement admixture, production of blended cement and device therefor
JPH09255964A (en) * 1996-03-22 1997-09-30 Maeda Seikan Kk Process and apparatus for producing highly active rice hull ash
JPH11141825A (en) * 1997-11-10 1999-05-28 Maeda Sentan Gijutsu Kenkyusho:Kk Method and device of manufacture of high active chaff ash

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022345A1 (en) * 2015-07-31 2017-02-09 勝義 近藤 Cement-based material for radioactive-waste disposal site
JPWO2017022345A1 (en) * 2015-07-31 2018-04-05 勝義 近藤 Cement-based materials for radioactive waste disposal sites
US10807910B2 (en) 2015-07-31 2020-10-20 Katsuyoshi Kondoh Cementitious material for radioactive waste disposal facility
JP6262897B1 (en) * 2017-03-01 2018-01-17 国立大学法人 岡山大学 Composition for mortar or concrete, molded product obtained by molding the same, and method for confirming quality of mortar or concrete
JP2018145023A (en) * 2017-03-01 2018-09-20 国立大学法人 岡山大学 Composition for mortar or concrete and molded article formed by molding the same, and method for checking the quality of mortar or concrete
US20240059613A1 (en) * 2022-08-16 2024-02-22 Dalian University Of Technology Curing agent for disposal of municipal solid waste incineration (mswi) fly ash and preparation method and use method thereof
US11919811B1 (en) * 2022-08-16 2024-03-05 Dalian University Of Technology Curing agent for disposal of municipal solid waste incineration (MSWI) fly ash and preparation method and use method thereof

Similar Documents

Publication Publication Date Title
Khan et al. Utilization of silica fume in concrete: Review of durability properties
Hou et al. Effect of admixtures in concrete on the corrosion resistance of steel reinforced concrete
Hawkins et al. The use of limestone in Portland cement: a state-of-the-art review
Bijen Benefits of slag and fly ash
Singh et al. Reviewing the carbonation resistance of concrete
JP6639608B2 (en) Highly durable mortar, highly durable concrete, and method of manufacturing high durable mortar
JP6521607B2 (en) High durability mortar and high durability concrete
Dhir et al. PFA concrete: chloride diffusion rates
Murthi et al. Studies on acid resistance of ternary blended concrete
CN111333403A (en) Preparation method and application of phosphorus-magnesium-based cement concrete coating protective material
Krivenko et al. Alkali-aggregate reaction in alkali-activated cement concretes
KR101612113B1 (en) Binder compositions for concrete and concrete compositions using the same
Dhir et al. PULVERIZED-FUEL ASH CONCRETE: CARBONATION-INDUCED REINFORCEMENT CORROSION RATES.
JP5259094B6 (en) Hydrated hardened body excellent in neutralization resistance with rebar
Ramezanianpour et al. Effect of four Iranian natural pozzolans on concrete durability against chloride penetration and sulfate attack
JP2013107284A (en) Cured body and method for producing the same
JP2001316145A (en) Admixture for hydraulic composition consisting of chaff ash and its application
Sadawy Effect of Al2O3 additives on the corrosion and electrochemical behavior of steel embedded in ordinary Portland cement concrete
JP6911991B2 (en) Admixtures for mortar and concrete, hydraulic compositions, cement compositions and concrete
Siddique et al. Rice husk ash
Munn et al. Performance and compatibility of permeability reducing and other chemical admixtures in Australian concretes
KR100933224B1 (en) Composition of polymer mortar and repair method of concrete structures using the same
Junzhe et al. Effect of anti-freezing admixtures on alkali-silica reaction in mortars
JP4791200B2 (en) Hydrated cured body and method for producing the same
JPH0542388B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100610

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100929