JP2001315539A - Drive shaft - Google Patents

Drive shaft

Info

Publication number
JP2001315539A
JP2001315539A JP2000136202A JP2000136202A JP2001315539A JP 2001315539 A JP2001315539 A JP 2001315539A JP 2000136202 A JP2000136202 A JP 2000136202A JP 2000136202 A JP2000136202 A JP 2000136202A JP 2001315539 A JP2001315539 A JP 2001315539A
Authority
JP
Japan
Prior art keywords
shaft
stub
drive shaft
constant velocity
intermediate shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000136202A
Other languages
Japanese (ja)
Inventor
Yukihiro Watanabe
幸弘 渡辺
Kaga Shioda
佳雅 潮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2000136202A priority Critical patent/JP2001315539A/en
Publication of JP2001315539A publication Critical patent/JP2001315539A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Motor Power Transmission Devices (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To use a lightweight shaft of high-quality and inexpensive manufacturing cost as an intermediate shaft for a drive shaft of an automobile. SOLUTION: The intermediate shaft 21 for joining constant velocity universal joints 2 and 3 to both end parts is formed by joining mutual end surfaces of stub shafts 22 and 23 formed by cold forging by frictional welding, etc. The respective stub shafts 22 and 23 have shaft parts 22a and 23a and cylindrical parts 22b and 23b, and the cylindrical parts and a spline part are accurately plastically worked by cold-forging these parts to easily improve a quality of the intermediate shaft 21. The intermediate shaft 21 can be mass-produced by reducing a material cost and a manufacturing equipment cost, and is suitable for the drive shaft of the automobile of small lot multi-production.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、自動車等の回転
力伝達手段として用いられ、中間軸の両端部に等速自在
継手を結合させたドライブシャフトに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drive shaft used as a rotational force transmitting means for an automobile or the like and having a constant velocity universal joint connected to both ends of an intermediate shaft.

【0002】[0002]

【従来の技術】自動車エンジンからの駆動力を車輪に伝
達するドライブシャフトは、1本の中間軸の両端部に一
対の等速自在継手をトルク伝達可能に結合させたユニッ
ト構造を有する。このドライブシャフトの中間軸は、適
用される車種によって多くの種類のものが量産されてお
り、その種類を基本構造で大別すると、中実の棒材から
加工された中実シャフトタイプと、鋼管等から加工され
た中空シャフトタイプがある。自動車の軽量化やドライ
ブシャフト剛性アップによる車室内の静粛性向上の要求
から、中空シャフトタイプの中間軸が多車種に使用され
る傾向にある。
2. Description of the Related Art A drive shaft for transmitting a driving force from an automobile engine to wheels has a unit structure in which a pair of constant velocity universal joints are coupled to both ends of a single intermediate shaft so as to transmit torque. Many types of intermediate shafts of this drive shaft are mass-produced depending on the type of vehicle to be applied, and the types are roughly classified according to the basic structure. There is a hollow shaft type machined from such as. Due to the demand for improved vehicle interior silence by reducing the weight of automobiles and increasing the rigidity of drive shafts, hollow shaft type intermediate shafts tend to be used for many types of vehicles.

【0003】また、中空シャフトタイプの中間軸につい
ても、大別すると一本の鋼管等のパイプ材を塑性加工し
た一体型中空シャフトと、一対のスタブシャフトを一本
のパイプ材に圧接や溶接で接合した二箇所接合タイプの
パイプ接合型中空シャフトがある。この二種の中間軸を
使用したドライブシャフトの従来例を図4と図5に示
し、二種の中間軸の概略構造を図3(B)(C)に示
す。
[0003] The hollow shaft type intermediate shaft is also roughly divided into an integral hollow shaft obtained by plastically processing a pipe material such as a steel pipe, and a pair of stub shafts pressed and welded to a single pipe material. There is a pipe joint type hollow shaft of a jointed two-point joint type. FIGS. 4 and 5 show a conventional example of a drive shaft using these two types of intermediate shafts, and FIGS. 3B and 3C show schematic structures of the two types of intermediate shafts.

【0004】図4に示すドライブシャフトの中間軸1は
前述した一体型中空シャフトであり、この中間軸1の両
端部は同一外径で肉厚の軸部1a,1cに、中央部は軸
部1a,1cより大径化した肉薄の円筒部1bに塑性加
工されている。中間軸1の一方の軸部1aに摺動型等速
自在継手2がスプラインによりトルク伝達可能に結合さ
れ、他方の軸部1cに固定型等速自在継手3がスプライ
ンによりトルク伝達可能に結合される。一方の等速自在
継手2は自動車のエンジンの駆動軸側に連結され、他方
の等速自在継手3は車輪側に連結される。
The intermediate shaft 1 of the drive shaft shown in FIG. 4 is an integral hollow shaft as described above. Both ends of the intermediate shaft 1 are formed into thick shafts 1a and 1c having the same outer diameter, and the center is formed as a shaft. It is plastically worked into a thin cylindrical portion 1b having a larger diameter than 1a and 1c. A sliding type constant velocity universal joint 2 is coupled to one shaft portion 1a of the intermediate shaft 1 by a spline so as to transmit torque, and a fixed type constant velocity universal joint 3 is coupled to the other shaft portion 1c by a spline to transmit torque. You. One constant velocity universal joint 2 is connected to the drive shaft side of the engine of the automobile, and the other constant velocity universal joint 3 is connected to the wheel side.

【0005】なお、これら各等速自在継手2,3は、中
間軸1にスプラインにより結合されたトリポード部材2
a,内輪3aと、自動車のエンジン側、車輪側にそれぞ
れ連結された外輪2b,3b等を具備し、それぞれの外
輪2b,3bの開口端と中間軸1間にブーツ2c,3c
が装着されている。
[0005] Each of the constant velocity universal joints 2 and 3 has a tripod member 2 connected to an intermediate shaft 1 by a spline.
a, an inner wheel 3a, and outer wheels 2b, 3b and the like connected to the engine side and the wheel side of the automobile, respectively, and boots 2c, 3c are provided between the open ends of the outer wheels 2b, 3b and the intermediate shaft 1.
Is installed.

【0006】図5に示すドライブシャフトの中間軸11
は、図3(C)の概略構造に示すような二箇所圧接タイ
プのパイプ接合型中空シャフトで、左右一対のスタブシ
ャフト12,13と中央一本のパイプ材14を同軸に連
結している。二本のスタブシャフト12,13は中実の
棒材を熱鍛(亜熱鍛)から機械加工(旋削、スプライン
転造)を行ってから熱処理して製作される。各スタブシ
ャフト12,13は、中実棒材の熱鍛により成形された
中実棒状の軸部12a,13aと、軸部12a,13a
の片端に大径に機械加工された円筒部12b,13bを
有する。円筒部12b,13bとパイプ材14が同径
で、パイプ材14の両端面に円筒部12bの開口端面と
円筒部13bの開口端面を突き合わせて溶接又は圧接で
接合されて、一本の中間軸11が製作される。
The intermediate shaft 11 of the drive shaft shown in FIG.
Is a two-position pressure welding type pipe-joined hollow shaft as shown in the schematic structure of FIG. 3 (C), and coaxially connects a pair of left and right stub shafts 12, 13 and a central pipe member 14. The two stub shafts 12 and 13 are manufactured by subjecting a solid bar to machining (turning, spline rolling) from hot forging (sub-hot forging) and then heat-treating. Each of the stub shafts 12 and 13 has solid rod-shaped shaft portions 12a and 13a formed by hot forging of a solid bar material, and shaft portions 12a and 13a.
Has cylindrical parts 12b and 13b machined to a large diameter at one end. The cylindrical portions 12b, 13b and the pipe member 14 have the same diameter, and the opening end surface of the cylindrical portion 12b and the opening end surface of the cylindrical portion 13b abut on both end surfaces of the pipe member 14 and are joined by welding or pressure welding to form one intermediate shaft. 11 is manufactured.

【0007】[0007]

【発明が解決しようとする課題】ところで、前記中空シ
ャフトタイプの中間軸は、軽量でシャフト剛性に優れる
ことから多品種の車両に適用されているが、構造に基づ
く製法上に次なる問題があった。
The hollow shaft type intermediate shaft has been applied to various kinds of vehicles because of its light weight and excellent shaft rigidity. However, the following problems arise in the manufacturing method based on the structure. Was.

【0008】図4と図3(B)に示す一体型中空シャフ
トの中間軸1は、長尺な鋼管等のパイプ材を塑性加工し
て成形されるため、これを塑性加工するためのスウェー
ジング機や型などの設備コストが高くなる。さらに、原
材にパイプ材を使用するが、パイプ材は中実棒材に比べ
てコスト高であり、材料コストが高く付く。そのため、
中間軸1は、製造単価が高くなって多品種少量生産の車
両用中間軸には不適当であり、汎用性に劣る。また、パ
イプ材から中間軸1を成形した後、中央の円筒部1bの
内面のキズや欠陥の有無、大小を検査することが難し
く、これが中間軸全体の品質管理の工数を多くし、高精
度な検査を難しくしている。
Since the intermediate shaft 1 of the integral hollow shaft shown in FIGS. 4 and 3B is formed by plastically processing a pipe material such as a long steel pipe, a swaging for plastically processing the same. Equipment costs such as machines and molds increase. Further, a pipe material is used as a raw material, and the cost of the pipe material is higher than that of a solid rod material, and the material cost is higher. for that reason,
The intermediate shaft 1 is unsuitable for a vehicle intermediate shaft for high-mix low-volume production due to a high manufacturing cost, and is inferior in versatility. In addition, after forming the intermediate shaft 1 from the pipe material, it is difficult to inspect the inner surface of the central cylindrical portion 1b for the presence or absence of a flaw or a defect, and the size thereof. This increases the number of man-hours for quality control of the entire intermediate shaft and increases the accuracy. Inspection is difficult.

【0009】図5と図3(C)に示すパイプ接合型中空
シャフトの中間軸11を構成する一対のスタブシャフト
12,13を中実の棒材を熱鍛加工(亜熱鍛加工)し機
械加工(旋削、スプライン転造)をして、熱処理してか
らパイプ材14と接合して製造しているが、この機械加
工のときに円筒部12b,13bを中空部に旋削し、軸
部12a,13aの端部外周のスプライン部を転造によ
り形成しているため、スプライン部を同軸度など高精度
に仕上げすることが技術的に難しく、また、高精度仕上
げするための設備コストが高くなる。また、中間軸11
は二本のスタブシャフト12,13と一本のパイプ材1
4の計三本が必要で、その保守管理が煩雑となる。ま
た、スタブシャフト12,13とパイプ材14を連結す
るためには、計二箇所を溶接又は圧接で接合しなければ
ならず、この二回の接合工程が製造コストを高くしてい
る。
A pair of stub shafts 12 and 13 constituting an intermediate shaft 11 of a pipe-joined hollow shaft shown in FIGS. 5 and 3 (C) are machined by hot forging (sub-hot forging) a solid bar. It is manufactured by processing (turning, spline rolling), heat-treating and joining with the pipe material 14. At the time of this machining, the cylindrical portions 12b and 13b are turned into hollow portions and the shaft portions 12a are formed. , 13a are formed by rolling the outer periphery of the spline portion, so that it is technically difficult to finish the spline portion with high accuracy such as coaxiality, and the equipment cost for finishing with high accuracy is increased. . Also, the intermediate shaft 11
Is two stub shafts 12 and 13 and one pipe material 1
4 requires a total of three cables, which makes the maintenance management complicated. In addition, in order to connect the stub shafts 12, 13 and the pipe member 14, a total of two places must be joined by welding or pressure welding, and the two joining steps increase the manufacturing cost.

【0010】そこで、本発明は前記問題点に鑑みて提案
されたもので、その目的は、低コストで高精度な中間軸
を備えたドライブシャフトを提供することにある。
Accordingly, the present invention has been proposed in view of the above problems, and has as its object to provide a low-cost, high-precision drive shaft having an intermediate shaft.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するこの
発明の請求項1の発明は、中間軸の両端部に等速自在継
手をそれぞれ結合させたドライブシャフトにおいて、前
記中間軸は、冷間鍛造により形成された軸部と円筒部を
有する一対のスタブシャフトからなり、このスタブシャ
フトの円筒部同士を同軸に接合したことを特徴とする。
According to a first aspect of the present invention, there is provided a drive shaft in which a constant velocity universal joint is connected to both ends of an intermediate shaft. The stub shaft includes a pair of stub shafts having a shaft portion and a cylindrical portion formed by forging, and the cylindrical portions of the stub shaft are coaxially joined.

【0012】ここで、スタブシャフトは,中実の棒材を
冷間鍛造して成形されることにより機械加工する部所が
大幅に減り、その分、量産性や精度が良くなる。また、
一対のスタブシャフトを接合して中間軸を成形する構造
は、接合箇所が一箇所となって低コストで製造される。
[0012] Here, the stub shaft is formed by cold forging a solid bar, so that the number of parts to be machined is greatly reduced, and mass productivity and accuracy are improved accordingly. Also,
The structure in which the intermediate shaft is formed by joining a pair of stub shafts is manufactured at a low cost because the joining point is one.

【0013】また、請求項2の発明は、等速自在継手と
結合されるスタブシャフトの軸部スプラインをしごき加
工により形成したことを特徴とする。つまり、スタブシ
ャフトを冷間鍛造するときに、軸部の端部を機械加工せ
ずに冷間鍛造によるしごき加工でスプラインを形成すれ
ば、軸部スプラインの同軸度などが高精度に仕上げられ
る。
The invention according to claim 2 is characterized in that the shaft spline of the stub shaft connected to the constant velocity universal joint is formed by ironing. That is, when the stub shaft is cold forged, if the spline is formed by ironing by cold forging without machining the end of the shaft, the coaxiality of the shaft spline can be finished with high accuracy.

【0014】請求項3の発明は、前記スタブシャフトの
円筒部をしごき加工により形成したことを特徴とする。
この場合もスタブシャフトを冷間鍛造するときに、円筒
部を機械加工せずに冷間鍛造によるしごき加工で形成す
れば、円筒部が高精度に仕上げられる。
According to a third aspect of the present invention, the cylindrical portion of the stub shaft is formed by ironing.
Also in this case, when the stub shaft is cold forged, if the cylindrical portion is formed by ironing by cold forging without machining, the cylindrical portion can be finished with high precision.

【0015】請求項4の発明は、前記スタブシャフトの
円筒部同士を摩擦圧接にて接合したことを特徴とする。
つまり、スタブシャフト同士の接合は溶接も可能である
が、冷間鍛造されたスタブシャフトにおいては摩擦圧接
による接合が強度的かつ設備的に有利である。
According to a fourth aspect of the present invention, the cylindrical portions of the stub shaft are joined by friction welding.
That is, welding between the stub shafts can be performed by welding, but in a cold-forged stub shaft, joining by friction welding is advantageous in terms of strength and equipment.

【0016】請求項5の発明は、前記スタブシャフトの
円筒部の開口側が、この開口側と反対の軸部側より大径
に形成されていることを特徴とする。このようにスタブ
シャフトの円筒部を開口側に拡径させた形状にすること
で、スタブシャフトの接合部の径が増して、接合強度が
増大する。
The invention according to claim 5 is characterized in that the opening side of the cylindrical portion of the stub shaft is formed to have a larger diameter than the shaft portion side opposite to the opening side. By forming the cylindrical portion of the stub shaft in such a manner that the diameter of the cylindrical portion is increased toward the opening side, the diameter of the joining portion of the stub shaft increases, and the joining strength increases.

【0017】請求項6の発明は、前記スタブシャフトの
少なくとも軸部に高周波焼き入れにより表面硬化層を形
成したことを特徴とする。スタブシャフトの軸部は、そ
の外周にスプラインが形成され、円筒部に比べ断面係数
が小さく、捩り強度が弱くなるため、前記軸部に表面硬
化層を形成しておけば、高強度となる点で好ましい。
According to a sixth aspect of the present invention, a hardened surface layer is formed on at least a shaft portion of the stub shaft by induction hardening. The shaft portion of the stub shaft has a spline formed on its outer periphery, has a smaller section modulus than the cylindrical portion, and has a lower torsional strength. Therefore, if a surface hardened layer is formed on the shaft portion, high strength is obtained. Is preferred.

【0018】以上のような中間軸の両端部に結合される
等速自在継手の種類は限定されないが、自動車のドライ
ブシャフト等においては、中間軸両端の等速自在継手の
一方が固定型等速自在継手で、他方が摺動型等速自在継
手であること(請求項7の発明)が、実用上、好適であ
る。特に、自動車のドライブシャフトの場合、中間軸の
自動車車輪側に固定型等速自在継手を、自動車エンジン
側に摺動型等速自在継手を結合させることが望ましい。
Although the type of constant velocity universal joints connected to both ends of the intermediate shaft as described above is not limited, in a drive shaft of an automobile, one of the constant velocity universal joints at both ends of the intermediate shaft is a fixed type constant velocity universal joint. It is practically preferable that the other universal joint is a sliding type constant velocity universal joint (the invention of claim 7). In particular, in the case of a drive shaft of an automobile, it is desirable to couple a fixed type constant velocity universal joint to the vehicle wheel side of the intermediate shaft and a sliding type constant velocity universal joint to the automobile engine side.

【0019】[0019]

【発明の実施の形態】図1に第1の実施形態を、図2に
第2の実施形態を示し、これら実施形態における中間軸
の概略構造を図3(A)に示して、以下、これらの図を
参照して詳述する。なお、図1(A)と図2(A)はド
ライブシャフト全体の部分断面が示され、図1(B)と
図2(B)はドライブシャフトに使用される中間軸の分
解断面が示される。また、同図に示されるドライブシャ
フトは、自動車エンジンの駆動力を車輪に伝達するため
のもので、図4と図5のドライブシャフトと同一又は相
当部分には同一符号を付している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a first embodiment, FIG. 2 shows a second embodiment, and FIG. 3 (A) shows a schematic structure of an intermediate shaft in these embodiments. This will be described in detail with reference to FIG. 1 (A) and 2 (A) show partial cross sections of the entire drive shaft, and FIGS. 1 (B) and 2 (B) show exploded cross sections of an intermediate shaft used for the drive shaft. . Further, the drive shaft shown in the figure is for transmitting the driving force of the automobile engine to the wheels, and the same or corresponding parts as those of the drive shaft of FIGS. 4 and 5 are denoted by the same reference numerals.

【0020】図1(A)に示されるドライブシャフト
は、両端部に等速自在継手2,3が装着される中間軸2
1を、中実の棒材を冷間鍛造して成形された一対のスタ
ブシャフト22,23の中空端面同士を接合して成形し
たことを特徴としている。一対のスタブシャフト22,
23は、中実の軸部22a,23aと基端閉塞先端開口
の円筒部22b,23bを一体にして同軸に有する。各
スタブシャフト22,23の相互に接合される円筒部2
2b,23bは同一の寸法形状でよく、軸部22a,2
3aは結合される等速自在継手2,3に対応させた寸法
形状にしてある。図1(A)においては一方のスタブシ
ャフト22側に摺動型等速自在継手2が、他方のスタブ
シャフト23側に固定型等速自在継手3が結合されて、
自動車に好適なドライブシャフトを構成している。
The drive shaft shown in FIG. 1A has an intermediate shaft 2 having constant velocity universal joints 2 and 3 attached to both ends.
1 is characterized in that the hollow end faces of a pair of stub shafts 22 and 23 formed by cold forging a solid bar are joined together and formed. A pair of stub shafts 22,
23 has a solid shaft portion 22a, 23a and a cylindrical portion 22b, 23b of a base end closed distal end opening integrally and coaxially. Cylindrical part 2 of stub shafts 22 and 23 joined to each other
2b and 23b may have the same dimensions and shape, and the shaft portions 22a and 2b
Reference numeral 3a is a size and shape corresponding to the constant velocity universal joints 2 and 3 to be connected. In FIG. 1A, a sliding type constant velocity universal joint 2 is coupled to one stub shaft 22 side, and a fixed type constant velocity universal joint 3 is coupled to the other stub shaft 23 side.
This constitutes a drive shaft suitable for an automobile.

【0021】一対のスタブシャフト22,23は、それ
ぞれに中実の棒材を冷間鍛造で成形されてから、両者の
円筒部22b,23bの端面同士が同時に突き合わされ
て接合される。両スタブシャフト22,23は、パイプ
材より安価な中実の棒材を素材とするため、材料コスト
を安くした製作が可能である。両スタブシャフト22,
23の冷間鍛造による冷鍛加工で、円筒部、スプライン
部等が塑性加工される。また、各スタブシャフト22,
23の冷間鍛造において、仮に円筒部22b,23bの
長さ違いが必要となった場合には、短いものに対しては
材料(中実棒材)の投入重量管理で対応可能となって新
たな型製作は不要であるし、長いものに対しては通常の
スタブシャフト製作型が軸部側と円筒側の二つの型で成
形するために、円筒側の型(ポンチ)のみ製作すれば対
応可能であり、設備コストはほとんど増大しない。ま
た、各スタブシャフト22,23の円筒部22b,23
bを冷間鍛造で成形することで、この部分の曲げ剛性等
を調整するために形状を自由に変えることが容易にで
き、この形状変更例が図2の実施形態に示される。
Each of the pair of stub shafts 22 and 23 is formed by cold forging a solid bar material, and the end faces of the cylindrical portions 22b and 23b are simultaneously butted and joined. Since both stub shafts 22 and 23 are made of a solid bar material that is cheaper than a pipe material, it can be manufactured with a low material cost. Both stub shafts 22,
In the cold forging process 23, the cylindrical portion, the spline portion, and the like are plastically worked. In addition, each stub shaft 22,
In the cold forging of 23, if it is necessary to change the length of the cylindrical portions 22b and 23b, it is possible to cope with the short one by controlling the input weight of the material (solid bar), and a new one can be provided. It is not necessary to manufacture a simple mold, and for a long one, the normal stub shaft manufacturing mold is molded with two molds, the shaft side and the cylindrical side. Yes, with little increase in equipment costs. Also, the cylindrical portions 22b, 23 of the stub shafts 22, 23
By forming b by cold forging, it is easy to freely change the shape in order to adjust the bending rigidity and the like of this portion, and an example of this shape change is shown in the embodiment of FIG.

【0022】各スタブシャフト22,23の冷間鍛造時
において、各々の円筒部22b,23b自体と軸部端部
のスプラインをしごき加工することで、必要な精度出し
を行うようにする。このようにスタブシャフト22,2
3の円筒部、軸部スプラインをしごき加工すれば、機械
加工する部分が大幅に減って製造工数及び設備的に有利
に製造でき、しごき加工で各部位を高精度に安定して仕
上げることが容易となる。また、各スタブシャフト2
2,23の冷間鍛造としごき加工に要する設備とそのコ
ストは、機械加工で成形する設備の半分程度で済み、そ
の分、中間軸製造の設備コストと製造単価が低減され
て、多品種少量生産が容易となる。なお、各スタブシャ
フト22,23においては旋削が必要な箇所もあり、こ
のような旋削箇所はクリップ溝等の必要最小限の箇所で
あり、旋削が容易な箇所であることから、旋削箇所でコ
スト高となることは無い。
At the time of cold forging of each of the stub shafts 22, 23, the required accuracy is obtained by ironing the splines of the cylindrical portions 22b, 23b themselves and the shaft end. Thus, the stub shafts 22, 2
By ironing the cylindrical part and shaft spline of No.3, the machined part is greatly reduced and the manufacturing man-hour and equipment can be advantageously manufactured, and it is easy to finish each part with high precision by ironing. Becomes In addition, each stub shaft 2
The equipment and cost required for cold forging and ironing of 2, 23 are about half that of the equipment for forming by machining. Production becomes easy. In addition, in each of the stub shafts 22 and 23, there is a place where turning is necessary, and such a turning place is a minimum necessary place such as a clip groove and the like, and is easy to turn. It will not be high.

【0023】また、一対のスタブシャフト22,23を
接合する前に、高周波焼き入れにより表面硬化層を形成
して強化する。この高周波焼き入れは、少なくとも、等
速自在継手2,3と結合されるスタブシャフト22,2
3の軸部22a,23aについて行えばよい。この端部
22a,23aは円筒部に比べ、断面係数が小さく、捩
り強度が弱くなる。このため、必要強度を得るために少
なくともこの部所を高周波焼き入れにより表面硬化層を
形成して強化しておくことが有効である。両スタブシャ
フト接合の前に、両者の円筒部22b,23bの内面の
キズ、欠陥の検査を行う。この検査は目視検査で容易
に、高い信頼度で実行可能である。また、検査の自動化
も容易となる。
Before joining the pair of stub shafts 22, 23, a surface hardened layer is formed by induction hardening to strengthen the stub shafts. This induction hardening is performed at least on the stub shafts 22, 2 connected to the constant velocity universal joints 2, 3.
What is necessary is just to perform about 3 shaft parts 22a and 23a. These end portions 22a and 23a have a smaller section modulus and lower torsional strength than the cylindrical portion. Therefore, in order to obtain the required strength, it is effective to form a surface hardened layer at least at this portion by induction hardening to strengthen the portion. Before joining the two stub shafts, the inner surfaces of the cylindrical portions 22b and 23b are inspected for flaws and defects. This inspection can be easily performed with high reliability by visual inspection. In addition, the inspection can be easily automated.

【0024】以上の高周波焼き入れと検査の後、一対の
スタブシャフト22,23が接合されて一本の中間軸2
1が製作される。スタブシャフト22,23の接合は圧
接、溶接のいずれも可能であるが、冷間鍛造されたスタ
ブシャフト22,23においては摩擦圧接による接合が
強度的かつ設備的に有利である。また、両スタブシャフ
ト22,23をパイプ材等の中間部材を介することなく
直接に接合することで、接合箇所が一箇所となって設備
及び工数的に有利に接合できて、中間軸21の製造コス
トの低減化をさらに容易にし、少ない箇所での品質管理
で中間軸全体の高品質化が容易となる。
After the above induction hardening and inspection, the pair of stub shafts 22 and 23 are joined to form one intermediate shaft 2.
1 is produced. The stub shafts 22 and 23 can be joined by either pressure welding or welding. However, in the cold-forged stub shafts 22 and 23, joining by friction welding is advantageous in terms of strength and equipment. In addition, since the two stub shafts 22 and 23 are directly joined without using an intermediate member such as a pipe material, the joining portion becomes a single portion, and the joining can be advantageously performed in terms of equipment and man-hours. Cost reduction is further facilitated, and quality control of the entire intermediate shaft is facilitated by quality control in a small number of places.

【0025】図2(A)に示される実施形態のドライブ
シャフトは、図2(B)の中間軸21の分解断面で示す
ようにスタブシャフト22,23の円筒部22b,23
bの形状を変更したもので、図2(B)に示すように円
筒部22b,23bの開放開口側を軸部側より大径に成
形し、この大径開口部22c,23c同士を接合して中
間軸21を成形する。この図2の中間軸21は、図1の
中間軸と同様に製造されて、その両端部に等速自在継手
2,3が結合される。
The drive shaft of the embodiment shown in FIG. 2 (A) has cylindrical portions 22b, 23 of stub shafts 22, 23 as shown in an exploded cross section of the intermediate shaft 21 in FIG. 2 (B).
The shape of b is changed. As shown in FIG. 2 (B), the open openings of the cylindrical portions 22b and 23b are formed to have a larger diameter than the shaft portion, and the large-diameter openings 22c and 23c are joined together. To form the intermediate shaft 21. The intermediate shaft 21 of FIG. 2 is manufactured in the same manner as the intermediate shaft of FIG. 1, and constant velocity universal joints 2 and 3 are connected to both ends thereof.

【0026】図2の中間軸21においては、一対のスタ
ブシャフト22,23の円筒部大径開口部22c,23
cが拡径された分に応じて、一対のスタブシャフト同士
の接合部の径が増大し、接合強度が増大して、より強度
アップが要求される車種のドライブシャフトに好適とな
る。
In the intermediate shaft 21 shown in FIG. 2, the cylindrical large-diameter openings 22c, 23 of the pair of stub shafts 22, 23 are provided.
The diameter of the joint between the pair of stub shafts increases in accordance with the increase in the diameter of c, and the joining strength increases, which is suitable for a drive shaft of a vehicle type that requires higher strength.

【0027】[0027]

【発明の効果】本発明によれば、冷間鍛造により製作さ
れた一対のスタブシャフトを同軸に接合して中間軸を成
形したので、中間軸が安い材料コストで安価に製作さ
れ、また、比較的小規模で安価な冷間鍛造設備を使って
量産性良く製造できて、多品種少量生産に好適な中間軸
を有するドライブシャフトが提供できる。また、中間軸
を構成する一対のスタブシャフトの冷間鍛造時に、要所
をしごき加工して機械加工する箇所を最小限にすること
で、スタブシャフトの円筒部、軸部スプライン等が寸法
精度良く成形されて、中間軸の高品質化が容易となる。
また、スタブシャフト同士を直接に接合して中間軸を成
形するので、中間軸の品質管理を必要とする接合箇所が
一箇所だけとなり、品質管理箇所の低減により品質管理
が容易、確実となって、中間軸の信頼性が向上する。
According to the present invention, a pair of stub shafts manufactured by cold forging are coaxially joined to form an intermediate shaft, so that the intermediate shaft is manufactured at low material cost and at low cost. It is possible to provide a drive shaft having an intermediate shaft which can be manufactured with good mass productivity using a low-cost cold forging facility which is suitable for small-scale production and suitable for multi-product small-quantity production. Also, at the time of cold forging of a pair of stub shafts constituting the intermediate shaft, the cylindrical portion of the stub shaft, the shaft portion spline, etc. have high dimensional precision by minimizing the places to be machined by ironing important points. Molding makes it easy to improve the quality of the intermediate shaft.
In addition, since the intermediate shaft is formed by directly joining the stub shafts to each other, there is only one joint that requires quality control of the intermediate shaft, and quality control is easy and reliable by reducing the number of quality control points. The reliability of the intermediate shaft is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(A)は第1の実施形態を示すドライブシャフ
トの部分断面を含む側面図、(B)は中間軸の部分断面
を含む分解側面図である。
FIG. 1A is a side view including a partial cross section of a drive shaft showing a first embodiment, and FIG. 1B is an exploded side view including a partial cross section of an intermediate shaft.

【図2】(A)は第2の実施形態を示すドライブシャフ
トの部分断面を含む側面図、(B)は中間軸の部分断面
を含む分解側面図である。
FIG. 2A is a side view including a partial cross section of a drive shaft according to a second embodiment, and FIG. 2B is an exploded side view including a partial cross section of an intermediate shaft.

【図3】本発明と従来のドライブシャフト用中間軸を比
較するための図で、(A)は図1と図2の中間軸の概略
断面図、(B)と(C)は従来の中間軸の概略断面図で
ある。
3A and 3B are diagrams for comparing the present invention with a conventional drive shaft intermediate shaft, wherein FIG. 3A is a schematic sectional view of the intermediate shaft of FIGS. 1 and 2, and FIGS. It is a schematic sectional drawing of a shaft.

【図4】従来のドライブシャフトの部分断面を含む側面
図である。
FIG. 4 is a side view including a partial cross section of a conventional drive shaft.

【図5】他の従来のドライブシャフトの部分断面を含む
側面図である。
FIG. 5 is a side view including a partial cross section of another conventional drive shaft.

【符号の説明】[Explanation of symbols]

2 摺動型等速自在継手 3 固定型等速自在継手 21 中間軸 22 スタブシャフト 22a 軸部 22b 円筒部 22c 大径開口部 23 スタブシャフト 23a 軸部 23b 円筒部 23c 大径開口部 2 Sliding constant velocity universal joint 3 Fixed constant velocity universal joint 21 Intermediate shaft 22 Stub shaft 22a Shaft part 22b Cylindrical part 22c Large diameter opening 23 Stub shaft 23a Shaft part 23b Cylindrical part 23c Large diameter opening

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 中間軸の両端部に等速自在継手をそれぞ
れ結合させたドライブシャフトにおいて、前記中間軸
は、冷間鍛造により形成された軸部と円筒部を有する一
対のスタブシャフトからなり、このスタブシャフトの円
筒部同士を同軸に接合したことを特徴とするドライブシ
ャフト。
1. A drive shaft in which a constant velocity universal joint is coupled to both ends of an intermediate shaft, wherein the intermediate shaft comprises a pair of stub shafts having a shaft portion and a cylindrical portion formed by cold forging, A drive shaft, wherein cylindrical portions of the stub shaft are coaxially joined.
【請求項2】 前記等速自在継手と結合される前記スタ
ブシャフトの軸部スプラインをしごき加工により形成し
たことを特徴とする請求項1に記載のドライブシャフ
ト。
2. The drive shaft according to claim 1, wherein a shaft spline of the stub shaft connected to the constant velocity universal joint is formed by ironing.
【請求項3】 前記スタブシャフトの円筒部をしごき加
工により形成したことを特徴とする請求項1又は2に記
載のドライブシャフト。
3. The drive shaft according to claim 1, wherein the cylindrical portion of the stub shaft is formed by ironing.
【請求項4】 前記スタブシャフトの円筒部同士を摩擦
圧接にて接合したことを特徴とする請求項1乃至3のい
ずれかに記載のドライブシャフト。
4. The drive shaft according to claim 1, wherein the cylindrical portions of the stub shaft are joined by friction welding.
【請求項5】 前記スタブシャフトの円筒部の開口側
が、この開口側と反対の軸部側より大径に形成されてい
ることを特徴とする請求項1乃至4のいずれかに記載の
ドライブシャフト。
5. The drive shaft according to claim 1, wherein an opening side of the cylindrical portion of the stub shaft is formed to have a larger diameter than a shaft portion side opposite to the opening side. .
【請求項6】 前記スタブシャフトの少なくとも軸部に
高周波焼き入れにより表面硬化層を形成したことを特徴
とする請求項1乃至5のいずれかに記載のドライブシャ
フト。
6. The drive shaft according to claim 1, wherein a hardened surface layer is formed on at least a shaft portion of the stub shaft by induction hardening.
【請求項7】 前記中間軸両端の等速自在継手の一方が
固定型等速自在継手で、他方が摺動型等速自在継手であ
ることを特徴とする請求項1乃至6のいずれかに記載の
ドライブシャフト。
7. The constant velocity universal joint according to claim 1, wherein one of the constant velocity universal joints at both ends of the intermediate shaft is a fixed type constant velocity universal joint and the other is a sliding type constant velocity universal joint. Drive shaft as described.
JP2000136202A 2000-05-09 2000-05-09 Drive shaft Withdrawn JP2001315539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000136202A JP2001315539A (en) 2000-05-09 2000-05-09 Drive shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000136202A JP2001315539A (en) 2000-05-09 2000-05-09 Drive shaft

Publications (1)

Publication Number Publication Date
JP2001315539A true JP2001315539A (en) 2001-11-13

Family

ID=18644182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000136202A Withdrawn JP2001315539A (en) 2000-05-09 2000-05-09 Drive shaft

Country Status (1)

Country Link
JP (1) JP2001315539A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1803956A2 (en) * 2005-12-28 2007-07-04 Jtekt Corporation Power transmission device
CN100362249C (en) * 2003-05-19 2008-01-16 Ntn株式会社 Power transmission shaft
JP2008020068A (en) * 2006-07-10 2008-01-31 Gkn Driveline Sa Endpiece for welded tube shaft, corresponding shaft, and manufacturing method
US7540808B2 (en) 2005-03-28 2009-06-02 Jtekt Corporation Power transmission shaft, power transmission device incorporating the same and method of forming the same
KR101137158B1 (en) 2011-12-29 2012-04-20 (주) 금영이티에스 Drawing type shift shatft for automobile transmission and manufacturing method
JP2014137093A (en) * 2013-01-16 2014-07-28 Fuji Heavy Ind Ltd Power transmission construction
JP2015077630A (en) * 2013-10-18 2015-04-23 株式会社メタルアート Method for manufacturing motor shaft
CN112377514A (en) * 2020-11-11 2021-02-19 浙江百达精工股份有限公司 Crankshaft blank, crankshaft blank assembling method and crankshaft blank batch manufacturing method
WO2022059385A1 (en) * 2020-09-17 2022-03-24 日立Astemo株式会社 Stub shaft, power transmission shaft, and method for manufacturing stub shaft

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100362249C (en) * 2003-05-19 2008-01-16 Ntn株式会社 Power transmission shaft
US7540808B2 (en) 2005-03-28 2009-06-02 Jtekt Corporation Power transmission shaft, power transmission device incorporating the same and method of forming the same
EP1803956A2 (en) * 2005-12-28 2007-07-04 Jtekt Corporation Power transmission device
EP1803956A3 (en) * 2005-12-28 2009-07-01 Jtekt Corporation Power transmission device
JP2008020068A (en) * 2006-07-10 2008-01-31 Gkn Driveline Sa Endpiece for welded tube shaft, corresponding shaft, and manufacturing method
KR101137158B1 (en) 2011-12-29 2012-04-20 (주) 금영이티에스 Drawing type shift shatft for automobile transmission and manufacturing method
JP2014137093A (en) * 2013-01-16 2014-07-28 Fuji Heavy Ind Ltd Power transmission construction
JP2015077630A (en) * 2013-10-18 2015-04-23 株式会社メタルアート Method for manufacturing motor shaft
WO2022059385A1 (en) * 2020-09-17 2022-03-24 日立Astemo株式会社 Stub shaft, power transmission shaft, and method for manufacturing stub shaft
CN112377514A (en) * 2020-11-11 2021-02-19 浙江百达精工股份有限公司 Crankshaft blank, crankshaft blank assembling method and crankshaft blank batch manufacturing method
CN112377514B (en) * 2020-11-11 2024-06-04 浙江百达精工股份有限公司 Batch manufacturing method for compressor crankshaft blanks

Similar Documents

Publication Publication Date Title
US7591164B2 (en) Method of manufacturing a splined member for use in a driveshaft assembly
US6105413A (en) Method of forming a one piece steering shaft member
JP5183481B2 (en) Joint device
IL35174A (en) Constant velocity universal joints
EP1614575A2 (en) Method of manufacturing a combined driveshaft tube and yoke assembly
EP3603845B1 (en) Method for producing shaft for steering device
JP2001315539A (en) Drive shaft
JP5586929B2 (en) Method for manufacturing constant velocity universal joint
US6367680B1 (en) Component for vehicular driveshaft assembly and method of manufacturing same
JP6005402B2 (en) Method for manufacturing outer joint member of constant velocity universal joint
US5983497A (en) Method for forming a vehicle driveshaft tube
JPH0914282A (en) Manufacture of yoke for elastic universal joint
US7080437B2 (en) Method of manufacturing an axially collapsible driveshaft assembly
CN1576628A (en) Method of manufacturing a combined driveshaft tube and yoke assembly
KR20090055645A (en) Method for forming hollow profiles
WO2014188838A1 (en) Method for producing outside joint member for use in constant-velocity universal joint, and intermediate forged product to be made into outside joint member
US7047622B2 (en) Method for manufacturing a shaft-hub connection
JP4554299B2 (en) Method for manufacturing hollow power transmission shaft
JP2007315463A (en) Hollow power transmission shaft
JPH05223117A (en) Counter shaft and manufacture thereof
JP2553096Y2 (en) Universal joint yoke
JP5225771B2 (en) Die apparatus for forging outer joint member and method for manufacturing outer joint member
JP5894471B2 (en) Method for manufacturing outer joint member for constant velocity universal joint
JP2006250332A (en) Hollow power transmission shaft
JP2003120708A (en) Yoke for universal joint and method of manufacturing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070807