JP2001311404A - Exhaust gas recovering-devise for air cylinder - Google Patents

Exhaust gas recovering-devise for air cylinder

Info

Publication number
JP2001311404A
JP2001311404A JP2000130240A JP2000130240A JP2001311404A JP 2001311404 A JP2001311404 A JP 2001311404A JP 2000130240 A JP2000130240 A JP 2000130240A JP 2000130240 A JP2000130240 A JP 2000130240A JP 2001311404 A JP2001311404 A JP 2001311404A
Authority
JP
Japan
Prior art keywords
pressure
air
pneumatic cylinder
valve
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000130240A
Other languages
Japanese (ja)
Other versions
JP3705730B2 (en
Inventor
Mikio Yamaji
地 幹 夫 山
Masashi Igarashi
正 士 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMC Corp
Original Assignee
SMC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMC Corp filed Critical SMC Corp
Priority to JP2000130240A priority Critical patent/JP3705730B2/en
Publication of JP2001311404A publication Critical patent/JP2001311404A/en
Application granted granted Critical
Publication of JP3705730B2 publication Critical patent/JP3705730B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fluid-Pressure Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust gas recovering-device for an air cylinder that can reduce air consumption by returning the exhaust gas of the cylinder to an air power supply and thus drive the cylinder at low cost. SOLUTION: This recovering-device is equipped with a three-port valve 20 and a booster valve 30. The three-port valve 20 releases lower pressure exhaust air to atmosphere and outputs higher one than a given pressure, from among exhaust air from the air cylinder 11. The booster valve 30 boosts the exhaust air outputted by the three-port valve 20, and then outputs the boosted air to an air power supply P for the cylinder 11.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空気圧シリンダか
ら排出される排気空気を回収するための空気圧シリンダ
の排気回収装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pneumatic cylinder exhaust recovery apparatus for recovering exhaust air discharged from a pneumatic cylinder.

【0002】[0002]

【従来の技術】一般に、図7に示す空気圧システム10
では、空気圧シリンダ11内を往復摺動するピストンに
よって区画形成された2つの圧力室に、エア供給源Pよ
り供給される空気圧を電磁弁12によって選択的に加え
ることによってピストンを往復駆動させて仕事を行い、
仕事を終え不要となった空気は排気空気として大気中に
放出し捨てている。
2. Description of the Related Art Generally, a pneumatic system 10 shown in FIG.
Then, the piston is reciprocally driven by selectively applying the air pressure supplied from the air supply source P to the two pressure chambers defined by the pistons reciprocatingly sliding in the pneumatic cylinder 11 by means of the solenoid valve 12. Do
The air that is no longer needed after work is released into the atmosphere as exhaust air and discarded.

【0003】[0003]

【発明が解決しようとする課題】ところで、空気圧シス
テム10では、空気圧シリンダ11を駆動後、不要とな
った排気空気を大気中に捨てているため、特に空気圧シ
ステム10が大規模になるほど、空気圧シリンダ11の
空気消費量が増加し、エア供給源Pは空気圧シリンダ1
1に大量の空気を供給しなければならなくなり、消費動
力が増大し、コスト高になるという問題点がある。
By the way, in the pneumatic system 10, after the pneumatic cylinder 11 is driven, unnecessary exhaust air is discarded into the atmosphere. 11 increases the air consumption, and the air supply source P becomes the pneumatic cylinder 1
However, there is a problem that a large amount of air needs to be supplied to the power supply device 1, which increases power consumption and increases costs.

【0004】本発明は、上記のような問題点に鑑みてな
されたものであって、その目的とするところは、空気圧
シリンダの排気空気をエア供給源に戻すことで空気消費
量を削減し、空気圧シリンダを低コストで駆動させるこ
とができる空気圧シリンダの排気回収装置を提供するこ
とにある。本発明の上記ならびにその他の目的と新規な
特徴は、本明細書の記述および添付図面から明らかにな
るであろう。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to reduce air consumption by returning exhaust air from a pneumatic cylinder to an air supply source. An object of the present invention is to provide a pneumatic cylinder exhaust recovery device that can drive a pneumatic cylinder at low cost. The above and other objects and novel features of the present invention will become apparent from the description of the present specification and the accompanying drawings.

【0005】[0005]

【課題を解決するための手段】上記目的を達成すべく、
本発明に係る空気圧シリンダの排気回収装置は、ピスト
ンによって区画形成された2つの圧力室に選択的に空気
圧を加えることによって上記ピストンを往復駆動する空
気圧シリンダより排出される排気空気のうち、所定圧よ
り低圧の排気空気を大気中に放出し、所定圧より高圧の
排気空気を出力する3ポート弁と、上記3ポート弁より
出力される排気空気を増圧し、上記空気圧シリンダに空
気圧を供給するエア供給源に出力する増圧弁と、を具備
したことを特徴としている。
In order to achieve the above object,
The exhaust gas recovery apparatus for a pneumatic cylinder according to the present invention is configured to selectively apply air pressure to two pressure chambers defined by a piston, thereby allowing a predetermined pressure of the exhaust air discharged from the pneumatic cylinder reciprocatingly driving the piston. A three-port valve that discharges lower-pressure exhaust air into the atmosphere and outputs higher-pressure exhaust air than a predetermined pressure; and an air that increases the pressure of the exhaust air output from the three-port valve and supplies air pressure to the pneumatic cylinder. And a pressure-intensifying valve for outputting to a supply source.

【0006】また、本発明に係る空気圧シリンダの排気
回収装置は、ピストンによって区画形成された2つの圧
力室に選択的に空気圧を加えることによって上記ピスト
ンを往復駆動する空気圧シリンダより排出される排気空
気のうち、所定圧より低圧の排気空気を大気中に放出
し、所定圧より高圧の排気空気を、上記空気圧シリンダ
に空気圧を供給するエア供給源に出力する3ポート弁
と、上記エア供給源から供給される空気圧を増圧して上
記空気圧シリンダに出力する増圧弁と、を具備したこと
を特徴としている。
Further, the exhaust gas recovery apparatus for a pneumatic cylinder according to the present invention selectively exhausts air from a pneumatic cylinder that reciprocates the piston by selectively applying air pressure to two pressure chambers defined by the piston. A three-port valve that discharges exhaust air having a pressure lower than a predetermined pressure into the atmosphere and outputs exhaust air having a pressure higher than a predetermined pressure to an air supply source that supplies air pressure to the pneumatic cylinder; And a pressure increasing valve for increasing the supplied air pressure and outputting the pressure to the pneumatic cylinder.

【0007】従って、本発明によれば、3ポート弁によ
って所定圧より高圧の排気空気が増圧弁に出力されるこ
とで、排気空気をエア供給源に回収可能な圧力まで容易
に高くすることができ、排気空気の回収が可能となる。
また、エア供給源から供給される空気を増圧弁で増圧し
て空気圧シリンダに出力するので、エア供給源の空気圧
を低く設定することができ、これにより多量の排気空気
がエア供給源に回収可能となる。
Therefore, according to the present invention, the exhaust air having a pressure higher than the predetermined pressure is output to the pressure intensifying valve by the three-port valve, so that the exhaust air can be easily raised to a pressure at which the exhaust air can be recovered by the air supply source. And exhaust gas can be collected.
In addition, since the air supplied from the air supply source is increased in pressure by the pressure increase valve and output to the pneumatic cylinder, the air pressure of the air supply source can be set low, so that a large amount of exhaust air can be collected in the air supply source Becomes

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて詳細に説明する。実施の形態を説明するに当
たって、同一機能を奏するものは同じ符号を付して説明
する。図1は、本発明の実施の形態に係る空気圧シリン
ダの排気回収装置の概略構成図、図2および図3は、増
圧装置の模式図および要部縦断面図、図4は、本発明の
他の実施の形態を示す空気圧シリンダの排気回収装置の
概略構成図、図5および図6は、他の実施の形態を示す
増圧装置の模式図および要部縦断面図である。
Embodiments of the present invention will be described below in detail with reference to the drawings. In describing the embodiments, those having the same functions will be denoted by the same reference numerals. FIG. 1 is a schematic configuration diagram of an exhaust gas recovery device for a pneumatic cylinder according to an embodiment of the present invention, FIGS. 2 and 3 are schematic diagrams and longitudinal sectional views of main parts of a pressure booster, and FIG. FIG. 5 and FIG. 6 are a schematic diagram and a vertical cross-sectional view of a main part of a pressure intensifier according to another embodiment.

【0009】図1に示す排気回収装置は、空気圧システ
ム10の排気側に増圧装置100を接続したものであ
る。空気圧システム10は、空気圧シリンダ11および
エア供給源Pに接続されて空気圧シリンダ11に対する
空気の給排を制御する電磁弁12を有しており、空気圧
シリンダ11は、ピストンによって区画形成された2つ
の圧力室に選択的に空気圧を加えることによってピスト
ンを往復駆動させ仕事を行なうものである。
The exhaust gas recovery device shown in FIG. 1 has a pressure increasing device 100 connected to the exhaust side of a pneumatic system 10. The pneumatic system 10 has a solenoid valve 12 connected to a pneumatic cylinder 11 and an air supply source P to control the supply and discharge of air to and from the pneumatic cylinder 11, and the pneumatic cylinder 11 has two pneumatic cylinders defined by pistons. By selectively applying air pressure to the pressure chamber, the piston is reciprocated to perform work.

【0010】増圧装置100は、3ポート弁20および
増圧弁30を有しており、3ポート弁20は、空気圧シ
リンダ11から排出される排気空気のうち、所定圧より
高圧の排気空気を増圧弁30に出力し、所定圧より低圧
の排気空気を大気中に放出するように構成されている。
The pressure intensifier 100 has a three-port valve 20 and a pressure intensifier valve 30. The three-port valve 20 increases the pressure of the exhaust air discharged from the pneumatic cylinder 11 that is higher than a predetermined pressure. It is configured to output to the pressure valve 30 and discharge exhaust air having a pressure lower than a predetermined pressure to the atmosphere.

【0011】図2において、増圧弁30では、本体ブロ
ック31の両側に設けられた1対のシリンダ33a,3
3bにピストン34a,34bが往復摺動可能に挿通さ
れ、これらピストン34a,34bは、本体ブロック3
1に気密に貫通されたロッド32によって連結され、両
シリンダ33a,33b内において、それらの内側(本
体ブロック31側)および外側に増圧室35a,35b
および駆動室36a,36bがそれぞれ区画形成され、
本体ブロック31に形成された空気の流路には、1対の
入口チェック弁40a、1対の出口チェック弁40bお
よび切換弁50が組込まれている。
In FIG. 2, a pressure booster valve 30 includes a pair of cylinders 33a, 33 provided on both sides of a main body block 31.
3b, pistons 34a and 34b are inserted so as to be slidable back and forth.
1 are connected to each other by a rod 32 penetrating airtightly, and inside the cylinders 33a, 33b, inside (on the side of the main body block 31) and outside thereof, the pressure increasing chambers 35a, 35b
And drive chambers 36a and 36b are respectively formed in sections,
A pair of inlet check valves 40a, a pair of outlet check valves 40b, and a switching valve 50 are incorporated in the air passage formed in the main body block 31.

【0012】1対の入口チェック弁40a間および1対
の出口チェック弁40b間はそれぞれ連通されており、
1対の入口チェック弁40aは増圧室35a,35bへ
の空気の流入のみを許容し、1対の出口チェック弁40
bは増圧室35a,35bからの空気の流出のみを許容
するものであるが、増圧室35a,35bに空気圧差が
生じると、空気圧の高い方への空気の流入は阻止され、
空気圧の低い方からの空気の流出は阻止されるようにな
る。
The pair of inlet check valves 40a and the pair of outlet check valves 40b are in communication with each other.
The pair of inlet check valves 40a allow only air to flow into the pressure-intensifying chambers 35a and 35b, and the pair of outlet check valves 40a.
b allows only the outflow of air from the pressure intensifying chambers 35a and 35b. However, if an air pressure difference occurs in the pressure intensifying chambers 35a and 35b, the inflow of air to the higher air pressure is prevented.
The outflow of air from the lower air pressure is prevented.

【0013】切換弁50は、駆動室36a,36bのど
ちらか一方に空気を供給し、他方より空気が排出される
ように流路を切換えるものであり、流路切換用のプッシ
ュロッド51a,51bを有し、これらプッシュロッド
51a,51bは増圧室35a,35b内にそれぞれ突
出され、往復動するピストン34a,34bがストロー
ク終端近くにおいて、プッシュロッド51a,51bを
押圧することにより切換弁50のポート間の連通を切換
えて、駆動室36a,36bを図示しない空気の入口ポ
ートと排出ポートに交互に連通させるようにしている。
The switching valve 50 switches the flow path so that air is supplied to one of the driving chambers 36a and 36b and air is discharged from the other, and push rods 51a and 51b for switching the flow path are provided. The push rods 51a and 51b are respectively protruded into the pressure-intensifying chambers 35a and 35b, and the reciprocating pistons 34a and 34b press the push rods 51a and 51b near the end of the stroke, thereby causing the switching valve 50 to move. The communication between the ports is switched so that the drive chambers 36a and 36b alternately communicate with an air inlet port and an exhaust port (not shown).

【0014】ここで、かかる増圧装置100の構造につ
いて、図3を参照してより詳細に説明する。すなわち、
3ポート弁20では、弁棒21にピストン23が固定さ
れ、弁棒21はピストン23に取り付けられた第1スプ
リング22によって一方向に付勢され、弁棒21が嵌挿
された1対の弁体24a,24bが第2スプリング25
によって入口ポート21aに連通する弁座26a,26
bを閉鎖する方向に付勢され、ピストン23の外側にパ
イロット圧力室27が形成されている。
Here, the structure of the pressure increasing device 100 will be described in more detail with reference to FIG. That is,
In the three-port valve 20, a piston 23 is fixed to a valve rod 21. The valve rod 21 is urged in one direction by a first spring 22 attached to the piston 23, and a pair of valves into which the valve rod 21 is inserted. The bodies 24a and 24b are connected to the second spring 25.
Valve seats 26a, 26 communicating with the inlet port 21a
B is urged in a direction to close b, and a pilot pressure chamber 27 is formed outside the piston 23.

【0015】そして、パイロット圧力室27に導入され
る空気圧シリンダ11の排気空気圧によってピストン2
3と共に弁棒21が往復動し、これによって弁体24
a,24bが第2スプリング25の弾発力に抗して移動
し、弁座26a,26bの開口が切換えられ、所定圧よ
り低圧の排気空気は大気中に放出され、所定圧より高圧
の排気空気を出力するようになっている。
The piston 2 is moved by the exhaust air pressure of the pneumatic cylinder 11 introduced into the pilot pressure chamber 27.
3, the valve stem 21 reciprocates, thereby the valve body 24
a and 24b move against the elastic force of the second spring 25, the openings of the valve seats 26a and 26b are switched, and the exhaust air having a pressure lower than a predetermined pressure is discharged into the atmosphere, and the exhaust air having a pressure higher than the predetermined pressure is discharged. It is designed to output air.

【0016】本体ブロック31の両端にはシリンダ33
a,33bが設けられ、シリンダ33a,33bに設け
られた入口チェック弁40aは、入口ポート21aに連
通する弁座41を有し、この弁座41を開閉する弁体4
3は、チェック弁ばね42で弁座41の閉鎖方向に付勢
されている。なお、図示を省略しているが、出口チェッ
ク弁40bも入口チェック弁40aと同一の構成を有し
ている。
At both ends of the main body block 31, cylinders 33 are provided.
a, 33b are provided, and the inlet check valve 40a provided in the cylinders 33a, 33b has a valve seat 41 communicating with the inlet port 21a, and the valve body 4 for opening and closing the valve seat 41 is provided.
3 is urged by a check valve spring 42 in the closing direction of the valve seat 41. Although not shown, the outlet check valve 40b has the same configuration as the inlet check valve 40a.

【0017】切換弁50は、先端部分が増圧室35a,
35b内に突出するプッシュロッド51a,51bを有
し、これらのプッシュロッド51a,51bがピストン
34a,34bのストローク終端近くにおいて押圧され
てスプール52を駆動し、出力口53a,53bを入力
口54と排出口55a,55bに切換えて連通させるも
のとして構成され、入力口54と出力口53a,53b
は流路39a,39bに連通され、排出口55a,55
bは図示しない排出ポートに連通している。
The switching valve 50 has a pressure-intensifying chamber 35a,
The push rods 51a and 51b protrude into the piston 35b, and the push rods 51a and 51b are pressed near the stroke end of the pistons 34a and 34b to drive the spool 52, and the output ports 53a and 53b are connected to the input port 54. The input port 54 and the output ports 53a, 53b are configured so as to be switched to the discharge ports 55a, 55b for communication.
Are communicated with the flow paths 39a and 39b, and the discharge ports 55a and 55
b communicates with a discharge port (not shown).

【0018】排気回収装置は、以上の如く構成されてい
るので、まず、空気圧シリンダ11の排気空気は3ポー
ト弁20に導入され、所定圧より低圧の排気空気は大気
中に放出され、所定圧より高圧の排気空気は増圧弁30
に出力される。次に、増圧弁30において、3ポート弁
20より出力された排気空気は駆動室36bに導入さ
れ、これと同時に駆動室36aを大気に開放させると、
ピストン34a,34bが、駆動室36bにおいてピス
トン34bに作用する力と増圧室35aにおいてピスト
ン34aに作用する力との合力により右側への駆動を開
始し、これによって増圧室35bの空気が圧縮されて増
圧し、出口チェック弁40bを通して出口ポートから流
出される。
Since the exhaust gas recovery apparatus is constructed as described above, first, the exhaust air of the pneumatic cylinder 11 is introduced into the three-port valve 20, and the exhaust air having a pressure lower than a predetermined pressure is discharged into the atmosphere. The higher pressure exhaust air is supplied to the booster valve 30.
Is output to Next, in the pressure increasing valve 30, the exhaust air output from the three-port valve 20 is introduced into the driving chamber 36b, and at the same time, the driving chamber 36a is opened to the atmosphere.
The pistons 34a and 34b start driving rightward by the combined force of the force acting on the piston 34b in the drive chamber 36b and the force acting on the piston 34a in the pressure boosting chamber 35a, whereby the air in the pressure boosting chamber 35b is compressed. Then, the pressure is increased, and is discharged from the outlet port through the outlet check valve 40b.

【0019】ピストン34a,34bおよびロッド32
が右端に達し、増圧室35b内の空気を増圧して出口ポ
ートから出力し終わると共に、切換弁50を切換えて駆
動室36aを入口ポートに連通させ、これと同時に駆動
室36bを排出ポートを介して大気に開放させる。よっ
て、この状態からは、ピストン34a,34bが、駆動
室36aにおいてピストン34aに作用する力と増圧室
35bにおいてピストン34bに作用する力との合力に
より左側への駆動を開始し、これによって増圧室35a
の空気が圧縮されて増圧し、出口チェック弁40bを通
して出口ポートから流出する。
The pistons 34a and 34b and the rod 32
Reaches the right end, the pressure in the pressure increasing chamber 35b is increased and output from the outlet port is completed, and at the same time, the switching valve 50 is switched so that the driving chamber 36a communicates with the inlet port. Release to the atmosphere through. Therefore, from this state, the pistons 34a and 34b start driving to the left by the combined force of the force acting on the piston 34a in the drive chamber 36a and the force acting on the piston 34b in the pressure-intensifying chamber 35b. Pressure chamber 35a
Is compressed and increased in pressure, and flows out of the outlet port through the outlet check valve 40b.

【0020】このような動作の繰返しにより両増圧室3
5a,35bから増圧した空気が連続してエア供給源P
に出力され回収される。この場合、排気空気は、エア供
給源Pに回収可能な充分な圧力に増圧されていることが
必要であり、3ポート弁20により増圧弁30に出力さ
れる排気空気圧は、増圧弁30の増圧能力に鑑みて決定
される。
By repeating such an operation, the pressure intensifying chambers 3 are increased.
5a, 35b continuously increases the pressure of air from the air supply source P.
And collected. In this case, the exhaust air needs to be increased in pressure to a sufficient pressure that can be recovered by the air supply source P. The exhaust air pressure output to the pressure increasing valve 30 by the three-port valve 20 It is determined in consideration of the pressure boosting ability.

【0021】図4、5に示す排気回収装置の増圧装置1
10では、空気圧システム10の排気側とエア供給源P
との間に3ポート弁20が設けられ、3ポート弁20は
空気圧シリンダ11からの排気空気のうち、所定圧より
高圧のものをエア供給源Pに出力し、エア供給源Pから
の空気を増圧弁60によって増圧し、空気圧シリンダ1
1に出力するものである。本体ブロック31に形成され
た流路には、1対の入口チェック弁40a、1対の出口
チェック弁40b、切換弁50および増圧弁60の出力
を一定圧に制御保持するガバナ70が組込まれている。
Pressure booster 1 of the exhaust gas recovery apparatus shown in FIGS.
At 10, the exhaust side of the pneumatic system 10 and the air supply source P
And a three-port valve 20 is provided between the first and second ports. The three-port valve 20 outputs, to the air supply source P, exhaust air from the pneumatic cylinder 11 that has a pressure higher than a predetermined pressure, and outputs air from the air supply source P. The pressure is increased by the pressure increasing valve 60 and the pneumatic cylinder 1
1 is output. A governor 70 that controls and holds the outputs of the pair of inlet check valves 40a, the pair of outlet check valves 40b, the switching valve 50, and the pressure increasing valve 60 at a constant pressure is incorporated in the flow path formed in the main body block 31. I have.

【0022】ガバナ70は、図6に示すように、フィー
ドバック室71を区画するダイヤフラム72の上面に作
用する調圧スプリング73の付勢力と、ダイヤフラム7
2の下面に作用するフィードバック室71の空気圧の作
用力との大小により出力圧を設定圧に調節するもので、
カバナ70の設定圧は、キャップ74の回転により調圧
ねじ75を進退させて、調圧スプリング73の付勢力を
調整することによって行われている。なお、図中、31
aは、エア供給源Pからの空気が導入される入口ポー
ト、31bは、カバナ70と3ポート弁20とを連通す
る流路であり、その他の構成は、図2、3と同様なの
で、同一構成部分には同一符号を付してその説明を割愛
する。
As shown in FIG. 6, the governor 70 includes a biasing force of a pressure regulating spring 73 acting on an upper surface of a diaphragm 72 defining a feedback chamber 71, and a diaphragm
The output pressure is adjusted to a set pressure according to the magnitude of the acting force of the air pressure of the feedback chamber 71 acting on the lower surface of 2.
The setting pressure of the cabana 70 is adjusted by moving the pressure adjusting screw 75 forward and backward by the rotation of the cap 74 and adjusting the urging force of the pressure adjusting spring 73. In the figure, 31
a is an inlet port into which air from the air supply source P is introduced, 31b is a flow path communicating between the cabana 70 and the three-port valve 20, and the other configuration is the same as in FIGS. The components are denoted by the same reference numerals, and description thereof is omitted.

【0023】このように、本実施の形態の空気圧シリン
ダの排気回収装置によれば、3ポート弁20によって所
定圧より高圧の排気空気が増圧弁30に出力されるの
で、排気空気をエア供給源Pに回収可能な圧力まで容易
に高くすることができるようになる。よって、排気空気
の回収が可能となる。また、エア供給源Pから供給され
る空気を増圧弁60で増圧して空気圧シリンダ11に出
力するので、エア供給源Pの空気圧を低く設定すること
ができ、多量の排気空気がエア供給源Pに回収可能とな
る。これらのことにより、空気圧シリンダ11の空気消
費量が削減され、消費動力を軽減することができ、コス
トを大幅に低減することができる。
As described above, according to the exhaust gas collecting apparatus for a pneumatic cylinder of the present embodiment, the exhaust air having a pressure higher than the predetermined pressure is output to the pressure increasing valve 30 by the three-port valve 20, so that the exhaust air is supplied to the air supply source. It becomes possible to easily increase the pressure to a level that can be recovered to P. Therefore, it becomes possible to recover the exhaust air. Further, since the pressure of the air supplied from the air supply source P is increased by the pressure increasing valve 60 and is output to the pneumatic cylinder 11, the air pressure of the air supply source P can be set low, and a large amount of exhaust air is supplied to the air supply source P. Can be recovered. As a result, the air consumption of the pneumatic cylinder 11 is reduced, the power consumption can be reduced, and the cost can be significantly reduced.

【0024】以上、本発明の実施の形態の空気圧シリン
ダの排気回収装置について詳述したが、本発明は、上記
実施の形態の空気圧シリンダの排気回収装置に限定され
るものではなく、本発明の特許請求の範囲に記載されて
いる発明の精神を逸脱しない範囲で、設計において種々
の変更ができるものである。
Although the exhaust gas recovery apparatus for a pneumatic cylinder according to the embodiment of the present invention has been described in detail above, the present invention is not limited to the exhaust gas recovery apparatus for a pneumatic cylinder according to the embodiment described above. Various changes can be made in the design without departing from the spirit of the invention described in the claims.

【0025】[0025]

【発明の効果】以上の説明から理解されるように、本発
明の空気圧シリンダの排気回収装置は、3ポート弁によ
って所定圧より高圧の排気空気が増圧弁に出力されるこ
とで、排気空気をエア供給源に回収可能な圧力まで容易
に高くすることができるので、排気空気の回収が可能と
なり、また、エア供給源から供給される空気を増圧弁で
増圧して空気圧シリンダに出力するので、エア供給源の
空気圧を低く設定することができ、多量の排気空気がエ
ア供給源に回収可能となる。従って、空気圧シリンダの
空気消費量が削減され、消費動力が軽減し、空気圧シリ
ンダを低コストで駆動させることができる。
As will be understood from the above description, the exhaust gas recovery apparatus for a pneumatic cylinder according to the present invention outputs the exhaust air having a pressure higher than a predetermined pressure to the pressure intensifying valve by the three-port valve. Since the pressure that can be recovered by the air supply source can be easily increased, the exhaust air can be recovered, and the air supplied from the air supply source is boosted by the booster valve and output to the pneumatic cylinder. The air pressure of the air supply source can be set low, and a large amount of exhaust air can be collected by the air supply source. Therefore, the air consumption of the pneumatic cylinder is reduced, the power consumption is reduced, and the pneumatic cylinder can be driven at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態を示す空気圧シリンダの排
気回収装置の概略構成図。
FIG. 1 is a schematic configuration diagram of an exhaust recovery device for a pneumatic cylinder showing an embodiment of the present invention.

【図2】本発明の実施の形態を示す空気圧シリンダの排
気回収装置における増圧装置の模式図。
FIG. 2 is a schematic diagram of a pressure intensifier in the pneumatic cylinder exhaust recovery device according to the embodiment of the present invention.

【図3】本発明の実施の形態を示す空気圧シリンダの排
気回収装置における増圧装置の要部縦断面図。
FIG. 3 is a longitudinal sectional view of a main part of a pressure booster in an exhaust recovery device for a pneumatic cylinder according to an embodiment of the present invention.

【図4】本発明の他の実施の形態を示す空気圧シリンダ
の排気回収装置の概略構成図。
FIG. 4 is a schematic configuration diagram of a pneumatic cylinder exhaust recovery device showing another embodiment of the present invention.

【図5】本発明の他の実施の形態を示す空気圧シリンダ
の排気回収装置における増圧装置の模式図。
FIG. 5 is a schematic view of a pressure booster in a pneumatic cylinder exhaust recovery apparatus according to another embodiment of the present invention.

【図6】本発明の他の実施の形態を示す空気圧シリンダ
の排気回収装置における増圧装置の要部縦断面図。
FIG. 6 is a longitudinal sectional view of a main part of a pressure booster in an exhaust recovery device for a pneumatic cylinder according to another embodiment of the present invention.

【図7】空気圧システムの概略構成図。FIG. 7 is a schematic configuration diagram of a pneumatic system.

【符号の説明】[Explanation of symbols]

10 空気圧システム 11 空気圧シリンダ 12 電磁弁 20 3ポート弁 30,60 増圧弁 100,110 増圧装置 P エア供給源 DESCRIPTION OF SYMBOLS 10 Pneumatic system 11 Pneumatic cylinder 12 Solenoid valve 20 3-port valve 30, 60 Booster valve 100, 110 Booster P Air supply source

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ピストンによって区画形成された2つの圧
力室に選択的に空気圧を加えることによって上記ピスト
ンを往復駆動する空気圧シリンダより排出される排気空
気のうち、所定圧より低圧の排気空気を大気中に放出
し、所定圧より高圧の排気空気を出力する3ポート弁
と、 上記3ポート弁より出力される排気空気を増圧し、上記
空気圧シリンダに空気圧を供給するエア供給源に出力す
る増圧弁と、 を具備したことを特徴とする空気圧シリンダの排気回収
装置。
1. A method of selectively applying air pressure to two pressure chambers defined by a piston, and exhausting air having a pressure lower than a predetermined pressure from the exhaust air discharged from a pneumatic cylinder reciprocatingly driving the piston. A three-port valve that discharges air to the inside and outputs exhaust air having a pressure higher than a predetermined pressure; a pressure-intensifying valve that increases the pressure of exhaust air output from the three-port valve and outputs the air to an air supply source that supplies air pressure to the pneumatic cylinder An exhaust gas recovery device for a pneumatic cylinder, comprising:
【請求項2】ピストンによって区画形成された2つの圧
力室に選択的に空気圧を加えることによって上記ピスト
ンを往復駆動する空気圧シリンダより排出される排気空
気のうち、所定圧より低圧の排気空気を大気中に放出
し、所定圧より高圧の排気空気を、上記空気圧シリンダ
に空気圧を供給するエア供給源に出力する3ポート弁
と、 上記エア供給源から供給される空気圧を増圧して上記空
気圧シリンダに出力する増圧弁と、 を具備したことを特徴とする空気圧シリンダの排気回収
装置。
2. Exhaust air having a pressure lower than a predetermined pressure among the exhaust air discharged from a pneumatic cylinder that reciprocates the piston by selectively applying air pressure to two pressure chambers defined by the piston. A three-port valve for discharging exhaust air having a pressure higher than a predetermined pressure to an air supply source for supplying air pressure to the pneumatic cylinder; and increasing the air pressure supplied from the air supply source to the pneumatic cylinder. An exhaust pressure recovery valve for a pneumatic cylinder, comprising:
JP2000130240A 2000-04-28 2000-04-28 Pneumatic cylinder exhaust recovery device Expired - Fee Related JP3705730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000130240A JP3705730B2 (en) 2000-04-28 2000-04-28 Pneumatic cylinder exhaust recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000130240A JP3705730B2 (en) 2000-04-28 2000-04-28 Pneumatic cylinder exhaust recovery device

Publications (2)

Publication Number Publication Date
JP2001311404A true JP2001311404A (en) 2001-11-09
JP3705730B2 JP3705730B2 (en) 2005-10-12

Family

ID=18639382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000130240A Expired - Fee Related JP3705730B2 (en) 2000-04-28 2000-04-28 Pneumatic cylinder exhaust recovery device

Country Status (1)

Country Link
JP (1) JP3705730B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100784678B1 (en) * 2006-08-18 2007-12-13 이재민 The system which recycled the air
JP2015532701A (en) * 2012-08-20 2015-11-12 コルペラ、サムリ Booster unit
CN106545533A (en) * 2017-01-10 2017-03-29 青岛盛福精磨科技有限公司 The gas control of low-voltage signal control, pneumatic dynamic centre position control method and system
WO2018096738A1 (en) 2016-11-22 2018-05-31 Smc株式会社 Pressure booster
WO2018211837A1 (en) 2017-05-17 2018-11-22 Smc株式会社 Cylinder drive manifold device and cylinder drive apparatus
CN110848208A (en) * 2019-12-02 2020-02-28 内蒙古科技大学 Pneumatic integrated system based on exhaust recovery and control method thereof
CN110985462A (en) * 2019-12-12 2020-04-10 四川凌峰航空液压机械有限公司 Hydraulic system for eliminating pulse test actuating cylinder and pipeline gas thereof
WO2020105305A1 (en) 2018-11-21 2020-05-28 Smc株式会社 Cylinder drive device and flow channel unit
US10851806B2 (en) 2016-11-22 2020-12-01 Smc Corporation Pressure booster

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100784678B1 (en) * 2006-08-18 2007-12-13 이재민 The system which recycled the air
JP2015532701A (en) * 2012-08-20 2015-11-12 コルペラ、サムリ Booster unit
WO2018096738A1 (en) 2016-11-22 2018-05-31 Smc株式会社 Pressure booster
US10851806B2 (en) 2016-11-22 2020-12-01 Smc Corporation Pressure booster
CN106545533A (en) * 2017-01-10 2017-03-29 青岛盛福精磨科技有限公司 The gas control of low-voltage signal control, pneumatic dynamic centre position control method and system
WO2018211837A1 (en) 2017-05-17 2018-11-22 Smc株式会社 Cylinder drive manifold device and cylinder drive apparatus
US11181127B2 (en) 2017-05-17 2021-11-23 Smc Corporation Cylinder drive manifold device and cylinder drive apparatus
WO2020105305A1 (en) 2018-11-21 2020-05-28 Smc株式会社 Cylinder drive device and flow channel unit
US11933328B2 (en) 2018-11-21 2024-03-19 Smc Corporation Cylinder drive device and flow channel unit
CN110848208A (en) * 2019-12-02 2020-02-28 内蒙古科技大学 Pneumatic integrated system based on exhaust recovery and control method thereof
CN110848208B (en) * 2019-12-02 2021-11-23 内蒙古科技大学 Pneumatic integrated system based on exhaust recovery and control method thereof
CN110985462A (en) * 2019-12-12 2020-04-10 四川凌峰航空液压机械有限公司 Hydraulic system for eliminating pulse test actuating cylinder and pipeline gas thereof

Also Published As

Publication number Publication date
JP3705730B2 (en) 2005-10-12

Similar Documents

Publication Publication Date Title
US4496294A (en) Diaphragm pump
CA2159798C (en) Mechanical shift, pneumatic assist pilot valve
CA2160498C (en) Reduced icing air valve
JP2003130008A (en) High speed driving method and its apparatus for pressure cylinder
JP2001311404A (en) Exhaust gas recovering-devise for air cylinder
WO2020036046A1 (en) Pressure booster
JPH0942525A (en) Pilot type change-over valve
JPH08296607A (en) Driving circuit of fluid pressure actuator
JP3568883B2 (en) Pressure booster
JP2955220B2 (en) In-line pressure booster
JPH022965Y2 (en)
JP5352324B2 (en) Liquid discharge pump system
JPH0232885Y2 (en)
JPH1096403A (en) Hydraulic booster device
JPH029105Y2 (en)
JPH078605U (en) Control valve
JPH0754626Y2 (en) Pneumatic drive hydraulic pump
JPH0244065Y2 (en)
JP2660228B2 (en) Air-hydro output pressure control pump
JPS63243502A (en) Air booster
JP2591498Y2 (en) Pressure fluid driven pump
JPH0325476Y2 (en)
JPH0238081Y2 (en)
JPH0575501U (en) Booster
JPH028084Y2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050726

R150 Certificate of patent or registration of utility model

Ref document number: 3705730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130805

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees