JP2001310346A - Method for manufacturing molded article formed of amorphous resin composition containing inorganic filler - Google Patents

Method for manufacturing molded article formed of amorphous resin composition containing inorganic filler

Info

Publication number
JP2001310346A
JP2001310346A JP2000130054A JP2000130054A JP2001310346A JP 2001310346 A JP2001310346 A JP 2001310346A JP 2000130054 A JP2000130054 A JP 2000130054A JP 2000130054 A JP2000130054 A JP 2000130054A JP 2001310346 A JP2001310346 A JP 2001310346A
Authority
JP
Japan
Prior art keywords
resin
amorphous resin
inorganic filler
added
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000130054A
Other languages
Japanese (ja)
Inventor
Norihiko Furuya
紀彦 古谷
Yasuo Takenaka
保雄 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2000130054A priority Critical patent/JP2001310346A/en
Publication of JP2001310346A publication Critical patent/JP2001310346A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the moldability, flowability and dimensional stability of an amorphous resin composition containing an inorganic filler to suppress deformation like warpage and a sink and to suppress the exposure of the inorganic filler added to the amorphous resin composition to the surface of a molded article. SOLUTION: Carbon dioxide in an amount of 0.2 weight % or more is dissolved or absorbed in the amorphous resin composition containing the inorganic filler before the resin composition is injected in a mold cavity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、無機物充填剤が添
加された非晶性樹脂組成物の成形品の製造方法におい
て、金型キャビティへの充填を容易にし、かつ成形品表
面性を向上させ、反り、ヒケなど射出成形後の変形を小
さくする製造方法に関する。
The present invention relates to a method for producing a molded article of an amorphous resin composition to which an inorganic filler has been added, in which a mold cavity is easily filled and the surface property of the molded article is improved. The present invention relates to a manufacturing method for reducing deformation after injection molding such as warpage, sink, and sink.

【0002】[0002]

【従来の技術】変性PPE樹脂など非晶性樹脂は、寸法
精度や剛性の確保することを目的に、ガラス繊維などの
無機物充填剤を添加して使用される事例が少なくない。
無機充填剤を添加した非晶性樹脂の射出成形品において
は次の点が不具合として現れやすく、製品デザイン、金
型デザイン、成形条件、樹脂組成の制約を受ける要因と
なっている。
2. Description of the Related Art Amorphous resins such as modified PPE resins are often used by adding an inorganic filler such as glass fiber for the purpose of securing dimensional accuracy and rigidity.
In the case of an injection molded article of an amorphous resin to which an inorganic filler is added, the following points are likely to appear as inconveniences, which are factors that are restricted by product design, mold design, molding conditions, and resin composition.

【0003】溶融粘度が高いため、金型キャビティへ
充填しにくい。 充填しにくい樹脂を高圧下で成形するため、反りなど
の変形が発生しやすい。 樹脂の流動末端部まで圧力が十分伝達しにくいため、
ヒケが発生しやすい。 無機充填剤が成形品表面に露出しやすいため、表面粗
度が荒い。
Since the melt viscosity is high, it is difficult to fill the mold cavity. Since resin that is difficult to fill is molded under high pressure, deformation such as warpage is likely to occur. Since the pressure is not sufficiently transmitted to the flow end of the resin,
Sink easily occurs. The surface roughness is rough because the inorganic filler is easily exposed on the surface of the molded product.

【0004】非晶性樹脂を含む熱可塑性樹脂の射出成形
において、通常、樹脂は金型キャビティへの充填に充分
な流動性を有する温度まで加熱される。溶融樹脂の流動
性は、金型キャビティへの充填の容易さを決めるだけで
なく、充填後、キャビティ内の樹脂へ充分な圧力が伝わ
るかどうかを左右するため、成形品の寸法精度、表面
性、金型転写性の良否、反り、ヒケの発生などに影響を
与える重要な因子といえる。
In injection molding of a thermoplastic resin containing an amorphous resin, usually, the resin is heated to a temperature having sufficient fluidity to fill a mold cavity. The fluidity of the molten resin not only determines the ease of filling into the mold cavity, but also determines whether sufficient pressure is transmitted to the resin in the cavity after filling. It can be said that this is an important factor that affects the quality of mold transferability, warpage, and occurrence of sink marks.

【0005】未充填部分を残さないように樹脂を金型キ
ャビティに充填する成形条件としては、射出速度を速く
する、保圧を高めることなどが効果的である。しかし、
射出速度を速くした場合にはバリが発生する恐れがあ
り、これは金型を痛める原因となりやすい。また、必要
以上に保圧を高めた場合には、成形品内に成形ひずみが
残留しやすいため、金型から取り出した後に反りなどの
変形を発生しやすい。また、樹脂の流動末端部分では保
圧が十分伝達できない場合、樹脂の冷却による体積収縮
が発生しやすく、これはヒケなどの原因となりやすい。
As the molding conditions for filling the mold cavity with the resin so as not to leave unfilled portions, it is effective to increase the injection speed, increase the holding pressure, and the like. But,
When the injection speed is increased, burrs may be generated, which easily causes damage to the mold. If the holding pressure is increased more than necessary, deformation such as warpage is likely to occur after removal from the mold because molding distortion tends to remain in the molded product. In addition, when the holding pressure cannot be sufficiently transmitted at the flow end portion of the resin, volume contraction due to cooling of the resin is likely to occur, which tends to cause sink marks and the like.

【0006】流動性を高めるような成形条件としては、
樹脂温度、金型温度を高めることが効果的である。しか
し、高い樹脂温度は樹脂自体や添加剤の熱分解を引き起
こすため、成形品強度の低下、樹脂劣化物による異物の
発生、金型の汚れ、変色などの問題が発生しやすくな
る。
[0006] Molding conditions for enhancing the fluidity include:
It is effective to increase the resin temperature and the mold temperature. However, since a high resin temperature causes thermal decomposition of the resin itself and additives, problems such as a decrease in strength of a molded product, generation of foreign matters due to degraded resin, contamination of a mold, and discoloration are likely to occur.

【0007】結晶性樹脂を成形する際の樹脂温度の設定
幅は狭く、通常は融点より5〜30℃高い範囲、多くは
融点より10〜20℃高い範囲で実施される。これは融
点より5℃高い温度より低い温度領域では粘度が高く充
填が困難であるためであり、融点より30℃以上高い温
度領域では樹脂が分解するため、樹脂本来の特性を有す
る成形品を得ることができなくほか、作業環境の悪化を
招くなど不具合が発生する恐れがあるためである。
The setting range of the resin temperature when molding the crystalline resin is narrow, usually in the range of 5 to 30 ° C. higher than the melting point, and in most cases, in the range of 10 to 20 ° C. higher than the melting point. This is because filling is difficult in a temperature range lower than a temperature higher than the melting point by 5 ° C. and the resin is decomposed in a temperature range higher than the melting point by 30 ° C. or more, so that a molded product having the original characteristics of the resin is obtained. In addition to this, there is a possibility that problems such as deterioration of the working environment may occur.

【0008】必然的に、非晶性樹脂と結晶性樹脂とをア
ロイ化した樹脂(例えば、ポリフェニレンエーテル樹脂
とポリアミド樹脂のアロイ)の成形温度の範囲も狭くな
り、樹脂の流動性を向上させるために安易に成形温度を
上げることは実際には不可能である。従って、薄肉成形
品への応用が制限されることが多かった。また、金型温
度を高くすると、型内に充填された樹脂の冷却時間が長
くなり、成形サイクル時間が長くなるといった問題があ
った。
Inevitably, the molding temperature range of a resin obtained by alloying an amorphous resin and a crystalline resin (for example, an alloy of a polyphenylene ether resin and a polyamide resin) is also narrowed, and the flowability of the resin is improved. It is practically impossible to easily raise the molding temperature. Therefore, the application to thin-walled molded products is often limited. In addition, when the mold temperature is increased, there is a problem that the cooling time of the resin filled in the mold becomes longer, and the molding cycle time becomes longer.

【0009】一方、流動性を高めるための樹脂改質手段
としては、樹脂の分子量を低くする、分子中にコモノマ
ー成分を導入する、可塑剤を添加するなどの手法が用い
られてきた。しかし、分子量を低くする場合には衝撃強
度や耐薬品性の低下が、分子中にコモノマーを導入した
場合には熱時剛性の低下が、可塑剤の添加は成形時に金
型表面に添加剤成分が付着するといった問題点が懸念さ
れる。
On the other hand, as a resin modifying means for increasing fluidity, techniques such as lowering the molecular weight of the resin, introducing a comonomer component into the molecule, and adding a plasticizer have been used. However, when the molecular weight is reduced, the impact strength and chemical resistance are reduced. When a comonomer is introduced into the molecule, the rigidity during heating is reduced. There is a concern that the particles adhere.

【0010】一方、ポリフェニレンエーテル樹脂は難燃
性に優れた非晶性樹脂であるが、溶融時の粘度が高いた
め通常の成形用材料としては、ポリスチレンなどとアロ
イ化した変性ポリフェニレンエーテル樹脂が用いられる
ことが一般的である。ポリスチレンの割合が大きい変性
ポリフェニレンエーテル樹脂は難燃性が低下するため、
また、さらなる難燃性の向上のため、必要に応じて難燃
剤を添加する必要がある。しかし、該難燃剤自体の粘度
も高く、一定量以上の添加は樹脂の流動性を低下させる
原因となるため、難燃レベルの確保が困難な事例が多く
見られる。
[0010] On the other hand, polyphenylene ether resin is an amorphous resin having excellent flame retardancy. However, since the viscosity at the time of melting is high, modified polyphenylene ether resin alloyed with polystyrene or the like is used as a usual molding material. It is common that Modified polyphenylene ether resin with a large percentage of polystyrene has reduced flame retardancy,
Further, it is necessary to add a flame retardant as needed in order to further improve the flame retardancy. However, the viscosity of the flame retardant itself is high, and the addition of a certain amount or more causes a decrease in the fluidity of the resin, so that there are many cases where it is difficult to secure the flame retardant level.

【0011】一方、J.Appl.Polym.Sc
i.,Vol.30,2633(1985)など、多く
の文献に示されるように、二酸化炭素を樹脂に吸収させ
ると、樹脂の可塑剤として働き、ガラス転移温度を低下
させることが知られているが、樹脂の成形加工に広く応
用されるには至っていない。特開平5−318541号
公報には、二酸化炭素や窒素などのガスを熱可塑性樹脂
中に含ませ、キャビティ内のガスを除去しながら該樹脂
をキャビティに充填することで、熱可塑性樹脂の流動性
を向上させ、強度や外観低下のない成形品を得る方法が
示されている。しかし、この方法では、ガスに二酸化炭
素を使用した場合、最大でも約0.18重量%と樹脂中
に含まれるガスの量が少なく、十分な流動性向上の効果
を得ることは難しいといえる。
On the other hand, in J.I. Appl. Polym. Sc
i. , Vol. 30, 2633 (1985), it is known that when carbon dioxide is absorbed by a resin, it acts as a plasticizer for the resin and lowers the glass transition temperature. It has not been widely applied to processing. Japanese Unexamined Patent Publication No. Hei 5-318541 discloses a method in which a gas such as carbon dioxide or nitrogen is contained in a thermoplastic resin, and the resin is filled in the cavity while removing the gas in the cavity. To obtain a molded article having no deterioration in strength or appearance. However, in this method, when carbon dioxide is used as the gas, the amount of the gas contained in the resin is as small as about 0.18% by weight at the maximum, and it can be said that it is difficult to obtain a sufficient effect of improving the fluidity.

【0012】また、発泡成形では、非発泡状態の樹脂を
キャビティにほぼ満たした後、樹脂の充填時に固化した
成形品の表層より内側の溶融樹脂が冷却された際の体積
収縮分が発泡するものである。樹脂に発泡性を持たせる
目的で樹脂中に含ませるガスの量は、この体積収縮分を
補える最低限とするのが基本的である。樹脂中のガス量
は、窒素で0.1重量%未満、二酸化炭素で0.15重
量%未満であることが一般的である。特公昭62−16
166号公報の実施例では樹脂中の窒素ガス量は0.0
1〜0.15重量%程度と推定され、樹脂の流動性を向
上させることができるものではない。
In the foam molding, after the cavity is substantially filled with the resin in a non-foamed state, the volume shrinkage when the molten resin inside the surface layer of the molded product solidified at the time of filling the resin is cooled is foamed. It is. Basically, the amount of gas contained in the resin for the purpose of imparting foaming property to the resin is set to a minimum value that can compensate for the volume shrinkage. Generally, the amount of gas in the resin is less than 0.1% by weight of nitrogen and less than 0.15% by weight of carbon dioxide. Tokiko Sho 62-16
In the example of Japanese Patent Publication No. 166, the amount of nitrogen gas in the resin is 0.0
It is estimated to be about 1 to 0.15% by weight, and cannot improve the fluidity of the resin.

【0013】また、WO98/52734号公報には、
熱可塑性樹脂の射出成形において、二酸化炭素を0.2
重量%以上溶解して粘度低下させた溶融樹脂を、あらか
じめ金型キャビティを溶融樹脂のフローフロントで発泡
が起きない圧力以上にガスで加圧状態にして、金型キャ
ビティに射出する方法が示されている。しかし、この方
法ではキャビティ内の加圧ガスにより樹脂の充填が阻害
されるため充填圧が上昇し、充填時間が長くなる。この
ため、無機物充填剤を添加した非晶性樹脂を射出成形す
る場合には、成形品の表面性、金型転写性は、通常成形
品とほぼ同等である。また、キャビティ内に充填された
加圧ガスの圧力を保持するためのシール構造が必要であ
り、複雑な金型構造を有することが必要である。
[0013] WO 98/52734 discloses that
In injection molding of thermoplastic resin,
A method is disclosed in which a molten resin whose viscosity has been reduced by dissolving it by weight or more is pressurized in advance with a gas at a pressure higher than a pressure at which foaming does not occur at the flow front of the molten resin, and injected into the mold cavity. ing. However, in this method, the filling of the resin is hindered by the pressurized gas in the cavity, so that the filling pressure increases and the filling time becomes longer. Therefore, when an amorphous resin to which an inorganic filler is added is injection-molded, the surface properties and mold transferability of the molded product are almost the same as those of a normal molded product. Also, a seal structure for maintaining the pressure of the pressurized gas filled in the cavity is required, and it is necessary to have a complicated mold structure.

【0014】無機充填剤が成形品表面に露出しないよう
な成形条件としては、金型温度を高める、射出速度を速
くするなどの手法が採られていることが多い。金型温度
を高めた場合、射出速度を早くした場合に発生する不具
合については前述の通りである。特開昭62−5828
7号公報に公開されている「ゴム強化ポリスチレン樹脂
の射出成形方法」、特開昭62−58288号公報に公
開されている「ABS樹脂の射出成形方法」は、共に金
型を開いた状態で金型間にインダクターを挿入し、金型
表面を加熱することによって、表面が滑らかな非晶性樹
脂成形品を得る。金型間に挿入されるインダクターに関
しては、金型加熱用高周波誘導コイル及び成形装置が、
特開平8−90623号公報などによりに公開されてい
る。
As the molding conditions under which the inorganic filler is not exposed on the surface of the molded product, techniques such as increasing the mold temperature and increasing the injection speed are often employed. The problems that occur when the mold temperature is increased and the injection speed is increased are as described above. JP-A-62-5828
No. 7, "Rubber reinforced polystyrene resin injection molding method" and Japanese Patent Application Laid-Open No. 62-58288, "ABS resin injection molding method" are both performed with the mold open. By inserting an inductor between the molds and heating the mold surface, an amorphous resin molded product having a smooth surface is obtained. Regarding the inductor inserted between the molds, the high-frequency induction coil for mold heating and the molding device,
It is disclosed in Japanese Patent Application Laid-Open No. Hei 8-90623.

【0015】しかし、成形サイクル中に、金型間にイン
ダクターまたは高周波誘導加熱コイルを挿入し、金型表
面を成形される樹脂のガラス転移点以上の温度まで加熱
し、金型間からインダクターまたは高周波誘導加熱コイ
ルを引き出す工程が必要であり、成形サイクルが伸びる
ため生産性に問題があるほか、高周波誘導加熱の際には
電気の消費量が過大であり、省エネルギーの観点から好
ましくない。また、高周波誘導加熱は、比較的平坦な形
状の成形品に限定される点も、成形品の製品デザインの
自由度を限定するため好ましくない。
However, during the molding cycle, an inductor or a high-frequency induction heating coil is inserted between the molds, and the surface of the mold is heated to a temperature equal to or higher than the glass transition point of the resin to be molded. A step of drawing out the induction heating coil is required, and there is a problem in productivity because the molding cycle is elongated. In addition, in the case of high-frequency induction heating, an excessive amount of electricity is consumed, which is not preferable from the viewpoint of energy saving. In addition, high-frequency induction heating is also not preferable because it is limited to a molded product having a relatively flat shape, because it limits the degree of freedom in product design of the molded product.

【0016】[0016]

【発明が解決しようとする課題】本発明は、無機物充填
剤が添加された非晶性樹脂の成形性、流動性、寸法安定
性を向上させ、反り、ヒケといった変形の発生を抑え、
該非晶性樹脂へ添加された無機物充填剤が成形品表面へ
の露出を抑えることを、成形方法の改良により提供する
ことを課題とする。具体的には、無機物充填剤が添加さ
れた非晶性樹脂の樹脂組成の制限、製品デザインの自由
度を損なうことなく、金型キャビティへの充填を容易に
し、成形品の寸法精度、表面性、金型転写性を向上さ
せ、反り、ヒケの発生を抑え、該非晶性樹脂へ添加され
た無機物充填剤が成形品表面へ露出することを抑え、か
つ、より薄肉成形品への応用を可能とすることである。
SUMMARY OF THE INVENTION The present invention improves the moldability, flowability, and dimensional stability of an amorphous resin to which an inorganic filler has been added, and suppresses the occurrence of deformation such as warpage and sink.
An object of the present invention is to provide, by improving a molding method, suppression of exposure of an inorganic filler added to the amorphous resin to the surface of a molded article. Specifically, it is easy to fill the mold cavity without limiting the resin composition of the amorphous resin to which the inorganic filler has been added, and without impairing the degree of freedom in product design. Improves mold transferability, suppresses warpage and sink marks, suppresses the exposure of inorganic filler added to the amorphous resin to the molded product surface, and enables application to thinner molded products. It is to be.

【0017】[0017]

【課題を解決するための手段】本発明者は、無機物充填
剤を添加した非晶性樹脂組成物に0.2重量%以上の二
酸化炭素を溶解または吸収させた後に金型キャビティへ
射出することにより無機物充填剤が添加された非晶性樹
脂の流動性、成形性を向上させながら、成形性、流動
性、寸法安定性を向上させ、反り、ヒケといった変形の
発生を抑えることを見いだした。
Means for Solving the Problems The present inventors dissolve or absorb 0.2% by weight or more of carbon dioxide in an amorphous resin composition to which an inorganic filler is added, and then inject it into a mold cavity. As a result, the present inventors have found that while improving the fluidity and moldability of an amorphous resin to which an inorganic filler has been added, the moldability, fluidity, and dimensional stability are improved, and deformation such as warpage and sink is suppressed.

【0018】すなわち本発明は、無機物充填剤を添加し
た非晶性樹脂組成物の成形品の製造方法であって、該非
晶性樹脂組成物に0.2重量%以上の二酸化炭素を溶解
または吸収させた後に、金型キャビティへ射出すること
を特徴とする無機物充填剤を添加した非晶性樹脂組成物
の成形品の製造方法に関する。
That is, the present invention relates to a method for producing a molded article of an amorphous resin composition to which an inorganic filler is added, wherein 0.2% by weight or more of carbon dioxide is dissolved or absorbed in the amorphous resin composition. The present invention relates to a method for producing a molded article of an amorphous resin composition to which an inorganic filler is added, wherein the molded article is injected into a mold cavity after the molding.

【0019】[0019]

【発明の実施の形態】本発明について、以下具体的に説
明する。本発明による成形方法においては、無機物充填
剤を添加した非晶性樹脂組成物に0.2重量%以上の二
酸化炭素を溶解または吸収させることにより、溶融時の
粘度が下がり、流動性が向上する。これは、溶融状態の
無機物充填剤を添加した非晶性樹脂中に二酸化炭素が可
塑剤として効率よく分散すると想像される。この結果、
樹脂温度を高くする必要がないので、樹脂の熱分解、劣
化などの心配がないほか、金型温度を必要以上に高くす
る必要がない。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below. In the molding method according to the present invention, by dissolving or absorbing 0.2% by weight or more of carbon dioxide in the amorphous resin composition to which the inorganic filler is added, the viscosity at the time of melting is reduced and the fluidity is improved. . It is supposed that carbon dioxide is efficiently dispersed as a plasticizer in the amorphous resin to which the inorganic filler in the molten state is added. As a result,
Since there is no need to raise the resin temperature, there is no need to worry about thermal decomposition and deterioration of the resin, and there is no need to raise the mold temperature more than necessary.

【0020】本発明による成形方法においては、無機物
充填剤を添加した非晶性樹脂組成物に0.2重量%以上
の二酸化炭素を溶解させることにより、反り、ヒケなど
成形後の変形が、従来の成形方法と比較して少ない。こ
れは、金型キャビティ内へ充填の際の充填圧が従来の成
形方法より低いため、成形品内に残留ひずみが残りにく
く、反りが発生しにくい状況にあることと考えられる。
また、金型キャビティ内で樹脂が冷却され体積収縮を起
こす際には、該非晶性樹脂中に溶解している二酸化炭素
が適度に発泡することにより、この体積収縮分を補って
いるためと思われる。
In the molding method according to the present invention, by dissolving 0.2% by weight or more of carbon dioxide in an amorphous resin composition to which an inorganic filler has been added, deformation after molding such as warpage or sink mark is reduced. Less than the molding method. This is presumably because the filling pressure at the time of filling into the mold cavity is lower than that of the conventional molding method, so that residual strain hardly remains in the molded product and warpage hardly occurs.
Also, when the resin is cooled in the mold cavity and causes volume shrinkage, carbon dioxide dissolved in the amorphous resin foams moderately to compensate for this volume shrinkage. It is.

【0021】本発明による成形方法においては、無機物
充填剤を添加した非晶性樹脂組成物に0.2重量%以上
の二酸化炭素を溶解させることにより、キャビティへ充
填時に該非晶性樹脂の粘度が低下することによって、樹
脂流動末端部まで圧力が伝達されやすい状況にあると考
えられる。この結果、無機物充填剤が成形品表面に露出
しにくいため、無機物充填剤が添加されている非晶性樹
脂にも関わらず、表面の滑らかな成形品が得られるもの
と思われる。
In the molding method according to the present invention, by dissolving 0.2% by weight or more of carbon dioxide in the amorphous resin composition to which the inorganic filler has been added, the viscosity of the amorphous resin can be reduced when filling the cavity. It is considered that the pressure is likely to be transmitted to the resin flow end by the decrease. As a result, since the inorganic filler is hardly exposed on the surface of the molded article, it is considered that a molded article having a smooth surface can be obtained regardless of the amorphous resin to which the inorganic filler is added.

【0022】本発明において、無機物充填剤を添加した
非晶性樹脂組成物に0.2重量%以上の二酸化炭素を溶
解または吸収させる方法としては、射出成形機の加熱筒
内で溶融状態の該非晶性樹脂に二酸化炭素を混合させる
方法、予め溶融状態にある該非晶性樹脂に二酸化炭素を
混合した状態で樹脂ペレットを造粒しこれを用いて射出
成形する方法、予め密閉容器中で樹脂ペレットに二酸化
炭素を吸収させる方法が考えられる。
In the present invention, as a method of dissolving or absorbing 0.2% by weight or more of carbon dioxide in the amorphous resin composition to which the inorganic filler is added, the amorphous resin composition in a molten state in a heating cylinder of an injection molding machine is used. A method in which carbon dioxide is mixed with an amorphous resin, a method in which resin pellets are granulated in a state in which carbon dioxide is mixed with the amorphous resin in a molten state in advance, and injection molding is performed using the granules, There is a method for absorbing carbon dioxide.

【0023】射出成形機への樹脂の安定供給性、射出成
形時の作業性を考慮すると、射出成形機の加熱筒内で溶
融状態の非晶性樹脂に二酸化炭素を混合させる方法が一
般的と思われる。本発明に用いられる非晶性樹脂は、ポ
リスチレン(以下「PS」と称す)系樹脂、ABS系樹
脂、ポリカーボネート(以下「PC」と称す)系樹脂、
PC/ABS系樹脂、ポリフェニレンエーテル(以下
「PPE」と称す)系樹脂などを主成分とする非晶性樹
脂であり、1種類の樹脂単独、または、主成分となる非
晶性樹脂に1種類以上の特性の異なった樹脂を混合して
得られる混合物を指すものである。例えば、PPE系樹
脂には、他の熱可塑性樹脂とアロイ化し、変性させた変
性PPE(以下「mPPE」と称す)系樹脂が考えられ
る。
Considering the stable supply of resin to the injection molding machine and the workability during injection molding, it is generally considered that carbon dioxide is mixed with the amorphous resin in a molten state in the heating cylinder of the injection molding machine. Seem. The amorphous resin used in the present invention includes polystyrene (hereinafter, referred to as “PS”) resin, ABS resin, polycarbonate (hereinafter, referred to as “PC”) resin,
Amorphous resin mainly composed of PC / ABS resin, polyphenylene ether (hereinafter referred to as “PPE”) resin, etc., and one kind of resin alone or one kind of amorphous resin It refers to a mixture obtained by mixing resins having different properties as described above. For example, a modified PPE (hereinafter, referred to as “mPPE”) resin alloyed with another thermoplastic resin and modified is considered as the PPE resin.

【0024】本発明に用いられる非晶性樹脂は、耐熱温
度が高いこと、非ハロゲン系の難燃特性であること、成
形収縮率が小さいこと、酸、アルカリに強いこと、成形
加工性に優れていること、リワーク性に優れることか
ら、PPE系樹脂であることが好ましい。また該PPE
系樹脂は、無機物充填剤を除いた樹脂成分100重量部
に対し、PPE成分を20重量部以上含有するmPPE
系樹脂であることが好ましい。これは、PPE成分が2
0重量部未満であるmPPE系樹脂では、難燃性などP
PE樹脂が持つ特徴が発生しにくいため好ましくない。
The amorphous resin used in the present invention has a high heat resistance temperature, a non-halogen flame retardant property, a small molding shrinkage, a high resistance to acids and alkalis, and is excellent in molding processability. It is preferable to use a PPE-based resin because it is excellent in reworkability. The PPE
MPPE containing 20 parts by weight or more of a PPE component with respect to 100 parts by weight of a resin component excluding an inorganic filler.
It is preferably a resin. This is because the PPE component is 2
If the mPPE resin is less than 0 parts by weight, P
It is not preferable because characteristics of the PE resin hardly occur.

【0025】上記主成分となる非晶性樹脂と混合して用
いることのできる特性の異なった樹脂は、該主成分とな
る非晶性樹脂と同一の分子構造をもつ樹脂であって、分
子量、分子量分布が異なる樹脂であってもよいし、分子
構造が異なる他の樹脂でもよい。また、必要に応じて、
特性の異なった樹脂を2種類以上混合することも可能で
ある。
The resin having different characteristics which can be used by mixing with the above-mentioned amorphous resin as the main component is a resin having the same molecular structure as the amorphous resin as the main component, Resins having different molecular weight distributions or other resins having different molecular structures may be used. Also, if necessary,
It is also possible to mix two or more resins having different properties.

【0026】また、上記主成分となる非晶性樹脂と混合
して用いることのできる他の樹脂としては、該主成分と
なる非晶性樹脂と相溶可能であれば特に制限はなく、例
えば、ポリエチレン、ポリアセタール、ポリプロピレ
ン、ポリスチレン、ABS樹脂、ポリ塩化ビニル、ポリ
アミド、ポリカーボネート、変性ポリフェニレンエーテ
ル、ポリエチレンテレフタレート、ポリブチレンテレフ
タレート、ポリフェニレンスルフィド、ポリイミド、ポ
リアミドイミド、ポリエーテルイミド、ポリアリレー
ト、ポリサルフォン、ポリエーテルサルフォン、ポリエ
ーテルエーテルケトン、液晶ポリマー、ポリテトラフル
オロエチレン、熱可塑性エラストマー、ポリ四フッ化エ
チレン、ポリビニルアルコールなどを挙げることができ
る。
The other resin that can be used by being mixed with the above-mentioned amorphous resin as the main component is not particularly limited as long as it is compatible with the amorphous resin as the main component. , Polyethylene, polyacetal, polypropylene, polystyrene, ABS resin, polyvinyl chloride, polyamide, polycarbonate, modified polyphenylene ether, polyethylene terephthalate, polybutylene terephthalate, polyphenylene sulfide, polyimide, polyamideimide, polyetherimide, polyarylate, polysulfone, polyether Examples thereof include sulfone, polyetheretherketone, liquid crystal polymer, polytetrafluoroethylene, thermoplastic elastomer, polytetrafluoroethylene, and polyvinyl alcohol.

【0027】本発明における非晶性樹脂には無機物充填
剤を添加することを特徴とするが、好適な充填剤として
は、ガラス繊維、炭素繊維、金属繊維、アラミド繊維、
チタン酸カリウム、アスベスト、炭化ケイ素、セラミッ
ク、窒化ケイ素、硫酸バリウム、硫酸カルシウム、カオ
リン、クレー、パイロフィライト、ベントナイト、セリ
サイト、ゼオライト、マイカ、雲母、ネフェリンシナイ
ト、タルク、アタルパルジャイト、ウオラストナイト、
スラグ繊維、フェライト、ケイ素、カルシウム、炭酸カ
ルシウム、炭酸マグネシウム、ドロマイト、酸化亜鉛、
石膏、ガラスビーズ、ガラスパウダー、ガラスバルー
ン、石英、石英ガラス、アルミナなどの充填強化剤を挙
げることができ、これらは中空形状であってもよい。ま
た、これらの無機物充填剤は、2種類以上を併用するこ
とも可能である。また、必要に応じて、シラン系、チタ
ン系などのカップリング剤で予備処理して使用すること
ができる。
The amorphous resin according to the present invention is characterized by adding an inorganic filler. Preferred fillers include glass fiber, carbon fiber, metal fiber, aramid fiber, and the like.
Potassium titanate, asbestos, silicon carbide, ceramic, silicon nitride, barium sulfate, calcium sulfate, kaolin, clay, pyrophyllite, bentonite, sericite, zeolite, mica, mica, nepheline cinite, talc, atalpargite, water Last night,
Slag fiber, ferrite, silicon, calcium, calcium carbonate, magnesium carbonate, dolomite, zinc oxide,
Filling enhancers such as gypsum, glass beads, glass powder, glass balloons, quartz, quartz glass, and alumina can be used, and these may be hollow. In addition, two or more of these inorganic fillers can be used in combination. Further, if necessary, it can be used after being pre-treated with a coupling agent such as a silane-based or titanium-based coupling agent.

【0028】本発明における非晶性樹脂には、無機物充
填剤を添加することを特徴とするが、該無機物充填剤の
添加量は5重量%より多いことが好ましい。添加量が5
重量%より少ない場合には、無機物充填剤による剛性向
上、寸法精度向上といった効果が薄いほか、金型キャビ
ティへ溶融状態の樹脂を充填する際に、フローフロント
で樹脂の発泡が発生しやすいため、好ましくない。本発
明において無機物充填剤の添加量とは、添加される無機
物充填剤が1種類の場合にはその添加量を指し、2種類
以上の場合にはそれらの総添加量を指す。また、無機物
充填剤の添加量は、樹脂、無機物充填剤、その他の添加
剤の総量を100重量%としたときの割合を指すもので
ある。
The amorphous resin according to the present invention is characterized in that an inorganic filler is added. The amount of the inorganic filler is preferably more than 5% by weight. 5 added
When the amount is less than the weight%, the effect of improving the rigidity and the dimensional accuracy by the inorganic filler is weak, and resin is easily foamed at the flow front when the molten resin is filled into the mold cavity. Not preferred. In the present invention, the added amount of the inorganic filler refers to the amount added when one kind of inorganic filler is added, and refers to the total added amount when two or more kinds of inorganic filler are added. Further, the added amount of the inorganic filler indicates a ratio when the total amount of the resin, the inorganic filler, and other additives is 100% by weight.

【0029】本発明における非晶性樹脂には、通常使用
する添加剤、例えば、酸化防止剤、難燃化剤、離型剤、
滑剤、耐熱安定剤、耐候性安定剤、防錆剤、充填剤、着
色剤、抗菌剤、防カビ剤などを必要に応じて、1種類以
上添加することができる。また、その他の添加剤とし
て、炭素繊維、金属繊維、黒鉛のうちの1種類以上を選
択することにより結晶性樹脂の電気抵抗値を下げること
ができる。これは、埃などの小さな粉体が、非晶性樹脂
成形品に静電気によって付着することを防止できるた
め、好適である。
The amorphous resin of the present invention may contain additives usually used, such as antioxidants, flame retardants, release agents,
One or more lubricants, heat stabilizers, weathering stabilizers, rust preventives, fillers, coloring agents, antibacterial agents, antifungal agents and the like can be added as required. Further, by selecting one or more of carbon fiber, metal fiber, and graphite as other additives, the electric resistance value of the crystalline resin can be reduced. This is preferable because it is possible to prevent small powder such as dust from adhering to the amorphous resin molded product due to static electricity.

【0030】本発明において非晶性樹脂の製造方法と
は、熱可塑性樹脂の成形加工方法を指し、通常用いられ
る射出成形法のほか、中空射出成形法、ガスアシスト成
形法、ブロー成形法、射出・圧縮成形法などが含まれ
る。本発明においては、該非晶性樹脂に二酸化炭素を溶
解または吸収させた後、予め金型キャビティ内を加圧す
ることなく、実質的に大気圧である金型キャビティ内へ
射出することが好ましい。これは、金型を密閉する必要
がないため複雑な形状の成形品への対応が容易であるこ
とと、加圧ガスにより樹脂の充填が阻害され充填圧が上
昇することを抑えるためである。
In the present invention, the method for producing an amorphous resin refers to a method for molding and processing a thermoplastic resin. In addition to a commonly used injection molding method, a hollow injection molding method, a gas assist molding method, a blow molding method, and an injection molding method. -Includes compression molding. In the present invention, after dissolving or absorbing carbon dioxide in the amorphous resin, it is preferable that the carbon dioxide is injected into a mold cavity at substantially atmospheric pressure without pressurizing the inside of the mold cavity in advance. This is because it is not necessary to hermetically seal the mold, so that it is easy to cope with a molded article having a complicated shape, and to suppress the filling pressure from being hindered by the pressurized gas from increasing the filling pressure.

【0031】本発明において二酸化炭素の吸収量または
溶解量は、以下の手順により測定する。 ペレット状態または溶融状態の樹脂に二酸化炭素を吸
収または溶解させる。 成形加工直後に、成形品の重量を測定する(M1とす
る)。 成形品を100℃に保温された熱風乾燥機中に48時
間以上放置し、二酸化炭素を放散させる。 熱風乾燥機から取り出した直後に重量を測定する(M
2とする)。 CO2吸収量または溶解量(重量%)=(M1−M
2)÷M2×100から算出する。
In the present invention, the amount of carbon dioxide absorbed or dissolved is measured by the following procedure. Carbon dioxide is absorbed or dissolved in a resin in a pellet state or a molten state. Immediately after the molding, the weight of the molded article is measured (M1). The molded product is left in a hot-air dryer kept at 100 ° C. for 48 hours or more to emit carbon dioxide. Measure the weight immediately after taking it out of the hot air dryer (M
2). CO2 absorption or dissolved amount (% by weight) = (M1-M
2) Calculate from ÷ M2 × 100.

【0032】本発明で良好に成形される成形品は、光学
機器部品、弱電機器、電子機器、事務機器などのハウジ
ングに代表される内部部品、自動車内外装の各部品、各
種日用品などの無機物充填剤を添加した非晶性樹脂成形
品である。特に好ましくは、多点ゲートで射出成形さ
れ、その結果ウエルドラインが多数発生する電子機器、
電気機器、事務機器のハウジング、多くが薄肉部分で構
成されている自動車外装品、自動二輪車外装品などであ
る。成形が容易になるほか、成形品の品質が向上する、
製品デザインの自由度が増す、溶融時の粘度が高いため
に現在まで実現できなかった、樹脂組成物による射出成
形品の実現が期待できる。
The molded article satisfactorily molded by the present invention includes inorganic parts such as internal parts typified by housings of optical equipment parts, light electric equipment, electronic equipment, office equipment, etc., various parts of automobile interior and exterior, and various daily necessities. It is an amorphous resin molded product to which an agent is added. Particularly preferably, an electronic device that is injection-molded at a multipoint gate, resulting in a large number of weld lines,
Electrical equipment, housing for office equipment, automobile exterior parts, motorcycle exterior parts, etc., which are mostly composed of thin parts. In addition to facilitating molding, the quality of molded products is improved.
The realization of an injection-molded product made of a resin composition, which could not be realized until now due to an increased degree of freedom in product design and a high viscosity during melting, can be expected.

【0033】以下に実施例、比較例を用いて本発明の効
果をさらに説明する。射出成形に使用した樹脂は、ガラ
ス繊維強化ABS樹脂(旭化成工業(株)製「スタイラ
ック−ABS R240A(ガラス繊維20%添加
品)」)、非強化mPPE樹脂(旭化成工業(株)製
「ザイロン 600H」)、ガラス繊維強化mPPE樹
脂(旭化成工業(株)製「ザイロン G701H(ガラ
ス繊維10%添加品)、G702H(同20%)、G7
03H(同30%)」)、非強化PPE/PA系樹脂
(旭化成工業(株)製「ザイロン A0501」)、ガ
ラス繊維強化PPE/PA系樹脂(旭化成工業(株)製
「ザイロン AG511(ガラス繊維10%添加
品)」)である。また、適宜、非強化mPPE樹脂とガ
ラス繊維強化mPPE樹脂を混合し、ガラス繊維3%添
加相当品と、同5%添加相当品を造粒した。いずれも成
形前はペレット状である。
Hereinafter, the effects of the present invention will be further described with reference to Examples and Comparative Examples. The resin used for the injection molding was a glass fiber reinforced ABS resin (“Stylac-ABS R240A (added with 20% glass fiber)” manufactured by Asahi Kasei Corporation) and a non-reinforced mPPE resin (“Xylon” manufactured by Asahi Kasei Corporation) 600H "), glass fiber reinforced mPPE resin (" Xylon G701H (10% glass fiber added) ", G702H (20%), G7 manufactured by Asahi Kasei Corporation
03H (30%), non-reinforced PPE / PA resin ("Zylon A0501" manufactured by Asahi Kasei Corporation), glass fiber reinforced PPE / PA resin ("Zylon AG511 (glass fiber 10% additive))). In addition, a non-reinforced mPPE resin and a glass fiber reinforced mPPE resin were appropriately mixed to granulate a 3% glass fiber added product and a 5% glass equivalent product. Both are in the form of pellets before molding.

【0034】成形機は、ソディック プラステック製
「TUPARL TR50S2」および、住友重機械工
業製「SG125−HP」を使用した。金型は、図1に
示すようなISOダンベル形状のものと、成形品形状が
図2、3に示すようなベースが正方形でありベース上に
4本のボスを設けた形状のものを用いた。ISOダンベ
ル金型を用いる場合には成形機として、TR50S2を
用いた。ISOダンベル金型は、ISO規格に準じた構
造となっている。
As the molding machine, "TUPARL TR50S2" manufactured by Sodick Plustech and "SG125-HP" manufactured by Sumitomo Heavy Industries, Ltd. were used. The mold used was an ISO dumbbell-shaped mold as shown in FIG. 1 and a mold having a square base as shown in FIGS. 2 and 3 and four bosses provided on the base. . When using an ISO dumbbell mold, TR50S2 was used as a molding machine. The ISO dumbbell mold has a structure conforming to the ISO standard.

【0035】ボス付き平板金型の製品部は縦横各100
mm、厚さ2.5mmであり、この金型を用いる成形に
は、成形機としてSG125−HPを用いた。ボス付き
平板金型には、正方形の1辺に1mm厚のフィルムゲー
トを設け、キャビティ表面は鏡面とした。射出成形時の
シリンダー温度は、特に明記しない限り、ABS樹脂の
成形時には220℃、mPPE樹脂、PPE/PA樹脂
成形時には280℃とした。金型温度は、特に明記しな
い限り、ABS樹脂、mPPE樹脂成形時には60℃、
PPE/PA系樹脂成形時には80℃とした。同一樹脂
において、GF強化グレードと非強化グレードは、シリ
ンダー温度と金型温度の設定は、基本的に同一とした。
The product part of the flat mold with boss is 100 pieces in length and width.
mm and a thickness of 2.5 mm. For molding using this mold, SG125-HP was used as a molding machine. In the flat plate mold with boss, a film gate having a thickness of 1 mm was provided on one side of the square, and the cavity surface was a mirror surface. Unless otherwise specified, the cylinder temperature during injection molding was 220 ° C. when molding ABS resin, and 280 ° C. when molding mPPE resin and PPE / PA resin. Unless otherwise specified, the mold temperature is 60 ° C. when molding ABS resin and mPPE resin.
The temperature was set to 80 ° C. when molding the PPE / PA resin. For the same resin, the setting of the cylinder temperature and the mold temperature was basically the same for the GF reinforced grade and the non-reinforced grade.

【0036】[0036]

【実施例1〜5】TR50S2成形機の可塑化部中央部
に成形品の可塑化部に設けられたガス注入部より、可塑
化部内の溶融樹脂中に二酸化炭素ガスを溶解させた後、
射出成形を行ってISOダンベル形状の成形品を得た。
ガラス繊維強化mPPE樹脂(ガラス繊維30%添加
品)を用い、二酸化炭素の溶解量が0.22重量%、
0.35重量%、0.50重量%、0.75重量%、
1.2重量%となるように、成形機の可塑化部から二酸
化炭素ガスを供給し、射出成形を行った。
Examples 1 to 5 After dissolving carbon dioxide gas in the molten resin in the plasticizing section from the gas injection section provided in the plasticizing section of the molded product at the center of the plasticizing section of the TR50S2 molding machine,
Injection molding was performed to obtain an ISO dumbbell-shaped molded product.
Using glass fiber reinforced mPPE resin (glass fiber 30% additive), the dissolved amount of carbon dioxide is 0.22% by weight,
0.35% by weight, 0.50% by weight, 0.75% by weight,
Carbon dioxide gas was supplied from the plasticizing section of the molding machine so as to be 1.2% by weight, and injection molding was performed.

【0037】射出成形時の充填圧は、成形機の樹脂圧測
定値を読むことにより測定した。また、射出成形後、図
1に示す3ヶ所(A、B、C)において表面粗さを測定
した。表面粗さの測定には、(株)東京精密社製 表面
粗さ測定機「サーフコム575A」を用い、JIS B
0601−1995に準じて算術平均粗さRa(μ
m)、最大高さRy(μm)値を測定し、この値を表面
粗さの値とした。結果を表1に示す。
The filling pressure at the time of injection molding was measured by reading a resin pressure measurement value of a molding machine. After the injection molding, the surface roughness was measured at three places (A, B, C) shown in FIG. The surface roughness was measured using a surface roughness measuring device “Surfcom 575A” manufactured by Tokyo Seimitsu Co., Ltd.
0601-1995, the arithmetic average roughness Ra (μ
m) and the maximum height Ry (μm) value were measured, and this value was used as the value of the surface roughness. Table 1 shows the results.

【0038】[0038]

【比較例1〜3】実施例1〜3と同形状であるISOダ
ンベル形状の成形品を、ガラス繊維強化mPPE樹脂
(ガラス繊維30%添加品)を用い、成形機の可塑化部
からの二酸化炭素ガスの供給はせず、シリンダー温度を
280℃、300℃、320℃に設定し、通常の射出成
形と同様の工程で成形品を得た。実施例1〜5と同様
に、射出成形時の充填圧と成形品表面粗さを測定した。
結果を表1に示す。
Comparative Examples 1 to 3 An ISO dumbbell-shaped molded product having the same shape as that of Examples 1 to 3 was prepared by using a glass fiber reinforced mPPE resin (a product containing 30% of glass fiber) and using a plasticizer from a plasticizing section of a molding machine. No carbon gas was supplied, and the cylinder temperature was set at 280 ° C., 300 ° C., and 320 ° C., and a molded product was obtained in the same process as ordinary injection molding. As in Examples 1 to 5, the filling pressure during injection molding and the surface roughness of the molded product were measured.
Table 1 shows the results.

【0039】[0039]

【比較例4、5】実施例1〜5と同様に、TR50S2
成形機の可塑化部中央部に成形品の可塑化部に設けられ
たガス注入部より、可塑化部内の溶融樹脂中に二酸化炭
素ガスを溶解させた後、射出成形を行ってISOダンベ
ル形状の成形品を得た。ガラス繊維強化mPPE樹脂
(ガラス繊維30%添加品)を用い、二酸化炭素の溶解
量が0.06重量%、0.18重量%となるように、成
形機の可塑化部から二酸化炭素ガスを供給し、射出成形
を行った。実施例1〜5と同様に、射出成形時の充填圧
と成形品表面粗さを測定した。結果を表1に示す。
Comparative Examples 4 and 5 As in Examples 1 to 5, TR50S2
After dissolving carbon dioxide gas in the molten resin in the plasticized part from the gas injection part provided in the plasticized part of the molded product at the center of the plasticized part of the molding machine, injection molding is performed to form an ISO dumbbell-shaped A molded product was obtained. Using a glass fiber reinforced mPPE resin (30% glass fiber added), carbon dioxide gas is supplied from the plasticizing section of the molding machine so that the dissolved amount of carbon dioxide becomes 0.06% by weight and 0.18% by weight. Then, injection molding was performed. As in Examples 1 to 5, the filling pressure during injection molding and the surface roughness of the molded product were measured. Table 1 shows the results.

【0040】[0040]

【実施例6〜9】実施例1〜5と同様、TR50S2成
形機の可塑化部中央部に成形品の可塑化部に設けられた
ガス注入部より、可塑化部内の溶融樹脂中に二酸化炭素
ガスを溶解させた後、射出成形を行って図1に示すよう
なISOダンベル形状の成形品を得た。ガラス繊維強化
mPPE樹脂(ガラス繊維5%添加相当品、同10%添
加品、同20%添加品、同30%添加品)を用い、二酸
化炭素の溶解量が0.35重量%となるように、成形機
の可塑化部から二酸化炭素ガスを供給し、射出成形を行
った。実施例1〜5と同様に、射出成形時の充填圧と成
形品表面粗さを測定した。結果を表2に示す。
Examples 6-9 As in Examples 1-5, carbon dioxide was introduced into the molten resin in the plasticizing section from the gas injection section provided in the plasticizing section of the molded product at the center of the plasticizing section of the TR50S2 molding machine. After dissolving the gas, injection molding was performed to obtain a molded product having an ISO dumbbell shape as shown in FIG. Using glass fiber reinforced mPPE resin (glass fiber 5% added equivalent, 10% added, 20% added, 30% added) so that the dissolved amount of carbon dioxide becomes 0.35% by weight Then, carbon dioxide gas was supplied from the plasticizing section of the molding machine to perform injection molding. As in Examples 1 to 5, the filling pressure during injection molding and the surface roughness of the molded product were measured. Table 2 shows the results.

【0041】[0041]

【比較例6、7】実施例6〜9と同様、TR50S2成
形機の可塑化部中央部に成形品の可塑化部に設けられた
ガス注入部より、可塑化部内の溶融樹脂中に二酸化炭素
ガスを溶解させた後、射出成形を行ってISOダンベル
形状の成形品を得た。非強化mPPE樹脂と、ガラス繊
維強化mPPE樹脂(ガラス繊維3%添加相当品)を用
い、二酸化炭素の溶解量が0.35重量%となるよう
に、成形機の可塑化部から二酸化炭素ガスを供給し、射
出成形を行った。実施例6〜9と同様に、射出成形時の
充填圧と成形品表面粗さを測定した。結果を表2に示
す。
Comparative Examples 6 and 7 As in Examples 6 to 9, carbon dioxide was introduced into the molten resin in the plasticizing section from the gas injection section provided in the plasticizing section of the molded product at the center of the plasticizing section of the TR50S2 molding machine. After dissolving the gas, injection molding was performed to obtain a molded product having an ISO dumbbell shape. Using a non-reinforced mPPE resin and a glass fiber reinforced mPPE resin (equivalent to adding 3% glass fiber), carbon dioxide gas was supplied from the plasticizing section of the molding machine so that the dissolved amount of carbon dioxide was 0.35% by weight. Supplied and injection molded. In the same manner as in Examples 6 to 9, the filling pressure during injection molding and the surface roughness of the molded product were measured. Table 2 shows the results.

【0042】[0042]

【実施例10〜13】ガラス繊維強化ABS樹脂(ガラ
ス繊維20%添加品)、ガラス繊維強化mPPE樹脂
(ガラス繊維20%添加品)を、それぞれ、熱風乾燥機
中を用い80℃で4時間乾燥し、23℃の密閉容器中に
移し容器内を1hPa以下の減圧下にした後、0.05
MPa、0.08MPaの二酸化炭素で満たし、圧力を
一定に保ちながら24時間放置した。乾燥後と、二酸化
炭素雰囲気下に放置後の樹脂重量差から求めた樹脂に吸
収された二酸化炭素量は、ガラス繊維強化ABS樹脂の
場合で、1.3重量%、3.8重量%であり、ガラス繊
維強化mPPE樹脂の場合で、5.4重量、7.2重量
%であった。
Examples 10 to 13 Glass fiber reinforced ABS resin (with 20% glass fiber added) and glass fiber reinforced mPPE resin (with 20% glass fiber added) were each dried at 80 ° C. for 4 hours in a hot air drier. Then, the mixture was transferred to a closed container at 23 ° C., and the pressure in the container was reduced to 1 hPa or less.
The reactor was filled with carbon dioxide at 0.08 MPa, and allowed to stand for 24 hours while keeping the pressure constant. The amount of carbon dioxide absorbed by the resin obtained from the difference in resin weight after drying and after being left in a carbon dioxide atmosphere was 1.3% by weight and 3.8% by weight in the case of glass fiber reinforced ABS resin. And 5.4 wt% and 7.2 wt% in the case of glass fiber reinforced mPPE resin.

【0043】この二酸化炭素を吸収した、ガラス繊維強
化ABS樹脂、ガラス繊維強化mPPE樹脂を、通常と
同じ工程で、TR50S2成形機を用いて射出成形を行
い、図1に示すようなISOダンベル形状の成形品を得
た。射出成形時の充填圧と成形品表面粗さを測定した。
結果を表3に示す。
The carbon fiber-absorbed glass fiber reinforced ABS resin and glass fiber reinforced mPPE resin are injection-molded using the TR50S2 molding machine in the same process as in the usual manner to obtain an ISO dumbbell-shaped resin as shown in FIG. A molded product was obtained. The filling pressure and the surface roughness of the molded product during injection molding were measured.
Table 3 shows the results.

【0044】[0044]

【比較例8、9】ガラス繊維強化ABS樹脂(ガラス繊
維20%添加品)、ガラス繊維強化mPPE樹脂(ガラ
ス繊維20%添加品)を、それぞれ、熱風乾燥機中を用
い80℃で4時間乾燥し、23℃の密閉容器中に移し容
器内を1hPa以下の減圧下にした後、圧力を一定に保
ちながら24時間放置した。この、ガラス繊維強化mP
PE樹脂を、通常と同じ工程で、TR50S2成形機を
用いて射出成形を行い、図1に示すようなISOダンベ
ル形状の成形品を得た。射出成形時の充填圧と成形品表
面粗さを測定した。結果を表3に示す。
Comparative Examples 8 and 9 Glass fiber reinforced ABS resin (with 20% glass fiber added) and glass fiber reinforced mPPE resin (with 20% glass fiber added) were each dried in a hot air drier at 80 ° C. for 4 hours. Then, the mixture was transferred to a closed container at 23 ° C., and the inside of the container was reduced under a reduced pressure of 1 hPa or less, and then left for 24 hours while keeping the pressure constant. This glass fiber reinforced mP
The PE resin was subjected to injection molding using the TR50S2 molding machine in the same process as usual to obtain a molded product having an ISO dumbbell shape as shown in FIG. The filling pressure and the surface roughness of the molded product during injection molding were measured. Table 3 shows the results.

【0045】[0045]

【実施例14〜16】溶融状態にしたガラス繊維強化P
PE/PA系樹脂(ガラス繊維10%添加品)に、添加
量が0.25重量%、0.45重量%、0.60重量%
となるように二酸化炭素の混練した後、造粒された樹脂
ペレットを用いて、通常の射出成形と同様の工程で、T
R50S2成形機を用いて射出成形を行い、図1に示す
ようなISOダンベル形状を得た。射出成形時の充填圧
と成形品表面粗さを測定した。結果を表4に示す。
Examples 14 to 16 Glass fiber reinforced P in molten state
0.25 wt%, 0.45 wt%, 0.60 wt% in PE / PA resin (glass fiber 10% additive)
After kneading carbon dioxide so as to obtain, using the granulated resin pellets, T
Injection molding was performed using an R50S2 molding machine to obtain an ISO dumbbell shape as shown in FIG. The filling pressure and the surface roughness of the molded product during injection molding were measured. Table 4 shows the results.

【0046】[0046]

【比較例10】ガラス繊維強化PPE/PA系樹脂(ガ
ラス繊維10%添加品)を通常の射出成形と同様の工程
で、TR50S2成形機を用いて射出成形を行い、図1
に示すようなISOダンベル形状を得た。射出成形時の
充填圧と成形品表面粗さを測定した。結果を表4に示
す。
Comparative Example 10 Injection molding of a glass fiber reinforced PPE / PA resin (glass fiber 10% added product) was carried out using the TR50S2 molding machine in the same process as ordinary injection molding.
An ISO dumbbell shape as shown in FIG. The filling pressure and the surface roughness of the molded product during injection molding were measured. Table 4 shows the results.

【0047】[0047]

【比較例11、12】非強化PPE/PA系樹脂、ガラ
ス繊維強化PPE/PA系樹脂(ガラス繊維10%添加
品)に、添加量が0.15重量%となるように二酸化炭
素の混練した後、造粒された樹脂ペレットを用いて、通
常の射出成形と同様の工程で図1に示すようなISOダ
ンベル形状を得た。射出成形時の充填圧と成形品表面粗
さを測定した。結果を表4に示す。
Comparative Examples 11 and 12 Carbon dioxide was kneaded with non-reinforced PPE / PA resin and glass fiber reinforced PPE / PA resin (glass fiber 10% added product) so that the added amount was 0.15% by weight. Thereafter, using the granulated resin pellets, an ISO dumbbell shape as shown in FIG. 1 was obtained in the same process as in normal injection molding. The filling pressure and the surface roughness of the molded product during injection molding were measured. Table 4 shows the results.

【0048】[0048]

【実施例17〜20】ガラス繊維強化mPPE樹脂(ガ
ラス繊維30%添加品)を用い、SG125−HP成形
機の可塑化部中央部に成形品の可塑化部に設けられたガ
ス注入部より、可塑化部内の溶融樹脂中への溶解量が、
0.22重量%、0.50重量%、0.75重量%、
1.2重量%となるように二酸化炭素ガスを溶解させた
後、射出成形を行って、図2に示すようなボス付き平板
形状の成形品を得た。
Embodiments 17 to 20 Using a glass fiber reinforced mPPE resin (30% glass fiber added), a SG125-HP molding machine was provided at the center of the plasticizing section of the plasticizer from the gas injection section provided in the plasticizing section of the molded article. The amount dissolved in the molten resin in the plasticizing section is
0.22% by weight, 0.50% by weight, 0.75% by weight,
After dissolving the carbon dioxide gas so as to have a concentration of 1.2% by weight, injection molding was performed to obtain a boss-shaped flat molded product as shown in FIG.

【0049】射出成形時の充填圧は、成形機の樹脂圧測
定値を読むことにより測定した。また、射出成形後、図
2に示す3ヶ所(A、B、C)において表面粗さを測定
した。表面粗さの測定には、(株)東京精密社製 表面
粗さ測定機「サーフコム575A」を用い、JIS B
0601−1995に準じて算術平均粗さRa(μ
m)、最大高さRy(μm)値を測定し、この値を表面
粗さの値とした。また、図2に示すボス付き平板成形品
を裏面から見た図を図3に示す。図3に示すD点におい
て、ボス裏側に発生するヒケ量を上記表面粗さ測定機を
用いて測定した。それぞれの測定結果を表5に示す。
The filling pressure at the time of injection molding was measured by reading a resin pressure measurement value of a molding machine. After the injection molding, the surface roughness was measured at three points (A, B, C) shown in FIG. The surface roughness was measured using a surface roughness measuring device “Surfcom 575A” manufactured by Tokyo Seimitsu Co., Ltd.
0601-1995, the arithmetic average roughness Ra (μ
m) and the maximum height Ry (μm) value were measured, and this value was used as the value of the surface roughness. FIG. 3 shows a view of the flat product with bosses shown in FIG. 2 as viewed from the back. At point D shown in FIG. 3, the amount of sink marks generated on the back side of the boss was measured using the above-mentioned surface roughness measuring device. Table 5 shows the measurement results.

【0050】[0050]

【比較例13】実施例17〜20と同様に、ガラス繊維
強化mPPE樹脂(ガラス繊維30%添加品)を用い、
SG125−HP成形機の可塑化部中央部に成形品の可
塑化部に設けられたガス注入部より、可塑化部内の溶融
樹脂中への溶解量が、0.15重量%となるように二酸
化炭素ガスを溶解させた後、射出成形を行って、図2に
示すようなボス付き平板形状の成形品を得た。実施例1
7〜20と同様に、射出成形時の充填圧、表面粗さ、ヒ
ケ量を測定した。それぞれの測定結果を表5に示す。
Comparative Example 13 In the same manner as in Examples 17 to 20, a glass fiber reinforced mPPE resin (glass fiber 30% added product) was used.
From the gas injection part provided in the plasticizing part of the molded product at the center of the plasticizing part of the SG125-HP molding machine, the carbon dioxide is dissolved so that the amount dissolved in the molten resin in the plasticizing part becomes 0.15% by weight. After dissolving the carbon gas, injection molding was performed to obtain a boss-shaped flat molded product as shown in FIG. Example 1
As in the case of 7 to 20, the filling pressure, surface roughness, and sink mark during injection molding were measured. Table 5 shows the measurement results.

【0051】[0051]

【比較例14〜16】実施例17〜20と同様に、ガラ
ス繊維強化mPPE樹脂(ガラス繊維30%添加品)を
用い、SG125−HP成形機を用いて、図2に示すよ
うなボス付き平板形状の成形品を得た。金型温度はそれ
ぞれ、60、80、100℃とした。実施例17〜20
と同様に、射出成形時の充填圧、表面粗さ、ヒケ量を測
定した。それぞれの測定結果を表5に示す。
Comparative Examples 14 to 16 In the same manner as in Examples 17 to 20, using a glass fiber reinforced mPPE resin (30% glass fiber added), using a SG125-HP molding machine, a flat plate with a boss as shown in FIG. A shaped article was obtained. The mold temperatures were 60, 80, and 100 ° C., respectively. Examples 17 to 20
In the same manner as in the above, the filling pressure, surface roughness, and sink mark during injection molding were measured. Table 5 shows the measurement results.

【0052】[0052]

【表1】 [Table 1]

【0053】[0053]

【表2】 [Table 2]

【0054】[0054]

【表3】 [Table 3]

【0055】[0055]

【表4】 [Table 4]

【0056】[0056]

【表5】 [Table 5]

【0057】[0057]

【発明の効果】本発明の方法は、無機物充填剤を添加し
た非晶性樹脂組成物の成形性、流動性、寸法安定性を向
上させ、反り、ヒケといった変形を抑え、該非晶性樹脂
組成物に添加された無機物充填剤が成形品表面に露出す
ることを抑える。
The method of the present invention improves the moldability, flowability and dimensional stability of an amorphous resin composition to which an inorganic filler has been added, suppresses deformation such as warpage and sink mark, and improves the amorphous resin composition. The exposure of the inorganic filler added to the article to the surface of the molded article is suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のISOダンベル形状を示す。FIG. 1 shows an ISO dumbbell shape of the present invention.

【図2】 本発明のボス付き平板の形状を示す。FIG. 2 shows the shape of a flat plate with a boss of the present invention.

【図3】 本発明のボス付き平板の裏面を示す。FIG. 3 shows the back surface of the flat plate with a boss of the present invention.

【符号の説明】 1 ISOダンベル 2 ボス付き平板 3 ボス[Description of Signs] 1 ISO dumbbell 2 Flat plate with boss 3 Boss

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年5月9日(2000.5.9)[Submission date] May 9, 2000 (200.5.9)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0010】一方、ポリフェニレンエーテル樹脂は難燃
性に優れた非晶性樹脂であるが、溶融時の粘度が高いた
め通常の成形用材料としては、ポリスチレンなどとアロ
イ化した変性ポリフェニレンエーテル樹脂が用いられる
ことが一般的である。ポリスチレンの割合が大きい変性
ポリフェニレンエーテル樹脂は難燃性が低下するため、
また、さらなる難燃性の向上のため、必要に応じて難燃
剤を添加する必要がある。
[0010] On the other hand, polyphenylene ether resin is an amorphous resin having excellent flame retardancy. However, since the viscosity at the time of melting is high, modified polyphenylene ether resin alloyed with polystyrene or the like is used as a usual molding material. It is common that Modified polyphenylene ether resin with a large percentage of polystyrene has reduced flame retardancy,
Also, for further improvement in flame retardancy, Ru need to add a flame retardant as required.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0032[Correction target item name] 0032

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0032】本発明で良好に成形される成形品は、光学
機器部品、弱電機器、電子機器、事務機器などのハウジ
ングに代表される部品、自動車内外装の各部品、各種日
用品などの無機物充填剤を添加した非晶性樹脂成形品で
ある。特に好ましくは、多点ゲートで射出成形され、そ
の結果ウエルドラインが多数発生する電子機器、電気機
器、事務機器のハウジング、多くが薄肉部分で構成され
ている自動車外装品、自動二輪車外装品などである。成
形が容易になるほか、成形品の品質が向上する、製品デ
ザインの自由度が増す、溶融時の粘度が高いために現在
まで実現できなかった、樹脂組成物による射出成形品の
実現が期待できる。
[0032] The present invention in good molded article is molded, the optical equipment parts, light electrical appliances, electronic equipment, office equipment housings Representative is Ru parts articles such as, the parts of the car interior and exterior, inorganic filler and various household goods It is an amorphous resin molded product to which an agent is added. Particularly preferably, in electronic equipment, electrical equipment, office equipment housing, which is injection-molded at a multipoint gate, resulting in a large number of weld lines, automobile exterior parts, motorcycle exterior parts, etc., which are mostly composed of thin parts. is there. In addition to ease of molding, the quality of molded products is improved, the degree of freedom in product design is increased, and the high viscosity at the time of melting cannot be realized until now. .

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // B29K 71:00 B29K 71:00 105:16 105:16 Fターム(参考) 4F071 AA12X AA22 AA22X AA34X AA51 AA77 AB18 AB20 AB21 AB24 AB26 AB28 BA01 BB05 4F206 AA32 AB11 AB16 AM34 AM35 JA07 JF01 JF02 JF13 JF21 JM04 JQ41 4J002 BC031 BN151 CG001 CH071 CL062 DA016 DE106 DE146 DE186 DG046 DG056 DJ006 DJ036 DJ046 DJ056 DL006 FA042 FA046 FA086 FD016──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (reference) // B29K 71:00 B29K 71:00 105: 16 105: 16 F term (reference) 4F071 AA12X AA22 AA22X AA34X AA51 AA77 AB18 AB20 AB21 AB24 AB26 AB28 BA01 BB05 4F206 AA32.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 無機物充填剤を添加した非晶性樹脂組成
物の成形品の製造方法であって、該非晶性樹脂組成物に
0.2重量%以上の二酸化炭素を溶解または吸収させた
後に、金型キャビティへ射出することを特徴とする無機
物充填剤を添加した非晶性樹脂組成物の成形品の製造方
法。
1. A method for producing a molded article of an amorphous resin composition to which an inorganic filler is added, wherein 0.2% by weight or more of carbon dioxide is dissolved or absorbed in the amorphous resin composition. A method for producing a molded article of an amorphous resin composition to which an inorganic filler is added, wherein the molded article is injected into a mold cavity.
【請求項2】 該非晶性樹脂に添加される無機物充填剤
の添加量が5重量%以上であることを特徴とする請求項
1に記載の無機物充填剤を添加した非晶性樹脂組成物の
成形品の製造方法。
2. The amorphous resin composition according to claim 1, wherein the amount of the inorganic filler added to the amorphous resin is 5% by weight or more. Manufacturing method of molded article.
【請求項3】 射出成形機の加熱筒内で溶融状態の該非
晶性樹脂に0.2重量%以上の二酸化炭素を混合させた
後、金型キャビティへ射出することを特徴とする請求項
1または2に記載の無機物充填剤を添加した非晶性樹脂
組成物の成形品の製造方法。
3. The method according to claim 1, wherein 0.2% by weight or more of carbon dioxide is mixed with the amorphous resin in a molten state in a heating cylinder of an injection molding machine and then injected into a mold cavity. Or a method for producing a molded article of an amorphous resin composition to which the inorganic filler according to 2 is added.
【請求項4】 0.2重量%以上の二酸化炭素を吸収さ
せた樹脂ペレットを用いて射出成形することを特徴とす
る請求項1または2に記載の無機物充填剤を添加した非
晶性樹脂組成物の成形品の製造方法。
4. An amorphous resin composition to which an inorganic filler has been added according to claim 1 or 2, which is injection-molded using a resin pellet that has absorbed 0.2% by weight or more of carbon dioxide. Method for manufacturing molded articles.
【請求項5】 溶融状態にある該非晶性樹脂に0.2重
量%以上の二酸化炭素を混合した状態で造粒された樹脂
ペレットを用いて射出成形することを特徴とする請求項
1または2に記載の無機物充填剤を添加した非晶性樹脂
組成物の成形品の製造方法。
5. An injection molding method using resin pellets granulated in a state where 0.2% by weight or more of carbon dioxide is mixed with the amorphous resin in a molten state. A method for producing a molded article of an amorphous resin composition to which the inorganic filler described in 1 is added.
【請求項6】非晶性樹脂が少なくともポリフェニレンエ
ーテル成分を含むポリフェニレンエーテル系樹脂である
ことを特徴とする請求項1から5のいずれかに記載の無
機物充填剤を添加した非晶性樹脂組成物の成形品の製造
方法。
6. The amorphous resin composition according to claim 1, wherein the amorphous resin is a polyphenylene ether resin containing at least a polyphenylene ether component. Method for manufacturing molded articles.
JP2000130054A 2000-04-28 2000-04-28 Method for manufacturing molded article formed of amorphous resin composition containing inorganic filler Pending JP2001310346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000130054A JP2001310346A (en) 2000-04-28 2000-04-28 Method for manufacturing molded article formed of amorphous resin composition containing inorganic filler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000130054A JP2001310346A (en) 2000-04-28 2000-04-28 Method for manufacturing molded article formed of amorphous resin composition containing inorganic filler

Publications (1)

Publication Number Publication Date
JP2001310346A true JP2001310346A (en) 2001-11-06

Family

ID=18639221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000130054A Pending JP2001310346A (en) 2000-04-28 2000-04-28 Method for manufacturing molded article formed of amorphous resin composition containing inorganic filler

Country Status (1)

Country Link
JP (1) JP2001310346A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004177379A (en) * 2002-11-29 2004-06-24 Aichi Tokei Denki Co Ltd Measurement instrument

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004177379A (en) * 2002-11-29 2004-06-24 Aichi Tokei Denki Co Ltd Measurement instrument

Similar Documents

Publication Publication Date Title
JP3218397B2 (en) Injection molding of thermoplastic resin
JP2005194532A (en) Polyamide resin and car component comprising the same
JP2008007753A (en) Polyamide resin composition and molded product thereof
JP2024127921A (en) Metal/resin composite structure, method for producing metal/resin composite structure, and engine mount member
JP2001310346A (en) Method for manufacturing molded article formed of amorphous resin composition containing inorganic filler
JP2006310009A (en) Airtight switch part
JP2529751B2 (en) Hollow molded polyallylen sulfide resin product and method for producing the same
JPH05318541A (en) Method for injection molding of plastic
JP2004216579A (en) Molded product and its injection molding method
JP2002106683A (en) Molded gear of crystalline resin composition and injection molding method
JP2002361690A (en) Mold for injection molding and method for injection molding using the same
JP2002096348A (en) Molded article formed of crystalline resin composition and injection molding method therefor
JP2002003615A (en) Inner mechanical parts of business equipment obtained by molding of non-crystalline resin composition
JP2004098646A (en) Molded article and its injection molding method
JP2002178355A (en) Thin-walled molding and its injection molding method
JP2002096366A (en) Method for injection molding of crystalline resin composition and molded gear
JP2002086519A (en) Method for injection molding crystalline resin composition and molded article obtained thereby
JP2003170461A (en) Thin-walled molding and method for injection molding the same
JP2004262142A (en) Mechanical component and its injection molding method
JP2003001662A (en) Mold for molding gear and injection molding method using the same
JP2002172643A (en) Molded article of thermoplastic resin composition and its injection molding method
JP2003055494A (en) Resin for expansion molding, molding method and expansion molded article
JP2001030283A (en) Method for injection molding aliphatic polyketone
JP2004042554A (en) Case component and its injection molding method
JP3022311B2 (en) Polyarylene sulfide resin composition