JP2001304660A - Air conditioner and its control method - Google Patents

Air conditioner and its control method

Info

Publication number
JP2001304660A
JP2001304660A JP2000124367A JP2000124367A JP2001304660A JP 2001304660 A JP2001304660 A JP 2001304660A JP 2000124367 A JP2000124367 A JP 2000124367A JP 2000124367 A JP2000124367 A JP 2000124367A JP 2001304660 A JP2001304660 A JP 2001304660A
Authority
JP
Japan
Prior art keywords
cooling water
degree
compression ratio
superheat
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000124367A
Other languages
Japanese (ja)
Other versions
JP3996321B2 (en
Inventor
Tsuneo Uekusa
常雄 植草
Shisei Waratani
至誠 藁谷
Minoru Okada
實 岡田
Takahiro Ezaki
孝弘 江崎
Toshihiro Nanbu
俊弘 南部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Power and Building Facilities Inc
NTT Data Group Corp
Original Assignee
NTT Data Corp
NTT Power and Building Facilities Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Data Corp, NTT Power and Building Facilities Inc filed Critical NTT Data Corp
Priority to JP2000124367A priority Critical patent/JP3996321B2/en
Publication of JP2001304660A publication Critical patent/JP2001304660A/en
Application granted granted Critical
Publication of JP3996321B2 publication Critical patent/JP3996321B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Abstract

PROBLEM TO BE SOLVED: To provide an energy-saving air conditioner and its control method for reliably converging the degree of superheating to a set value, even if the fresh air temperature is low, avoiding the unneeded decrease in the compression ratio of a compressor, extremely reducing very much the operation power, and improving the operating efficiency. SOLUTION: The degree of superheating of a refrigerant is detected, and the opening of an expansion valve 6 is controlled, so that the degree of superheating reaches a set value. When the expansion valve 6 is open fully while the degree of superheating does not decrease to the set value, the temperature of cooling water is increased. When the compression ratio of a compressor 1 becomes smaller than the allowable minimum compression ratio by detecting the compression ratio, however the temperature of cooling water is increased. When the temperature of cooling water cannot be increased, a condensation pressure regulating valve 4 is controlled to increase condensation pressure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、冬期など外気温
度が低い場合にも冷房が必要な高発熱機器用の空調機と
その制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner for high heat generation equipment which needs cooling even when the outside air temperature is low such as in winter, and a control method therefor.

【0002】[0002]

【従来の技術】一般に、コンピュータ等の高発熱機器が
設置された室内空間を年間にわたって冷房する装置とし
て、いわゆる年間冷房型空調機が知られている。この空
調機は、圧縮機、水冷凝縮器、膨張弁、および室内熱交
換器を通して冷媒を循環させる冷凍サイクルと、冷却水
循環ポンプ、冷却塔、および上記水冷凝縮器を通して冷
却水を循環させる冷却水循環サイクルとを備えている。
2. Description of the Related Art In general, a so-called annual cooling type air conditioner is known as a device for cooling a room in which a high heat generating device such as a computer is installed over a year. The air conditioner includes a refrigeration cycle for circulating refrigerant through a compressor, a water-cooled condenser, an expansion valve, and an indoor heat exchanger, and a cooling water circulation cycle for circulating cooling water through a cooling water circulation pump, a cooling tower, and the water-cooled condenser. And

【0003】圧縮機から吐出される高温高圧のガス冷媒
が水冷凝縮器へと導かれ、水冷凝縮器に流入したガス冷
媒は同水冷凝縮器に流入する冷却水に熱を奪われて液化
する。水冷凝縮器から流出する液冷媒は膨張弁で減圧さ
れて蒸発器(室内熱交換器)へと導かれ、蒸発器では膨
張弁で減圧後の液・ガス混合冷媒が室内空気から熱を奪
って気化する。このガス冷媒が圧縮機に吸い込まれ、以
下、同様のサイクルが繰り返される。
A high-temperature and high-pressure gas refrigerant discharged from a compressor is guided to a water-cooled condenser, and the gas refrigerant flowing into the water-cooled condenser is deprived of heat by cooling water flowing into the water-cooled condenser and liquefied. The liquid refrigerant flowing out of the water-cooled condenser is decompressed by the expansion valve and guided to the evaporator (indoor heat exchanger). In the evaporator, the decompressed liquid / gas mixed refrigerant deprives the indoor air of heat by the expansion valve. Vaporize. This gas refrigerant is sucked into the compressor, and the same cycle is repeated thereafter.

【0004】水冷凝縮器を経た冷却水は冷却塔に導か
れ、その冷却塔において冷却水の熱(ガス冷媒から奪っ
た熱)が大気に放出される。この放熱によって温度低下
した冷却水が冷却水循環ポンプによって再び水冷凝縮器
に供給される。
[0004] The cooling water that has passed through the water-cooled condenser is led to a cooling tower, where the heat of the cooling water (heat taken from the gas refrigerant) is released to the atmosphere. The cooling water whose temperature has decreased due to the heat radiation is supplied again to the water-cooled condenser by the cooling water circulation pump.

【0005】このような空調機では、冷凍サイクルの安
定した運転を行うため、蒸発器の出口における冷媒の過
熱度が設定値となるよう、膨張弁の開度が制御されて蒸
発器に流入する冷媒の量が調節される。
In such an air conditioner, the opening of the expansion valve is controlled so as to flow into the evaporator so that the degree of superheat of the refrigerant at the outlet of the evaporator becomes a set value in order to perform a stable operation of the refrigeration cycle. The amount of refrigerant is adjusted.

【0006】[0006]

【発明が解決しようとする課題】ただし、外気温度が低
くなると、冷却水温度が低下し、それに伴い、水冷凝縮
器における冷媒の凝縮圧力が低下する。凝縮圧力と蒸発
圧力との差が小さくなると、冷凍サイクル中を循環する
冷媒の流量が減少してしまい、過熱度を設定値へと収束
させることが困難となる。圧縮機の圧縮比が許容最低圧
縮比を下回ってしまうこともある。
However, when the outside air temperature decreases, the temperature of the cooling water decreases, and the condensing pressure of the refrigerant in the water-cooled condenser decreases accordingly. When the difference between the condensing pressure and the evaporating pressure becomes small, the flow rate of the refrigerant circulating in the refrigeration cycle decreases, and it becomes difficult to converge the degree of superheat to the set value. The compression ratio of the compressor may fall below the minimum allowable compression ratio.

【0007】この発明は上記の事情を考慮したもので、
その目的とするところは、外気温度が低い場合でも、過
熱度を設定値へと確実に収束させることができ、かつ圧
縮機の圧縮比が不要に低下する事態を回避することがで
き、さらには運転電力を極力低減することができて運転
効率の向上が図れる省エネルギ性にすぐれた空調機とそ
の制御方法を提供することにある。
[0007] The present invention has been made in view of the above circumstances,
The purpose is that even when the outside air temperature is low, the degree of superheat can be reliably converged to the set value, and the situation where the compression ratio of the compressor is unnecessarily reduced can be avoided. It is an object of the present invention to provide an air conditioner excellent in energy saving in which the operating power can be reduced as much as possible and the operating efficiency can be improved, and a control method thereof.

【0008】[0008]

【課題を解決するための手段】請求項1に係る発明の空
調機は、圧縮機、水冷凝縮器、凝縮圧力調節弁、膨張
弁、および室内熱交換器を通して冷媒を循環させる冷凍
サイクルと、冷却水循環ポンプ、冷却塔、および上記水
冷凝縮器を通して冷却水を循環させる冷却水循環サイク
ルと、上記室内熱交換器の出口における冷媒の過熱度を
検出する過熱度検出手段と、この過熱度検出手段で検出
される過熱度が設定値となるよう上記膨張弁の開度を制
御する膨張弁制御手段と、上記過熱度検出手段で検出さ
れる過熱度が前記設定値まで下がらないまま、上記膨張
弁が全開に至ったとき、上記冷却水循環サイクルの運転
を制御して同冷却水循環サイクルにおける冷却水温度を
上昇させる冷却水温度制御手段と、上記圧縮機の圧縮比
を検出する圧縮比検出手段と、この圧縮比検出手段で検
出される圧縮比が予め定められた許容最低圧縮比より小
さくなったとき、上記冷却水循環サイクルの運転を制御
して同冷却水循環サイクルにおける冷却水温度を上昇さ
せる冷却水温度制御手段と、上記各冷却水温度制御手段
による冷却水温度の上昇が可能か否かを判定する判定手
段と、この判定手段の判定結果が否定のとき、上記凝縮
圧力調節弁を制御して上記水冷凝縮器における冷媒の凝
縮圧力を上昇させる凝縮圧力制御手段と、を備える。
An air conditioner according to the present invention comprises a refrigeration cycle for circulating a refrigerant through a compressor, a water-cooled condenser, a condensation pressure control valve, an expansion valve, and an indoor heat exchanger; A water circulation pump, a cooling tower, and a cooling water circulation cycle that circulates cooling water through the water-cooled condenser; a superheat degree detection unit that detects a superheat degree of the refrigerant at an outlet of the indoor heat exchanger; and a superheat degree detection unit that detects the superheat degree. Expansion valve control means for controlling the degree of opening of the expansion valve so that the degree of superheat reaches a set value, and the expansion valve is fully opened while the degree of superheat detected by the degree of superheat detection means does not decrease to the set value. A cooling water temperature control means for controlling the operation of the cooling water circulation cycle to increase the cooling water temperature in the cooling water circulation cycle, and a compression ratio detection for detecting a compression ratio of the compressor. Means for controlling the operation of the cooling water circulation cycle to increase the temperature of the cooling water in the cooling water circulation cycle when the compression ratio detected by the compression ratio detection means becomes smaller than a predetermined allowable minimum compression ratio. Cooling water temperature control means, determining means for determining whether or not the cooling water temperature can be raised by each of the cooling water temperature control means, and controlling the condensing pressure regulating valve when the determination result of the determining means is negative. Condensing pressure control means for increasing the condensing pressure of the refrigerant in the water-cooled condenser.

【0009】請求項2に係る発明の空調機は、請求項1
に係る発明において、各冷却水温度制御手段について限
定している。すなわち、各冷却水温度制御手段は、制御
対象が、冷却水循環ポンプの送水量および前記冷却塔の
冷却量である。
An air conditioner according to a second aspect of the present invention is the air conditioner according to the first aspect.
In the invention according to the first aspect, each cooling water temperature control means is limited. That is, each cooling water temperature control means controls the amount of water supplied by the cooling water circulation pump and the amount of cooling of the cooling tower.

【0010】請求項3に係る発明の空調機の制御方法
は、圧縮機、水冷凝縮器、凝縮圧力調節弁、膨張弁、お
よび室内熱交換器を通して冷媒を循環させる冷凍サイク
ルと、冷却水循環ポンプ、冷却塔、および上記水冷凝縮
器を通して冷却水を循環させる冷却水循環サイクルとを
備えた空調機において、上記室内熱交換器の出口におけ
る冷媒の過熱度を検出するステップと、この検出した過
熱度が設定値となるよう上記膨張弁の開度を制御するス
テップと、上記検出される過熱度が前記設定値まで下が
らないまま、上記膨張弁が全開に至ったとき、上記冷却
水循環サイクルの運転を制御して同冷却水循環サイクル
における冷却水温度を上昇させるステップと、上記圧縮
機の圧縮比を検出するステップと、この検出した圧縮比
が予め定められた許容最低圧縮比より小さくなったと
き、上記冷却水循環サイクルにおける冷却水温度を上昇
させるステップと、上記冷却水温度の上昇が可能か否か
を判定するステップと、この判定結果が否定のとき、上
記凝縮圧力調節弁を制御して上記水冷凝縮器における冷
媒の凝縮圧力を上昇させるステップと、を備えている。
[0010] The control method of the air conditioner according to the third aspect of the present invention includes a refrigeration cycle for circulating a refrigerant through a compressor, a water-cooled condenser, a condensing pressure control valve, an expansion valve, and an indoor heat exchanger; In an air conditioner including a cooling tower, and a cooling water circulation cycle that circulates cooling water through the water-cooled condenser, a step of detecting a degree of superheat of the refrigerant at an outlet of the indoor heat exchanger, and the detected degree of superheat is set. Controlling the degree of opening of the expansion valve to a value, and controlling the operation of the cooling water circulation cycle when the degree of superheat is not reduced to the set value and the expansion valve is fully opened. Raising the temperature of the cooling water in the cooling water circulation cycle, detecting the compression ratio of the compressor, and determining whether the detected compression ratio is a predetermined allowable value. Raising the cooling water temperature in the cooling water circulation cycle when the compression ratio becomes smaller than the minimum compression ratio; and determining whether or not the cooling water temperature can be raised. Controlling the pressure regulating valve to increase the condensation pressure of the refrigerant in the water-cooled condenser.

【0011】[0011]

【発明の実施の形態】以下、この発明の一実施形態につ
いて図面を参照して説明する。図1に示すように、圧縮
機1の冷媒吐出口にガス側冷媒配管2を介して水冷凝縮
器3の熱交換器3aが接続されている。この熱交換器3
aに凝縮圧力調節弁4、液側冷媒配管5、および減圧器
たとえば開度可変の膨張弁6を介して室内熱交換器(蒸
発器)7が接続され、その室内熱交換器7に圧縮機1の
冷媒吸込口が接続されている。すなわち、圧縮機1、水
冷凝縮器3、凝縮圧力調節弁4、液側冷媒配管5、膨張
弁6、および室内熱交換器7に通して冷媒を循環させる
冷凍サイク ルが構成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. As shown in FIG. 1, a heat exchanger 3 a of a water-cooled condenser 3 is connected to a refrigerant discharge port of the compressor 1 via a gas-side refrigerant pipe 2. This heat exchanger 3
a, an indoor heat exchanger (evaporator) 7 is connected via a condensing pressure control valve 4, a liquid-side refrigerant pipe 5, and a decompressor, for example, an expansion valve 6 with a variable opening, to which a compressor is connected. One refrigerant suction port is connected. That is, a refrigeration cycle for circulating the refrigerant through the compressor 1, the water-cooled condenser 3, the condensing pressure control valve 4, the liquid side refrigerant pipe 5, the expansion valve 6, and the indoor heat exchanger 7 is configured.

【0012】凝縮圧力調節弁4はいわゆる三方弁であ
り、この凝縮圧力調節弁4と上記熱交換器3aの冷媒流
入側との間にバイパス配管2aが設けられている。凝縮
圧力調節弁4は、熱交換器3aを通る冷媒の量と、バイ
パス配管2aを通る冷媒の量とを、開度変化によって相
対的に増減し、これにより熱交換器3aにおける冷媒の
凝縮圧力を調節する。
The condensing pressure control valve 4 is a so-called three-way valve, and a bypass pipe 2a is provided between the condensing pressure control valve 4 and the refrigerant inflow side of the heat exchanger 3a. The condensing pressure control valve 4 relatively increases or decreases the amount of the refrigerant passing through the heat exchanger 3a and the amount of the refrigerant passing through the bypass pipe 2a by changing the opening degree, whereby the condensing pressure of the refrigerant in the heat exchanger 3a is increased. Adjust

【0013】室内熱交換器7の近傍に室内送風機8が配
設されている。室内送風機8は、室内の空気を吸い込ん
で室内熱交換器7に通し、その室内熱交換器7を経た空
気(冷気)を室内に吹き出す働きをする。
An indoor blower 8 is provided near the indoor heat exchanger 7. The indoor blower 8 has a function of sucking indoor air, passing it through the indoor heat exchanger 7, and blowing out the air (cool air) passing through the indoor heat exchanger 7 into the room.

【0014】一方、冷却水循環ポンプ11の水吐出口に
水管12を介して冷却塔13の熱交換器14が接続され
ている。冷却塔13は、熱交換器14のほかに、この熱
交換器14に冷却用水をかける散水器15、塔内の底部
に溜まる冷却用水を散水器15に供給する散水ポンプ1
6、冷却用水を冷やすために外気を導入する冷却塔送風
機17などを備える。
On the other hand, a heat exchanger 14 of a cooling tower 13 is connected to a water discharge port of the cooling water circulation pump 11 via a water pipe 12. The cooling tower 13 includes, in addition to the heat exchanger 14, a sprinkler 15 that applies cooling water to the heat exchanger 14, and a sprinkler pump 1 that supplies cooling water accumulated in the bottom of the tower to the sprinkler 15.
6. A cooling tower blower 17 for introducing outside air to cool the cooling water is provided.

【0015】この冷却塔13の熱交換器14に水管18
を介して上記水冷凝縮器3の熱交換器3bが接続され、
その熱交換器3bに冷却水循環ポンプ11の水吸込口が
接続されている。すなわち、冷却水循環ポンプ11、冷
却塔13、水冷凝縮器3を通して冷却水を循環させる冷
却水循環サイクルが構成されている。
A water pipe 18 is connected to the heat exchanger 14 of the cooling tower 13.
Is connected to the heat exchanger 3b of the water-cooled condenser 3 through
The water inlet of the cooling water circulation pump 11 is connected to the heat exchanger 3b. That is, a cooling water circulation cycle for circulating the cooling water through the cooling water circulation pump 11, the cooling tower 13, and the water-cooled condenser 3 is configured.

【0016】上記圧縮機1は、回転数可変のモータを有
している。この圧縮機1の駆動用として圧縮機駆動部2
1が設けられている。圧縮機駆動部21は、圧縮機1の
モータに対する駆動電圧を出力するとともに、その駆動
電圧の周波数を変化させる機能を有する。この周波数変
化により圧縮機1のモータの回転数が変化し、それに伴
い、圧縮機1の能力(容量とも称す)が変化する。
The compressor 1 has a motor whose rotation speed is variable. The compressor drive unit 2 is used to drive the compressor 1.
1 is provided. The compressor drive unit 21 has a function of outputting a drive voltage for the motor of the compressor 1 and changing the frequency of the drive voltage. Due to this frequency change, the rotation speed of the motor of the compressor 1 changes, and accordingly, the capacity (also called capacity) of the compressor 1 changes.

【0017】上記室内送風機8に送風機駆動部22が接
続されている。送風機駆動部22は、室内送風機8のモ
ータに対する駆動電圧を出力するとともに、その駆動電
圧の周波数を変化させる機能を有する。この周波数変化
により、室内送風機8の送風量が変化する。
A blower driving section 22 is connected to the indoor blower 8. The blower drive unit 22 has a function of outputting a drive voltage for the motor of the indoor blower 8 and changing the frequency of the drive voltage. Due to this frequency change, the amount of air blown by the indoor blower 8 changes.

【0018】上記冷却水循環ポンプ11にポンプ駆動部
23が接続されている。ポンプ駆動部23は、冷却水循
環ポンプ11のモータに対する駆動電圧を出力するとと
もに、その電圧電圧の周波数を変化させる機能を有す
る。この周波数変化により、冷却水循環ポンプ11の送
水量が変化する。
A pump drive unit 23 is connected to the cooling water circulation pump 11. The pump drive unit 23 has a function of outputting a drive voltage to the motor of the cooling water circulation pump 11 and changing a frequency of the voltage. Due to this frequency change, the water supply amount of the cooling water circulation pump 11 changes.

【0019】ガス側冷媒配管2において、圧縮機1の冷
媒吐出口の近傍に、吐出冷媒圧力Pdを検知する圧力検
知部31が設けられている。室内熱交換器7と圧縮機1
の冷媒吸込口との間の配管に、吸込冷媒圧力Psを検知
する圧力検知部32が設けられるとともに、室内熱交換
器7における冷媒の過熱度(スーパーヒート)SHを検
出する過熱度検出部33が設けられている。
In the gas-side refrigerant pipe 2, a pressure detecting unit 31 for detecting the discharged refrigerant pressure Pd is provided near the refrigerant discharge port of the compressor 1. Indoor heat exchanger 7 and compressor 1
A pressure detection unit 32 for detecting a suction refrigerant pressure Ps is provided in a pipe between the refrigerant suction port and the superheat degree detection unit 33 for detecting a superheat SH of the refrigerant in the indoor heat exchanger 7 (superheat) SH. Is provided.

【0020】50は当該空調機の全体を制御する主制御
部である。この主制御部50に、圧縮機駆動部21、送
風機駆動部22、圧力検知部31、圧力検知部32、過
熱度検出部33、凝縮圧力調節弁制御部41、膨張弁制
御部42、冷却水温度制御部43、および操作部51が
接続されている。
Reference numeral 50 denotes a main control section for controlling the entire air conditioner. The main control unit 50 includes a compressor drive unit 21, a blower drive unit 22, a pressure detection unit 31, a pressure detection unit 32, a superheat degree detection unit 33, a condensing pressure control valve control unit 41, an expansion valve control unit 42, and cooling water. The temperature control unit 43 and the operation unit 51 are connected.

【0021】凝縮圧力調節弁制御部41は、主制御部5
0からの指令に応じて、凝縮圧力調節弁4を制御する。
膨張弁制御部42は、主制御部50からの指令に応じ
て、膨張弁6の開度を制御する。冷却水温度制御部43
は、主制御部50からの指令に応じて、散水ポンプ1
6、冷却塔送風機17、およびポンプ駆動部23を制御
する。
The condensing pressure control valve control unit 41 includes a main control unit 5
The condensing pressure control valve 4 is controlled according to a command from 0.
The expansion valve control unit 42 controls the opening degree of the expansion valve 6 according to a command from the main control unit 50. Cooling water temperature controller 43
Is a watering pump 1 according to a command from the main control unit 50.
6. Control the cooling tower blower 17 and the pump drive unit 23.

【0022】主制御部50は、主要な機能として次の
(1)〜(6)の手段を備える。 (1)過熱度検出部33で検出される過熱度が設定値と
なるよう、膨張弁制御部42と共に、膨張弁6の開度を
制御する膨張弁制御手段。
The main control unit 50 has the following means (1) to (6) as main functions. (1) Expansion valve control means for controlling the degree of opening of the expansion valve 6 together with the expansion valve control unit 42 such that the degree of superheat detected by the superheat degree detection unit 33 becomes a set value.

【0023】(2)過熱度検出部33で検出される過熱
度が上記設定値まで下がらないまま、膨張弁6が全開に
至ったとき、冷却水温度制御部43と共に冷却水循環サ
イクルの運転を制御して、同冷却水循環サイクルにおけ
る冷却水温度を上昇させる冷却水温度制御手段。
(2) When the expansion valve 6 is fully opened while the degree of superheat detected by the superheat degree detection section 33 does not decrease to the above set value, the operation of the cooling water circulation cycle is controlled together with the cooling water temperature control section 43. And a cooling water temperature control means for raising the cooling water temperature in the cooling water circulation cycle.

【0024】(3)圧力検知部31で検知される吐出冷
媒圧力Pdと圧力検知部32で検知される吸込冷媒圧力
Psとの比を、圧縮機1の圧縮比として検出する圧縮比
検出手段。
(3) Compression ratio detecting means for detecting the ratio between the discharged refrigerant pressure Pd detected by the pressure detecting unit 31 and the suction refrigerant pressure Ps detected by the pressure detecting unit 32 as the compression ratio of the compressor 1.

【0025】(4)上記圧縮比検出手段で検出される圧
縮比が予め定められた許容最低圧縮比より小さくなった
とき、冷却水温度制御部43と共に冷却水循環サイクル
の運転を制御して、同冷却水循環サイクルにおける冷却
水温度を上昇させる冷却水温度制御手段。
(4) When the compression ratio detected by the compression ratio detecting means becomes smaller than a predetermined minimum allowable compression ratio, the operation of the cooling water circulation cycle is controlled together with the cooling water temperature control section 43 to Cooling water temperature control means for increasing the temperature of the cooling water in the cooling water circulation cycle.

【0026】(5)上記各冷却水温度制御手段による冷
却水温度の上昇が可能か否かを判定する判定手段。
(5) Judgment means for judging whether or not the cooling water temperature can be raised by each of the cooling water temperature control means.

【0027】(6)上記判定手段の判定結果が否定のと
き、凝縮圧力調節弁制御部41と共に凝縮圧力調節弁4
を制御して、水冷凝縮器3における冷媒の凝縮圧力を上
昇させる凝縮圧力制御手段。
(6) When the judgment result of the judgment means is negative, the condensing pressure control valve 4 is operated together with the condensing pressure control valve controller 41.
Pressure control means for controlling the temperature of the water-cooled condenser 3 to increase the condensation pressure of the refrigerant.

【0028】つぎに、上記の構成の作用を図2を参照し
ながら説明する。操作部51で運転の開始操作が行われ
ると(ステップ101のYES)、冷房運転が開始され
る(ステップ102)。
Next, the operation of the above configuration will be described with reference to FIG. When the operation start operation is performed by the operation unit 51 (YES in step 101), the cooling operation is started (step 102).

【0029】すなわち、圧縮機1は、圧縮機駆動部21
の出力により動作し、高温高圧のガス冷媒を吐出する。
このガス冷媒は、ガス側冷媒配管2により水冷凝縮器3
の熱交換器3aに導かれ、熱交換器3bを通る冷却水と
熱交換して凝縮し、液冷媒となる。この液冷媒は、液側
冷媒配管5により膨張弁6に導かれ、そこで減圧され、
低温低圧の液ガス混合冷媒となる。さらに、この液ガス
混合冷媒は、室内熱交換器(蒸発器)7に導かれ、室内
送風機8の運転により吸い込まれた室内空気と熱交換す
ることで蒸発し、低圧ガスとなって再び圧縮機1に吸入
される。室内熱交換器7を経た空気は冷房用空気として
室内に吹き出される。
That is, the compressor 1 includes a compressor driving section 21
, And discharges a high-temperature and high-pressure gas refrigerant.
This gas refrigerant is supplied to the water-cooled condenser 3 by the gas side refrigerant pipe 2.
, And exchanges heat with the cooling water passing through the heat exchanger 3b to condense to become a liquid refrigerant. This liquid refrigerant is guided to the expansion valve 6 by the liquid-side refrigerant pipe 5, where the pressure is reduced.
It becomes a low-temperature, low-pressure liquid-gas mixed refrigerant. Further, the liquid-gas mixed refrigerant is guided to the indoor heat exchanger (evaporator) 7, evaporates by exchanging heat with the indoor air sucked by the operation of the indoor blower 8, evaporates to a low-pressure gas, and becomes a compressor again. Inhaled into 1. The air that has passed through the indoor heat exchanger 7 is blown into the room as cooling air.

【0030】水冷凝縮器3の熱交換器3bを経た冷却水
は、冷却水循環ポンプ11により冷却塔13に導かれ、
外気と熱交換した後、再び水冷凝縮器3に至る。
The cooling water having passed through the heat exchanger 3b of the water-cooled condenser 3 is guided to a cooling tower 13 by a cooling water circulation pump 11,
After heat exchange with the outside air, it reaches the water-cooled condenser 3 again.

【0031】この冷房運転時、圧縮機1の圧縮比が検出
されるとともに、室内熱交換器7における冷媒の過熱度
が検出される(ステップ103)。
During the cooling operation, the compression ratio of the compressor 1 is detected, and the degree of superheat of the refrigerant in the indoor heat exchanger 7 is detected (step 103).

【0032】検出された圧縮比が許容最低圧縮比以上で
あれば(ステップ104のNO)、検出された過熱度と
設定値とが比較される(ステップ105)。過熱度が設
定値以下のとき(ステップ105のNO)、あるいは過
熱度が設定値より高くても膨張弁6が全開でなければ
(ステップ106のNO)、膨張弁6の開度が制御され
る(ステップ106)。たとえば、過熱度が設定値より
低ければ、膨張弁6の開度が減少方向に制御される。こ
の開度減少により、室内熱交換器7に流入する冷媒の量
が減り、過熱度が上昇方向に変化する。過熱度が設定値
に一致すると、そのときの膨張弁6の開度が維持され
る。過熱度が設定値より高くなると、膨張弁6の開度が
増大方向に制御される。この開度増大により、室内熱交
換器7に流入する冷媒の量が増え、過熱度が低下方向に
変化する。
If the detected compression ratio is not less than the minimum allowable compression ratio (NO in step 104), the detected degree of superheat is compared with a set value (step 105). When the degree of superheat is equal to or less than the set value (NO in step 105), or when the degree of superheat is higher than the set value and the expansion valve 6 is not fully opened (NO in step 106), the degree of opening of the expansion valve 6 is controlled. (Step 106). For example, if the degree of superheat is lower than the set value, the degree of opening of the expansion valve 6 is controlled to decrease. Due to the decrease in the opening degree, the amount of the refrigerant flowing into the indoor heat exchanger 7 decreases, and the degree of superheat changes in the upward direction. When the degree of superheat matches the set value, the opening of the expansion valve 6 at that time is maintained. When the degree of superheat becomes higher than the set value, the degree of opening of the expansion valve 6 is controlled to increase. Due to the increase in the opening degree, the amount of the refrigerant flowing into the indoor heat exchanger 7 increases, and the degree of superheat changes in a decreasing direction.

【0033】なお、膨張弁6の開度を増大させる方向の
過熱度制御は、圧縮機1における圧縮動力を軽減させる
ことになり、圧縮機1の運転電力(消費電力)を極力低
減することができて運転効率の向上が図れるという利点
がある。
The superheat control in the direction of increasing the degree of opening of the expansion valve 6 reduces the compression power in the compressor 1, so that the operating power (power consumption) of the compressor 1 can be reduced as much as possible. There is an advantage that the operation efficiency can be improved.

【0034】ただし、冬期のように外気温度が低くなる
と、冷却水循環サイクルにおける冷却水温度が低下し、
それに伴い、水冷凝縮器3における冷媒の凝縮圧力が低
下する。この凝縮圧力と室内熱交換器7における冷媒の
蒸発圧力との差が小さくなると、冷凍サイクル中を循環
する冷媒の流量が減少してしまい、しかも膨張弁6の開
度には限度があることから、それ以上は過熱度を低下さ
せることが困難となる。なお、膨張弁6として容量の大
きいものを使用し、開度の限度を高めることが考えられ
るが、そうすると過熱度制御を精度よく行えなくなると
いう新たな不具合を生じることになるので、その使用は
好ましくない。
However, when the outside air temperature decreases as in winter, the cooling water temperature in the cooling water circulation cycle decreases,
Accordingly, the condensation pressure of the refrigerant in the water-cooled condenser 3 decreases. When the difference between the condensing pressure and the evaporating pressure of the refrigerant in the indoor heat exchanger 7 decreases, the flow rate of the refrigerant circulating in the refrigeration cycle decreases, and the opening degree of the expansion valve 6 is limited. Above that, it becomes difficult to lower the degree of superheat. It is conceivable to use a large-capacity expansion valve as the expansion valve 6 to increase the limit of the opening degree. However, this causes a new problem that the superheat degree control cannot be performed with high accuracy. Absent.

【0035】過熱度が設定値まで下がらないまま(ステ
ップ105のYES)、膨張弁6が全開に至ると(ステ
ップ107のYES)、冷却水温度制御部43による冷
却水温度制御が限界かどうか、要するに冷却水温度制御
部43による冷却水温度の上昇が可能か否か、が判定さ
れる(ステップ108)。
If the degree of superheat is not reduced to the set value (YES in step 105) and the expansion valve 6 is fully opened (YES in step 107), it is determined whether the cooling water temperature control by the cooling water temperature controller 43 is at a limit. In short, it is determined whether the cooling water temperature can be increased by the cooling water temperature controller 43 (step 108).

【0036】冷却水温度制御部43の制御対象は、冷却
水循環ポンプ11の送水量(ポンプ駆動部23の出力電
圧)、および冷却塔13の冷却量(散水ポンプ16の運
転/停止、冷却塔送風機17の風量)である。冷却水循
環ポンプ11の送水量を少なくしたり、冷却塔13の冷
却量を少なくすることで、冷却水温度を上昇させること
が可能であるが、送水量の減少および冷却量の減少には
冷房能力を確保する上での限界がある。
The cooling water temperature control unit 43 controls the water supply amount of the cooling water circulating pump 11 (output voltage of the pump driving unit 23) and the cooling amount of the cooling tower 13 (operation / stop of the watering pump 16, cooling fan blower). 17 airflow). It is possible to raise the temperature of the cooling water by reducing the amount of water supplied by the cooling water circulation pump 11 or the amount of cooling of the cooling tower 13. There is a limit in securing.

【0037】冷却水温度制御部43による冷却水温度制
御がまだ限界でなければ(ステップ108のNO)、冷
却水温度制御部43による冷却水温度の上昇が可能であ
るとの判定の下に、冷却水循環ポンプ11の運転電力
(消費電力)が低減されたり、または冷却塔送風機17
の運転電力(消費電力)が低減され、これにより冷却水
温度が高められる(ステップ109)。
If the cooling water temperature control by the cooling water temperature control unit 43 is not yet at the limit (NO in step 108), the cooling water temperature control unit 43 determines that the cooling water temperature can be raised, and The operating power (power consumption) of the cooling water circulation pump 11 is reduced, or the cooling tower blower 17
, The operating power (power consumption) of the cooling water is reduced, thereby increasing the cooling water temperature (step 109).

【0038】こうして、外気温度の低下に伴う冷却水温
度の低下が解消され、ひいては凝縮圧力の低下が抑制さ
れる。この抑制により、凝縮圧力と蒸発圧力との差が小
さくならず、冷凍サイクル中を循環する冷媒の流量が減
少する事態を回避することができ、ひいては膨張弁6を
全開未満で制御できるようになる。つまり、膨張弁6の
開度制御が有効となって、過熱度を設定値へと確実に収
束させることができる。これにより、冷凍サイクルの安
定かつ適正な運転が可能となる。
In this way, the decrease in the cooling water temperature due to the decrease in the outside air temperature is eliminated, and the decrease in the condensing pressure is suppressed. Due to this suppression, the difference between the condensing pressure and the evaporating pressure does not become small, and it is possible to avoid a situation in which the flow rate of the refrigerant circulating in the refrigeration cycle is reduced. . That is, the opening degree control of the expansion valve 6 becomes effective, and the superheat degree can be surely converged to the set value. As a result, stable and proper operation of the refrigeration cycle becomes possible.

【0039】冷却水温度制御部43による冷却水温度制
御がすでに限界に達している場合は(ステップ108の
YES)、冷却水温度制御部43による冷却水温度の上
昇が不可能であるとの判定の下に、凝縮圧力調節弁制御
部41により、水冷凝縮器3における冷媒の凝縮圧力を
上昇させるべく凝縮圧力調節弁4が制御される。
If the cooling water temperature control by the cooling water temperature control unit 43 has already reached the limit (YES in step 108), it is determined that the cooling water temperature control unit 43 cannot raise the cooling water temperature. Below, the condensing pressure control valve 4 is controlled by the condensing pressure control valve control unit 41 to increase the condensing pressure of the refrigerant in the water-cooled condenser 3.

【0040】すなわち、冷却水温度の上昇制御が不可能
な場合については、凝縮圧力の低下を凝縮圧力調節弁4
によって直接的かつ強制的に上昇させることにより、凝
縮圧力と蒸発圧力との差が小さくなる事態を回避し、冷
凍サイクル中を循環する冷媒の流量が減少しないように
している。これにより、膨張弁6を全開未満で制御でき
るようになる。つまり、膨張弁6の開度制御が有効とな
って、過熱度を設定値へと確実に収束させることができ
る。これにより、冷凍サイクルの安定かつ適正な運転が
可能となる。
That is, when it is impossible to control the rise of the cooling water temperature, the condensing pressure is reduced by the condensing pressure control valve 4.
By directly and forcibly increasing the pressure, the situation in which the difference between the condensing pressure and the evaporating pressure becomes small is avoided, and the flow rate of the refrigerant circulating in the refrigeration cycle is not reduced. This allows the expansion valve 6 to be controlled with less than full opening. That is, the opening degree control of the expansion valve 6 becomes effective, and the superheat degree can be surely converged to the set value. As a result, stable and proper operation of the refrigeration cycle becomes possible.

【0041】一方、圧縮機1には冷凍機油(潤滑油とも
称す)の関係で許容し得る最低の圧縮比があり、外気温
度の低下に伴って冷却水温度が下がり過ぎると、凝縮圧
力が低下して圧縮機1の圧縮比が許容最低圧縮比を下回
ってしまうことがある。
On the other hand, the compressor 1 has a minimum allowable compression ratio in relation to the refrigerating machine oil (also referred to as lubricating oil). If the cooling water temperature becomes too low as the outside air temperature decreases, the condensing pressure will decrease. As a result, the compression ratio of the compressor 1 may fall below the minimum allowable compression ratio.

【0042】圧縮比が許容最低圧縮比を下回ると(ステ
ップ104のYES)、冷却水温度制御部43による冷
却水温度制御が限界かどうか(冷却水温度制御部43に
よる冷却水温度の上昇が可能か否か)が判定される(ス
テップ108)。
If the compression ratio falls below the minimum allowable compression ratio (YES in step 104), whether the cooling water temperature control by the cooling water temperature control unit 43 is at a limit (the cooling water temperature can be raised by the cooling water temperature control unit 43). Is determined (step 108).

【0043】冷却水温度制御部43による冷却水温度制
御がまだ限界でなければ(ステップ108のNO)、冷
却水温度制御部43による冷却水温度の上昇が可能であ
るとの判定の下に、冷却水循環ポンプ11の運転電力が
低減されたり、または冷却塔送風機17の運転電力が低
減され、これにより冷却水温度が高められる(ステップ
109)。
If the cooling water temperature control by the cooling water temperature control unit 43 is not yet at the limit (NO in step 108), the cooling water temperature control unit 43 determines that the cooling water temperature can be increased. The operating power of the cooling water circulation pump 11 is reduced, or the operating power of the cooling tower blower 17 is reduced, whereby the temperature of the cooling water is increased (step 109).

【0044】こうして、外気温度の低下に基づく凝縮圧
力の低下が解消される。この解消により、圧縮機1の圧
縮比が許容最低圧縮比を下回ってしまう事態が回避され
る。これにより、冷凍サイクルの安定かつ適正な運転が
可能となり、しかも圧縮機1を保護することができる。
In this manner, a decrease in the condensation pressure due to a decrease in the outside air temperature is eliminated. By this elimination, the situation where the compression ratio of the compressor 1 falls below the minimum allowable compression ratio is avoided. Thereby, stable and proper operation of the refrigeration cycle becomes possible, and the compressor 1 can be protected.

【0045】冷却水温度制御部43による冷却水温度制
御がすでに限界に達している場合は(ステップ108の
YES)、冷却水温度制御部43による冷却水温度の上
昇が不可能であるとの判定の下に、凝縮圧力調節弁制御
部41により、水冷凝縮器3における冷媒の凝縮圧力を
上昇させるべく凝縮圧力調節弁4が制御される。
If the cooling water temperature control by the cooling water temperature control unit 43 has already reached the limit (YES in step 108), it is determined that the cooling water temperature control unit 43 cannot raise the cooling water temperature. Below, the condensing pressure control valve 4 is controlled by the condensing pressure control valve control unit 41 to increase the condensing pressure of the refrigerant in the water-cooled condenser 3.

【0046】すなわち、冷却水温度の上昇制御が不可能
な場合については、凝縮圧力を凝縮圧力調節弁4によっ
て直接的かつ強制的に上昇させることにより、圧縮機1
の圧縮比が許容最低圧縮比を下回ってしまう事態を回避
するようにしている。これにより、冷凍サイクルの安定
かつ適正な運転が可能となり、しかも圧縮機1を保護す
ることができる。
That is, when it is not possible to control the rise of the cooling water temperature, the condensing pressure is directly and forcibly increased by the condensing pressure regulating valve 4 so that the compressor 1
Is prevented from falling below the allowable minimum compression ratio. Thereby, stable and proper operation of the refrigeration cycle becomes possible, and the compressor 1 can be protected.

【0047】以上のように、外気温度が低い場合でも、
過熱度を設定値へと確実に収束させて冷凍サイクルの安
定かつ適正な運転が可能になるとともに、圧縮機1の圧
縮比が不要に低下する事態を回避して圧縮機1を保護す
ることができる。
As described above, even when the outside air temperature is low,
It is possible to ensure that the degree of superheat converges to the set value to enable stable and proper operation of the refrigeration cycle, and to protect the compressor 1 by avoiding a situation where the compression ratio of the compressor 1 is unnecessarily reduced. it can.

【0048】とくに、過熱度制御に関しては、初めから
凝縮圧力調節弁4を用いて凝縮圧力を強制的に高めるの
ではなく、先ずは冷却水温度を上昇させて凝縮圧力の低
下分を補うようにしているので、結果的に冷却水循環サ
イクルにおける冷却水循環ポンプ11、散水ポンプ1
6、冷却塔送風機17などの運転電力(消費電力)を低
減させることができる。これは、運転効率の向上につな
がり、省エネルギ性にすぐれた空調機となる。
In the superheat control, in particular, instead of forcibly increasing the condensing pressure by using the condensing pressure regulating valve 4 from the beginning, first, the cooling water temperature is increased to compensate for the decrease in the condensing pressure. As a result, as a result, the cooling water circulation pump 11 and the watering pump 1 in the cooling water circulation cycle
6. The operating power (power consumption) of the cooling tower blower 17 and the like can be reduced. This leads to an improvement in operation efficiency and an air conditioner with excellent energy saving.

【0049】なお、この発明は上記実施形態に限定され
るものではなく、要旨を変えない範囲で種々変形実施可
能である。
The present invention is not limited to the above embodiment, but can be variously modified without changing the gist.

【0050】[0050]

【発明の効果】以上述べたようにこの発明によれば、外
気温度が低い場合でも、過熱度を設定値へと確実に収束
させることができ、かつ圧縮機の圧縮比が不要に低下す
る事態を回避することができ、さらには運転電力を極力
低減することができて運転効率の向上が図れる省エネル
ギ性にすぐれた空調機とその制御方法を提供できる。
As described above, according to the present invention, even when the outside air temperature is low, the degree of superheat can be surely converged to the set value, and the compression ratio of the compressor is unnecessarily reduced. , And furthermore, it is possible to provide an air conditioner excellent in energy saving and capable of improving operating efficiency by reducing operating power as much as possible, and a control method thereof.

【図面の簡単な説明】[Brief description of the drawings]

【図1】各実施形態の構成を示す図。FIG. 1 is a diagram showing a configuration of each embodiment.

【図2】第1の実施形態の作用を説明するためのフロー
チャート。
FIG. 2 is a flowchart for explaining the operation of the first embodiment.

【符号の説明】[Explanation of symbols]

1…圧縮機、2…ガス側冷媒配管、3…水冷凝縮器、3
a,3b…熱交換器、4…凝縮圧力調節弁、5…液側冷
媒配管、6…膨張弁、7…室内熱交換器(蒸発器)、8
…室内送風機、11…冷却水循環ポンプ、12…水管、
13…冷却塔、14…熱交換器、15…散水器、16…
散水ポンプ、17…冷却塔送風機、18…水管、21…
圧縮機駆動部、22…送風機駆動部、23…ポンプ駆動
部、31,32…圧力検知部、33…過熱度検出部、4
1…凝縮圧力調節弁制御部、42…膨張弁制御部、43
…冷却水温度制御部、50…制御部、51…操作部。
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Gas side refrigerant piping, 3 ... Water-cooled condenser, 3
a, 3b: heat exchanger, 4: condensation pressure control valve, 5: liquid side refrigerant pipe, 6: expansion valve, 7: indoor heat exchanger (evaporator), 8
... indoor blower, 11 ... cooling water circulation pump, 12 ... water pipe,
13: cooling tower, 14: heat exchanger, 15: water sprinkler, 16 ...
Watering pump, 17: cooling tower blower, 18: water pipe, 21 ...
Compressor drive unit, 22 ... Blower drive unit, 23 ... Pump drive unit, 31, 32 ... Pressure detection unit, 33 ... Superheat degree detection unit, 4
1. Condensed pressure control valve controller, 42 ... Expansion valve controller, 43
... Cooling water temperature control unit, 50 ... Control unit, 51 ... Operation unit.

フロントページの続き (72)発明者 藁谷 至誠 東京都港区芝浦三丁目4番1号 株式会社 エヌ・ティ・ティファシリティーズ内 (72)発明者 岡田 實 東京都江東区豊洲三丁目3番3号 株式会 社エヌ・ティ・ティ・データ内 (72)発明者 江崎 孝弘 東京都江東区豊洲三丁目3番3号 株式会 社エヌ・ティ・ティ・データ内 (72)発明者 南部 俊弘 東京都江東区豊洲三丁目3番3号 株式会 社エヌ・ティ・ティ・データ内 Fターム(参考) 3L060 AA03 CC04 CC05 DD02 EE02 EE09 Continuing from the front page (72) Inventor Shigenori Waratani 3-4-1 Shibaura, Minato-ku, Tokyo Inside NTT Facilities Inc. (72) Inventor Minoru Okada 3-3-1 Toyosu, Koto-ku, Tokyo Stock Inside NTT Data (72) Inventor Takahiro Ezaki 3-3-3 Toyosu, Koto-ku, Tokyo Inside NTT Data Corporation (72) Inventor Toshihiro Nambu Koto-ku, Tokyo 3-3-3 Toyosu F-term in NTT Data Corporation (reference) 3L060 AA03 CC04 CC05 DD02 EE02 EE09

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、水冷凝縮器、凝縮圧力調節弁、
膨張弁、および室内熱交換器を通して冷媒を循環させる
冷凍サイクルと、 冷却水循環ポンプ、冷却塔、および前記水冷凝縮器を通
して冷却水を循環させる冷却水循環サイクルと、 前記室内熱交換器の出口における冷媒の過熱度を検出す
る過熱度検出手段と、この過熱度検出手段で検出される
過熱度が設定値となるよう前記膨張弁の開度を制御する
膨張弁制御手段と、 前記過熱度検出手段で検出される過熱度が前記設定値ま
で下がらないまま、前記膨張弁が全開に至ったとき、前
記冷却水循環サイクルの運転を制御して同冷却水循環サ
イクルにおける冷却水温度を上昇させる冷却水温度制御
手段と、 前記圧縮機の圧縮比を検出する圧縮比検出手段と、 この圧縮比検出手段で検出される圧縮比が予め定められ
た許容最低圧縮比より小さくなったとき、前記冷却水循
環サイクルの運転を制御して同冷却水循環サイクルにお
ける冷却水温度を上昇させる冷却水温度制御手段と、 前記各冷却水温度制御手段による冷却水温度の上昇が可
能か否かを判定する判定手段と、 この判定手段の判定結果が否定のとき、前記凝縮圧力調
節弁を制御して前記水冷凝縮器における冷媒の凝縮圧力
を上昇させる凝縮圧力制御手段と、 を具備したことを特徴とする空調機。
1. A compressor, a water-cooled condenser, a condensation pressure control valve,
An expansion valve, a refrigeration cycle that circulates the refrigerant through the indoor heat exchanger, a cooling water circulation pump, a cooling tower, and a cooling water circulation cycle that circulates the cooling water through the water-cooled condenser; and a refrigerant cycle at the outlet of the indoor heat exchanger. Superheat degree detection means for detecting the degree of superheat, expansion valve control means for controlling the degree of opening of the expansion valve so that the degree of superheat detected by the superheat degree detection means becomes a set value, and detection by the superheat degree detection means Cooling water temperature control means for controlling the operation of the cooling water circulation cycle to increase the cooling water temperature in the cooling water circulation cycle when the expansion valve is fully opened while the degree of superheat is not lowered to the set value. A compression ratio detecting means for detecting a compression ratio of the compressor; and a compression ratio detected by the compression ratio detecting means being smaller than a predetermined allowable minimum compression ratio. At this time, cooling water temperature control means for controlling the operation of the cooling water circulation cycle to increase the cooling water temperature in the cooling water circulation cycle; and determining whether the cooling water temperature can be raised by each of the cooling water temperature control means. And a condensing pressure control means for controlling the condensing pressure regulating valve to increase the condensing pressure of the refrigerant in the water-cooled condenser when the judgment result of the judging means is negative. Air conditioner.
【請求項2】 請求項1に記載の空調機において、 前記各冷却水温度制御手段は、制御対象が、前記冷却水
循環ポンプの送水量および前記冷却塔の冷却量であるこ
とを特徴とする空調機。
2. The air conditioner according to claim 1, wherein each of the cooling water temperature control means controls a water supply amount of the cooling water circulation pump and a cooling amount of the cooling tower. Machine.
【請求項3】 圧縮機、水冷凝縮器、凝縮圧力調節弁、
膨張弁、および室内熱交換器を通して冷媒を循環させる
冷凍サイクルと、冷却水循環ポンプ、冷却塔、および前
記水冷凝縮器を通して冷却水を循環させる冷却水循環サ
イクルとを備えた空調機において、 前記室内熱交換器の出口における冷媒の過熱度を検出す
るステップと、 この検出した過熱度が設定値となるよう前記膨張弁の開
度を制御するステップと、 前記検出される過熱度が前記設定値まで下がらないま
ま、前記膨張弁が全開に至ったとき、前記冷却水循環サ
イクルの運転を制御して同冷却水循環サイクルにおける
冷却水温度を上昇させるステップと、 前記圧縮機の圧縮比を検出するステップと、 この検出した圧縮比が予め定められた許容最低圧縮比よ
り小さくなったとき、前記冷却水循環サイクルにおける
冷却水温度を上昇させるステップと、 前記冷却水温度の上昇が可能か否かを判定するステップ
と、 この判定結果が否定のとき、前記凝縮圧力調節弁を制御
して前記水冷凝縮器における冷媒の凝縮圧力を上昇させ
るステップと、 を備えたことを特徴とする空調機の制御方法。
3. A compressor, a water-cooled condenser, a condensing pressure control valve,
An air conditioner comprising an expansion valve, a refrigeration cycle for circulating a refrigerant through an indoor heat exchanger, and a cooling water circulation pump, a cooling tower, and a cooling water circulation cycle for circulating cooling water through the water-cooled condenser, wherein the indoor heat exchange is performed. Detecting the degree of superheat of the refrigerant at the outlet of the vessel; controlling the degree of opening of the expansion valve so that the detected degree of superheat becomes a set value; and the detected degree of superheat does not decrease to the set value. When the expansion valve is fully opened, controlling the operation of the cooling water circulation cycle to increase the temperature of the cooling water in the cooling water circulation cycle; and detecting a compression ratio of the compressor. When the set compression ratio becomes smaller than a predetermined allowable minimum compression ratio, the cooling water temperature in the cooling water circulation cycle is increased. Determining whether the cooling water temperature can be increased; and, if the determination result is negative, controlling the condensation pressure regulating valve to increase the condensation pressure of the refrigerant in the water-cooled condenser. A method for controlling an air conditioner, comprising:
JP2000124367A 2000-04-25 2000-04-25 Air conditioner and its control method Expired - Lifetime JP3996321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000124367A JP3996321B2 (en) 2000-04-25 2000-04-25 Air conditioner and its control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000124367A JP3996321B2 (en) 2000-04-25 2000-04-25 Air conditioner and its control method

Publications (2)

Publication Number Publication Date
JP2001304660A true JP2001304660A (en) 2001-10-31
JP3996321B2 JP3996321B2 (en) 2007-10-24

Family

ID=18634508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000124367A Expired - Lifetime JP3996321B2 (en) 2000-04-25 2000-04-25 Air conditioner and its control method

Country Status (1)

Country Link
JP (1) JP3996321B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101957045A (en) * 2010-09-10 2011-01-26 深圳麦克维尔空调有限公司 Method for automatically adjusting cooling water flow of air conditioning unit
JP2014115024A (en) * 2012-12-11 2014-06-26 Ntt Facilities Inc Air conditioner
WO2015141210A1 (en) * 2014-03-18 2015-09-24 パナソニックIpマネジメント株式会社 Air conditioning device for vehicle
CN106123218A (en) * 2016-06-24 2016-11-16 珠海格力电器股份有限公司 A kind of method for determining operation parameters for air-conditioning, device and air-conditioning
CN107867144A (en) * 2016-09-27 2018-04-03 福特环球技术公司 Method and system for coolant system
US9964325B2 (en) 2014-06-25 2018-05-08 Daikin Industries, Ltd. Air conditioning system
CN109269037A (en) * 2018-10-09 2019-01-25 珠海格力电器股份有限公司 The control method and device of air-conditioning system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101957045A (en) * 2010-09-10 2011-01-26 深圳麦克维尔空调有限公司 Method for automatically adjusting cooling water flow of air conditioning unit
CN101957045B (en) * 2010-09-10 2013-04-24 深圳麦克维尔空调有限公司 Method for automatically adjusting cooling water flow of air conditioning unit
JP2014115024A (en) * 2012-12-11 2014-06-26 Ntt Facilities Inc Air conditioner
WO2015141210A1 (en) * 2014-03-18 2015-09-24 パナソニックIpマネジメント株式会社 Air conditioning device for vehicle
US9964325B2 (en) 2014-06-25 2018-05-08 Daikin Industries, Ltd. Air conditioning system
CN106123218A (en) * 2016-06-24 2016-11-16 珠海格力电器股份有限公司 A kind of method for determining operation parameters for air-conditioning, device and air-conditioning
CN106123218B (en) * 2016-06-24 2020-01-24 珠海格力电器股份有限公司 Operation parameter determination method and device for air conditioner and air conditioner
CN107867144A (en) * 2016-09-27 2018-04-03 福特环球技术公司 Method and system for coolant system
CN109269037A (en) * 2018-10-09 2019-01-25 珠海格力电器股份有限公司 The control method and device of air-conditioning system

Also Published As

Publication number Publication date
JP3996321B2 (en) 2007-10-24

Similar Documents

Publication Publication Date Title
CN104633815B (en) Computer room air-conditioning system and its control method
WO2019192210A1 (en) Constant-temperature and constant-humidity indoor unit, constant-temperature and constant-humidity system, and control method therefor
US9175889B2 (en) Heat source system and control method thereof
JP2002168532A (en) Supercritical steam compression system, and device for regulating pressure in high-pressure components of refrigerant circulating therein
JP2007212040A (en) Turbo refrigerator and its control method
JP2005233557A (en) Refrigeration system and its operating method
JP2001304660A (en) Air conditioner and its control method
KR102210920B1 (en) Capacity control type precision air conditioner capable of partial load dehumidification operation
CN111637580B (en) Method for controlling refrigerating capacity of air conditioner and air conditioner
KR101558503B1 (en) Air conditioner
JP2009264718A (en) Heat pump hot water system
JP4074422B2 (en) Air conditioner and its control method
CN112628895B (en) Direct expansion type air conditioning unit and control method thereof
JP2517071B2 (en) Cooling device and its control method
JP2000055444A (en) Air conditioner
CN113137710A (en) Control method of evaporative condenser unit
JP2006234211A (en) Heat pump water heater
JP2007327717A (en) Air conditioner
JP3361458B2 (en) Air conditioner
JP3819523B2 (en) Refrigeration equipment
JPH06337176A (en) Air-conditioner
JP2000055437A (en) Air conditioner
US20230131781A1 (en) Refrigeration cycle apparatus
JP2005037003A (en) Air-conditioner
JPH08233382A (en) Method and apparatus for controlling capacity of turbo-refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3996321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term