JP2001303258A - Magnesia for annealing and separating agent of grain oriented silicon steel sheet and method for manufacturing the same and method for manufacturing grain oriented silicon steel sheet having excellent film characteristic - Google Patents

Magnesia for annealing and separating agent of grain oriented silicon steel sheet and method for manufacturing the same and method for manufacturing grain oriented silicon steel sheet having excellent film characteristic

Info

Publication number
JP2001303258A
JP2001303258A JP2000124095A JP2000124095A JP2001303258A JP 2001303258 A JP2001303258 A JP 2001303258A JP 2000124095 A JP2000124095 A JP 2000124095A JP 2000124095 A JP2000124095 A JP 2000124095A JP 2001303258 A JP2001303258 A JP 2001303258A
Authority
JP
Japan
Prior art keywords
mass
annealing
magnesia
steel sheet
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000124095A
Other languages
Japanese (ja)
Other versions
JP3536775B2 (en
Inventor
Makoto Watanabe
渡辺  誠
Hiroaki Toda
広朗 戸田
Atsuto Honda
厚人 本田
Michiro Komatsubara
道郎 小松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2000124095A priority Critical patent/JP3536775B2/en
Publication of JP2001303258A publication Critical patent/JP2001303258A/en
Application granted granted Critical
Publication of JP3536775B2 publication Critical patent/JP3536775B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique capable of stably improving film characteristics in particular by improving magnesia which is an essential component of an annealing and separating agent. SOLUTION: The magnesia, which is powder of 30 to 120 s in citric acid activity of 40% CAA, 8 to 50 m2/g in specific surface area by a BET method and 0.5 to 5.2 mass % in hydration rate by ignition loss and containing the ruin of a base salt and in which the powder is 20 to 90 mass % in the content of a grain size 0.2 to 0.8 μm, 7 to 40 mass % in the content of a grain size 2.5 to 5 μm and >=50 mass % in the total of the content of the grain size 0.2 to 0.8 μm and the content of the grain size 2.5 to 5 μm, is used as the essential component of the annealing and separating agent.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、変圧器その他の
電気機器の鉄心等に用いられる方向性電磁鋼板に関し、
その製造工程中に塗布する焼鈍分離剤を改良することに
より、方向性電磁鋼板の被膜特性を向上させる方途を与
えようとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grain-oriented electrical steel sheet used for iron cores of transformers and other electric devices,
The purpose is to improve the coating properties of grain-oriented electrical steel sheets by improving the annealing separator applied during the manufacturing process.

【0002】[0002]

【従来の技術】方向性電磁鋼の製造工程は、所定の成分
組成に調整した鋼スラブを熱間圧延後に冷間圧延を施
し、次いで脱炭焼鈍を施した後、二次再結晶のために最
終仕上焼鈍を行うのが一般的である。これら工程のう
ち、最終仕上焼鈍中に二次再結晶が起こり、圧延方向に
磁化容易軸の揃った粗大な結晶粒が生成する結果、優れ
た磁気特性が得られる。この最終仕上焼鈍は、鋼板をコ
イル状に巻いた状態において長時間で行われるために、
鋼板の焼付きの防止を目的として、この焼鈍前にマグネ
シアを主剤とする焼鈍分離剤を水と懸濁させたスラリー
として塗布するのが、通例である。
2. Description of the Related Art The process of producing grain-oriented electrical steel is performed by subjecting a steel slab adjusted to a predetermined composition to cold rolling after hot rolling, then to decarburizing annealing, and then to secondary recrystallization. Generally, final finish annealing is performed. Among these steps, secondary recrystallization occurs during the final finish annealing, and coarse grains having uniform axes of easy magnetization in the rolling direction are formed, resulting in excellent magnetic properties. Since this final finish annealing is performed for a long time in the state where the steel sheet is wound in a coil shape,
For the purpose of preventing seizure of the steel sheet, it is customary to apply a magnesia-based annealing separating agent as a slurry suspended in water before the annealing.

【0003】このマグネシアは、かような焼鈍分離剤と
しての役割のほかに、最終仕上焼鈍に先んじて行われる
一次再結晶焼鈍により鋼板表面に生成する SiO2 を主体
とする酸化層と反応することによって、フォルステライ
ト(Mg2SiO4)被膜を形成させるという働きがある。この
形成されたフォルステライト被膜は、上塗りされるリン
酸塩系絶縁コーティングと地鉄部分とを密着させる一種
のバインダーとしての働き、それ自体の絶縁被膜として
の働き、そして鋼板に張力を付与することにより磁気特
性を改善する働き等がある。従って、均一な厚みを持
ち、鋼板との密着性のよいフォルステライト被膜を形成
させることが必要であり、それゆえに焼鈍分離剤の役割
は大きい。
[0003] In addition to the role of such an annealing separator, this magnesia reacts with an oxide layer mainly composed of SiO 2 generated on the steel sheet surface by primary recrystallization annealing performed prior to final finish annealing. This has the function of forming a forsterite (Mg 2 SiO 4 ) film. This formed forsterite film acts as a kind of binder that adheres the phosphate insulating coating to be overcoated with the iron base, acts as its own insulating film, and imparts tension to the steel sheet. Has the function of improving magnetic characteristics. Therefore, it is necessary to form a forsterite film having a uniform thickness and good adhesion to the steel sheet, and therefore, the role of the annealing separator is great.

【0004】また、焼鈍分離剤には、これまで述べた以
外に、鋼板の析出物の生成、成長挙動や結晶粒の成長挙
動を変化させて磁気特性に影響を及ぼす作用もある。例
えば、マグネシアをスラリー化した際に持ち来される水
分量が多すぎると鋼板が酸化されて磁気特性が劣化した
り、被膜に点状欠陥が生成したりする。また、マグネシ
アに含まれる不純物が焼鈍中に鋼板に侵入することによ
り、二次再結晶挙動が変化することなども知られてい
る。したがって、焼鈍分離剤の成分や配合割合、粉体特
性の良否は、方向性電磁鋼板の磁気特性、被膜特性を左
右する重要な要因といえる。
[0004] In addition to the above, the annealing separating agent also has an effect of changing precipitate formation, growth behavior and crystal grain growth behavior of a steel sheet to affect magnetic properties. For example, if the amount of water brought in when the magnesia is slurried is too large, the steel sheet is oxidized, the magnetic properties are deteriorated, and point defects are generated in the coating. It is also known that secondary recrystallization behavior changes when impurities contained in magnesia enter a steel sheet during annealing. Therefore, it can be said that the components and the mixing ratio of the annealing separator and the quality of the powder properties are important factors that influence the magnetic properties and the coating properties of the grain-oriented electrical steel sheet.

【0005】このため、焼鈍分離剤の品質改良のための
様々な方法が提案されている。例えば、特公昭57−4
5472号公報には、SO3 やB等の不純物濃度、比表面
積および粒径等の粉体特性を特定の範囲内に収めるとと
もに、クエン酸活性度の分布を所定の範囲に収めること
により、良好な被膜を安定して形成する技術が開示され
ている。また、特許第2665451号公報には、アル
カリ土類金属の反応性を焼成温度を変更することにより
制御し、このアルカリ土類金属を混合することにより活
性度分布の異なる粉体を得る方法が開示されている。
[0005] Therefore, various methods for improving the quality of the annealing separator have been proposed. For example, Japanese Patent Publication No. 57-4
No. 5472 discloses that, while keeping powder characteristics such as impurity concentration of SO 3 and B, specific surface area and particle diameter within a specific range, and citric acid activity distribution within a predetermined range, good A technique for stably forming a stable film is disclosed. Also, Japanese Patent No. 2665451 discloses a method of controlling the reactivity of an alkaline earth metal by changing a firing temperature and mixing the alkaline earth metals to obtain powders having different activity distributions. Have been.

【0006】これらの方法により、方向性電磁鋼板の被
膜特性をある程度改善することができるが、被膜の形成
はコイルに巻いた状態で行うために、コイルの外巻部分
と内巻部分とで昇温速度や雰囲気が異なることにより、
コイル全長にわたって良好な被膜を得ることは難しかっ
た。例えば、コイルの内巻部分の下部に雰囲気の水分が
滞留して被膜不良が発生したり、外巻部分の上部が過加
熱になることによって被膜密着性が低下したり、あるい
は最外巻部分や最内巻部分の数ターンで、雰囲気の影響
を強く受ける結果模様が発生したりしていた。
[0006] Although these methods can improve the coating characteristics of the grain-oriented electrical steel sheet to some extent, since the coating is formed while being wound on the coil, the coating rises between the outer winding portion and the inner winding portion of the coil. Due to different temperature speed and atmosphere,
It was difficult to obtain a good coating over the entire length of the coil. For example, moisture in the atmosphere stays in the lower part of the inner winding part of the coil to cause a coating failure, or the upper part of the outer winding part is overheated, whereby the coating adhesion is reduced, or the outermost winding part or In several turns of the innermost part, patterns were generated as a result of being strongly influenced by the atmosphere.

【0007】このような事態を改善して、コイル全長に
わたって品質を安定化する方法として、特開昭55−1
10721号公報や特開平5−117756号公報に
は、コイル長手方向や幅方向に脱炭焼鈍後の酸素目付量
や焼鈍分離剤の塗布量を変更して被成することが開示さ
れている。
As a method of improving such a situation and stabilizing the quality over the entire length of the coil, Japanese Patent Application Laid-Open No.
Japanese Patent Application Laid-Open No. 10721 and Japanese Patent Application Laid-Open No. 5-117756 disclose that formation is performed by changing the amount of oxygen per unit area after decarburizing annealing and the amount of application of an annealing separator in the longitudinal direction and width direction of the coil.

【0008】[0008]

【発明が解決しようとする課題】これらの方法は有効で
あるが、操作が煩雑になったり、コイルを次のコイルに
切り替える際に酸素目付け量や分離剤塗布量が異常にな
る部分が生じて不良となったり、あるいはコイル状に巻
いたときに端部に隙間が空いて却って特性不良が発生し
たり、することがあった。従って、これらの技術はいず
れも限界があり、上記の問題は十分に解決されるに到っ
ていない。
Although these methods are effective, the operation becomes complicated, and when the coil is switched to the next coil, a portion where the oxygen weight or the amount of the separating agent applied becomes abnormal occurs. In some cases, the coil may be defective, or when a coil is wound, a gap may be left at the end, resulting in poor characteristics. Therefore, all of these techniques have limitations, and the above problems have not been sufficiently solved.

【0009】特に、近年は、磁気特性の改善のために、
鋼中にSb、BiおよびB等の被膜形成に不利な成分を多量
に含んだ素材が用いられる傾向にあり、上記の方法を用
いても良好な被膜は得られず、被膜の点状欠陥や被膜形
成不良がコイルに部分的に生じることが頻発していた。
さらに、近年は、ユーザーから、コイル端をスリットに
より落とさない、いわゆるトリムレス材を注文する傾向
が強く、コイルの端部においても被膜の欠陥のない鋼板
を製造する要望が強まってきている。
Particularly, in recent years, in order to improve magnetic characteristics,
There is a tendency to use materials containing a large amount of components that are disadvantageous for forming a film such as Sb, Bi and B in steel, and even if the above method is used, a good film cannot be obtained. It was frequent that poor film formation occurred partially in the coil.
Further, in recent years, there has been a strong demand from users for ordering so-called trimless materials that do not drop the coil ends by slits, and there has been an increasing demand for producing steel sheets having no coating defects even at the coil ends.

【0010】この発明は、上記の事情に鑑みてなされた
ものであり、焼鈍分離剤の主成分となるマグネシアを改
良することによって、煩雑な方法を用いることなく、コ
イル全面にわたって均一な被膜を得る方法について提案
することを目的とする。
The present invention has been made in view of the above circumstances, and obtains a uniform coating over the entire surface of a coil without using a complicated method by improving magnesia as a main component of the annealing separator. The aim is to propose a method.

【0011】[0011]

【課題を解決するための手段】すなわち、この発明の要
旨構成は、次のとおりである。 (1) クエン酸活性度が40%CAA で30〜120 s、BET 法に
よる比表面積が8〜50m2/gおよび強熱減量による水和
量が0.5 〜5.2 mass%で、母塩の形骸を含む粉体であっ
て、該粉体は、粒度0.2 〜0.8 μmの含有率が20〜90ma
ss%および粒度2.5 〜5μmの含有率が7〜40mass%
で、かつ粒度0.2 〜0.8 μmの含有率と粒度2.5 〜5μ
mの含有率との合計が50mass%以上であることを特徴と
する方向性電磁鋼の焼鈍分離剤用マグネシア。
That is, the gist of the present invention is as follows. (1) citric acid activity is 30 to 120 s in 40% CAA, BET specific surface area is in the amount of hydration 0.5 to 5.2 mass% by 8~50m 2 / g and a loss on ignition, the ghosts mother salt Powder having a particle size of 0.2-0.8 μm and a content of 20-90 ma.
Content of ss% and particle size of 2.5-5 μm is 7-40 mass%
And a particle size of 0.2 to 0.8 μm and a particle size of 2.5 to 5 μm.
magnesia for an annealing separator for grain-oriented electrical steel, wherein the sum of the m and the content of m is 50 mass% or more.

【0012】(2) 粒度の異なる2種類以上の粉体を混合
し、上記(1) に記載のマグネシアを調製することを特徴
とする方向性電磁鋼の焼鈍分離剤用マグネシアの製造方
法。
(2) A method for producing magnesia for an annealing separator of grain-oriented electrical steel, comprising mixing two or more kinds of powders having different particle sizes to prepare magnesia according to (1).

【0013】(3) Si:1.5 〜7.0 mass%を含有する鋼素
材を加熱後に熱間圧延し、1回もしくは中間焼鈍を含む
複数回の冷間圧延を施して最終板厚に仕上げた後、一次
再結晶焼鈍を施し、次いで水でスラリー化した焼鈍分離
剤を塗布し乾燥させてから、最終仕上焼鈍を行う一連の
工程よりなる方向性電磁鋼板の製造方法において、該焼
鈍分離剤として、請求項1に記載のマグネシアを主剤と
するものを用いることを特徴とする被膜特性に優れる方
向性電磁鋼板の製造方法。
(3) A steel material containing Si: 1.5 to 7.0 mass% is heated and then hot-rolled and subjected to one or more cold rolling operations including intermediate annealing to finish to a final sheet thickness. In the method for producing a grain-oriented electrical steel sheet comprising a series of steps of performing a primary recrystallization annealing, then applying and drying an annealing separator slurried with water, and then performing a final finish annealing, as the annealing separator, Item 1. A method for producing a grain-oriented electrical steel sheet having excellent coating properties, characterized by using a material mainly composed of magnesia according to Item 1.

【0014】ここで、クエン酸活性度は、クエン酸とMg
O との反応活性度を測定したものであり、具体的には、
温度:30℃、0.4 Nのクエン酸水溶液中に40%の最終反
応当量のMgO 、すなわち40%CAA (Citric Acid Activi
ty)にて投与して攪拌しつつ、最終反応までの時間、つ
まりクエン酸が消費され溶液が中性となるまでの時間を
測定し、この時間にてMgO の活性度を評価した。
Here, the citric acid activity is determined by comparing citric acid and Mg
It is a measurement of the activity of reaction with O. Specifically,
Temperature: 30 ° C, 0.4N final reaction equivalent of MgO in 0.4N citric acid aqueous solution, ie, 40% CAA (Citric Acid Activi).
The time until the final reaction, that is, the time until the citric acid was consumed and the solution became neutral was measured while administering and stirring at ty), and the activity of MgO was evaluated at this time.

【0015】また、BET 法による比表面積は、BET 法の
1点ガス(N2)吸着量を基に、粉体の表面積を求めた値
である。
The specific surface area by the BET method is a value obtained by calculating the surface area of the powder based on the one-point gas (N 2 ) adsorption amount of the BET method.

【0016】さらに、強熱減量による水和量は、MgO を
1000℃の温度まで加熱した際の重量減少百分率であり、
主として、MgO 中に含まれる微量なMg(OH)2 の含有率を
推定することができる。
Further, the amount of hydration due to loss on ignition is determined by MgO
The weight loss percentage when heated to a temperature of 1000 ° C,
Mainly, the content of a trace amount of Mg (OH) 2 contained in MgO 2 can be estimated.

【0017】[0017]

【発明の実施の形態】発明者らは、コイル全長にわたっ
て均一な被膜を得るための手法について、鋭意検討を行
った結果、焼鈍分離剤の主剤となるマグネシアの粒径に
工夫を加えることにより、所期した被膜が得られること
を新規に見出した。以下、この知見を得るに至った実験
について述べる。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have conducted intensive studies on a technique for obtaining a uniform coating over the entire length of the coil, and as a result, by modifying the particle size of magnesia, which is the main component of the annealing separator, It was newly found that the desired coating was obtained. Hereinafter, an experiment which led to this finding will be described.

【0018】C:0.04〜0.05mass%、Si:3.3 〜3.4 ma
ss%、Mn:0.06〜0.075 mass%、Al:0.02〜0.03mass
%、Se:0.018 〜0.020 mass%、Sb:0.04〜0.05mass%
およびN:0.007 〜0.010 mass%を含み、残部は実質的
にFeよりなる珪素鋼スラブを、1623Kで18000 s加熱
後、熱間圧延して2.2 mmの板厚にしたのち、1273K、60
sでの熱延板焼鈍を施してから、ゼンジミア圧延機によ
り0.23mm厚まで473 Kで温間圧延し、最終板厚に仕上げ
た。これを脱炭焼鈍後、表1にNo. 1、3、5および7
として示す、粉体特性を持つ種々のマグネシア粉体(以
下、単に粉体と示す)を100 重量部に対して、チタニア
を5重量部添加した焼鈍分離剤を、塗布量両面で15g/
m2、水和温度293 Kおよび水和時間24000 sで水和し、
塗布して乾燥させた。
C: 0.04 to 0.05 mass%, Si: 3.3 to 3.4 ma
ss%, Mn: 0.06-0.075 mass%, Al: 0.02-0.03mass
%, Se: 0.018 to 0.020 mass%, Sb: 0.04 to 0.05 mass%
And N: 0.007 to 0.010 mass%, the balance being substantially Fe: a silicon steel slab consisting of substantially Fe, heated at 1623 K for 18000 s, and then hot-rolled to a plate thickness of 2.2 mm;
s, and then hot-rolled at 473 K to a thickness of 0.23 mm by a Sendzimir mill to finish to a final thickness. After decarburizing annealing, Table 1 shows Nos. 1, 3, 5 and 7.
For each 100 parts by weight of various magnesia powders having powder properties (hereinafter simply referred to as powder), an annealing separator containing 5 parts by weight of titania was applied in an amount of 15 g /
m 2 , hydration temperature 293 K and hydration time 24000 s,
Coated and dried.

【0019】その後、鋼板をコイルに巻き取ってから、
最終仕上焼鈍を施し、絶縁張力コーティングを塗布した
後、フラットニングを兼ねて1073K、60sの熱処理によ
り焼き付けを行った。かくして得られたコイルの磁気特
性および被膜特性について調査した結果を表2に示す。
なお、表1における粒度分布は、ヘキサメタリン酸3%
水溶液で300 W、180sの超音波分散を行つた後、レー
ザー回折式粒度分布計を用いることにより測定した。
Then, after winding the steel sheet around the coil,
After the final finish annealing and the application of the insulating tension coating, baking was performed by heat treatment at 1073 K for 60 s, also serving as flattening. Table 2 shows the results of investigations on the magnetic properties and the coating properties of the coil thus obtained.
The particle size distribution in Table 1 was 3% hexametaphosphoric acid.
After performing ultrasonic dispersion at 300 W for 180 s with an aqueous solution, measurement was performed by using a laser diffraction type particle size distribution meter.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】表2から明らかなように、粉体No. 7を用
いたコイルは、全面にわたって被膜が均一に形成され、
被膜密着性および磁気特性とも良好な結果が得られた。
粉体No. 7を得るために用いた粉体No. 1や粉体No.
5、また粉体をブレンドせずに粉体No. 7と同一の平均
粒径に調節した粉体No. 3は、いずれもコイル内巻側の
上下部に黒い筋模様が発生したり、コイル外巻端部に点
状の被膜欠陥が発生していた。
As is clear from Table 2, the coil using powder No. 7 has a uniform coating over the entire surface.
Good results were obtained for both coating adhesion and magnetic properties.
Powder No. 1 and Powder No. 1 used to obtain Powder No. 7
Powder No. 5 which was adjusted to the same average particle size as Powder No. 7 without blending the powder, had black streaks on the upper and lower portions of the inner winding side of the coil, A point-like coating defect occurred at the outer winding end.

【0023】このような結果が得られた原因については
必ずしも明らかではないが、発明者らは、以下のように
考えている。一般に、粉体の粒子径は細かい方が表面比
率が高くなったり粉体同士の接触面積が増加したりし
て、反応性は高くなるとされているが、細かすぎると、
二次凝集が起こって鋼板と粉体との接触面積が減少し
て、却って被膜反応性は低くなる。さらに、このような
凝集が進むと、コイル板面内で凝集している部分と凝集
していない部分とで粒子間の隙間が不均一な分布を持
ち、これが被膜の模様になると考えられる。
Although the reason why such a result is obtained is not always clear, the present inventors consider as follows. In general, the smaller the particle diameter of the powder, the higher the surface ratio or the contact area between the powders increases, and the reactivity is said to be high, but if the particle diameter is too small,
Secondary agglomeration occurs and the contact area between the steel sheet and the powder decreases, and on the contrary, the coating reactivity decreases. Further, when such agglomeration progresses, it is considered that the gap between the particles has a non-uniform distribution between the agglomerated portion and the non-agglomerated portion in the coil plate surface, and this is considered to be a pattern of the coating film.

【0024】一方、上記の実験のように、粗大な粒子を
混合すると、微細な粒子の二次凝集の結合が切れるた
め、鋼板との接触面積が増加して、上述のような板面内
の鋼板と粉体との接触むらがなくなり、かつ微細な粒子
が存在するために、反応性は強くなる。この結果、粗大
粒と微細粒とを混合した粉体No. 7では、高い反応性が
確保されているものと考えられる。
On the other hand, when the coarse particles are mixed as in the above experiment, the secondary aggregation of the fine particles is broken, so that the contact area with the steel sheet increases, and the above-mentioned in-plane area of the plate is reduced. Since the contact unevenness between the steel sheet and the powder is eliminated and fine particles are present, the reactivity is increased. As a result, it is considered that powder No. 7 in which coarse particles and fine particles are mixed ensures high reactivity.

【0025】これに対して、微細な粒子のみの粉体No.
1は、マグネシア粒子同士が二次凝集してしまうため、
鋼板と接触する面積が減少して反応性が低くなり、粗大
な粒子のみの粉体No.5は、鋼板とマグネシアとの接触
面積が減少し、さらに粒径も大きすぎるために、反応性
が低くなる。また、粉体No.3は粉体No.7と同程度の
平均粒径をもつが、接触面積が低く、反応性は低い。こ
れは、平均粒径を小さくしていくと、鋼板との接触面積
は増大するが、マグネシアの二次凝集が起こるため、鋼
板と接触する面積が低くなり、反応しにくくなるためと
考えられる。
On the other hand, the powder No.
1 is because magnesia particles are secondary aggregated.
The area of contact with the steel sheet is reduced, the reactivity is reduced, and the powder No. In No. 5, the reactivity decreases because the contact area between the steel sheet and magnesia is reduced and the particle size is too large. In addition, the powder No. 3 is the powder No. It has an average particle size similar to that of 7, but has low contact area and low reactivity. This is presumably because, as the average particle size is reduced, the contact area with the steel sheet increases, but the secondary contact of the magnesia occurs, so that the area in contact with the steel sheet decreases and the reaction becomes difficult.

【0026】ところで、特開平10−88244号公報
や特許第2665451号公報には、化学的反応の時間
から判断される活性度の異なるマグネシアを混合するこ
とが記載されている。ここで、クエン酸活性度のような
化学的活性度測定は、マグネシア表面の反応のしやすさ
を測定しているものである。例えば、多数の結晶子が結
合した一次粒子が存在する場合、その一次粒子中の各々
の結晶子が隙間を持っており、測定における反応液が一
次粒子内部に入り込むため、実質には各結晶子の表面積
に相当する表面積について反応のしやすさを評価してい
ることになる。よって、化学的活性度が同程度の粉体で
あっても、その粒度分布は様々である。
By the way, JP-A-10-88244 and JP-A-2665451 describe that magnesia having different activities determined from the time of chemical reaction is mixed. Here, the chemical activity measurement such as citric acid activity measures the ease of reaction on the magnesia surface. For example, when there is a primary particle to which a large number of crystallites are bonded, each crystallite in the primary particle has a gap, and the reaction solution in the measurement enters the inside of the primary particle. This means that the easiness of the reaction is evaluated for the surface area corresponding to the surface area. Therefore, even if the powders have the same chemical activity, the particle size distribution is various.

【0027】これに対して、この発明では、化学的活性
度に加えて、上記のような一次粒子を含めた粉体の粒度
分布を適正化したものである。この一次粒子としては、
個々の結晶子が集合した母塩の形骸を有する、粉体の単
一もしくは複数が結合したものが挙げられる。
On the other hand, in the present invention, in addition to the chemical activity, the particle size distribution of the powder including the primary particles as described above is optimized. As this primary particle,
Single or plural powders having a form of a mother salt in which individual crystallites are aggregated may be used.

【0028】従って、従来知られている、化学的活性度
の異なる粉体を混合する方法と、この発明の一次粒子径
が適正となるように粒度分布の異なる粉体を混合する方
法とは、全く異なるものであり、化学的活性度が一定で
粒径の異なる複数の粉体を混合することにより被膜が改
善されることについては、今まで明らかにされていなか
った。この発明は、40%CAA で表される活性度を殊更に
変更する必要はなく、粉体粒子間、そして粉体と鋼板と
の間の接触面積を制御するために、粒度分布を制御する
という新しい発想に基づくものである。
Therefore, the conventionally known method of mixing powders having different chemical activities and the method of mixing powders having different particle size distributions so that the primary particle diameter of the present invention is appropriate are as follows. It has not been clarified until now that the coating is improved by mixing a plurality of powders of different particle sizes, each having a constant chemical activity and a constant chemical activity. The present invention does not require any particular change in the activity expressed in 40% CAA, but rather controls the particle size distribution in order to control the contact area between the powder particles and between the powder and the steel sheet. It is based on a new idea.

【0029】次に、この発明について、具体的に説明す
る。すなわち、マグネシアの粉体特性として、以下の項
目を満足させる必要がある。 クエン酸活性度(40%CAA ):30〜120 s 上述したクエン酸活性度が30s未満では水和量が大きく
なりすぎ、一方120 sをこえると反応性が低すぎて、い
ずれも良好な被膜特性が得られない。
Next, the present invention will be specifically described. That is, it is necessary to satisfy the following items as powder characteristics of magnesia. Citric acid activity (40% CAA): 30 to 120 s If the citric acid activity described above is less than 30 s, the hydration amount is too large, while if it exceeds 120 s, the reactivity is too low, and all are good coatings. No characteristics can be obtained.

【0030】BET 法による比表面積:8〜50m2/g 上述したBET 法による比表面積が50m2/gをこえると、
マグネシアの水和量が大きくなりすぎ、一方8m2/g未
満では反応性が低すぎて、いずれも良好な被膜特性が得
られない。
When the specific surface area by 8~50m 2 / g above-mentioned BET method is more than 50m 2 / g,: [0030] specific surface area by the BET method:
When the hydration amount of magnesia is too large, on the other hand, when it is less than 8 m 2 / g, the reactivity is too low, and no good coating properties can be obtained.

【0031】強熱減量による水和量:0.5 〜5.2 mass% 上述した強熱減量による水和量が0.5 mass%未満では反
応性が低くなりすぎ、一方5.2 mass%をこえると仕上焼
鈍中に追加酸化を受け、いずれも良好な被膜特性が得ら
れない。
Hydration by ignition loss: 0.5 to 5.2 mass% If the hydration by ignition loss is less than 0.5 mass%, the reactivity becomes too low, while if it exceeds 5.2 mass%, it is added during finish annealing. Due to oxidation, no good film properties can be obtained.

【0032】また、これらの条件の他に、マグネシアの
不純物として、以下の成分を所定の範囲内で含有するこ
とが可能である。 CaO 含有量:0.1 〜0.8 mass% CaO 含有量が0.1 mass%未満では、被膜の凹凸がなくな
って剥離しやすくなり、一方0.8 mass%をこえると被膜
形成量が不足する、おそれがある。
In addition to these conditions, the following components can be contained within a predetermined range as magnesia impurities. CaO content: 0.1 to 0.8 mass% When the CaO content is less than 0.1 mass%, the coating has no irregularities and tends to peel off. On the other hand, when it exceeds 0.8 mass%, the amount of the coating formed may be insufficient.

【0033】SO3 含有量:0.03〜0.5 mass% B含有量:0.02〜0.2 mass% Cl含有量:0.002 〜0.1 mass% F含有量:0.002 〜0.1 mass% いずれの成分も適度に存在することにより、マグネシア
の反応性を調節する働きがあり、いずれも下限未満では
反応性が低くなり、上限をこえると点状の欠陥が発生す
ることがある。
SO 3 content: 0.03 to 0.5 mass% B content: 0.02 to 0.2 mass% Cl content: 0.002 to 0.1 mass% F content: 0.002 to 0.1 mass% In all cases, the reactivity of magnesia is adjusted, and if both are less than the lower limit, the reactivity is low, and if the upper limit is exceeded, point-like defects may occur.

【0034】次に、粒度0.2 〜0.8 μmの含有率が20〜
90mass%および粒度2.5 〜5μmの含有率が7〜40mass
%で、かつ粒度0.2 〜0.8 μmの含有率と粒度2.5 〜5
μmの含有率との合計が50mass%以上であることが、肝
要である。なお、この粒度は、ヘキサメクリン酸ナトリ
ウム3%水溶液で300 W、3分間の超音波分散を行った
後、レーザー回折式粒度分布計を用いることによって測
定できる。
Next, when the content of particles having a particle size of 0.2 to 0.8 μm is 20 to
90 mass% and content of particle size 2.5-5 μm is 7-40 mass
% And a particle size of 0.2 to 0.8 μm and a particle size of 2.5 to 5
It is important that the sum with the content of μm is 50 mass% or more. The particle size can be measured by using a 3% aqueous solution of sodium hexamethacrylate for 3 minutes at 300 W for ultrasonic dispersion, and then using a laser diffraction type particle size distribution meter.

【0035】まず、マグネシアの粒度分布を規制するに
当り、マグネシアの結晶形態は、その少なくとも20mass
%以上が母塩の形骸を有する粉体とする。例えば、水酸
化マグネシウムを母塩とする場合は、水酸化マグネシウ
ムは六角盤状となっており、これを焼成すると、焼成温
度により、穴が多数空いた状態から、焼き締まりにより
端部が丸みを帯び、さらに焼結により多面体構造となっ
ていくが、ここでいう母塩の形骸とは、このような多面
体構造になる前の段階を指す。この母塩の形骸が20mass
%未満では、反応性が低下するため、20mass%以上とす
る。
First, in regulating the particle size distribution of magnesia, the crystal form of magnesia is at least 20 mass%.
% Or more is a powder having a form of mother salt. For example, when magnesium hydroxide is used as the mother salt, the magnesium hydroxide is in the form of a hexagonal disk, and when this is fired, depending on the firing temperature, a large number of holes are formed, and the ends are rounded by tightening. The polyhedral structure is formed by sintering and further sintering. Here, the form of the mother salt refers to a stage before the polyhedral structure is formed. This mass of mother salt is 20 mass
If it is less than 20%, the reactivity is reduced.

【0036】さて、粒度0.2 〜0.8 μmの含有率が20ma
ss%未満であったり、2.5 〜5μmの含有率が40mass%
をこえると、鋼板とマグネシアとの接触面積が少なくな
りすぎ、一方0.2 〜0.8 μmの含有率が90mass%をこえ
たり、2.5 〜5μmの含有率が7mass%未満になると、
二次凝集が起こり、やはり鋼板とマグネシアとの接触面
積が低下して、被膜の密着不良となる。さらに、0.2 〜
0.8 μmの含有率と2.5 〜5μmの合計の含有率とが50
mass%未満であると、超粗大粒の過多による反応性の低
下、超微細粒の過多による鋼板へのマグネシアの焼付き
または、中間の粒径の粉体のみにより構成されることに
よる、鋼板とマグネシアとの接触面積の低下により不良
となる。
The content of particles having a particle size of 0.2 to 0.8 μm is 20 ma.
less than ss%, or the content of 2.5-5 μm is 40 mass%
If the content exceeds 0.2 mm, the contact area between the steel sheet and magnesia becomes too small. On the other hand, if the content of 0.2 to 0.8 μm exceeds 90 mass% or the content of 2.5 to 5 μm becomes less than 7 mass%,
Secondary agglomeration occurs and the contact area between the steel sheet and magnesia also decreases, resulting in poor adhesion of the coating. Furthermore, 0.2 to
The content of 0.8 μm and the total content of 2.5 to 5 μm are 50
When the content is less than mass%, the reactivity is reduced due to excessively large grains, seizure of magnesia on the steel sheet due to excessively fine particles, or the steel sheet is constituted only by powder having an intermediate particle size. Failure occurs due to a decrease in the contact area with magnesia.

【0037】上記の粒度分布を得るには、粒径の異なる
粉体をブレンドすることが、推奨される。すなわち、バ
ッチ焼成等により混合せずに焼成程度に分布を持たせ
て、粒度分布を上記範囲内に収める手法は、必然的に粒
径の大きい粒子と小さい粒子とで、それぞれ活性度が異
なってしまうため、この発明で所期する効果を得ること
が難しい。ただし、バッチ焼成であっても、種々の平均
粒径の粉体が得られれば、これを混合して使用すること
は可能である。また、鋼板に塗布する直前のスラリー時
に混合していれば、混合時期は問わない。例えば、予め
焼成後に目標の粒径となるような原料を混合して焼成し
ても構わないし、スラリーの段階で調整しても構わな
い。以上の処理により、優れた焼鈍分離剤用マグネシア
が得られる。
In order to obtain the above particle size distribution, it is recommended to blend powders having different particle sizes. That is, a method of giving a distribution to the degree of baking without mixing by batch baking or the like and keeping the particle size distribution within the above range is inevitably different in activity between large particles and small particles. Therefore, it is difficult to obtain the desired effect of the present invention. However, even in the case of batch firing, if powders having various average particle sizes can be obtained, these can be mixed and used. The mixing time is not limited as long as mixing is performed at the time of slurry immediately before coating on the steel sheet. For example, raw materials having a target particle size after firing may be mixed and fired, or may be adjusted at the slurry stage. By the above treatment, excellent magnesia for an annealing separator can be obtained.

【0038】次に、このマグネシアを主剤とする焼鈍分
離剤を用いて、方向性電磁鋼を製造する方法について述
べる。まず、素材である電磁鋼は、方向性電磁鋼用素材
であれば、特に鋼種を問わないが、代表的な成分組成範
囲は、次の通りである。まず、Cについて、Cを出鋼段
階で低下させて脱炭焼鈍を行わない方法と、ある程度の
量を確保して組織の改善を図り、その後脱炭焼鈍により
除去するという方法とがある。前者ではCの悪影響を避
けるためには0.01mass%未満とし、後者では組織改善の
ための好適範囲は0.01mass%以上0.10mass%未満であ
る。
Next, a method for producing a grain-oriented electrical steel using this magnesia-based annealing separator will be described. First, the electromagnetic steel as a material is not particularly limited as long as it is a material for grain-oriented electromagnetic steel, and a typical component composition range is as follows. First, for C, there is a method in which C is reduced at the tapping stage so that decarburization annealing is not performed, and a method in which a certain amount is secured to improve the structure and then removed by decarburization annealing. In the former, the content is set to less than 0.01 mass% in order to avoid the adverse effect of C, and in the latter, the preferred range for improving the structure is 0.01 mass% or more and less than 0.10 mass%.

【0039】また、Siは、鋼板の比抵抗を高め、鉄損を
低減するのに必須の成分であるが、1.5 mass%未満およ
び7.0 mass%をこえる場合は、鉄損の低減効果が弱くな
るため、1. 5〜7.0mass %の範囲とする。
Further, Si is an essential component for increasing the specific resistance of the steel sheet and reducing the iron loss. However, when the content is less than 1.5 mass% or more than 7.0 mass%, the effect of reducing the iron loss becomes weak. Therefore, the range is 1.5 to 7.0 mass%.

【0040】CおよびSiの他に、インヒビター構成成分
を添加する。インヒビターとしてはAlN, MnS, MnSe等が
よく知られているが、これらのいずれを用いてもよく、
また、これらの二以上を複合してもよい。インヒビター
にMnS 及び/またはMnSeを用いる場合は、Mnを0.03〜0.
50mass%、SおよびSeを合計で0.01〜0.03mass%の範囲
で含有させる。AlN をインヒビターjして用いる場合
は、Al:0.005 〜0.04mass%およびN:30〜120 ppm に
する。いずれもこれらの範囲よりも低いとインヒビター
として効果が働かず、高いと二次再結晶が不安定にな
る。
In addition to C and Si, an inhibitor component is added. AlN, MnS, MnSe and the like are well known as inhibitors, but any of these may be used,
Further, two or more of these may be combined. When MnS and / or MnSe is used for the inhibitor, Mn is set to 0.03 to 0.3.
50 mass%, S and Se are contained in a total range of 0.01 to 0.03 mass%. When AlN is used as an inhibitor j, the Al content is set to 0.005 to 0.04 mass% and the N content is set to 30 to 120 ppm. In any case, if the ratio is lower than these ranges, the effect does not work as an inhibitor, and if the ratio is higher, the secondary recrystallization becomes unstable.

【0041】また、これらの主インヒビター構成成分の
他に、補助インヒビター構成成分として、Cu, Sn, Cr,
Sb, Ge, Mo, Te, Mo, Te, Bi, B,PおよびV等の1種
または2種以上を用いることができる。
In addition to these main inhibitor components, Cu, Sn, Cr,
One or more of Sb, Ge, Mo, Te, Mo, Te, Bi, B, P, and V can be used.

【0042】インヒビターとしての働きに有効な濃度と
しては、補助インヒビター構成成分は、合計量で0.01ma
ss%以上0.8 mass%以下である。これらの各インヒビタ
ーは、単独使用、複数使用いずれも可能である。特に、
この発明では、これらの中の被膜形成に不利な成分を添
加しても良好な特性が得られる。
As a concentration effective for the function as an inhibitor, the auxiliary inhibitor component is 0.01 ma in total amount.
It is ss% or more and 0.8 mass% or less. Each of these inhibitors can be used alone or in combination. In particular,
According to the present invention, good characteristics can be obtained even if a component which is disadvantageous for forming a film is added.

【0043】これらの素材を公知の方法で熱間圧延した
後、1回もしくは中間焼鈍を挟む複数回の冷間圧延を行
って、最終板厚にする。また、必要に応じて熱延板を冷
間圧延前に焼鈍することも可能である。次いで、冷間圧
延の後、一次再結晶焼鈍を行い、焼鈍分離剤を塗布した
後に最終仕上焼鈍を行う。
After these materials are hot-rolled by a known method, cold rolling is performed once or a plurality of times with intermediate annealing to obtain a final sheet thickness. Further, if necessary, the hot rolled sheet can be annealed before cold rolling. Next, after cold rolling, primary recrystallization annealing is performed, and a final finish annealing is performed after applying an annealing separating agent.

【0044】この焼鈍分離剤の主剤に、好ましくは60ma
ss%以上は、この発明に従う上述のマグネシアを用いる
ことが、肝要である。また、これに添加剤を用いること
もできる。添加材としては、Ti, Cr, Mn, Sr, Fe, Ni,
Cu, Sb, B,Sn, Al, Tl, Mgの酸化物、水酸化物、硫酸
塩、硝酸塩、硫化物および塩化物等が用いられる。添加
量は、まず、塩素はわずかな量で被膜形成に大きく影響
を及ぼすため、好適範囲としては塩素換算で0.01〜0.10
重量部である。すなわち、0.01重量部未満では効果がな
く、0.10重量部を超えると被膜が鱗片状に剥離してしま
い、密着性不良となる。
The main component of the annealing separator is preferably 60 ma
It is important to use the above-mentioned magnesia according to the present invention for ss% or more. Additives can also be used for this. Additives include Ti, Cr, Mn, Sr, Fe, Ni,
Oxides, hydroxides, sulfates, nitrates, sulfides, chlorides and the like of Cu, Sb, B, Sn, Al, Tl and Mg are used. Since the amount of chlorine added has a large effect on film formation with a slight amount of chlorine, a preferable range is 0.01 to 0.10 in terms of chlorine.
Parts by weight. That is, if the amount is less than 0.01 part by weight, there is no effect. If the amount is more than 0.10 part by weight, the coating peels off like a scale, resulting in poor adhesion.

【0045】また、酸化物、水酸化物、硫酸塩、硝酸塩
および硫化物については、塩化物よりも多量に添加する
ことにより効果を顕わすため、これらは合計で1.2 〜20
重量部とする。この範囲に満たないと効果がなく、20重
量部を超えると量が増えすぎ、却って被膜や磁気特性が
不良となる。
As for oxides, hydroxides, sulfates, nitrates and sulfides, the effect is manifested by adding a larger amount than chlorides.
Parts by weight. If the amount is less than this range, there is no effect, and if it exceeds 20 parts by weight, the amount is excessively increased, and the coating and the magnetic properties are rather poor.

【0046】さらに、この発明のマグネシアは、鋼板と
粉体との接触を均一化する効果があるため、フォルステ
ライト被膜の形成を抑制して金属光沢を有する鋼板の製
造に利用することも可能である。この際には、塩化物や
カルシウム化合物の1種または2種以上をマグネシア10
0 重量部に対し、塩化物は0.5 〜20重量部またはカルシ
ウム化合物は10〜60重量部にてを用いる。焼鈍分離剤中
の塩素は、多量に存在すると、フォルステライト被膜を
剥離させる働きがあるが、この範囲に満たないと効果が
なく、この範囲をこえると磁気特性を損なう。カルシウ
ム化合物はフォルステライト自体の形成を抑える働きが
あり、この範囲に満たないと効果がなく、この範囲をこ
えると磁気特性を損なう。
Further, since the magnesia of the present invention has an effect of making the contact between the steel sheet and the powder uniform, it can be used for the production of a steel sheet having a metallic luster by suppressing the formation of a forsterite film. is there. At this time, one or more of chlorides and calcium compounds are added to magnesia 10
0.5 to 20 parts by weight of chloride or 10 to 60 parts by weight of calcium compound is used based on 0 parts by weight. If chlorine in the annealing separator is present in a large amount, it has a function of peeling off the forsterite film. However, if it is less than this range, there is no effect, and if it exceeds this range, the magnetic properties are impaired. The calcium compound has a function of suppressing the formation of forsterite itself, and has no effect if it is less than this range, and impairs magnetic properties if it exceeds this range.

【0047】なお、焼鈍分離剤の塗布は、塗布量を両面
で6〜20g/m2、水和温度を277 〜313 K程度とする、
通常の条件でよい。そして、焼鈍分離剤の塗布後は、最
終仕上焼鈍を行う。最終仕上焼鈍は公知の方法で良い。
これら一連の処理の後、張力被膜コートを施してフラッ
トニング焼鈍をして製品に仕上げる。かかる処理工程に
よって、コイルの形状不良がなく、高い歩留まりで方向
性電磁鋼板を得ることができる。
The amount of the annealed separating agent applied is 6 to 20 g / m 2 on both sides, and the hydration temperature is about 277 to 313 K.
Normal conditions are sufficient. After the application of the annealing separator, final finishing annealing is performed. The final finish annealing may be performed by a known method.
After these series of treatments, a tension coating is applied and flattening annealing is performed to finish the product. By such a processing step, it is possible to obtain a grain-oriented electrical steel sheet with a high yield without a coil shape defect.

【0048】[0048]

【実施例】実施例1 C:0.05〜0.07mass%、Si:3.2 〜3.5 mass%、Mn:0.
06〜0.075 mass%、Al:0.02〜0.03mass%、Se:0.018
〜0.021 mass%、Sb:0.02〜0.03mass%、Bi:0.002 〜
0.005 mass%およびN:0.007 〜0.009 mass%を含み、
残部は実質的にFeよりなる鋼スラブを、1623Kで1800s
加熱後、熱間圧延して2.2 mmの板厚にしたのち、1173
K、60sでの熱延板焼鈍を施してから、1273K、60sの
中間焼鈍を挟み、タンデム圧延機により0.23mm厚まで39
3 Kで冷間圧延し、最終板厚に仕上げた。そして、鋼板
を脱炭焼鈍後、表1の粉体No.7,8,9の粉体特性を
持つ種々のマグネシアに、酸化チタン:7.2 mass%およ
び硫酸ストロンチウム:2.7mass%をそれぞれ添加した
焼鈍分離剤を、塗布量(両面):13g/m2、水和温度:
293 Kおよび水和時間:2400sec で水和して、塗布し乾
燥させた。
EXAMPLES Example 1 C: 0.05-0.07 mass%, Si: 3.2-3.5 mass%, Mn: 0.
06-0.075 mass%, Al: 0.02-0.03 mass%, Se: 0.018
~ 0.021 mass%, Sb: 0.02 ~ 0.03mass%, Bi: 0.002 ~
Containing 0.005 mass% and N: 0.007 to 0.009 mass%,
The rest is a steel slab consisting essentially of Fe for 1800s at 1623K.
After heating, hot-rolled to a thickness of 2.2 mm, and then 1173
After performing hot-rolled sheet annealing at 60 Ks for 60 s, sandwich intermediate annealing at 1273 K for 60 s, and use a tandem mill to reduce the thickness to 0.23 mm.
It was cold-rolled at 3K and finished to the final thickness. Then, after the steel sheet was decarburized and annealed, the powder no. An annealed separating agent in which 7.2 mass% of titanium oxide and 2.7 mass% of strontium sulfate were added to various magnesia having powder characteristics of 7, 8, and 9, respectively, was applied in an amount of 13 g / m 2 on both sides and water. Sum temperature:
293 K and hydration time: hydrated at 2400 sec, applied and dried.

【0049】次いで、鋼板をコイル状に巻き取り、最終
仕上焼鈍を施した。その後、絶縁コーティングを塗布
し、ヒートフラットニングを兼ねて1123K、60sで焼き
付けてから、プラズマ照射により磁区細分化処理を行っ
た。かくして得られた鋼板の被膜特性について調査した
結果を、表3に示すように、この発明に従うマグネシア
を焼鈍分離剤の主剤に用いることによって、優れた被膜
特性が得られることがわかる。
Next, the steel sheet was wound into a coil and subjected to final finish annealing. Thereafter, an insulating coating was applied and baked at 1123 K for 60 s to also serve as heat flattening, and then magnetic domain refinement was performed by plasma irradiation. As shown in Table 3, the results of an examination of the coating properties of the steel sheet thus obtained show that excellent coating properties can be obtained by using magnesia according to the present invention as the main component of the annealing separator.

【0050】[0050]

【表3】 [Table 3]

【0051】実施例2 C:0.05〜0.07mass%、Si:3.2 〜3.5 mass%、Mn:0.
06〜0.075 mass%、Se:0.018 〜0.021 mass%およびS
b:0.02〜0.03mass%を含み、残部は実質的にFeよりな
る鋼スラブを、1623Kで1800s加熱後、熱間圧延して2.
2 mmの板厚にしたのち、1173K、60sでの熱延板焼鈍を
施してから、1273K、60sの中間焼鈍を挟み、タンデム
圧延機により0.35mm厚まで393 Kで冷間圧延し、最終板
厚に仕上げた。そして、鋼板を脱炭焼鈍後、表1の粉体
No.10,11および12の粉体特性を持つ種々のマグネシア
に、塩化マグネシウム:2.9 mass%をそれぞれ添加した
焼鈍分離剤を、塗布量:13g/m2、水和温度:293 K、
水和時間:2400sで水和して、塗布し乾燥させた。
Example 2 C: 0.05-0.07 mass%, Si: 3.2-3.5 mass%, Mn: 0.
06-0.075 mass%, Se: 0.018-0.021 mass% and S
b: A steel slab containing 0.02 to 0.03 mass%, with the remainder substantially consisting of Fe, heated at 1623 K for 1800 s and then hot-rolled.
After 2 mm in thickness, hot-rolled sheet annealing at 1173 K for 60 s is performed, then intermediate annealing at 1273 K for 60 s is sandwiched, and cold-rolled at 393 K to 0.35 mm thickness using a tandem rolling mill. Finished thick. And after decarburizing annealing the steel sheet, the powder of Table 1
No. Various magnesia having powder characteristics of 10, 11 and 12 were mixed with an annealing separator containing 2.9 mass% of magnesium chloride, respectively. An application amount: 13 g / m 2 , a hydration temperature: 293 K,
Hydration time: hydrated at 2400 s, applied and dried.

【0052】次いで、鋼板をコイル状に巻き取り、最終
仕上焼鈍を施した。その後、絶縁コーティングを塗布
し、ヒートフラットニングを兼ねて1123K、60sで焼き
付けた。かくして得られた鋼板の被膜特性について調査
した結果を、表4に示すように、この発明に従うマグネ
シアを焼鈍分離剤の主剤に用いることによって、コイル
全面に金属光沢を有する鋼板が得られることがわかる。
Next, the steel sheet was wound into a coil and subjected to final finish annealing. Thereafter, an insulating coating was applied and baked at 1123 K for 60 s to serve as heat flattening. The results of an examination of the coating properties of the steel sheet thus obtained are shown in Table 4. As shown in Table 4, it can be seen that the use of magnesia according to the present invention as the main component of the annealing separator makes it possible to obtain a steel sheet having a metallic luster on the entire surface of the coil. .

【0053】[0053]

【表4】 [Table 4]

【0054】[0054]

【発明の効果】この発明のマグネシアを焼鈍分離剤の主
剤として用いることにより、該焼鈍分離剤を適用した方
向性電磁鋼板の特に被膜特性を安定して向上することが
できる。
By using the magnesia of the present invention as a main component of the annealing separator, especially the coating characteristics of the grain-oriented electrical steel sheet to which the annealing separator is applied can be stably improved.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01F 1/16 H01F 1/16 B (72)発明者 本田 厚人 岡山県倉敷市水島川崎通1丁目(番地な し)川崎製鉄株式会社水島製鉄所内 (72)発明者 小松原 道郎 岡山県倉敷市水島川崎通1丁目(番地な し)川崎製鉄株式会社水島製鉄所内 Fターム(参考) 4K026 AA03 AA22 BA08 BA12 BB05 BB10 CA16 CA18 CA32 CA33 CA36 DA02 DA11 EA17 EB02 EB11 4K033 RA04 SA01 TA02 5E041 AA02 BC01 CA02 HB05 HB07 HB11 HB14 NN05 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01F 1/16 H01F 1/16 B (72) Inventor Atsuto Honda 1-chome, Mizushima Kawasaki-dori, Kurashiki City, Okayama Prefecture (Without address) Mizushima Steel Works, Kawasaki Steel Corporation (72) Inventor Michio Komatsubara 1-chome, Mizushima Kawasaki-dori, Kurashiki-shi, Okayama Prefecture BB10 CA16 CA18 CA32 CA33 CA36 DA02 DA11 EA17 EB02 EB11 4K033 RA04 SA01 TA02 5E041 AA02 BC01 CA02 HB05 HB07 HB11 HB14 NN05

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 クエン酸活性度が40%CAA で30〜120
s、BET 法による比表面積が8〜50m2/gおよび強熱減
量による水和量が0.5 〜5.2 mass%で、母塩の形骸を含
む粉体であって、該粉体は、粒度0.2 〜0.8 μmの含有
率が20〜90mass%および粒度2.5 〜5μmの含有率が7
〜40mass%で、かつ粒度0.2 〜0.8 μmの含有率と粒度
2.5 〜5μmの含有率との合計が50mass%以上であるこ
とを特徴とする方向性電磁鋼の焼鈍分離剤用マグネシ
ア。
1. A citric acid activity of 30 to 120 at 40% CAA.
a powder having a specific surface area of 8 to 50 m 2 / g according to the BET method and a hydration amount of 0.5 to 5.2 mass% due to loss on ignition, and containing a form of a mother salt; The content of 0.8 μm is 20 to 90 mass% and the content of particle size 2.5 to 5 μm is 7
Content and particle size of up to 40 mass% and particle size of 0.2 to 0.8 μm
A magnesia for an annealing separator for grain-oriented electrical steel, the sum of the content of which is 2.5 to 5 μm and which is 50 mass% or more.
【請求項2】 粒度の異なる2種類以上の粉体を混合
し、請求項1に記載のマグネシアを調製することを特徴
とする方向性電磁鋼の焼鈍分離剤用マグネシアの製造方
法。
2. A method for producing magnesia for an annealing separator of grain-oriented electrical steel, comprising mixing two or more kinds of powders having different particle sizes to prepare the magnesia according to claim 1.
【請求項3】 Si:1.5 〜7.0 mass%を含有する鋼素材
を加熱後に熱間圧延し、1回もしくは中間焼鈍を含む複
数回の冷間圧延を施して最終板厚に仕上げた後、一次再
結晶焼鈍を施し、次いで水でスラリー化した焼鈍分離剤
を塗布し乾燥させてから、最終仕上焼鈍を行う一連の工
程よりなる方向性電磁鋼板の製造方法において、該焼鈍
分離剤として、請求項1に記載のマグネシアを主剤とす
るものを用いることを特徴とする被膜特性に優れる方向
性電磁鋼板の製造方法。
3. A steel material containing Si: 1.5 to 7.0 mass% is heated and then hot-rolled and subjected to one or more cold rollings including intermediate annealing to finish to a final sheet thickness and then to a primary material. After performing recrystallization annealing, and then applying and drying an annealing separating agent slurried with water, in a method for producing a grain-oriented electrical steel sheet comprising a series of steps of performing final finish annealing, the method according to claim 1, wherein A method for producing a grain-oriented electrical steel sheet having excellent coating properties, characterized by using the one containing magnesia as a main component as described in (1).
JP2000124095A 2000-04-25 2000-04-25 Magnesia for annealing separator of grain-oriented electrical steel, method for producing the same, and method for producing grain-oriented electrical steel sheet with excellent coating properties Expired - Lifetime JP3536775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000124095A JP3536775B2 (en) 2000-04-25 2000-04-25 Magnesia for annealing separator of grain-oriented electrical steel, method for producing the same, and method for producing grain-oriented electrical steel sheet with excellent coating properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000124095A JP3536775B2 (en) 2000-04-25 2000-04-25 Magnesia for annealing separator of grain-oriented electrical steel, method for producing the same, and method for producing grain-oriented electrical steel sheet with excellent coating properties

Publications (2)

Publication Number Publication Date
JP2001303258A true JP2001303258A (en) 2001-10-31
JP3536775B2 JP3536775B2 (en) 2004-06-14

Family

ID=18634277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000124095A Expired - Lifetime JP3536775B2 (en) 2000-04-25 2000-04-25 Magnesia for annealing separator of grain-oriented electrical steel, method for producing the same, and method for producing grain-oriented electrical steel sheet with excellent coating properties

Country Status (1)

Country Link
JP (1) JP3536775B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008260668A (en) * 2007-04-13 2008-10-30 Jfe Steel Kk Magnesia for annealing separating agent and manufacture method of grain oriented magnetic steel sheet
JP2011202224A (en) * 2010-03-25 2011-10-13 Nippon Steel Corp Method for producing directive electromagnetic steel sheet
JP2012177148A (en) * 2011-02-25 2012-09-13 Jfe Steel Corp Annealing separating agent
WO2013051270A1 (en) * 2011-10-04 2013-04-11 Jfeスチール株式会社 Annealing separator agent for grain-oriented electromagnetic steel sheet
JP2016513358A (en) * 2012-12-28 2016-05-12 ポスコ Oriented electrical steel sheet and manufacturing method thereof
KR101739864B1 (en) * 2015-12-23 2017-05-25 주식회사 포스코 Mehtod for preventing strip deflection of oriented electrical steel
WO2017169854A1 (en) * 2016-03-30 2017-10-05 タテホ化学工業株式会社 Magnesium oxide for annealing separators, and grain-oriented magnetic steel sheet
WO2017191953A1 (en) * 2016-05-02 2017-11-09 주식회사 포스코 Annealing separator composition, method for manufacturing same, and method for manufacturing grain-oriented electrical steel sheet using same
CN108193032A (en) * 2017-12-30 2018-06-22 新万鑫(福建)精密薄板有限公司 A kind of orientation silicon steel magnesia annealing separating agent and coating processes
CN108977638A (en) * 2018-08-24 2018-12-11 首钢智新迁安电磁材料有限公司 A kind of orientation silicon steel annealing separating agent and its application method
WO2022050283A1 (en) * 2020-09-01 2022-03-10 Jfeスチール株式会社 Method for producing grain-oriented electromagnetic steel sheet
US11566297B2 (en) * 2016-03-30 2023-01-31 Tateho Chemical Industries Co., Ltd. Magnesium oxide for annealing separators, and grain-oriented magnetic steel sheet

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6494554B2 (en) 2016-03-30 2019-04-03 タテホ化学工業株式会社 Magnesium oxide and grain-oriented electrical steel sheet for annealing separator
KR102380424B1 (en) * 2016-03-30 2022-03-29 다테호 가가쿠 고교 가부시키가이샤 Magnesium oxide and grain-oriented electrical steel sheet for annealing separator

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008260668A (en) * 2007-04-13 2008-10-30 Jfe Steel Kk Magnesia for annealing separating agent and manufacture method of grain oriented magnetic steel sheet
JP2011202224A (en) * 2010-03-25 2011-10-13 Nippon Steel Corp Method for producing directive electromagnetic steel sheet
JP2012177148A (en) * 2011-02-25 2012-09-13 Jfe Steel Corp Annealing separating agent
WO2013051270A1 (en) * 2011-10-04 2013-04-11 Jfeスチール株式会社 Annealing separator agent for grain-oriented electromagnetic steel sheet
CN103857827A (en) * 2011-10-04 2014-06-11 杰富意钢铁株式会社 Annealing separator agent for grain-oriented electromagnetic steel sheet
JPWO2013051270A1 (en) * 2011-10-04 2015-03-30 Jfeスチール株式会社 Annealing separator for grain-oriented electrical steel sheet
KR101568627B1 (en) 2011-10-04 2015-11-11 제이에프이 스틸 가부시키가이샤 Annealing separator for grain oriented electrical steel sheet
US9194016B2 (en) 2011-10-04 2015-11-24 Jfe Steel Corporation Annealing separator for grain-oriented electromagnetic steel sheet
US10023932B2 (en) 2012-12-28 2018-07-17 Posco Grain-oriented electrical steel sheet, and method for manufacturing the same
JP2016513358A (en) * 2012-12-28 2016-05-12 ポスコ Oriented electrical steel sheet and manufacturing method thereof
KR101739864B1 (en) * 2015-12-23 2017-05-25 주식회사 포스코 Mehtod for preventing strip deflection of oriented electrical steel
RU2719825C1 (en) * 2016-03-30 2020-04-23 Татехо Кемикал Индастриз Ко., Лтд. Magnesium oxide for annealing separators and anisotropic electrotechnical sheet steel
JP2017179461A (en) * 2016-03-30 2017-10-05 タテホ化学工業株式会社 Magnesium oxide for annealing separation agent and directional electromagnetic steel sheet
WO2017169854A1 (en) * 2016-03-30 2017-10-05 タテホ化学工業株式会社 Magnesium oxide for annealing separators, and grain-oriented magnetic steel sheet
US11566297B2 (en) * 2016-03-30 2023-01-31 Tateho Chemical Industries Co., Ltd. Magnesium oxide for annealing separators, and grain-oriented magnetic steel sheet
US11591232B2 (en) 2016-03-30 2023-02-28 Tateho Chemical Industries Co., Ltd. Magnesium oxide for annealing separators, and grain-oriented magnetic steel sheet
WO2017191953A1 (en) * 2016-05-02 2017-11-09 주식회사 포스코 Annealing separator composition, method for manufacturing same, and method for manufacturing grain-oriented electrical steel sheet using same
KR101796751B1 (en) * 2016-05-02 2017-11-10 주식회사 포스코 Annealing separating agent composition, method for manufacturing the same, and method for manufacturing steel sheet using the same
CN109312415A (en) * 2016-05-02 2019-02-05 Posco公司 The preparation method of annealing separator composition, its preparation method and the oriented electrical steel using it
CN108193032A (en) * 2017-12-30 2018-06-22 新万鑫(福建)精密薄板有限公司 A kind of orientation silicon steel magnesia annealing separating agent and coating processes
CN108977638A (en) * 2018-08-24 2018-12-11 首钢智新迁安电磁材料有限公司 A kind of orientation silicon steel annealing separating agent and its application method
CN108977638B (en) * 2018-08-24 2020-05-19 首钢智新迁安电磁材料有限公司 Oriented silicon steel annealing release agent and use method thereof
WO2022050283A1 (en) * 2020-09-01 2022-03-10 Jfeスチール株式会社 Method for producing grain-oriented electromagnetic steel sheet
JP7107454B1 (en) * 2020-09-01 2022-07-27 Jfeスチール株式会社 Manufacturing method of grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP3536775B2 (en) 2004-06-14

Similar Documents

Publication Publication Date Title
JP5786950B2 (en) Annealing separator for grain-oriented electrical steel sheet
JP6220891B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5245277B2 (en) Method for producing magnesia and grain-oriented electrical steel sheet for annealing separator
JP3536775B2 (en) Magnesia for annealing separator of grain-oriented electrical steel, method for producing the same, and method for producing grain-oriented electrical steel sheet with excellent coating properties
JP7010305B2 (en) Directional electrical steel sheet
JP4192282B2 (en) Method for producing MgO for annealing separator
JP4632775B2 (en) Method for producing MgO for annealing separator
JP2005290446A (en) Method for manufacturing grain-oriented electromagnetic steel sheet superior in magnetic property and in characteristics of coating
JP5418844B2 (en) Method for producing grain-oriented electrical steel sheet
JPH1088244A (en) Magnesium oxide for separation agent at annealing used fixed at manufacture of grain oriented silicon steel sheet
JPH11269555A (en) Production of separation agent at annealing for grain oriented silicon steel sheet and of grain oriented silicon steel sheet excellent in glass film and magnetic property
JPH11181525A (en) Production of grain oriented silicon steel sheet excellent in magnetic property and film characteristic
JP4310996B2 (en) Method for producing grain-oriented electrical steel sheet and annealing separator used in this method
JPH09249916A (en) Production of grain-oriented silicon steel sheet and separation agent for annealing
JP3043975B2 (en) Annealing separator for grain-oriented silicon steel sheet
JP3091096B2 (en) Annealing separator and slurry for grain-oriented electrical steel sheet to obtain excellent glass coating and magnetic properties
EP3913095A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JP3549492B2 (en) Annealing separator and method for producing grain-oriented electrical steel sheet with excellent glass coating
JP4147775B2 (en) Method for producing grain-oriented electrical steel sheet with excellent magnetic properties and coating properties
JP3536776B2 (en) Magnesia for annealing separator of grain-oriented electrical steel and method for producing grain-oriented electrical steel sheet with excellent magnetic and coating properties
JPH0949028A (en) Production of grain oriented silicon steel sheet excellent in surface characteristic and free from glass coating
JP2749783B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely excellent glass coating performance and magnetic properties
JPH1088241A (en) Production of grain oriented silicon steel sheet excellent in film characteristic
JP4259338B2 (en) Method for producing grain-oriented electrical steel sheet and method for preparing annealing separator
JP2000273550A (en) Glass coating film and production of grain oriented silicon steel sheet excellent in magnetic property

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040308

R150 Certificate of patent or registration of utility model

Ref document number: 3536775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080326

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 10

EXPY Cancellation because of completion of term