JP2001303216A - Silicon steel sheet excellent in high frequency magnetic property and its producing method - Google Patents

Silicon steel sheet excellent in high frequency magnetic property and its producing method

Info

Publication number
JP2001303216A
JP2001303216A JP2000125861A JP2000125861A JP2001303216A JP 2001303216 A JP2001303216 A JP 2001303216A JP 2000125861 A JP2000125861 A JP 2000125861A JP 2000125861 A JP2000125861 A JP 2000125861A JP 2001303216 A JP2001303216 A JP 2001303216A
Authority
JP
Japan
Prior art keywords
steel sheet
less
rolling
steel
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000125861A
Other languages
Japanese (ja)
Other versions
JP3937685B2 (en
Inventor
Hideki Matsuda
英樹 松田
Shigeki Nomura
茂樹 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000125861A priority Critical patent/JP3937685B2/en
Publication of JP2001303216A publication Critical patent/JP2001303216A/en
Application granted granted Critical
Publication of JP3937685B2 publication Critical patent/JP3937685B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a silicon steel sheet excellent in high frequency magnetic properties while avoiding the increase of cost in consideration of steel making, hot rolling, cold rolling and, further, steel sheet working and to provide its producing method. SOLUTION: This steel sheet has a composition containing >0.015 to 0.08% C, <=0.8% Si, 0.05 to 0.80% Mn and <=0.06% P, and in which, in the case ferrite grain size prescribed in JISG0552 is defined as (g), the relation in the inequality (1) of 6.77[%C]+15.0[%Si]+4.84[%Mn]+24.2[%P]+4.36>=g... (1) is satisfied, and as to its production, in hot rolling, coiling is performed at >=600 deg.C in such a manner that finishing temperature is controlled to the Ar3 transformation point or below, and, in finish annealing, recrystallization treatment is performed at 650 to 900 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、モータ等に使用す
る電磁鋼板、特に高周波磁気特性に優れた電磁鋼板とそ
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic steel sheet used for a motor or the like, and more particularly to an electromagnetic steel sheet having excellent high-frequency magnetic characteristics and a method of manufacturing the same.

【0002】[0002]

【従来の技術】近年、省エネルギーの観点からモータの
高効率化が求められるとともに、機器の軽量コンパクト
化を目的に、モータの小型化が要求されている。モータ
の小型化には、モータの鉄芯材料に使用される鋼板の高
周波磁気特性の改善が必要である。
2. Description of the Related Art In recent years, motors have been required to have high efficiency from the viewpoint of energy saving, and downsizing of motors has been demanded in order to reduce the weight and size of equipment. In order to reduce the size of the motor, it is necessary to improve the high-frequency magnetic properties of the steel sheet used for the iron core material of the motor.

【0003】従来、鋼板の高周波磁気特性の改善にはS
i含有量を増加させるという手段が一般的であったが、
この手段は鋼板のコストアップにつながっていた。その
ため、Si含有量を増加せず、安価なままでの高周波磁
気特性の改善方法が要求されるようになっている。な
お、本発明において「高周波」は商用周波数以上の周波
数であって、通常のモータに使用される周波数である。
たとえば1kHz以上の周波数であるが、特に最近注目
されている汎用小型モータ用の範囲の周波数である。
[0003] Conventionally, to improve the high-frequency magnetic properties of steel sheets, S
Although the means of increasing the i content was common,
This measure has led to an increase in the cost of the steel sheet. For this reason, there is a demand for a method of improving high-frequency magnetic characteristics at a low cost without increasing the Si content. In the present invention, “high frequency” is a frequency higher than a commercial frequency and is a frequency used for a normal motor.
For example, a frequency of 1 kHz or more is a frequency in a range for a general-purpose small motor which has been particularly noticed recently.

【0004】これまでにも、磁気特性が優れた無方向性
電磁鋼板の製造方法として特開平8−295935号公
報に開示する発明がある。この発明は、熱間圧延の仕上
圧延終了温度を高温にしてかつ巻取までの冷却を極力徐
冷すること、及び冷間圧延後の連続焼鈍において極力徐
冷することで鉄損を向上させ、結晶粒径を粗大化させる
ことで磁束密度を改善する技術を開示している。
[0004] There is an invention disclosed in JP-A-8-295935 as a method for producing a non-oriented electrical steel sheet having excellent magnetic properties. The present invention raises the iron loss by raising the finish rolling end temperature of hot rolling to a high temperature and gradually cooling down to winding as much as possible, and gradually cooling as much as possible in continuous annealing after cold rolling, A technique for improving magnetic flux density by increasing the crystal grain size is disclosed.

【0005】また、安価に製造しうる低級電磁鋼板の製
造方法として特開昭58−171527号公報の発明が
ある。この発明は、C:0.005〜0.08%の材料
を用い、熱間圧延での仕上圧延終了温度を640〜86
0℃にすることで磁束密度を改善し、Nの含有量を80
ppm以下に抑えることによって鉄損を向上させる技術
を開示している。
Japanese Patent Application Laid-Open No. 58-171527 discloses a method of manufacturing a low-grade electromagnetic steel sheet which can be manufactured at low cost. The present invention uses a material of C: 0.005 to 0.08% and raises the finish rolling end temperature in hot rolling to 640 to 86.
At 0 ° C., the magnetic flux density is improved and the N content is reduced to 80%.
It discloses a technique of improving iron loss by suppressing the iron loss to less than ppm.

【0006】一方、製鋼コストを抑えて安価に製造する
ため、C:0.01%以上に規定した低級電磁鋼板の製
造方法として特開平10−140242号公報の発明が
ある。この発明は、このレベルのC含 有量で熱間圧延
仕上温度をAr3 変態点以上のγ域とすることによりリ
ング磁気特性を改善し、仕上げ焼鈍後の冷却速度を規制
することにより磁気時効劣化を抑制することを開示して
いる。
On the other hand, Japanese Patent Application Laid-Open No. H10-140242 discloses a method of manufacturing a low-grade electromagnetic steel sheet in which C is set to 0.01% or more in order to reduce the steelmaking cost and manufacture the steel sheet at low cost. The present invention improves the ring magnetic properties by setting the hot rolling finish temperature in the γ region above the Ar 3 transformation point at the C content at this level, and regulates the cooling rate after finish annealing to thereby achieve magnetic aging. It discloses that deterioration is suppressed.

【0007】さらに、鋼板の加工コスト低減のために、
打ち抜き性の改善が求められている。電磁鋼板における
打ち抜き性の改善手段としては、鋼板硬度を高くする方
法、鋼板中にMnS等の析出物を分散させる方法、打ち
抜き性を良好にする皮膜を付与する方法、などの方法が
とられている。
Further, in order to reduce the processing cost of steel sheets,
There is a need for improved punchability. As a means for improving the punching property of the electromagnetic steel sheet, a method of increasing the hardness of the steel sheet, a method of dispersing precipitates such as MnS in the steel sheet, a method of providing a coating that improves the punching property, and the like are taken. I have.

【0008】このうち、特開平4−323320号公報
の発明では打ち抜き性、かしめ性などを確保するために
鋼板の硬さをHv 135以上とすることが提案されてい
る。上記の通り、電磁鋼板において、優れた磁気特性も
しくは安価さを追求した発明が従来技術として多数公表
されているが、それぞれにおいて一長一短があり、現実
的に優れた磁気特性と安価さを共に十分に満たす方法は
発明されていない。
[0008] Of these, in the invention of Japanese Patent Application Laid-Open No. 4-323320, it is proposed that the hardness of a steel sheet be Hv 135 or more in order to ensure punching property, caulking property and the like. As described above, in the electromagnetic steel sheet, many inventions pursuing excellent magnetic properties or inexpensiveness have been published as prior arts, but each has its own advantages and disadvantages, and both of the excellent magnetic properties and inexpensiveness can be sufficiently realized. No way to satisfy has been invented.

【0009】[0009]

【発明が解決しようとする課題】高周波磁気特性の向上
に関しては、高周波で鋼板を磁化すると渦電流損の急増
により鉄損が著しく大きくなるという問題がある。
With respect to the improvement of high-frequency magnetic characteristics, there is a problem that when a steel sheet is magnetized at a high frequency, the eddy current loss sharply increases and the iron loss becomes extremely large.

【0010】これに対し、従来の高価格の電磁鋼板にお
いては高Si添加、高Al添加による固有抵抗の増加
や、鋼板の板厚減少によって高周波域での渦電流損の低
減化を図ってきた。
On the other hand, in conventional high-priced electrical steel sheets, an increase in the specific resistance due to the addition of high Si and high Al and a reduction in the eddy current loss in a high frequency region by reducing the thickness of the steel sheets have been attempted. .

【0011】しかし、一般に知られているように高Si
添加、高Al添加は鋼の精錬時のコストの増加を招き、
板厚を薄くすることは鋼板の製造や打ち抜き工数の増
加、モータの組立等にかかるコストを大きくし、高価格
となってしまう。
However, as is generally known, high Si
Addition, high Al addition increases the cost of steel refining,
Reducing the plate thickness increases the cost of manufacturing a steel plate, increasing the number of man-hours for punching, assembling a motor, etc., and increasing the price.

【0012】特開平8−295935号公報の方法によ
り改善される鉄損はヒステリシス損のみであり、高周波
において使用される場合に重要となる渦電流損について
何ら考慮されておらず、また熱間圧延板や冷間圧延板の
徐冷のためにコストが増大する。
The iron loss improved by the method disclosed in JP-A-8-295935 is only a hysteresis loss, and no consideration is given to eddy current loss which is important when used at high frequencies. The cost increases due to the slow cooling of the sheet or cold rolled sheet.

【0013】特開昭58−171527号公報の発明に
おいては高周波鉄損について何ら考慮されるところがな
いため、鋼板の固有抵抗が低すぎ、今日求められている
ような高周波での磁気特性に優れた鋼板が得られない。
In the invention of JP-A-58-171527, no consideration is given to high-frequency iron loss, so that the specific resistance of the steel sheet is too low, and the steel sheet has excellent magnetic properties at high frequencies as required today. Steel sheet cannot be obtained.

【0014】特開平10−140242号公報の発明で
は経済的に不利にならない範囲として上限0.3%のS
i添加を認めているものの、高周波磁気特性から要求さ
れるSi添加量との関係が明らかでなく、Siの過剰添
加による鋼板製造のコストアップという結果を招くな
ど、不完全と言わざるを得なかった。
In the invention of Japanese Patent Application Laid-Open No. H10-140242, the upper limit of 0.3% of S is set as a range not disadvantageous economically.
Although the addition of i was recognized, the relationship with the required amount of Si added from the high-frequency magnetic properties was not clear, and the result was that the excessive addition of Si resulted in an increase in the cost of steel sheet production, and it had to be said to be incomplete. Was.

【0015】特開平4−323320号公報について
は、提示されている鋼板硬さでは鉄芯の製造工程に切削
工程が含まれるような場合に切削工具寿命が問題とな
り、客先の使用まで含めた視点において安価に製造する
という目的に反するものとなっていた。
According to Japanese Patent Application Laid-Open No. Hei 4-323320, when the steel sheet hardness presented is such that a cutting step is included in the iron core manufacturing process, the life of the cutting tool becomes a problem. From a viewpoint, it was contrary to the purpose of manufacturing at low cost.

【0016】ここに、本発明の課題は、製鋼、熱間圧
延、冷間圧延さらに鋼板加工まで考慮してコスト上昇を
避けつつ、高周波域の磁気特性が向上した電磁鋼板とそ
の製造方法を提供することである。
It is an object of the present invention to provide an electromagnetic steel sheet having improved magnetic properties in a high frequency range while avoiding a rise in cost in consideration of steel making, hot rolling, cold rolling, and steel sheet processing, and a method of manufacturing the same. It is to be.

【0017】[0017]

【課題を解決するための手段】本発明者らは、種々の実
験により、鋼板の成分値とフェライト粒度をある一定の
関係に保つことにより、高周波磁気特性に優れた電磁鋼
板が得られることを見い出して本発明に至った。
Means for Solving the Problems The present inventors have conducted various experiments and found that an electrical steel sheet having excellent high-frequency magnetic characteristics can be obtained by maintaining a certain relationship between the component value of the steel sheet and the ferrite grain size. The present invention has been found.

【0018】ここに、本発明は下記(a)〜(f)の通
りとする。 (a)質量%で、 C : 0.015%を超え、0.08%以下 Si: 0.8%以下 Mn: 0.05%以上、0.80%以下 P : 0.06%以下 を含有し、かつ、JISG0552に規定するフェライ
ト結晶粒度をgとするとき、 6.77[%C]+15.0[%Si]+4.84[%Mn]+24.2[%P]+4.36 ≧g………………(1) 上記(1)式の関係を満たすことを特徴とする高周波磁
気特性に優れた電磁鋼板。 (b)不可避不純物としてのN,Sをそれぞれ、質量%
で、N:0.007%以下、及びS:0.010%以下
に制限する、上記(a)に記載の電磁鋼板。 (c)質量%で、Al:0.05%以下、及びB:0.
0003〜0.005%をさらに含む、上記(a)また
は(b)に記載の電磁鋼板。 (d)板厚が0.30mm以上1.8mm以下である上
記(a)ないし(c)のいずれかに記載の電磁鋼板。 (e)質量%で、 C : 0.015%を超え、0.08%以下 Si: 0.8%以下 Mn: 0.05%以上、0.80%以下 P : 0.06%以下 を含有し、必要により、Al:0.05%以下および/
またはB:0.0003〜0.005%をさらに含有す
るスラブに対し、熱間圧延、酸洗、冷間圧延、次いで仕
上焼鈍を行うに際し、熱間圧延では仕上温度をAr3
態点以下として600℃以上で巻き取りを行い、仕上焼
鈍では650℃以上900℃以下での再結晶処理を施す
ことにより、JISG0552に規定するフェライト結
晶粒度をgとし、 6.77[%C]+15.0[%Si]+4.84[%Mn]+24.2[%P]+4.36 ≧g………………(1) 上記(1)の関係を満たすことを特徴とする高周波磁気
特性に優れた電磁鋼板の製造方法。 (f)上記(e)に規定する仕上げ焼鈍に続いて下限3
00℃、上限500℃、処理時間150秒以上の過時効
処理を行うことを特徴とする、電磁鋼板の製造方法。 (g)上記(e)に規定する仕上げ焼鈍後の冷間圧延鋼
板に伸び率2%以下の調質圧延を行うことを特徴とす
る、電磁鋼板の製造方法。
Here, the present invention is as follows (a) to (f). (A) In mass%, C: more than 0.015%, 0.08% or less Si: 0.8% or less Mn: 0.05% or more, 0.80% or less P: 0.06% or less When the ferrite crystal grain size specified in JIS G0552 is g, 6.77 [% C] +15.0 [% Si] +4.84 [% Mn] +24.2 [% P] + 4.36 ≧ g ……………… (1) An electromagnetic steel sheet excellent in high-frequency magnetic properties, characterized by satisfying the relationship of the above formula (1). (B) N and S as unavoidable impurities are respectively represented by mass%
The electromagnetic steel sheet according to the above (a), wherein N is limited to 0.007% or less and S: 0.010% or less. (C) Al: 0.05% or less and B: 0.
The electromagnetic steel sheet according to the above (a) or (b), further containing 0003 to 0.005%. (D) The electromagnetic steel sheet according to any one of the above (a) to (c), wherein the sheet thickness is 0.30 mm or more and 1.8 mm or less. (E) In mass%, C: more than 0.015%, 0.08% or less Si: 0.8% or less Mn: 0.05% or more, 0.80% or less P: 0.06% or less And, if necessary, Al: 0.05% or less and / or
Or B: When hot rolling, pickling, cold rolling, and then finish annealing are performed on a slab further containing 0.0003 to 0.005%, the finishing temperature is set to the Ar 3 transformation point or lower in hot rolling. Winding is performed at 600 ° C or higher, and refining treatment at 650 ° C or higher and 900 ° C or lower is performed in finish annealing to obtain the ferrite crystal grain size specified in JIS G0552 as g, and 6.77 [% C] +15.0 [% Si] +4.84 [% Mn] +24.2 [% P] + 4.36 ≧ g (1) A method for producing an electrical steel sheet excellent in high-frequency magnetic characteristics, characterized by satisfying the relationship (1). (F) Following the finish annealing defined in (e) above, the lower limit is 3
A method for producing an electromagnetic steel sheet, comprising performing an overaging treatment at 00 ° C, an upper limit of 500 ° C, and a treatment time of 150 seconds or more. (G) A method for producing a magnetic steel sheet, comprising subjecting a cold-rolled steel sheet after the finish annealing specified in (e) to temper rolling at an elongation of 2% or less.

【0019】[0019]

【発明の実施の形態】次に、本発明において各合金元素
の添加量を上述のように規定した理由を説明するが、本
明細書において「%」は特に断りが無い限り「質量%」
である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the reason why the addition amount of each alloy element is specified as described above in the present invention will be explained. In this specification, "%" means "mass%" unless otherwise specified.
It is.

【0020】Cは0.015%を超え、0.08%以下
とする。一般的な電磁鋼板はCを0.01%以下とし
た、いわゆる極低炭素鋼を用いて磁気特性を確保してい
るが、経済性が優先されるような用途においては、Cを
0.015%以下に減少させるための製鋼コストの増大
あるいは脱炭焼鈍等の特殊な製造工程は避けることが好
ましく、それらの方法では目的とする安価な材料を得る
ことは難しい。よって本発明ではCの下限を0.015
%を超える範囲とする。
C is more than 0.015% and 0.08% or less. A general magnetic steel sheet uses a so-called ultra-low carbon steel having a C of 0.01% or less to secure magnetic properties. However, in an application where economy is prioritized, the C is 0.015%. % Or less special production steps such as an increase in steelmaking cost or decarburization annealing are preferred, and it is difficult to obtain the desired inexpensive material by these methods. Therefore, in the present invention, the lower limit of C is 0.015
%.

【0021】Cの含有量が増加すると、炭化物析出量が
増加し、ヒステリシス損が増大する。Cの含有量の増加
は炭化物析出量の増加と共に、固溶Cの増加も招き、こ
れらにより結晶粒が微細化するため、ヒステリシス損は
さらに増大する。このため、Cは極力低くすることが良
いとされてきた。
When the C content increases, the amount of carbide precipitation increases, and the hysteresis loss increases. An increase in the content of C causes an increase in the amount of carbide precipitation and an increase in the amount of solid solution C. As a result, the crystal grains become finer, and the hysteresis loss further increases. For this reason, C has been considered to be as low as possible.

【0022】しかし、C含有量の増加は母材の固有抵抗
を高くする効果もあるため、渦電流損が大半を占める高
周波の鉄損に対してはむしろこれを利用して磁気特性の
良好な鋼板を得ることができる。
However, since an increase in the C content also has the effect of increasing the specific resistance of the base material, it is preferable to use high-frequency iron loss, which is mainly composed of eddy current loss, to obtain good magnetic characteristics. Steel sheet can be obtained.

【0023】なお、単純に母材の固有抵抗を高めるとい
う視点ではCは固溶状態で存在させた方が良いが、製品
中に固溶Cが残存していると磁気時効の問題を起こすた
め、本発明においてはCを可能な限り炭化物として析出
させる。
From the viewpoint of simply increasing the specific resistance of the base material, it is preferable that C is present in a solid solution state. However, if solid solution C remains in the product, it causes a problem of magnetic aging. In the present invention, C is precipitated as carbide as much as possible.

【0024】さらに、この炭化物は打ち抜き加工時にお
いて、亀裂の起点となり、また亀裂の伝播を容易にする
ことにより、打ち抜き性を改善するため、この点からも
Cは可能な限り炭化物として析出させた方がよい。
Further, this carbide serves as a starting point of a crack at the time of punching, and in order to improve the punchability by facilitating the propagation of the crack, C is also precipitated as a carbide as much as possible from this point. Better.

【0025】よって、Cは0.015%を超えるように
することが望ましい。そうすればコストアップにつなが
るような他の打ち抜き性向上対策を行うことなく、安価
に打ち抜き性に優れた鋼板を得ることができる。
Therefore, it is desirable that C exceeds 0.015%. This makes it possible to obtain a steel sheet having excellent punching properties at low cost without taking other measures to improve the punching properties that would lead to an increase in cost.

【0026】以上のようにCの含有量の増加は、安価で
かつ高周波鉄損に優れた鋼板を得る上で積極利用でき
るが、Cが0.08%を超えて存在すると結晶粒微細化
によるヒステリシス損の増大による弊害が大きいため、
上限を0.08%とする。
As described above, the increase in the content of C can be positively utilized in obtaining a steel plate which is inexpensive and has excellent high-frequency iron loss.
However, if C exceeds 0.08%, adverse effects due to an increase in hysteresis loss due to the refinement of crystal grains are large.
The upper limit is set to 0.08%.

【0027】Siは高周波鉄損を低下させるのに有効な
元素であり、要求される高周波鉄損により必要に応じて
0.8%まで添加できるが、0.8%を超えるSiの添
加はコストの上昇を招き安価な材料を得ることが困難な
ため、Siを添加する場合、上限を0.8%とする。よ
り安価に抑えるためには、好ましくは0.5%以下とす
るのが良い。
Si is an element effective in reducing high-frequency iron loss, and can be added up to 0.8% as necessary depending on the required high-frequency iron loss. Therefore, when Si is added, the upper limit is set to 0.8%. In order to keep the cost lower, the content is preferably set to 0.5% or less.

【0028】Pは母材の固有抵抗増加あるいは鋼板の硬
度調整のために添加する。ただし、多過ぎると製造工程
に切削加工が含まれるような場合には切削金型寿命を劣
化させるため、その影響が顕著でない範囲として0.0
6%以下とする。
P is added for increasing the specific resistance of the base material or adjusting the hardness of the steel sheet. However, if the amount is too large, if the manufacturing process involves cutting, the life of the cutting die is deteriorated.
6% or less.

【0029】Mnは母材の固有抵抗を高くして高周波鉄
損を低下させるのに寄与するが、多量のMnは硬度を必
要以上に高くして切削金型寿命が問題となるため、その
悪影響が顕著でない範囲として上限を0.80%とす
る。
[0029] Mn contributes to increase the specific resistance of the base material and reduce high-frequency iron loss, but a large amount of Mn increases the hardness more than necessary and causes a problem in the life of the cutting die. Is not significant, the upper limit is set to 0.80%.

【0030】また、経済性に優れた鋼板を得るため、高
価な合金元素であるMnの添加量は少ない方が良く、
0.5%以下とするのが望ましい。一方、MnはSによ
る熱間圧延時の鋼の熱間脆化を防ぐ役割があるため、
0.05%以上添加することが望ましい。
Further, in order to obtain a steel sheet excellent in economical efficiency, it is better to add a small amount of Mn which is an expensive alloy element.
It is desirable that the content be 0.5% or less. On the other hand, since Mn has a role of preventing hot embrittlement of steel during hot rolling by S,
It is desirable to add 0.05% or more.

【0031】Sは不可避的不純物であり、微細なMnS
析出物を形成して電磁特性を劣化させるため、極力低減
することが望ましい。ただし、その低減はコスト上昇を
招くので、Sの悪影響が顕著でない範囲として0.01
0%以下とするのが好ましい。さらに好ましくは0.0
08%以下とする。
S is an unavoidable impurity, and fine MnS
Since precipitates are formed to deteriorate the electromagnetic characteristics, it is desirable to reduce as much as possible. However, since the reduction leads to an increase in cost, a range in which the adverse effect of S is not remarkable is 0.01%.
It is preferably set to 0% or less. More preferably 0.0
08% or less.

【0032】Alは元来、不可避的に混入する場合のあ
る不純物元素であるが、必要に応じて脱酸を目的に添加
しても良い。Alには母材の固有抵抗を大きくする効果
もあるが、高価な合金元素であるAlの添加はコストの
無用な増加を招くため、上限をsol.Al(酸可溶A
l)量で0.05%として添加することが好ましい。
Al is an impurity element which may be unavoidably mixed in from the beginning, but may be added for the purpose of deoxidation if necessary. Although Al also has the effect of increasing the specific resistance of the base material, the addition of Al, which is an expensive alloy element, causes an unnecessary increase in cost. Al (acid soluble A
l) It is preferable to add as an amount of 0.05%.

【0033】ただし、Alを添加する場合はこれが微細
AlNとして析出すると磁気特性の劣化をもたらすた
め、同時に0.0003〜0.005%のBを添加する
ことが望ましい。
However, when Al is added, if it is precipitated as fine AlN, the magnetic properties are deteriorated. Therefore, it is desirable to add 0.0003 to 0.005% of B at the same time.

【0034】B添加量が0.0003%未満ではBによ
る窒化物粗大化の効果が不十分で磁気特性が悪く、0.
005%を超えると逆に過剰Bによる磁気特性劣化のお
それがあるため、その上下限をそれぞれ0.0003
%、0.005%とする。
When the B content is less than 0.0003%, the effect of nitride coarsening by B is insufficient and the magnetic properties are poor.
If the content exceeds 005%, the magnetic properties may be degraded due to excess B.
%, 0.005%.

【0035】Nは不可避的不純物であり、窒化物析出量
の増加による害を防ぐため、上限を0.007%とし
て析出しにくい状態にすることが好ましい。なお、その
他高炉−転炉法にて常識的に混入しうる量の不可避不純
物元素(Cu、Ti、Nb、V、Cr、Ni、Mo、S
n、As、Sb等)が含まれていても、本発明の持つ効
果は何ら損なわれることは無い。
N is an unavoidable impurity, and the upper limit is made 0.007% in order to prevent harm caused by an increase in the amount of nitride precipitation.
It is preferable to make it difficult to precipitate. In addition, other unavoidable impurity elements (Cu, Ti, Nb, V, Cr, Ni, Mo, S
n, As, Sb, etc.), the effect of the present invention is not impaired at all.

【0036】各元素を上記の範囲とすることに加えて、
成分パラメータAとフェライト結晶粒度gがA+4.3
6≧gなる関係を満たすよう成分調整および鋼板組織を
制御することが、高周波で優れた磁気特性を得るに当た
って重要である。ここで成分パラメータAは、 A=6.77[ %C] +15.0[ %Si] +4.84
[ %Mn] +24.2[ %P] とする。
In addition to the above ranges for each element,
Component parameter A and ferrite grain size g are A + 4.3
It is important to control the composition and control the structure of the steel sheet so as to satisfy the relationship of 6 ≧ g in order to obtain excellent magnetic properties at high frequencies. Here, the component parameter A is as follows: A = 6.77 [% C] +15.0 [% Si] +4.84
[% Mn] +24.2 [% P].

【0037】一般にCのような元素の含有量が多いと、
結晶粒は小さくなる傾向にある。即ちgは大きくなる傾
向にあり、磁気特性は劣化する。しかし、鋼板組織を制
御して成分パラメータAとA+4.36≧gなる関係を
満たすようgを調整すれば磁気特性の良好な鋼板を得る
ことができる。
In general, when the content of an element such as C is large,
Crystal grains tend to be small. That is, g tends to increase, and the magnetic characteristics deteriorate. However, a steel sheet having good magnetic properties can be obtained by controlling the steel sheet structure and adjusting g so as to satisfy the relationship of component parameter A and A + 4.36 ≧ g.

【0038】鋼に不純物元素を添加すると、鋼の固有抵
抗が大きくなることは、既に一般的に知られている。鋼
の固有抵抗が大きくなると、鋼板の高周波鉄損は小さく
なる。しかし、前述したように、鋼にCその他の元素を
添加すると、フェライト粒径は小さくなり、すなわち、
粒度が大きくなり、鋼板の高周波鉄損は大きくなる。つ
まり、鋼に添加する不純物元素の含有量は一概に増やし
たり減らしたりすればいいものではなく、フェライト粒
度との均衡関係(バランス)が肝要である。上記(1)
式の関係は実験により得られたものであり、その物理的
理由は必ずしも明らかではないが、上記(1)式の各元
素の項の係数は、ある一定のフェライト粒度のとき、高
周波鉄損を保つために必要な、各元素の成分値のバラン
スを示していると考えられる。
It is already generally known that when an impurity element is added to steel, the specific resistance of the steel increases. As the specific resistance of the steel increases, the high-frequency iron loss of the steel sheet decreases. However, as described above, when C and other elements are added to steel, the ferrite grain size decreases, that is,
The grain size increases, and the high-frequency iron loss of the steel sheet increases. That is, the content of the impurity element to be added to the steel is not necessarily increased or decreased steadily, and a balance with the ferrite grain size is important. The above (1)
The relationship between the expressions is obtained by experiments, and the physical reason is not necessarily clear. However, the coefficient of the term of each element in the above expression (1) is such that when a certain ferrite grain size is obtained, the high frequency iron loss is reduced. This is considered to indicate the balance of the component values of each element necessary to maintain the values.

【0039】板厚は目的とする鉄損レベルやモータ製造
工程で許容できる工数に応じて選択することができる。
板厚が薄ければ薄いほど渦電流損を低減することができ
るが、安価な小型モータ用としては板厚0.30mm未
満はモータ製造工程におけるコストの増大が無視できな
いため、モータの製造工程まで含めた視点では本発明の
目的とする安価な鋼板とは言い難い。
The plate thickness can be selected according to the desired iron loss level and the number of man-hours allowable in the motor manufacturing process.
The thinner the plate, the smaller the eddy current loss can be reduced. However, for inexpensive small motors, the cost increase in the motor manufacturing process cannot be ignored if the plate thickness is less than 0.30 mm. In view of this, it is hard to say that the steel plate is an inexpensive steel plate aimed at by the present invention.

【0040】一方、板厚が厚くなると全鉄損に占める渦
電流損の割合が相対的に大きくなり、1.8mmを超え
ると上式を満たすよう成分調整および鋼板組織を制御し
ても磁気特性が劣る場合がある。
On the other hand, as the sheet thickness increases, the ratio of the eddy current loss to the total iron loss becomes relatively large. When the sheet thickness exceeds 1.8 mm, the magnetic properties are controlled even if the composition is adjusted and the steel sheet structure is controlled so as to satisfy the above equation. May be inferior.

【0041】そこで本発明の好適態様は板厚の範囲を
0.30mm以上1.8mm以下とした。より低コスト
かつ優れた磁気特性とするためには好ましくは0.5m
m以上1.6mm以下とするのが良い。
Therefore, in a preferred embodiment of the present invention, the range of the plate thickness is set to 0.30 mm or more and 1.8 mm or less. Preferably 0.5 m for lower cost and excellent magnetic properties
It is preferable that the thickness be not less than m and not more than 1.6 mm.

【0042】上述のように調整された鋼組成のスラブ
を、熱間圧延したのち、酸洗して冷間圧延し、さらに仕
上焼鈍をするに際して、熱間圧延の仕上温度はAr3
変態点以下とする。
After the slab having the steel composition adjusted as described above is hot-rolled, pickled, cold-rolled, and further subjected to finish annealing, the hot-rolling finish temperature is Ar 3.
It is below the transformation point.

【0043】仕上温度がAr3 変態点を超えると、圧延
終了後に変態点を通過することで歪みの入っていない組
織となって結晶粒成長の駆動力が大幅に低下するため、
熱間圧延板組織が微細となる。
When the finishing temperature exceeds the transformation point of Ar 3 , after passing through the transformation point after rolling, the structure becomes free of distortion and the driving force for crystal grain growth is greatly reduced.
The hot rolled sheet structure becomes fine.

【0044】熱間圧延板組織が微細になると、冷間圧延
・焼鈍後に得られる結晶粒も微細になる傾向にあり必要
な磁気特性を得ることが難しくなる。それを補うために
焼鈍温度を高くして結晶粒を成長させることは、コスト
的に不利であるばかりでなく、粒界近傍から生成する磁
気特性に不利な(111)組織が多く形成され、磁気特
性を悪化させる可能性も生じる。
When the structure of the hot-rolled sheet becomes fine, the crystal grains obtained after cold rolling and annealing tend to become fine, and it becomes difficult to obtain necessary magnetic properties. Increasing the annealing temperature to grow crystal grains to compensate for this is not only disadvantageous in terms of cost, but also forms many (111) structures disadvantageous to the magnetic properties generated near the grain boundaries, and There is also a possibility that the characteristics are deteriorated.

【0045】なお、熱間圧延板組織をなるべく粗粒にす
るため仕上温度は変態点以下のなるべく高い温度が良い
が、仕上最終スタンド直前での変態点通過は圧延の不安
定をもたらすため、好ましくは仕上最終スタンド直前の
温度をAr3 −10℃以下とするのが良い。
In order to make the hot-rolled sheet structure as coarse as possible, the finishing temperature is preferably as high as possible below the transformation point. However, passing the transformation point immediately before the final finishing stand causes instability of rolling, and is therefore preferable. It is preferable that the temperature immediately before the final finishing stand is Ar 3 -10 ° C. or less.

【0046】本発明のようにAr3 変態点以下の低温仕
上圧延をする場合は、1000〜1250℃といった比
較的低い温度にスラブは加熱される。しかし、加熱温度
が低ければ低いほど、加熱炉のスキッドとスラブの接触
部(スキッドマーク)と非接触部との温度差が大きくな
りがちである。よって、必要に応じて仕上圧延前の鋼板
(粗バー)を温度保持もしくは再加熱処理するのが好ま
しい。これにより、コイル全長に渡って、仕上温度をA
3 変態点以下のなるべく高い温度に制御することがで
き、均一に優れた磁気特性を得ることができる。
In the case of performing low-temperature finish rolling at a temperature lower than the Ar 3 transformation point as in the present invention, the slab is heated to a relatively low temperature such as 1000 to 1250 ° C. However, the lower the heating temperature, the larger the temperature difference between the contact portion (skid mark) between the skid and the slab of the heating furnace and the non-contact portion tends to be. Therefore, it is preferable that the steel sheet (rough bar) before the finish rolling is kept at a temperature or reheated as necessary. As a result, the finishing temperature is set to A over the entire length of the coil.
The temperature can be controlled as high as possible below the r 3 transformation point, and uniform and excellent magnetic properties can be obtained.

【0047】また、仕上圧延後の巻取温度は、巻取後空
冷時の十分な結晶粒成長を得るために600℃以上と定
めた。なお、冷間圧延の圧下率は通常の操業に支障のな
い範囲内であれば得られる磁気特性に大差はなく特に規
定するものではないが、通常の操業に支障のない範囲と
して好ましくは30〜90%とする。
The winding temperature after finish rolling is set to 600 ° C. or higher in order to obtain sufficient crystal grain growth during air cooling after winding. The rolling reduction of the cold rolling is not particularly limited because there is no significant difference in the magnetic properties obtained as long as it is within a range that does not hinder normal operation. 90%.

【0048】仕上焼鈍は完全な再結晶を得るためその下
限を650℃とする。これ未満の温度では組織中に歪み
が残存するため急激に磁気特性が悪化する。また、結晶
粒を成長させるにはより高い温度で仕上焼鈍する方が好
ましいが、焼鈍温度が高いほどコスト的に不利となるた
め、安価な鋼板を得る上で許容できる上限は900℃と
する。
The lower limit of the finish annealing is set to 650 ° C. in order to obtain complete recrystallization. If the temperature is lower than this, strain remains in the tissue, so that the magnetic properties rapidly deteriorate. In order to grow crystal grains, it is preferable to perform finish annealing at a higher temperature. However, the higher the annealing temperature, the more disadvantageous in cost. Therefore, the allowable upper limit for obtaining an inexpensive steel sheet is 900 ° C.

【0049】仕上焼鈍に引き続いての過時効処理におい
て、鋼中の固溶Cをほぼ析出させることにより製品とし
て使用中の微細炭化物析出による磁気時効を抑えるとと
もに、鋼板を加工に適した硬度に調整する。
In the overaging treatment subsequent to the finish annealing, by precipitating solute C in the steel, magnetic aging due to precipitation of fine carbides during use as a product is suppressed, and the steel sheet is adjusted to a hardness suitable for processing. I do.

【0050】過時効処理温度が300℃未満では炭化物
析出の活性化エネルギーが十分得られないために過時
効処理が不十分となって固溶Cが残存した形となり鋼板
硬度上昇や、磁気時効の問題を生じるため、下限は30
0℃とするのが好ましい。
If the overaging temperature is lower than 300 ° C., sufficient activation energy for carbide precipitation cannot be obtained.
Aging treatment is insufficient and solute C remains, resulting in a problem of increased steel sheet hardness and magnetic aging.
The temperature is preferably set to 0 ° C.

【0051】一方、500℃を超える温度では、炭化物
析出の駆動力が小さいため、これまた固溶Cが残存した
形となり前記同様の問題を起こすため、上限は500℃
とするのが好ましい。
On the other hand, at a temperature exceeding 500 ° C., since the driving force for carbide precipitation is small, solute C remains and the same problem as described above occurs, so the upper limit is 500 ° C.
It is preferred that

【0052】さらに過時効処理時間が150秒よりも短
い場合にも固溶Cが多く残存する可能性があるため、1
50秒以上とすることが望ましい。なお、上述のように
規定した過時効処理により粗大な炭化物を析出させてい
れば、これらが亀裂の起点となりさらに亀裂の伝播が容
易なため打ち抜き性は良好で、あえて他の打ち抜き性対
策を講じることによる磁気特性の劣化あるいはコストア
ップを招くようなことがない。
Further, when the overaging treatment time is shorter than 150 seconds, a large amount of solid solution C may remain.
It is desirable to set it to 50 seconds or more. In addition, if coarse carbides are precipitated by the overaging treatment specified as described above, these become the starting points of cracks, and furthermore, the cracks are easily propagated, so that the punching properties are good, and other measures for the punching properties are intentionally taken. This does not cause deterioration of magnetic characteristics or increase in cost.

【0053】仕上焼鈍後の調質圧延、特に上述の過時効
処理後の調質圧延は、鋼板の形状確保を目的として必要
に応じて実施しても良いが、その場合は歪みの導入によ
るヒステリシス損、磁束密度の劣化を極力避けるため伸
び率を2%以下とすることが好ましい。
The temper rolling after the finish annealing, especially the temper rolling after the above-mentioned overaging treatment, may be carried out as necessary for the purpose of securing the shape of the steel sheet. In that case, however, the hysteresis due to the introduction of strain is required. The elongation is preferably set to 2% or less in order to minimize loss and deterioration of magnetic flux density.

【0054】[0054]

【実施例】表1に示す鋼組成A〜Qの鋳片(Ar3 点8
00℃以上)を、加熱温度1200℃、仕上温度780
℃で3.8mm厚に熱間圧延し650℃で巻き取ったも
のを、酸洗の後、1.0mmまで冷間圧延し、780℃
で仕上焼鈍して引き続き400℃で360秒過時効処理
を行い、その後、1.2%の調質圧延を施した。このよ
うに製造された鋼板について、高周波での電磁試験、硬
さ試験を行った結果を同じ表1中に示す。
EXAMPLES Slabs of steel compositions A to Q shown in Table 1 (Ar 3 points 8
00 ° C. or higher) at a heating temperature of 1200 ° C. and a finishing temperature of 780
After hot-rolling to a thickness of 3.8 mm at 650 ° C. and winding at 650 ° C., after pickling, it was cold-rolled to 1.0 mm and 780 ° C.
And then overaged at 400 ° C. for 360 seconds, followed by temper rolling of 1.2%. Table 1 shows the results of conducting an electromagnetic test and a hardness test at a high frequency on the steel sheet thus manufactured.

【0055】[0055]

【表1】 高周波の電磁試験は以下の方法によって行った。まず鋼
板から外径45mm、内径33mmのリング試験片を切
り出し、5枚積層して、2000Hzの高周波において
鉄損(W5/2000)を測定した。高周波磁気特性に
優れた鋼板としては、板厚1.0mmの場合、本条件で
の測定においてW5/2000が640W/kg以下で
あるものを本発明の範囲内とする。
[Table 1] The high frequency electromagnetic test was performed by the following method. First, a ring test piece having an outer diameter of 45 mm and an inner diameter of 33 mm was cut out from a steel sheet, five sheets were laminated, and the iron loss (W5 / 2000) was measured at a high frequency of 2000 Hz. As a steel sheet having excellent high-frequency magnetic properties, a steel sheet having a thickness of 1.0 mm and having a W5 / 2000 of 640 W / kg or less in the measurement under these conditions is within the scope of the present invention.

【0056】鋼板の硬さHv の測定はJISZ2244
に従い、試験力は49Nにて測定した。加工に切削工程
が含まれるような場合に工具寿命が問題となってくる硬
さとして、Hv が130以上のものは切削性の劣化は免
れないので、本発明の範囲から外れるものである。
The hardness Hv of the steel sheet is measured according to JISZ2244.
And the test force was measured at 49N. As for the hardness whose tool life becomes a problem when the machining includes a cutting step, those having an Hv of 130 or more are out of the scope of the present invention because deterioration of the machinability is inevitable.

【0057】表1に示すように、本発明範囲内に規定さ
れる組成成分の上下限を外れた鋼組成のものは、高周波
での鉄損が大きく優れた磁気特性が得られなかったり、
鋼板の硬さが高いために加工性に劣ることが分かる。
As shown in Table 1, a steel composition having a composition outside the upper and lower limits of the composition specified in the range of the present invention has a large iron loss at a high frequency and cannot obtain excellent magnetic properties,
It can be seen that the workability is inferior due to the high hardness of the steel sheet.

【0058】次に、表1の鋼組成A〜Jの鋳片から上述
の方法と同様にして1.0mmの鋼板を得るにあたり
、熱間圧延の仕上温度、巻取温度、仕上焼鈍の温度を
種々に変更して結晶粒度をつくりわけ、それぞれの鋼板
について高周波鉄損測定とJISG0552に規定する
フェライト結晶粒度測定を行った結果を図1に示す。
Next, in order to obtain a steel sheet of 1.0 mm from the slabs of the steel compositions A to J in Table 1 in the same manner as described above,
The finishing temperature of hot rolling, the winding temperature, and the temperature of finishing annealing were variously changed to create crystal grain sizes. The results of high-frequency iron loss measurement and ferrite crystal grain size measurement specified in JIS G 0552 were performed on each steel sheet. As shown in FIG.

【0059】図1に示されるように、結晶粒度がA+
4.36≧gを満たす鋼板では、たとえ合金元素の含有
量が少なくても高周波鉄損は小さく保たれる。逆に結晶
粒度が大きくても上式を満たすように成分が含有されて
いれば優れた高周波鉄損を示すことが分かる。
As shown in FIG. 1, the crystal grain size is A +
In a steel sheet satisfying 4.36 ≧ g, high-frequency iron loss is kept small even if the content of alloying elements is small. Conversely, it can be seen that even if the crystal grain size is large, if the component is contained so as to satisfy the above expression, excellent high-frequency iron loss is exhibited.

【0060】表2は鋼組成CまたはEの鋳片を、加熱温
度1180℃、仕上温度800℃、巻取温度630℃で
2.3mm、3.8mm、4.5mmの板厚にまで熱間
圧延し、酸洗の後、それぞれ板厚0.5mm、1.0m
m、1.6mm、に冷間圧延し、780℃で仕上焼鈍し
て引き続き400℃で300秒過時効処理を行い、その
後、1.2%の調質圧延を施して製造した鋼板につい
て、前記同様の高周波電磁試験を行った結果を示したも
のである。
Table 2 shows that a slab of steel composition C or E was heated to a thickness of 2.3 mm, 3.8 mm, and 4.5 mm at a heating temperature of 1180 ° C., a finishing temperature of 800 ° C., and a winding temperature of 630 ° C. After rolling and pickling, the plate thickness is 0.5 mm and 1.0 m, respectively.
m, 1.6 mm, cold-rolled, finish-annealed at 780 ° C., subsequently overaged at 400 ° C. for 300 seconds, and then subjected to 1.2% temper rolling to produce a steel sheet as described above. It shows the result of performing a similar high-frequency electromagnetic test.

【0061】[0061]

【表2】 板厚は要求される鉄損レベルによって選択されるもので
あり、つまり板厚によって鉄損レベルが大きく異なる。
高周波磁気特性に優れた鋼板としては前記条件での測定
においてW5/2000が、板厚0.5mmの場合27
0W/kg以下、板厚1.0mmの場合640W/kg
以下、板厚1.6mmの場合1500W/kg以下であ
るものを本発明の範囲内とする。
[Table 2] The sheet thickness is selected according to the required iron loss level, that is, the iron loss level greatly differs depending on the sheet thickness.
As a steel sheet having excellent high-frequency magnetic properties, W5 / 2000 is measured under the above conditions,
0W / kg or less, 640W / kg when the thickness is 1.0mm
Hereinafter, those having a plate thickness of 1.6 mm and 1500 W / kg or less are within the scope of the present invention.

【0062】表3は鋼組成AおよびFの鋳片を1200
℃に加熱後、表3中の各条件で熱間圧延、冷間圧延、仕
上焼鈍、過時効処理、調質圧延を行った製品厚さ1.0
mmの鋼板について、既述のものと同様に高周波鉄損、
鋼板硬さ、フェライト結晶粒度を測定した結果である。
Table 3 shows that slabs of steel compositions A and F were 1200
° C, hot-rolled, cold-rolled, finish-annealed, overaged, and temper-rolled under the conditions in Table 3
mm steel plate, high-frequency iron loss as described above,
It is the result of measuring the hardness of the steel sheet and the grain size of the ferrite crystal.

【0063】[0063]

【表3】 熱間圧延の仕上温度が鋼組成FのAr3 変態点850℃
を超えている鋼No.13や巻取温度が600℃未満の
鋼No.14では細粒となって目標の高周波鉄損が得ら
れない。また、仕上焼鈍温度が650℃に達していない
鋼No.15は未再結晶組織が残存しており、鉄損が悪
化している。
[Table 3] The finishing temperature of hot rolling is 850 ° C. at the Ar 3 transformation point of steel composition F.
Steel No. exceeding No. 13 or steel No. with a winding temperature of less than 600 ° C. In the case of No. 14, fine grains are not obtained, and a target high-frequency iron loss cannot be obtained. The steel No. whose finish annealing temperature did not reach 650 ° C. In No. 15, an unrecrystallized structure remains, and iron loss is deteriorated.

【0064】過時効処理温度あるいは時間が本発明範囲
から外れる鋼No.16〜18は高周波磁気特性の面で
は優れているものの鋼板硬さが高過ぎる。調質圧延の伸
び率が高過ぎる鋼No.19は磁気特性が劣化してい
る。
In the case of steel No. 3 which is out of the range of the present invention, the temperature or time of the overaging treatment is different. Nos. 16 to 18 are excellent in high-frequency magnetic properties, but the steel plate hardness is too high. Steel No. with too high elongation in temper rolling. No. 19 has deteriorated magnetic characteristics.

【0065】それに対して、本発明範囲内である鋼N
o.1〜12は高周波磁気特性、鋼板硬さともに目標の
特性が得られている。
On the other hand, steel N within the scope of the present invention
o. Nos. 1 to 12 have target characteristics in both high-frequency magnetic characteristics and steel plate hardness.

【0066】[0066]

【発明の効果】本発明により、コストのかかる手段によ
らず、成分の含有量と製品の結晶粒径をある関係に保つ
ことにより、良好な高周波磁気特性の電磁鋼板を得る
ことができる。
According to the present invention, an electrical steel sheet having good high-frequency magnetic characteristics can be obtained by keeping the content of the components and the crystal grain size of the product in a certain relationship regardless of the costly means.

【図面の簡単な説明】[Brief description of the drawings]

【図1】フェライト結晶粒度gおよび成分パラメータA
と鉄損W5/2000の関係を示す図である。
FIG. 1: Ferrite grain size g and component parameter A
It is a figure which shows the relationship between iron loss W5 / 2000.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01F 1/16 H01F 1/16 A Fターム(参考) 4K033 AA01 CA06 CA08 CA09 FA03 FA10 KA00 RA03 SA03 5E041 AA02 AA11 AA19 CA04 HB05 HB07 HB11 NN01 NN17 NN18──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) H01F 1/16 H01F 1/16 A F term (Reference) 4K033 AA01 CA06 CA08 CA09 FA03 FA10 KA00 RA03 SA03 5E041 AA02 AA11 AA19 CA04 HB05 HB07 HB11 NN01 NN17 NN18

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、 C :0.015%を超え、0.08%以下 Si:0.8%以下 Mn:0.05%以上、0.80%以下 P :0.06%以下 を含有し、かつ、JISG0552に規定するフェライ
ト結晶粒度をgとするとき、 6.77[%C]+15.0[%Si]+4.84[%Mn]+24.2[%P]+4.36≧g………………………(1) 上記(1)式の関係を満たすことを特徴とする高周波磁
気特性に優れた電磁鋼板。
1. In mass%, C: more than 0.015%, 0.08% or less Si: 0.8% or less Mn: 0.05% or more, 0.80% or less P: 0.06% or less And the ferrite grain size specified in JIS G0552 is g, 6.77 [% C] +15.0 [% Si] +4.84 [% Mn] +24.2 [% P] + 4.36 ≧ g ... (1) An electromagnetic steel sheet excellent in high-frequency magnetic properties, characterized by satisfying the relationship of the above formula (1).
【請求項2】 不可避不純物としてのN、Sをそれぞ
れ、質量%で、N:0.007%以下、及びS:0.0
10%以下に制限する、請求項1に記載の電磁鋼板。
2. N and S as unavoidable impurities are respectively expressed by mass%, N: 0.007% or less, and S: 0.0
The electrical steel sheet according to claim 1, wherein the electrical steel sheet is limited to 10% or less.
【請求項3】 質量%で、Al:0.05%以下、及び
B:0.0003〜0.005%をさらに含む、請求項
1または2に記載の電磁鋼板。
3. The magnetic steel sheet according to claim 1, further comprising Al: 0.05% or less and B: 0.0003 to 0.005% by mass%.
【請求項4】 板厚が0.30mm以上1.8mm以下
である請求項1ないし3のいずれかに記載の電磁鋼板。
4. The magnetic steel sheet according to claim 1, wherein the sheet thickness is 0.30 mm or more and 1.8 mm or less.
【請求項5】 質量%で、 C :0.015%を超え、0.08%以下 Si:0.8%以下 Mn:0.05%以上、0.80%以下 P :0.06%以下 を含有し、必要により、Al:0.05%以下および/
またはB:0.0003〜0.005%をさらに含有す
るスラブに対し、熱間圧延、酸洗、冷間圧延、次いで仕
上焼鈍を行うに際し、熱間圧延では仕上温度をAr3
態点以下として600℃以上で巻き取りを行い、仕上焼
鈍では650℃以上900℃以下での再結晶化処理を施
すことにより、JISG0552に規定するフェライト
結晶粒度をgとしたとき、 6.77[%C]+15.0[%Si]+4.84[%Mn]+24.2[%P]+4.36≧g………………………(1) 上記(1)の関係を満たすことを特徴とする高周波磁気
特性に優れた電磁鋼板の製造方法。
5. In mass%, C: more than 0.015%, 0.08% or less Si: 0.8% or less Mn: 0.05% or more, 0.80% or less P: 0.06% or less And, if necessary, Al: 0.05% or less and / or
Or B: When hot rolling, pickling, cold rolling, and then finish annealing are performed on a slab further containing 0.0003 to 0.005%, the finishing temperature is set to the Ar 3 transformation point or lower in hot rolling. Winding is performed at 600 ° C or higher, and refining treatment at 650 ° C or higher and 900 ° C or lower is performed in finish annealing to obtain a ferrite crystal grain size specified in JIS G0552 as g of 6.77 [% C] +15.0 [ % Si] +4.84 [% Mn] +24.2 [% P] + 4.36 ≧ g (1) Excellent in high-frequency magnetic characteristics characterized by satisfying the relationship (1) above Manufacturing method of electrical steel sheet.
【請求項6】 請求項5に規定する仕上げ焼鈍に続いて
下限300℃上限500℃、処理時間150秒以上の過
時効処理を行うことを特徴とする、電磁鋼板の製造方
法。
6. A method for producing an electrical steel sheet, comprising performing, after the finish annealing defined in claim 5, an overaging treatment at a lower limit of 300 ° C. and an upper limit of 500 ° C. for a treatment time of 150 seconds or more.
【請求項7】 請求項5に規定する仕上げ焼鈍後の冷間
圧延鋼板に伸び率2%以下の調質圧延を行うことを特徴
とする、電磁鋼板の製造方法。
7. A method for producing a magnetic steel sheet, comprising subjecting a cold-rolled steel sheet after the finish annealing defined in claim 5 to temper rolling at an elongation of 2% or less.
JP2000125861A 2000-04-26 2000-04-26 Electrical steel sheet with excellent high-frequency magnetic properties and method for producing the same Expired - Lifetime JP3937685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000125861A JP3937685B2 (en) 2000-04-26 2000-04-26 Electrical steel sheet with excellent high-frequency magnetic properties and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000125861A JP3937685B2 (en) 2000-04-26 2000-04-26 Electrical steel sheet with excellent high-frequency magnetic properties and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001303216A true JP2001303216A (en) 2001-10-31
JP3937685B2 JP3937685B2 (en) 2007-06-27

Family

ID=18635736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000125861A Expired - Lifetime JP3937685B2 (en) 2000-04-26 2000-04-26 Electrical steel sheet with excellent high-frequency magnetic properties and method for producing the same

Country Status (1)

Country Link
JP (1) JP3937685B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009046738A (en) * 2007-08-22 2009-03-05 Nisshin Steel Co Ltd Steel sheet for rotor core of internal permanent magnet motor, and its manufacturing method
JP2010150667A (en) * 2004-02-17 2010-07-08 Nippon Steel Corp Electromagnetic steel sheet and method for manufacturing the same
JP2012207308A (en) * 2012-06-08 2012-10-25 Nisshin Steel Co Ltd Steel sheet for rotor core of permanent magnet embedded motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010150667A (en) * 2004-02-17 2010-07-08 Nippon Steel Corp Electromagnetic steel sheet and method for manufacturing the same
JP2009046738A (en) * 2007-08-22 2009-03-05 Nisshin Steel Co Ltd Steel sheet for rotor core of internal permanent magnet motor, and its manufacturing method
JP2012207308A (en) * 2012-06-08 2012-10-25 Nisshin Steel Co Ltd Steel sheet for rotor core of permanent magnet embedded motor

Also Published As

Publication number Publication date
JP3937685B2 (en) 2007-06-27

Similar Documents

Publication Publication Date Title
KR102095142B1 (en) Non-oriented electrical steel sheet and production method thereof
WO2004013365A1 (en) Nonoriented magnetic steel sheet, member for rotary machine and rotary machine
RU2721681C1 (en) Method of producing cold-rolled continuously annealed flat products from if-steel
CN112430780A (en) Cu-containing high-cleanliness non-oriented electrical steel plate and manufacturing method thereof
JPH059666A (en) Grain oriented electrical steel sheet and its manufacture
JP3937685B2 (en) Electrical steel sheet with excellent high-frequency magnetic properties and method for producing the same
JP4337146B2 (en) Method for producing non-oriented electrical steel sheet
JPH0819465B2 (en) Non-oriented electrical steel sheet manufacturing method
JPH0570836A (en) Manufacture of high strength cold rolled steel sheet for deep drawing
JP3331401B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties all around
JP7231133B1 (en) Non-oriented electrical steel sheet, manufacturing method thereof, and motor core
JP7231134B1 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP7235187B1 (en) Non-oriented electrical steel sheet, manufacturing method thereof, and motor core
JP7235188B1 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP3845871B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density
JP3331535B2 (en) Method for manufacturing thick non-oriented electrical steel sheet with excellent magnetic properties
JPS60190521A (en) Manufacture of nonoriented electrical steel sheet
JP3425296B2 (en) Manufacturing method of thin hot rolled steel sheet with excellent workability
JP2002003951A (en) Method for manufacturing cold rolled steel sheet having small anisotropy
WO2023282195A1 (en) Non-oriented electromagnetic steel sheet and method for manufacturing same
WO2023282197A1 (en) Non-oriented electromagnetic steel sheet, manufacturing method therefor, and motor core
JPH0559490A (en) High tensile strength thin steel sheet for press working and its manufacture
JP2004270011A (en) Method for producing high magnetic flux density non-directional magnetic steel sheet for rotary machine
JPH06279859A (en) Production of non-oriented electric steel sheet extremely excellent in core loss and magnetic flux density
CN115003845A (en) Non-oriented electrical steel sheet and method for manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070319

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350