JP2001303102A - Composite dielectric material, and compacting material, compacting powder material, coating material, prepreg and substrate all using the same - Google Patents

Composite dielectric material, and compacting material, compacting powder material, coating material, prepreg and substrate all using the same

Info

Publication number
JP2001303102A
JP2001303102A JP2000128283A JP2000128283A JP2001303102A JP 2001303102 A JP2001303102 A JP 2001303102A JP 2000128283 A JP2000128283 A JP 2000128283A JP 2000128283 A JP2000128283 A JP 2000128283A JP 2001303102 A JP2001303102 A JP 2001303102A
Authority
JP
Japan
Prior art keywords
dielectric material
dielectric
composite dielectric
resin
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000128283A
Other languages
Japanese (ja)
Inventor
Minoru Takatani
稔 高谷
Yoshiaki Akachi
義昭 赤地
Hisashi Kobuke
恆 小更
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2000128283A priority Critical patent/JP2001303102A/en
Priority to KR10-2000-0083166A priority patent/KR100533097B1/en
Priority to EP00311742A priority patent/EP1150311A3/en
Priority to US09/749,800 priority patent/US7060350B2/en
Publication of JP2001303102A publication Critical patent/JP2001303102A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a composite dielectric material good in the dispersibility of grains, capable of easily obtaining desired characteristics and capable of attaining the thinning of electronic parts, or the like, and to obtain a compacting material, a compacting powder material, a coating material, a prepreg and a substrate all using the same. SOLUTION: This composite dielectric material is obtained by coating the whole or a part of the surfaces of spherical metallic grains 1 with the average grain size of 0.1 to 10 μm with a dielectric layer 2 and dispersing the coated grains into a resin 10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複合誘電体材料と
これを用いたコンデンサ、圧電素子、サーミスタ、バリ
スタ等の成形のための成形材料および圧粉成形粉末材料
と、印刷ペーストやキャスティング材等の塗料と、プリ
プレグおよび基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite dielectric material, a molding material for molding a capacitor, a piezoelectric element, a thermistor, a varistor, and the like using the same, a powder molding material, a printing paste, a casting material, and the like. Paints, prepregs and substrates.

【0002】[0002]

【従来の技術】高周波電子部品材料としてのモールド材
(トランスファ成形やインジェクション成形等による成
形材料)、キャスティング材(ポッティング等により注
型成形のための液状材料)や印刷ペースト等の塗料、圧
粉成形粉末材料(加圧して成形するための材料)、プリ
プレグや基板等に用いられる従来の材料として、図6
(A)に示すように、数百nm〜数十μmの粒子径に調
整した誘電体粒子30の粉末を樹脂31に分散した複合
誘電体材料32が使用される。この複合誘電体材料32
を例えば積層基板に使用する場合は、図6(B)のよう
に、ガラスクロス33に前記複合誘電体材料32を含浸
塗工することで積層基板の中間加工品としてのプリプレ
グ34を作る。そしてこのプリプレグに銅箔を貼ること
で積層板を作製し、プリント基板の製造工程を経て所望
の導体パターンを形成している。この複合誘電体材料に
使用する誘電体粉末は、粉末を焼成するか、あるいは焼
結した誘電体を粉砕することで得られる。ここで使用す
る焼結誘電体の特性は、最終的にできあがった複合誘電
体材料の特性と密接な関係があるため、誘電率およびta
nδ等を考慮して選択される。
2. Description of the Related Art Mold materials as molding materials for high-frequency electronic components (molding materials by transfer molding or injection molding), casting materials (liquid materials for casting by potting or the like), paints such as printing pastes, and powder compacting. As a conventional material used for a powder material (a material for molding by pressing), a prepreg, a substrate, and the like, FIG.
As shown in (A), a composite dielectric material 32 in which a powder of dielectric particles 30 adjusted to a particle diameter of several hundred nm to several tens μm is dispersed in a resin 31 is used. This composite dielectric material 32
For example, in the case where is used for a laminated substrate, as shown in FIG. 6B, a glass cloth 33 is impregnated with the composite dielectric material 32 to form a prepreg 34 as an intermediate processed product of the laminated substrate. Then, a copper foil is stuck on the prepreg to form a laminate, and a desired conductor pattern is formed through a printed circuit board manufacturing process. The dielectric powder used in the composite dielectric material is obtained by firing the powder or pulverizing the sintered dielectric. The properties of the sintered dielectric used here are closely related to the properties of the final composite dielectric material.
It is selected in consideration of nδ and the like.

【0003】コンデンサ、圧電素子等の電子部品は、図
6(C)に示すように、前記複合誘電体材料32の両面
に外部電極35を固着して構成される。
As shown in FIG. 6C, an electronic component such as a capacitor or a piezoelectric element is formed by fixing external electrodes 35 to both surfaces of the composite dielectric material 32.

【0004】[0004]

【発明が解決しようとする課題】(従来の複合誘電体材
料について)従来の複合誘電体材料を使用して構成され
る図6(C)の電子部品の場合、外部電極35、35間
には樹脂31中にこれと異なる材料である誘電体粒子3
0が分散して存在する。この場合の合成比誘電率は2種
類の材料の体積比率で決定される。
(Regarding the Conventional Composite Dielectric Material) In the case of the electronic component shown in FIG. 6C constituted by using the conventional composite dielectric material, there is no space between the external electrodes 35. Dielectric particles 3 made of a different material in resin 31
0 exists in a dispersed manner. In this case, the combined relative permittivity is determined by the volume ratio of the two types of materials.

【0005】図7(A)は比誘電率(ε):9,000と
比誘電率:90の誘電体粉末(分散材)を、それぞれエ
ポキシ樹脂に含有率を変えて分散したときの合成比誘電
率(ε)の実測値である。
FIG. 7 (A) shows a composite ratio when a dielectric powder (dispersion material) having a relative dielectric constant (ε) of 9,000 and a relative dielectric constant of 90 is dispersed in an epoxy resin while changing its content. It is an actually measured value of the dielectric constant (ε).

【0006】図7(A)から分かるように、比誘電率が
9,000の粉末をエポキシ樹脂に60vol%分散したも
のの合成比誘電率は約40であり、比誘電率が約1/2
00に低下しており、比誘電率の高い誘電体材料を混合
してもさほど高い比誘電率が得られない。ちなみに比誘
電率が90の粉末をエポキシ樹脂に分散させたもので
は、60vol%で合成比誘電率が約20であり、約1/5
に低下している。また、比誘電率が9,000の粉末を
エポキシ樹脂に40vol%分散したものの比誘電率は約1
5であり、一方比誘電率が90の粉末をエポキシ樹脂に
40vol%分散したものの比誘電率は約12であって、両
者間にそれほど大きな差はない。
As can be seen from FIG. 7 (A), a powder having a relative dielectric constant of 9,000 dispersed in epoxy resin at 60 vol% has a combined relative dielectric constant of about 40 and a relative dielectric constant of about 1/2.
00, so that even if a dielectric material having a high relative permittivity is mixed, a very high relative permittivity cannot be obtained. Incidentally, in the case where a powder having a relative dielectric constant of 90 is dispersed in an epoxy resin, the composite relative dielectric constant is about 20 at 60 vol%, and about 1/5.
Has declined. The relative dielectric constant of a powder having a relative dielectric constant of 9,000 dispersed in epoxy resin at 40 vol% is about 1%.
On the other hand, the powder having a relative dielectric constant of 90 was dispersed in epoxy resin at 40 vol%, but the relative dielectric constant was about 12, which is not so large.

【0007】前記複合誘電体材料を溶剤で希釈してガラ
スクロスに含浸し、両面銅張り基板を作製して粉末の含
有率と比誘電率との関係を調べた結果を図7(B)に示
す。図7(B)から分かるように、ガラスクロスに複合
誘電体材料を含浸させる場合、ガラスクロスがない場合
よりも、複合誘電体材料の分散粉末の比誘電率の違いが
でてこない。これは基板のなかに占めるガラスクロスの
体積が無視できなくなり、体積比率で決定される合成比
誘電率に、比誘電率が7.0のガラスクロスが影響を与
えているためである。
[0007] FIG. 7 (B) shows the result of examining the relationship between the powder content and the relative dielectric constant by preparing a double-sided copper-clad substrate by diluting the composite dielectric material with a solvent and impregnating the cloth with a glass cloth. Show. As can be seen from FIG. 7B, when the glass cloth is impregnated with the composite dielectric material, the difference in the relative dielectric constant of the dispersed powder of the composite dielectric material does not appear as compared with the case where no glass cloth is provided. This is because the volume of the glass cloth occupying in the substrate cannot be ignored, and the glass cloth having a relative dielectric constant of 7.0 has an influence on the composite relative dielectric constant determined by the volume ratio.

【0008】このように、従来の複合誘電体材料で高い
比誘電率を得るには、比誘電率9000の粉末を60vo
l%以上とする必要がある。しかし薄い基板を作成するに
は、銅箔との密着や層間の剥離を考慮すると、複合誘電
体材料の含有率を50vol%以下にしなければならないの
で、高価な誘電体粉末を混合しても、あまり誘電率の向
上が達成できない。また、従来の誘電体粉末は、焼結誘
電体の破砕により得ており、凹凸があり、かつ粒径が大
きいために分散性が悪く、薄型のコンデンサ、圧電素子
等の電子部品や基板の特性を安定させることが困難であ
るという問題点がある。
As described above, in order to obtain a high relative dielectric constant with a conventional composite dielectric material, a powder having a relative dielectric constant of 9000 is required
l% or more. However, in order to create a thin substrate, considering the adhesion to the copper foil and delamination between layers, the content of the composite dielectric material must be 50 vol% or less, so even if expensive dielectric powder is mixed, The dielectric constant cannot be improved much. In addition, conventional dielectric powders are obtained by crushing a sintered dielectric, have irregularities, and have a large particle size, so they have poor dispersibility, and have characteristics of electronic components and substrates such as thin capacitors and piezoelectric elements. Is difficult to stabilize.

【0009】本発明は、粒子の分散性が良好で、所望の
特性が容易に得られ、電子部品等の薄型化が達成できる
複合誘電体材料と、これを用いた成形材料、圧粉成形粉
末材料と、印刷ペーストやキャスティング材等の塗料
と、プリプレグや基板を提供することを目的とする。
The present invention relates to a composite dielectric material having good dispersibility of particles, easily obtaining desired characteristics, and achieving thinning of electronic parts and the like, a molding material using the same, and a compacting powder. It is an object of the present invention to provide a material, a paint such as a printing paste or a casting material, and a prepreg or a substrate.

【0010】また、本発明は、誘電体の少ない添加量で
高い比誘電率が得られ、材料費が廉価となる複合誘電体
材料とこれを用いた成形材料、圧粉成形粉末材料と、印
刷ペーストやキャスティング材等の塗料と、プリプレグ
や基板を提供することを目的とする。
Further, the present invention provides a composite dielectric material which can provide a high relative dielectric constant with a small amount of added dielectric material and is inexpensive in material cost, a molding material using the same, a compacting powder material, and a printing method. An object of the present invention is to provide a paint such as a paste or a casting material, and a prepreg or a substrate.

【0011】[0011]

【課題を解決するための手段】請求項1の複合誘電体材
料は、平均粒径が0.1〜10μmで、球形の金属粒子
の表面の全部あるいは一部を、誘電体層により被覆し、
該被覆粒子を1種以上樹脂中に分散してなることを特徴
とする。
According to a first aspect of the present invention, there is provided a composite dielectric material having an average particle diameter of 0.1 to 10 μm and covering all or a part of the surface of a spherical metal particle with a dielectric layer.
It is characterized in that one or more kinds of the coated particles are dispersed in a resin.

【0012】ここで、誘電体層とは、樹脂より高い誘電
率を持つ物質でなる層を意味し、好ましくは比誘電率が
20以上のものである。このように、金属粒子の表面の
全部または一部を誘電体層で被覆した小径の球形の粒子
は、例えば特公平3−68484号公報に記載のような
噴霧熱分解法により得ることができる。この噴霧熱分解
法は、金属塩を含む溶液を噴霧して液滴にし、その液滴
を該金属塩の分解温度より高くかつ金属の融点より高い
温度で空中で加熱することにより、金属粉末を作る方法
である。この金属粉末の表面に誘電体層を形成する場
合、例えばチタン酸バリウム層を形成する場合は、バリ
ウム塩やチタニル塩等の化合物を前記ニッケル塩と共に
溶解した溶液を噴霧加熱すると共に、これらの誘電体用
塩の分解温度よりも高い温度で加熱する。これにより、
実質的に単結晶の球形金属粒子の表面に誘電体層が形成
される。この場合、前記粒子が実質的に単結晶であると
する根拠は、透過型電子顕微鏡を使った電子回折結果の
回折像からも結晶性が非常に高いことが確認されたこと
による。
Here, the dielectric layer means a layer made of a substance having a higher dielectric constant than the resin, and preferably has a relative dielectric constant of 20 or more. As described above, small-diameter spherical particles in which all or part of the surface of the metal particles are covered with the dielectric layer can be obtained by a spray pyrolysis method as described in, for example, Japanese Patent Publication No. 3-68484. This spray pyrolysis method sprays a solution containing a metal salt into droplets, and heats the droplets in the air at a temperature higher than the decomposition temperature of the metal salt and higher than the melting point of the metal, whereby the metal powder is heated. How to make. When a dielectric layer is formed on the surface of the metal powder, for example, when a barium titanate layer is formed, a solution in which a compound such as a barium salt or a titanyl salt is dissolved together with the nickel salt is spray-heated, and these dielectric materials are sprayed. Heat at a temperature higher than the decomposition temperature of the body salt. This allows
A dielectric layer is formed on the surface of the substantially single crystal spherical metal particles. In this case, the reason that the particles are substantially a single crystal is based on the fact that the crystallinity was confirmed to be very high from a diffraction image of an electron diffraction result using a transmission electron microscope.

【0013】また、この粒子は、噴霧熱分解法により生
成させる場合、粒径の下限は0.05μm、上限は20
μm程度である。実質的には、平均粒径が0.1〜10
μm程度であり、粒径が0.05〜20μmの粒子が9
5wt%を占めるような粒子の集合体となっている。
When these particles are formed by spray pyrolysis, the lower limit of the particle size is 0.05 μm and the upper limit is 20 μm.
It is about μm. Substantially, the average particle size is 0.1 to 10
μm, and particles having a particle size of 0.05 to 20 μm are 9
It is an aggregate of particles occupying 5 wt%.

【0014】このような誘電体被覆金属粒子は、樹脂中
に分散混合することにより、従来のように焼結誘電体を
破砕して粉末にした片状あるいは凹凸のあるブロック状
のものに比較して球形でありかつ小径であるため、樹脂
中に分散性よく混合される。また、この粒子を樹脂に分
散させた場合、誘電体層が金属粒子に対して例えば1wt
%の添加量のときは誘電率の向上に寄与することができ
ないが、複合誘電体材料の絶縁抵抗や耐電圧を向上させ
ることができる。誘電体層が金属粒子に対して例えば1
wt%の添加量を越える場合は誘電率の向上に寄与する。
Such dielectric-coated metal particles are dispersed and mixed in a resin so that the sintered dielectric is crushed into powder as in the prior art, and it is compared with a flake or a block having irregularities. Because of its spherical shape and small diameter, it is mixed with the resin with good dispersibility. When the particles are dispersed in a resin, the dielectric layer is, for example, 1 wt.
When the addition amount is%, it cannot contribute to the improvement of the dielectric constant, but can improve the insulation resistance and the withstand voltage of the composite dielectric material. When the dielectric layer is, for example, 1
If the amount exceeds wt%, it contributes to the improvement of the dielectric constant.

【0015】このような誘電体被覆金属粒子は、前記の
ような噴霧熱分解法で製造できるから、従来のような誘
電体の焼結、粉砕等の多数の工程を経る場合に比較して
廉価に提供可能となる。なお、本発明において、複合誘
電体材料は、樹脂中に誘電体被覆金属粒子の他に、酸化
物誘電体粉末を1種以上さらに含ませたものであっても
良い。
Since such dielectric-coated metal particles can be produced by the spray pyrolysis method as described above, they are inexpensive as compared with the conventional case of going through a number of steps such as sintering and pulverization of a dielectric. Can be provided. In the present invention, the composite dielectric material may be a resin further containing one or more oxide dielectric powders in addition to the dielectric coated metal particles in the resin.

【0016】請求項2の複合誘電体材料は、請求項1の
複合誘電体材料において、前記誘電体層の厚みが0.0
05〜5μmであることを特徴とする。
The composite dielectric material according to claim 2 is the composite dielectric material according to claim 1, wherein the thickness of the dielectric layer is 0.0
0.5 to 5 μm.

【0017】誘電体層の厚みが0.005μm以上であ
れば誘電率あるいは耐電圧の向上に寄与することができ
る。また、5μmを超えると、粒子の製造が困難とな
る。なお、この場合の厚みとは、被覆の最大厚みを意味
し、その被覆は必ずしも金属粒子の表面のすべてを覆っ
ている必要はなく、金属粒子の表面の50%程度をしめ
ていればよい。
When the thickness of the dielectric layer is 0.005 μm or more, it can contribute to the improvement of the dielectric constant or withstand voltage. On the other hand, if it exceeds 5 μm, it becomes difficult to produce particles. In this case, the thickness means the maximum thickness of the coating, and the coating does not necessarily cover the entire surface of the metal particle, but may cover about 50% of the surface of the metal particle.

【0018】請求項3の複合誘電体材料は、前記被覆金
属粒子を30〜98wt%樹脂中に混合してなるとを特徴
とする。
The composite dielectric material according to claim 3 is characterized in that the coated metal particles are mixed in a resin of 30 to 98% by weight.

【0019】被覆金属粒子を30wt%未満であると、基
板、電子部品、シールド材などを構成した際にそれぞれ
所望の特性を得ることが困難となり、一方、98wt%を
越えるといずれの場合も成形が困難となる。
If the coated metal particles are less than 30% by weight, it is difficult to obtain desired characteristics when forming a substrate, an electronic component, a shielding material, etc., while if it exceeds 98% by weight, the molding is not performed in any case. Becomes difficult.

【0020】請求項4の複合誘電体材料は、請求項1ま
たは2の複合誘電体材料において、前記金属粒子が、
銀、金、白金、パラジウム、銅、ニッケル、鉄、アルミ
ニウム、モリブデン、タングステンのうちの一種以上の
ものからなることを特徴とする。また本発明において
は、前記金属どうしの合金または他の金属との合金を用
いることができる。
The composite dielectric material according to claim 4 is the composite dielectric material according to claim 1 or 2, wherein the metal particles are:
It is characterized by being made of one or more of silver, gold, platinum, palladium, copper, nickel, iron, aluminum, molybdenum, and tungsten. In the present invention, an alloy of the above metals or an alloy with another metal can be used.

【0021】請求項5の複合誘電体材料は、請求項1か
ら3までのいずれかの複合誘電体材料において、例え
ば、前記誘電体層が、チタン−バリウム−ネオジウム
系、チタン−バリウム−スズ系、鉛−カルシウム系、二
酸化チタン系、チタン酸バリウム系、チタン酸鉛系、チ
タン酸ストロンチウム系、チタン酸カルシウム系、アル
ミナ系、チタン酸ビスマス系、チタン酸マグネシウム
系、チタン−バリウム−ストロンチウム系、チタン−バ
リウム−鉛系、チタン−バリウム−ジルコニウム系、B
aTiO−SiO系、BaO−SiO系、CaW
系、Ba(Mg,Nb)O系、Ba(Mg,T
a)O系、Ba(Co,Mg,Nb)O系、Ba
(Co,Mg,Ta)O系のセラミックス等があげら
れる。
According to a fifth aspect of the present invention, in the composite dielectric material of any one of the first to third aspects, for example, the dielectric layer is made of a titanium-barium-neodymium-based or titanium-barium-tin-based. , Lead-calcium, titanium dioxide, barium titanate, lead titanate, strontium titanate, calcium titanate, alumina, bismuth titanate, magnesium titanate, titanium-barium-strontium, Titanium-barium-lead, titanium-barium-zirconium, B
aTiO 3 —SiO 2 system, BaO—SiO 2 system, CaW
O 4 system, Ba (Mg, Nb) O 3 system, Ba (Mg, T
a) O 3 system, Ba (Co, Mg, Nb) O 3 system, Ba
(Co, Mg, Ta) O 3 -based ceramics and the like can be mentioned.

【0022】本発明の複合誘電体材料は、成形材料(請
求項6)、圧粉成形粉末材料(請求項7)、塗料(請求
項8)、プリプレグ(請求項9〜11)、基板(請求項
12、13)として用いることができる。また、本発明
の複合誘電体材料は、誘電体層に圧電材を用いることよ
り、圧電材料として用いることができる。また、本発明
の複合誘電体材料は、誘電体層の厚みや粒子の含有率を
調整することにより、半導体材料として用いることがで
きる。本発明の複合誘電体材料は、コンデンサ、表面弾
性波素子、圧電素子、バリスタ、サーミスタ等の電子部
品や、シールド材の材料として用いることができる。
The composite dielectric material of the present invention comprises a molding material (Claim 6), a powder compacted powder material (Claim 7), a paint (Claim 8), a prepreg (Claims 9 to 11), and a substrate (Claim 9). Items 12 and 13) can be used. Further, the composite dielectric material of the present invention can be used as a piezoelectric material by using a piezoelectric material for the dielectric layer. The composite dielectric material of the present invention can be used as a semiconductor material by adjusting the thickness of the dielectric layer and the content of particles. The composite dielectric material of the present invention can be used as a material for electronic components such as a capacitor, a surface acoustic wave device, a piezoelectric device, a varistor, a thermistor, and a shielding material.

【0023】本発明において、電子部品として本発明の
複合誘電体材料を用いれば、粒子が球形であるために分
散性がよく、また、前記噴霧熱分解法により小径の粒子
が得られるから、薄型にしても特性の良好な電子部品が
得られる。また、表面に目的に合致した誘電体層が形成
されることにより、誘電体層が有効に働き、高価な誘電
体の量を少なくすることができる。
In the present invention, when the composite dielectric material of the present invention is used as an electronic component, the particles are spherical, so that the particles have good dispersibility, and the spray pyrolysis method provides small-diameter particles. Even so, an electronic component having good characteristics can be obtained. In addition, by forming a dielectric layer that meets the purpose on the surface, the dielectric layer works effectively and the amount of expensive dielectric can be reduced.

【0024】また、コンデンサ材料として前記誘電体被
覆金属粒子を用いれば、誘電体層の厚みや粒子の樹脂に
対する含有率を変えることにより、種々の誘電率を得る
ことができる。また、使用する複合誘電体材料は粒子が
小径でありかつ球形であるため分散性が良好であり、薄
型に構成する場合であっても特性が安定する。
When the dielectric-coated metal particles are used as a capacitor material, various dielectric constants can be obtained by changing the thickness of the dielectric layer and the content of the particles with respect to the resin. In addition, the composite dielectric material used has good dispersibility because the particles have a small diameter and a spherical shape, and the characteristics are stable even when a thin structure is used.

【0025】また、積層基板に前記複合誘電体材料を用
いれば、積層基板内にコンデンサを形成することがで
き、また、誘電体層の厚みや粒子の樹脂に対する混合率
を変えることにより、種々の誘電率の層を得ることがで
き、特性が異なる種々の受動素子を積層基板内に形成す
ることができる。また、使用する複合誘電体材料は粒子
が小径でありかつ球形であるため分散性が良好であり、
薄型に構成する場合であっても特性が安定する。
When the composite dielectric material is used for the laminated substrate, a capacitor can be formed in the laminated substrate, and by changing the thickness of the dielectric layer and the mixing ratio of the particles to the resin, various types of capacitors can be formed. A layer having a dielectric constant can be obtained, and various passive elements having different characteristics can be formed in the laminated substrate. In addition, the composite dielectric material used has good dispersibility because the particles have a small diameter and are spherical,
The characteristics are stable even in the case of a thin configuration.

【0026】また、シールド材として前記複合誘電体材
料を用いれば、絶縁性を必要とするシールド製品の成形
材として使用できるので、絶縁材を介することなく取付
けができ、実装が容易である。
Further, if the above-mentioned composite dielectric material is used as a shielding material, it can be used as a molding material of a shield product requiring insulation, so that it can be mounted without an insulating material and mounting is easy.

【0027】[0027]

【発明の実施の形態】図1(A)は本発明において用い
る金属粒子を示す断面図である。1は金属粒子であり、
2はその表面に形成された誘電体層である。この被覆金
属粒子は噴霧熱分解法によって製造される。噴霧熱分解
法とは、図2に示すような装置を使用して実施される。
すなわち、外部に加熱装置3を有する炉心管4の上端に
噴霧する溶液の導入管5につながる噴霧式ノズル6を配
置する。該ノズル6の周囲には、キャリアガスの導入管
7につながるガイド筒8が同心状に配置される。炉心管
4の下端には、製造粒子の収容部9が設けられる。
FIG. 1A is a sectional view showing a metal particle used in the present invention. 1 is a metal particle,
2 is a dielectric layer formed on the surface. The coated metal particles are produced by a spray pyrolysis method. The spray pyrolysis method is performed using an apparatus as shown in FIG.
That is, a spray nozzle 6 connected to the introduction pipe 5 of the solution to be sprayed is arranged at the upper end of the furnace tube 4 having the heating device 3 outside. A guide cylinder 8 connected to a carrier gas introduction pipe 7 is concentrically arranged around the nozzle 6. At the lower end of the furnace core tube 4, a storage unit 9 for manufacturing particles is provided.

【0028】この装置において、ノズル6から金属塩
と、誘電体形成のための塩とを含む溶液を噴霧すると同
時に、ガイド筒8から酸化性または還元性等目的に応じ
た特性のキャリアガスを流出させながら、炉心管4内に
おいて被覆金属粒子を形成する。
In this apparatus, a solution containing a metal salt and a salt for forming a dielectric substance is sprayed from the nozzle 6, and at the same time, a carrier gas having characteristics such as oxidizing or reducing properties is discharged from the guide cylinder 8. While forming, the coated metal particles are formed in the furnace tube 4.

【0029】前記金属粒子の材料としては、銀、金、白
金、パラジウム、銅、ニッケル、鉄、アルミニウム、モ
リブデン、タングステンのうちの一種以上のものが使用
される。また、これらの金属どうしの合金または他の金
属との合金を用いることができる。
As the material of the metal particles, one or more of silver, gold, platinum, palladium, copper, nickel, iron, aluminum, molybdenum and tungsten are used. In addition, alloys of these metals or alloys with other metals can be used.

【0030】また、誘電体層2形成のための材料として
は、チタン−バリウム−ネオジウム系、チタン−バリウ
ム−錫系、チタン−バリウム−ストロンチウム系、チタ
ン−バリウム−鉛系、チタン−バリウム−ジルコニウム
系、鉛−カルシウム系、二酸化チタン系、チタン酸バリ
ウム系、チタン酸鉛系、チタン酸ストロンチウム系、チ
タン酸カルシウム系、チタン酸ビスマス系、チタン酸マ
グネシウム系のセラミックスが挙げられる。さらに、C
aWO系、Ba(Mg,Nb)O系、Ba(Mg,
Ta)O系、Ba(Co,Mg,Nb)O系、Ba
(Co,Mg,Ta)O系、BaTiO−SiO
系、BaO−SiO系のセラミックスやアルミナ等が
挙げられる。
Materials for forming the dielectric layer 2 include titanium-barium-neodymium, titanium-barium-tin, titanium-barium-strontium, titanium-barium-lead, and titanium-barium-zirconium. Ceramics, such as those based on lead, calcium, titanium dioxide, barium titanate, lead titanate, strontium titanate, calcium titanate, bismuth titanate, and magnesium titanate. Further, C
aWO 4 system, Ba (Mg, Nb) O 3 system, Ba (Mg,
Ta) O 3 system, Ba (Co, Mg, Nb) O 3 system, Ba
(Co, Mg, Ta) O 3 based, BaTiO 3 -SiO 2
Systems include BaO-SiO 2 based ceramics or alumina.

【0031】また、金属粒子1や誘電体層2形成のため
の塩の種類としては、硝酸塩、硫酸塩、オキシ硝酸塩、
オキシ硫酸塩、塩化物、アンモニウム錯体、リン酸塩、
カルボン酸塩、金属アルコラート、樹脂酸塩、ホウ酸、
珪酸等の熱分解性化合物の1種または2種以上が使用さ
れる。
The types of salts for forming the metal particles 1 and the dielectric layer 2 include nitrates, sulfates, oxynitrates, and the like.
Oxysulfate, chloride, ammonium complex, phosphate,
Carboxylate, metal alcoholate, resinate, boric acid,
One or more kinds of thermally decomposable compounds such as silicic acid are used.

【0032】これらの塩等の化合物を、水や、アルコー
ル、アセトン、エーテル等の有機溶剤あるいはこれらの
混合液中に溶解する。加熱装置3により設定される加熱
温度は、金属粒子1の溶融温度より高い温度に設定され
る。
These compounds such as salts are dissolved in water, an organic solvent such as alcohol, acetone and ether, or a mixture thereof. The heating temperature set by the heating device 3 is set to a temperature higher than the melting temperature of the metal particles 1.

【0033】図1(B)に示すように、前記噴霧熱分解
法により製造した誘電体被覆金属粒子1を、ボールミル
等を使用して樹脂10中に分散混合することにより、複
合誘電体材料を得る。樹脂10としては、熱硬化性性樹
脂、熱可塑性樹脂の双方が使用可能であり、エポキシ樹
脂、フェノール樹脂、ポリオレフィン樹脂、ポリイミド
樹脂、ポリエステル樹脂、ポリフェニレンオキサイド樹
脂、メラミン樹脂、シアネートエステル系樹脂、ジアリ
ルフタレート樹脂、ポリビニルベンジルエーテル化合物
樹脂、液晶ポリマー、フッ素系樹脂、ポリフェニレンサ
ルファイド樹脂、ポリアセタール樹脂、ポリカーボネー
ト樹脂、ABS樹脂、ポリアミド樹脂、シリコーン樹
脂、ポリウレタン樹脂、ポリビニルブチラール樹脂、ポ
リビニルアルコール樹脂、エチルセルロース樹脂、ニト
ロセルロース樹脂、アクリル樹脂のうちの少なくとも1
種類以上のものが単独または混合して使用できる。
As shown in FIG. 1B, the composite dielectric material is dispersed by mixing the dielectric-coated metal particles 1 produced by the spray pyrolysis method in a resin 10 using a ball mill or the like. obtain. As the resin 10, both thermosetting resins and thermoplastic resins can be used. Epoxy resins, phenol resins, polyolefin resins, polyimide resins, polyester resins, polyphenylene oxide resins, melamine resins, cyanate ester resins, diallyl Phthalate resin, polyvinyl benzyl ether compound resin, liquid crystal polymer, fluorine resin, polyphenylene sulfide resin, polyacetal resin, polycarbonate resin, ABS resin, polyamide resin, silicone resin, polyurethane resin, polyvinyl butyral resin, polyvinyl alcohol resin, ethyl cellulose resin, nitro At least one of cellulose resin and acrylic resin
More than one kind can be used alone or in combination.

【0034】本発明の複合誘電体材料は、図1(C)に
示すように、前記誘電体被覆金属粒子を樹脂10に分散
混合し、加熱して板状に形成した薄板状素材11の両面
に電極12を固着してコンデンサを構成することができ
る。また、図1(D)に示すように、例えば、磁性体粒
子を樹脂中に分散混合した磁性体層13の両面に、比較
的低い誘電率の誘電体層14を重ね、さらにこれらの誘
電体層14、14に比較的高い誘電率の誘電体層15、
15を重ね、さらにこのようにして形成された板状素材
の表裏面の少なくとも一方にグランドパターンや配線パ
ターンからなる導体パターン16を形成した積層基板1
7として構成できる。これらの誘電体層14、15には
内部導体(図示せず)を有し、磁性体層13またはその
外側にはインダクタンス素子形成用導体(図示せず)が
形成される。コンデンサの具体的構造については、内部
電極を多層構造にしたり、複数のコンデンサを内蔵した
り、インダクタを積層する等、種々に変更できる。積層
基板の具体的構造も種々に変更できる。
As shown in FIG. 1 (C), the composite dielectric material of the present invention is obtained by dispersing and mixing the dielectric-coated metal particles in a resin 10 and heating and forming a plate-like material 11 on both sides. The capacitor can be formed by fixing the electrode 12 to the capacitor. Further, as shown in FIG. 1D, for example, a dielectric layer 14 having a relatively low dielectric constant is superimposed on both surfaces of a magnetic layer 13 in which magnetic particles are dispersed and mixed in a resin. A relatively high dielectric constant dielectric layer 15,
And a conductor pattern 16 composed of a ground pattern or a wiring pattern formed on at least one of the front and back surfaces of the plate material thus formed.
7 can be configured. These dielectric layers 14 and 15 have an internal conductor (not shown), and a conductor for inductance element formation (not shown) is formed on or outside the magnetic layer 13. The specific structure of the capacitor can be variously changed, for example, the internal electrode has a multilayer structure, a plurality of capacitors are built in, or inductors are stacked. The specific structure of the laminated substrate can be variously changed.

【0035】本発明において、前記誘電体被覆金属粒子
は、各種電子部品用成型品を得るため、前記複合誘電体
材料を粉末状または流動状の樹脂とすることでモールド
材として用いることができる。また、複合誘電体材料に
樹脂を混合し、加圧成形あるいは加熱加圧成形のための
圧粉成形粉末材料として用いることができる。また、誘
電体層2を被覆した金属粒子1を樹脂としてのバインダ
ーと可塑剤とを添加して混合することにより印刷ペース
トとして用いることができる。また、複合誘電体材料を
溶剤に分散させて注型成形(ポッティング)用キャステ
ィング材として用いることができる。さらに、複合誘電
体材料中の樹脂をガラス成分に置き換えるかもしくは複
合誘電体材料にガラス成分を添加して、成形および焼成
にて粒子間を結合し、用途に応じた形状とすることが可
能である。これにより、耐熱性と誘電率の向上ができ
る。また、誘電体層2として圧電性セラミックを設ける
ことにより、圧電材料として用いることができる。ま
た、誘電体層2に比較的電気抵抗の低い材料を用いた
り、誘電体層2の層厚みを薄くし、樹脂10の量を少な
くすることにより、半導体材料として用いることができ
る。また、抵抗が電圧または温度に対して非直線性の材
料を誘電体層2に用いることにより、バリスタやサーミ
スタの材料として用いることができる。
In the present invention, the dielectric-coated metal particles can be used as a molding material by forming the composite dielectric material into a powdery or fluid resin in order to obtain molded articles for various electronic parts. Further, a resin can be mixed with the composite dielectric material and used as a powder compacted powder material for pressure molding or heat and pressure molding. Further, the metal particles 1 coated with the dielectric layer 2 can be used as a printing paste by adding and mixing a binder as a resin and a plasticizer. Further, the composite dielectric material can be dispersed in a solvent and used as a casting material for casting (potting). Furthermore, it is possible to replace the resin in the composite dielectric material with a glass component or to add a glass component to the composite dielectric material, bond the particles by molding and baking, and form a shape according to the application. is there. Thereby, the heat resistance and the dielectric constant can be improved. Further, by providing a piezoelectric ceramic as the dielectric layer 2, it can be used as a piezoelectric material. The dielectric layer 2 can be used as a semiconductor material by using a material having a relatively low electric resistance, or by reducing the thickness of the dielectric layer 2 and reducing the amount of the resin 10. In addition, by using a material whose resistance is non-linear with respect to voltage or temperature for the dielectric layer 2, it can be used as a material for a varistor or a thermistor.

【0036】また、具体的には、図3(A)に示すよう
に、層状に塗布する層状またはシート状あるいはケー
ス、カバー等のシールド材18の材料として用いること
ができる。また、図3(B)に示すように、ガラスクロ
ス19に前記複合誘電体材料20を塗布することによ
り、プリプレグ21(基板材料の1種)として用いるこ
とができ、これを1層または複数層積層し、硬化させて
表面または内部に導体パターンを形成することにより、
基板あるいはコンデンサを構成することができる。な
お、プリプレグには、ガラスクロスを有しないものもあ
り、この場合も本発明の複合誘電体材料を用いることが
できる。
More specifically, as shown in FIG. 3 (A), it can be used as a material of a shield material 18 such as a layer or sheet applied in a layer or a case, a cover or the like. Further, as shown in FIG. 3 (B), by applying the composite dielectric material 20 to the glass cloth 19, it can be used as a prepreg 21 (one type of substrate material). By laminating and curing to form a conductor pattern on the surface or inside,
A substrate or a capacitor can be configured. Note that some prepregs do not have a glass cloth, and in this case, the composite dielectric material of the present invention can be used.

【0037】また、図3(C)に示すように、前記誘電
体層2に圧電材料(非鉛系材料を含む)を用い、これを
成形した素体22の両面に互いに対向する電極23を設
けて圧電素子24を構成することができる。また、素体
22の表面にくし波電極を設けて表面弾性波素子として
構成することができる。
As shown in FIG. 3C, a piezoelectric material (including a lead-free material) is used for the dielectric layer 2, and electrodes 23 facing each other are formed on both surfaces of a body 22 formed of the piezoelectric material. The piezoelectric element 24 can be configured by providing the piezoelectric element 24. Further, a comb electrode can be provided on the surface of the element body 22 to constitute a surface acoustic wave device.

【0038】また、前記誘電体層2にNTCまたはPT
C特性の半導体材料を用いて成形することにより、図3
(D)に示すようなサーミスタ素体25を得、その両面
に電極26を形成することにより、サーミスタ27を構
成することができる。前記素体23の材料、すなわち誘
電体層2にバリスタ抵抗特性の材料を用いることによ
り、バリスタを得ることができる。いずれの場合も、分
散性が良好で小径のものを用いることができるので、分
散性が良好で、薄型で良好な特性のものが得やすい。
The dielectric layer 2 is made of NTC or PT.
By molding using a semiconductor material having C characteristics, FIG.
A thermistor 27 can be formed by obtaining the thermistor body 25 as shown in (D) and forming electrodes 26 on both surfaces thereof. By using a material having a varistor resistance characteristic for the material of the element body 23, that is, the dielectric layer 2, a varistor can be obtained. In any case, a material having good dispersibility and a small diameter can be used, so that it is easy to obtain a thin material having good dispersibility and good characteristics.

【0039】[0039]

【実施例】硝酸ニッケル六水和物をNi濃度50g/l
となるように水に溶解した。次にニッケルに対してBa
TiOがそれぞれ1wt%、10wt%、20wt%、40wt%
となるように、硝酸バリウムと硝酸チタニルを添加して
原料溶液を作製した。この水溶液を図2に示した装置を
用いて微細な液滴とし、弱還元性に調整したキャリアガ
スと共に1500℃に加熱した炉心管4中に供給した。
液滴は加熱分解され、ニッケルを内部金属として、表面
にBaTiOが析出した金属粒子を生成させた。生成
された金属粒子はX線回析によりニッケルおよびBaT
iOであることを確認した。また、粒度分布は0.1
〜1.3μmで、平均粒径は0.6μmであった。
EXAMPLE Nickel nitrate hexahydrate was prepared at a Ni concentration of 50 g / l.
It dissolved in water so that it might become. Next, Ba for nickel
1 wt%, 10 wt%, 20 wt%, 40 wt% of TiO 3
Thus, a raw material solution was prepared by adding barium nitrate and titanyl nitrate. This aqueous solution was formed into fine droplets using the apparatus shown in FIG. 2 and supplied into a furnace tube 4 heated to 1500 ° C. together with a carrier gas adjusted to a weak reducing property.
The droplets were thermally decomposed to produce metal particles having BaTiO 3 deposited on the surface using nickel as an internal metal. The generated metal particles are converted to nickel and BaT by X-ray diffraction.
it was confirmed that the iO is 3. The particle size distribution is 0.1
The average particle size was 0.6 μm.

【0040】このようにして作成した誘電体被覆ニッケ
ル粒子を、エポキシ樹脂に、30vol%、40vol%、50
vol%になるようにそれぞれ配合し、溶剤と共にボールミ
ルで混合分散を行った。この分散溶液をドクターブレー
ド法にて厚さ0.2mmのシートにし、70〜80℃に
て1時間仮乾燥し、その後、このシートを複数枚重ね、
かつ上下面に電解銅箔を重ね、2000〜3000kP
aの圧力、180℃の温度で30分加熱することにより
硬化圧着して厚みが0.6mmのシートとした。次にこ
のシートを、直径約5mmの円板となるように金型を用
いて打ち抜いた。
The thus prepared dielectric-coated nickel particles were added to an epoxy resin at 30 vol%, 40 vol%, 50 vol%,
vol%, and mixed and dispersed by a ball mill together with a solvent. This dispersion solution was formed into a sheet having a thickness of 0.2 mm by a doctor blade method, and was temporarily dried at 70 to 80 ° C. for 1 hour.
In addition, the electrolytic copper foil is layered on the upper and lower surfaces, 2000-3000kP
The sheet was heated and pressurized at a temperature of 180 ° C. for 30 minutes at a pressure of “a” to form a sheet having a thickness of 0.6 mm. Next, this sheet was punched out using a mold so as to form a disk having a diameter of about 5 mm.

【0041】また、比較例として、ニッケル粒子のみを
噴霧熱分解法により作成してエポキシ樹脂に分散混合し
たもの、比誘電率ε=9000と90の誘電体粉末をそ
れぞれエポキシ樹脂に分散混合したもの、エポキシ樹脂
だけのものについても同様のシート作成を行い、測定を
行った。
In addition, as comparative examples, those in which only nickel particles were prepared by spray pyrolysis and dispersed and mixed in an epoxy resin, and those in which dielectric powders having relative dielectric constants ε = 9000 and 90 were dispersed and mixed in an epoxy resin, respectively. The same sheet was prepared for only the epoxy resin, and the measurement was performed.

【0042】図4は前述のように作成した円板の静電容
量をインピーダンスマテリアルアナライザ(HP社製H
P4921A)により測定し、その静電容量から比誘電
率を算出した結果である。図4から分かるように、ニッ
ケル粉末または誘電体被覆ニッケル粉末を樹脂中に分散
混合することにより、比誘電率が上昇することが判明し
た。
FIG. 4 shows the relationship between the capacitance of the disk created as described above and the impedance material analyzer (H, manufactured by HP).
P4921A), and the relative permittivity is calculated from the capacitance. As can be seen from FIG. 4, it was found that the relative dielectric constant was increased by dispersing and mixing the nickel powder or the dielectric-coated nickel powder in the resin.

【0043】表1は図4で示したサンプル以外に、さら
に10wt%(BaTiO・SiO )・90wt%Ni
(サンプルNo.1)と、1wt%Al・99wt%N
i(サンプルNo.4)を加え、粒子のエポキシ樹脂に
対する混合率を40vol%とした場合の合成比誘電率、絶
縁抵抗および耐電圧を示す。
Table 1 shows the samples other than those shown in FIG.
10wt% (BaTiO3・ SiO 2) ・ 90wt% Ni
(Sample No. 1) and 1 wt% Al2O3・ 99wt% N
i (sample No. 4) and add the epoxy resin particles
Relative dielectric constant when mixing ratio is 40 vol%
The edge resistance and the withstand voltage are shown.

【0044】表1から分かるように、本発明における1
0wt%BaTiO・90wt%Ni(サンプルNo.2)
の場合、比誘電率ε=9000を分散した誘電体粉末を
用いた場合とほぼ同様の比誘電率が得られ、比誘電率ε
=90の誘電体粉末を分散したときの複合材料よりも大
きな比誘電率が得られる。金属粉末の表面にある誘電体
の実質的な体積が、従来の誘電体粉末を分散したものに
比べ、約90%減っているにも関わらず、ほぼ同等の比
誘電率を示すことから、内部に金属粒子による電極が形
成され、かつそれらの静電容量が増加する配列に組み合
わされていると予測できる。
As can be seen from Table 1, 1 in the present invention
0wt% BaTiO 3 · 90wt% Ni ( sample No.2)
In the case of the above, a dielectric constant approximately the same as that obtained when a dielectric powder in which the relative dielectric constant ε = 9000 is dispersed is obtained.
= 90, a relative dielectric constant greater than that of the composite material obtained by dispersing the dielectric powder of = 90. Since the substantial volume of the dielectric on the surface of the metal powder is reduced by about 90% as compared with the conventional dispersion of the dielectric powder, the dielectric has almost the same relative dielectric constant. It is expected that the electrodes are formed of metal particles and that they are combined in an arrangement in which their capacitance increases.

【0045】さらに表1のサンプルNo.2、3にある
ように、金属粒子1の表面に析出する誘電体層2の厚み
を、配合時の重量で変化させると、誘電体層の重量すな
わち厚みが増えるに従って、比誘電率と耐電圧が増加し
ていくのが分かる。
Further, the sample Nos. As described in 2, 3, when the thickness of the dielectric layer 2 deposited on the surface of the metal particle 1 is changed by the weight at the time of blending, as the weight of the dielectric layer, that is, the thickness increases, the relative dielectric constant and the withstand voltage increase. Can be seen to increase.

【0046】表2はニッケル粒子に対する誘電体(Ba
TiO)の添加量を変えると共に、粉末含有率を変え
て比誘電率、絶縁抵抗、耐電圧を測定した結果を示す。
また、図5は表2の誘電率部分をグラフ化したものであ
る。表2、図5から分かるように、ニッケル粒子に対す
る誘電体の被覆量を増加させると、30vol%における粉
末の誘電体含有率が1wt%、10wt%の場合を除いて比誘
電率が増加することが分かる。また、積層基板として使
用することを考慮した場合の絶縁抵抗は、ニッケルに誘
電体を被覆しない場合には、ニッケル粉末の樹脂に対す
る含有率が50vol%である場合は不十分な値である。
Table 2 shows the dielectric (Ba) for nickel particles.
The results of measuring the relative dielectric constant, the insulation resistance, and the withstand voltage while changing the addition amount of TiO 3 ) and changing the powder content are shown.
FIG. 5 is a graph of the dielectric constant portion of Table 2. As can be seen from Table 2 and FIG. 5, when the amount of the dielectric coating on the nickel particles is increased, the relative dielectric constant increases except for the case where the dielectric content of the powder at 30 vol% is 1 wt% and 10 wt%. I understand. In addition, the insulation resistance when considering the use as a laminated substrate is an insufficient value when the content of the nickel powder with respect to the resin is 50 vol% when the dielectric is not coated on nickel.

【0047】しかし誘電体を金属粒子に1wt%でも加え
た場合では、誘電体被覆ニッケル粉末の樹脂に対する含
有率が50vol%である場合でも十分実用に供しうる絶縁
抵抗(1011Ω・cm)が得られている。また、積層
基板として使用した場合に問題となる耐電圧は、誘電体
の被覆量の増加と共に上昇しており、50vol%を除いて
顕著な傾向を示す。本発明において、粉末の含有率が5
0vol%であっても十分な比誘電率が得られ、高い絶縁性
が得られ、耐電圧が得られる。
However, when the dielectric material is added to the metal particles even at 1 wt%, the insulation resistance (10 11 Ω · cm) which can be sufficiently used even when the content of the dielectric coated nickel powder with respect to the resin is 50 vol%. Have been obtained. In addition, the withstand voltage, which becomes a problem when used as a laminated substrate, increases with an increase in the dielectric coating amount, and shows a remarkable tendency except for 50 vol%. In the present invention, the content of the powder is 5
Even at 0 vol%, a sufficient relative dielectric constant can be obtained, a high insulating property can be obtained, and a withstand voltage can be obtained.

【0048】[0048]

【表1】 [Table 1]

【0049】[0049]

【表2】 [Table 2]

【0050】[0050]

【発明の効果】以上説明したように、本発明によれば、
誘電体層被覆の金属粒子からなる粉末を樹脂に分散混合
して複合誘電体材料を得たので、少ない誘電体量で高い
比誘電率が得られ、材料費が廉価となる複合誘電体材料
と、これを用いた前記各種材料や基板を提供することが
できる。また、本発明の複合誘電体材料を用いれば、粒
子が球形であり、かつ小径であるため、粒子の分散性が
よく、静電容量、絶縁抵抗、耐電圧等の特性の安定した
製品が得られる。
As described above, according to the present invention,
The composite dielectric material is obtained by dispersing and mixing the powder consisting of the metal particles of the dielectric layer coating with the resin, so that a high dielectric constant can be obtained with a small amount of dielectric material, and the material cost is low. The various materials and substrates using the same can be provided. Further, when the composite dielectric material of the present invention is used, since the particles are spherical and have a small diameter, a product having good dispersibility of the particles and having stable characteristics such as capacitance, insulation resistance, and withstand voltage can be obtained. Can be

【図面の簡単な説明】[Brief description of the drawings]

【図1】(A)は本発明において用いる粒子の断面図、
(B)は本発明による複合誘電体材料の一例を示す断面
図、(C)は本発明によるコンデンサの一例を示す断面
図、(D)は本発明による積層基板の一例を示す断面図
である。
FIG. 1A is a cross-sectional view of particles used in the present invention,
(B) is a sectional view showing an example of a composite dielectric material according to the present invention, (C) is a sectional view showing an example of a capacitor according to the present invention, and (D) is a sectional view showing an example of a laminated substrate according to the present invention. .

【図2】本発明において噴霧熱分解法による粒子生成に
用いる装置の一例を示す構成図である。
FIG. 2 is a configuration diagram showing an example of an apparatus used for generating particles by spray pyrolysis in the present invention.

【図3】(A)〜(D)は本発明の複合誘電体材料によ
り得られる各種製品を示す図である。
FIGS. 3A to 3D are diagrams showing various products obtained by using the composite dielectric material of the present invention.

【図4】本発明による複合誘電体材料と比較例につい
て、粒子の含有率と誘電率との関係を示すグラフであ
る。
FIG. 4 is a graph showing the relationship between the content of particles and the dielectric constant of a composite dielectric material according to the present invention and a comparative example.

【図5】本発明による複合誘電体材料について、金属粒
子と誘電体との比率と誘電率との関係を示すグラフであ
る。
FIG. 5 is a graph showing the relationship between the ratio between metal particles and a dielectric and the dielectric constant of the composite dielectric material according to the present invention.

【図6】(A)は従来の複合誘電体材料を示す断面図、
(B)、(C)はそれぞれその複合誘電体材料を用いた
プリプレグ、コンデンサの断面図である。
FIG. 6A is a cross-sectional view showing a conventional composite dielectric material,
(B) and (C) are sectional views of a prepreg and a capacitor using the composite dielectric material, respectively.

【図7】(A)は従来の複合誘電体材料における誘電体
の含有率と誘電率との相関図、(B)はその複合誘電体
材料をガラスクロスに塗布して構成されたプリプレグの
誘電体含有率と誘電率との相関図である。
FIG. 7 (A) is a correlation diagram between the dielectric content and the dielectric constant of a conventional composite dielectric material, and FIG. 7 (B) is the dielectric constant of a prepreg formed by applying the composite dielectric material to a glass cloth. It is a correlation diagram between a body content and a dielectric constant.

【符号の説明】[Explanation of symbols]

1:金属粒子、2:誘電体層、3:加熱装置、4:炉心
管、5:溶液導入管、6:噴霧式ノズル、7:キャリア
ガス導入管、8:ガイド筒、9:製造粒子の収容部、1
0:樹脂、11:薄板状素材、12:電極、13:磁性
体層、14:低誘電率の誘電体層、15:高誘電率の誘
電体層、16:導体パターン、17:積層基板、18:
シールド材、19:ガラスクロス、20:複合誘電体材
料、21:プリプレグ、22:圧電素子素体、23:電
極、24:圧電素子、25:サーミスタ素体、26:電
極、27:サーミスタ
1: metal particles, 2: dielectric layer, 3: heating device, 4: furnace tube, 5: solution introduction tube, 6: spray nozzle, 7: carrier gas introduction tube, 8: guide tube, 9: production particles Accommodation section, 1
0: resin, 11: thin plate material, 12: electrode, 13: magnetic layer, 14: low dielectric constant dielectric layer, 15: high dielectric constant dielectric layer, 16: conductor pattern, 17: laminated substrate, 18:
Shielding material, 19: glass cloth, 20: composite dielectric material, 21: prepreg, 22: piezoelectric element, 23: electrode, 24: piezoelectric element, 25: thermistor element, 26: electrode, 27: thermistor

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01G 4/06 H01G 4/06 H01L 23/29 H05K 1/03 610R 23/31 H01L 23/30 R H05K 1/03 610 (72)発明者 小更 恆 東京都中央区日本橋一丁目13番1号 ティ −ディ−ケイ株式会社内 Fターム(参考) 4F072 AA04 AA07 AA08 AB09 AB28 AE08 AE23 AF02 AG03 AG19 AL11 AL13 4J002 AA001 AB021 BB001 BD121 BE021 BE041 BE061 BF051 BG001 BN151 CB001 CC031 CC181 CD001 CF001 CG001 CH071 CK021 CL001 CM021 CM041 CN011 CP031 DA066 DA076 DA086 DA096 DA116 DC006 FA086 FB076 GQ00 HA09 4K018 BA01 BA02 BA04 BA08 BA09 BA13 BB03 BB04 BC28 BD10 4M109 AA01 BA07 CA01 CA03 EA02 EA12 EB12 EB17 EC07 EE07 GA10 5E082 AB01 BC39 FF14 FG08 FG26 FG27 FG34 PP03 PP09 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) H01G 4/06 H01G 4/06 H01L 23/29 H05K 1/03 610R 23/31 H01L 23/30 R H05K 1/03 610 (72) Inventor Heng Kosara 1-13-1 Nihombashi, Chuo-ku, Tokyo T-D Corporation F-term (reference) 4F072 AA04 AA07 AA08 AB09 AB28 AE08 AE23 AF02 AG03 AG19 AL11 AL13 4J002 AA001 AB021 BB001 BD121 BE021 BE041 BE061 BF051 BG001 BN151 CB001 CC031 CC181 CD001 CF001 CG001 CH071 CK021 CL001 CM021 CM041 CN011 CP031 DA066 DA076 DA086 DA096 DA116 DC006 FA086 FB076 GQ00 HA09 4K018 BA01 BA02 BA04 BA03 BA03 BA03 BA03 BA03 BA03 BA03 BA03 BA03 BA03 BA03 BA03 BA03 BA03 BA03 EE07 GA10 5E082 AB01 BC39 FF14 FG08 FG26 FG27 FG34 PP03 PP09

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】平均粒径が0.1〜10μmで、ほぼ球形
の金属粒子の表面全部あるいは一部を、誘電体層により
被覆し、該被覆粒子を1種類以上樹脂中に分散してなる
ことを特徴とする複合誘電体材料。
1. A surface of a substantially spherical metal particle having an average particle diameter of 0.1 to 10 .mu.m, which is entirely or partially coated with a dielectric layer, and one or more kinds of the coated particle are dispersed in a resin. A composite dielectric material, characterized in that:
【請求項2】請求項1の複合誘電体材料において、 前記誘電体層の厚みが0.005〜5μmであることを
特徴とする複合誘電体材料。
2. The composite dielectric material according to claim 1, wherein said dielectric layer has a thickness of 0.005 to 5 μm.
【請求項3】請求項1の複合誘電体材料において、 前記被覆金属粒子を30〜98wt%樹脂中に混合してな
ることを特徴とする複合誘電体材料。
3. The composite dielectric material according to claim 1, wherein said coated metal particles are mixed in a resin of 30 to 98% by weight.
【請求項4】請求項1から3までのいずれかの複合誘電
体材料において、 前記金属粒子が、銀、金、白金、パラジウム、銅、ニッ
ケル、鉄、アルミニウム、モリブデン、タングステンも
しくはこれらの合金あるいはこれの金属または合金のう
ちの一種以上のものからなることを特徴とする複合誘電
体材料。
4. The composite dielectric material according to claim 1, wherein said metal particles are silver, gold, platinum, palladium, copper, nickel, iron, aluminum, molybdenum, tungsten, or an alloy thereof. A composite dielectric material comprising one or more of these metals or alloys.
【請求項5】請求項1から4までのいずれかの複合誘電
体材料において、 前記誘電体層が、前記樹脂の誘電率より高い誘電率を有
する酸化物誘電体からなることを特徴とする複合誘電体
材料。
5. The composite dielectric material according to claim 1, wherein said dielectric layer is made of an oxide dielectric having a dielectric constant higher than a dielectric constant of said resin. Dielectric material.
【請求項6】請求項1から5までのいずれかの複合誘電
体材料を用いて構成されることを特徴とする成形材料。
6. A molding material comprising a composite dielectric material according to any one of claims 1 to 5.
【請求項7】請求項1から5までのいずれかの複合誘電
体材料を用いて構成され、かつ前記被覆金属粒子を樹脂
中に90〜98wt%混合してなることを特徴とする圧粉
成形粉末材料。
7. A green compact formed by using the composite dielectric material according to any one of claims 1 to 5, wherein said coated metal particles are mixed in a resin at 90 to 98 wt%. Powder material.
【請求項8】請求項1から5までのいずれかの複合誘電
体材料を用いて構成されることを特徴とする塗料。
8. A paint comprising a composite dielectric material according to any one of claims 1 to 5.
【請求項9】請求項1から5までのいずれかの複合誘電
体材料を用いて構成されることを特徴とするプリプレ
グ。
9. A prepreg comprising a composite dielectric material according to any one of claims 1 to 5.
【請求項10】請求項1から5までのいずれかの複合誘
電体材料中にガラスクロスを埋設して構成されることを
特徴とするプリプレグ。
10. A prepreg characterized by comprising a glass cloth embedded in a composite dielectric material according to any one of claims 1 to 5.
【請求項11】請求項9または10のプリプレグが銅箔
付きであることを特徴とするプリプレグ。
11. The prepreg according to claim 9, wherein the prepreg is provided with a copper foil.
【請求項12】請求項1から10までのいずれかの材料
を用いて構成されることを特徴とする基板。
12. A substrate comprising a material according to any one of claims 1 to 10.
【請求項13】請求項12の基板が銅箔付きであること
を特徴とする基板。
13. The substrate according to claim 12, wherein the substrate is provided with a copper foil.
JP2000128283A 2000-04-27 2000-04-27 Composite dielectric material, and compacting material, compacting powder material, coating material, prepreg and substrate all using the same Pending JP2001303102A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000128283A JP2001303102A (en) 2000-04-27 2000-04-27 Composite dielectric material, and compacting material, compacting powder material, coating material, prepreg and substrate all using the same
KR10-2000-0083166A KR100533097B1 (en) 2000-04-27 2000-12-27 Composite Magnetic Material and Magnetic Molding Material, Magnetic Powder Compression Molding Material, and Magnetic Paint using the Composite Magnetic Material, Composite Dielectric Material and Molding Material, Powder Compression Molding Material, Paint, Prepreg, and Substrate using the Composite Dielectric Material, and Electronic Part
EP00311742A EP1150311A3 (en) 2000-04-27 2000-12-28 Composite magnetic material and composite dielectric material for electronic parts
US09/749,800 US7060350B2 (en) 2000-04-27 2000-12-28 Composite magnetic material and magnetic molding material, magnetic powder compression molding material, and magnetic paint using the composite magnetic material, composite dielectric material and molding material, powder compression molding material, paint, prepreg, and substrate using the composite dielectric material, and electronic part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000128283A JP2001303102A (en) 2000-04-27 2000-04-27 Composite dielectric material, and compacting material, compacting powder material, coating material, prepreg and substrate all using the same

Publications (1)

Publication Number Publication Date
JP2001303102A true JP2001303102A (en) 2001-10-31

Family

ID=18637744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000128283A Pending JP2001303102A (en) 2000-04-27 2000-04-27 Composite dielectric material, and compacting material, compacting powder material, coating material, prepreg and substrate all using the same

Country Status (1)

Country Link
JP (1) JP2001303102A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005203699A (en) * 2004-01-19 2005-07-28 Furukawa Electric Co Ltd:The Manufacturing method of substrate incorporating electronic component
JP2010123631A (en) * 2008-11-17 2010-06-03 Fujitsu Ltd Structural body, capacitor, and method of manufacturing the capacitor
WO2011004446A1 (en) 2009-07-06 2011-01-13 トヨタ自動車株式会社 Photoelectric conversion element
JP2013542548A (en) * 2010-03-31 2013-11-21 スリーエム イノベイティブ プロパティズ カンパニー Electronic article for display and manufacturing method thereof
US9418780B2 (en) 2012-12-06 2016-08-16 Samsung Electronics Co., Ltd. Magnetic composite material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005203699A (en) * 2004-01-19 2005-07-28 Furukawa Electric Co Ltd:The Manufacturing method of substrate incorporating electronic component
JP2010123631A (en) * 2008-11-17 2010-06-03 Fujitsu Ltd Structural body, capacitor, and method of manufacturing the capacitor
WO2011004446A1 (en) 2009-07-06 2011-01-13 トヨタ自動車株式会社 Photoelectric conversion element
JP2013542548A (en) * 2010-03-31 2013-11-21 スリーエム イノベイティブ プロパティズ カンパニー Electronic article for display and manufacturing method thereof
US9418780B2 (en) 2012-12-06 2016-08-16 Samsung Electronics Co., Ltd. Magnetic composite material

Similar Documents

Publication Publication Date Title
US7060350B2 (en) Composite magnetic material and magnetic molding material, magnetic powder compression molding material, and magnetic paint using the composite magnetic material, composite dielectric material and molding material, powder compression molding material, paint, prepreg, and substrate using the composite dielectric material, and electronic part
US7911029B2 (en) Multilayer electronic devices for imbedded capacitor
US6616794B2 (en) Integral capacitance for printed circuit board using dielectric nanopowders
JP3475749B2 (en) Nickel powder and method for producing the same
KR100828867B1 (en) High Dielectric Constant Composite Material and Multilayer Wiring Board Using the Same
US20040109298A1 (en) Dielectric material including particulate filler
US5871840A (en) Nickel powder containing a composite oxide of La and Ni and process for preparing the same
JP2010067418A (en) Conductive paste and method of manufacturing the same
KR100346660B1 (en) Nickel composite particle and production process therefor
JP2001303102A (en) Composite dielectric material, and compacting material, compacting powder material, coating material, prepreg and substrate all using the same
US6824603B1 (en) Composition and method for printing resistors, capacitors and inductors
JP4867130B2 (en) Insulated ultrafine powder, method for producing the same, and high dielectric constant resin composite material using the same
JP3546001B2 (en) Electronic components
JP2004067889A (en) Highly dielectric substance composition
JP2001313208A (en) Composite magnetic material, magnetic molding material using the same, compact magnetic powder molding material, magnetic paint, prepreg, and magnetic board
CN113242774B (en) Silver paste
WO2001082315A1 (en) Compositions and method for printing resistors, capacitors and inductors
JP2007184386A (en) Conductive substrate with dielectric layer, its manufacturing method, capacitor, and printed wiring board
JP2002060807A (en) METHOD FOR PRODUCING Ni METAL POWDER, ELECTRICALLY CONDUCTIVE PASTE AND CERAMIC ELECTRONIC PARTS
EP0834368A1 (en) Nickel powder and process for preparing the same
JP2001167631A (en) Ultra-fine particle conductor paste, method of preparing the same, and conductor film and laminated ceramic electronic parts using the same
JP2006351390A (en) Composite material
JP2799916B2 (en) Conductive metal-coated ceramic powder
JP2002075785A (en) Feedthrough emi filter
CN113226595B (en) Silver paste

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030218