JP2001301002A - Producing method for olefinic resin foam - Google Patents

Producing method for olefinic resin foam

Info

Publication number
JP2001301002A
JP2001301002A JP2000124438A JP2000124438A JP2001301002A JP 2001301002 A JP2001301002 A JP 2001301002A JP 2000124438 A JP2000124438 A JP 2000124438A JP 2000124438 A JP2000124438 A JP 2000124438A JP 2001301002 A JP2001301002 A JP 2001301002A
Authority
JP
Japan
Prior art keywords
foam
gas
foaming agent
foaming
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000124438A
Other languages
Japanese (ja)
Inventor
Noboru Okuda
暢 奥田
Yoshito Fukazawa
義人 深沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2000124438A priority Critical patent/JP2001301002A/en
Publication of JP2001301002A publication Critical patent/JP2001301002A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for substituting inorganic gas such as air in a short time without damaging the surface of a foam for foaming agent gas which is not simply substituted for air by only being allowed to stand in the atmosphere and remains in the foam for a long period. SOLUTION: Inorganic gas such as air is substituted for foaming agent gas remaining in the inside of a foam by compressing the foam in the direction of thickness so that the void content of a closed cell becomes 10-60% after a plastic resin foam having 40-90% void content of the closed cell is obtained by an extrusion foaming method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、残留発泡剤ガスの
無機ガスへの置換を容易にした樹脂発泡体の製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a resin foam which facilitates replacement of a residual blowing agent gas with an inorganic gas.

【0002】[0002]

【従来の技術】長尺な板状またはシート状発泡体を製造
するための方法として、熱可塑性樹脂を押出機内で発泡
剤と溶融混練した後、低圧下に押出して発泡させる押出
発泡法が広く用いられている。上述の押出発泡法により
得られた発泡体中には発泡に用いた発泡剤ガスが製造後
しばらくの間残留しているが、発泡剤としてプロパン、
ブタン、ペンタン、ヘキサン等の可燃性発泡剤を用いた
場合、発泡体中の残留発泡剤ガスが空気等の不燃性のガ
スと置換するまでの間に、発泡体中に残留している発泡
剤ガスに静電気のスパーク等で着火する危険があり、製
造業者は発泡体中の残留発泡体ガスが空気等と置換する
までの間、安全確保のため製品を出荷できないのが現状
である。
2. Description of the Related Art As a method for producing a long plate or sheet foam, an extrusion foaming method in which a thermoplastic resin is melt-kneaded with a foaming agent in an extruder and then extruded under a low pressure to foam is widely used. Used. In the foam obtained by the above-mentioned extrusion foaming method, the foaming agent gas used for foaming remains for a while after production, but propane as a foaming agent,
When a combustible foaming agent such as butane, pentane or hexane is used, the foaming agent remaining in the foam before the residual foaming agent gas in the foam is replaced with a nonflammable gas such as air. There is a danger that the gas may ignite due to static sparks or the like, and the manufacturer cannot ship the product to ensure safety until the residual foam gas in the foam is replaced with air or the like.

【0003】肉厚の薄いシート状発泡体の場合には、製
造後に発泡体を大気中に放置しておくだけで比較的短時
間で残留発泡剤ガスを空気と置換することが可能である
が、肉厚がある場合、残留発泡剤ガスは容易に空気と置
換せず、大気中に放置して完全に空気と置換するまでに
は数ヶ月あるいはそれ以上の期間を要するという問題が
あった。
In the case of a thin sheet-like foam, it is possible to replace the residual blowing agent gas with air in a relatively short time only by leaving the foam in the air after production. When the wall thickness is large, there is a problem that the residual foaming agent gas is not easily replaced with air, and it takes several months or more for it to be left in the atmosphere and completely replaced with air.

【0004】発泡体中に残留する発泡剤ガスを空気等の
不燃性の無機ガスと置換する時間を短縮する方法とし
て、発泡体に多数の小孔を穿設する方法、あるいは小孔
を穿設した後にロール等で圧縮することにより置換を行
う方法(特開平4―307227号)がある。しかし、
小孔を穿設すると発泡体表面に孔が開くために外観を損
ねることになり、特に発泡体が断熱材用途に用いられる
場合、吸水性が高くなり、水分の吸収により断熱性が悪
化するという問題がある。さらに、この方法ではピンチ
ロールによる発泡体の移送速度が5〜30mm/秒と遅
いために、気泡膜の連通化による残留発泡剤の無機ガス
置換促進効果は得られない。
[0004] As a method of shortening the time for replacing the foaming agent gas remaining in the foam with a nonflammable inorganic gas such as air, a method of forming a large number of small holes in the foam, or a method of forming the small holes. After that, there is a method of performing replacement by compressing with a roll or the like (Japanese Patent Laid-Open No. 4-307227). But,
When small holes are formed, the appearance is impaired because holes are opened in the foam surface, and especially when the foam is used for heat insulating material, the water absorption increases, and the heat insulating property is deteriorated by absorbing moisture. There's a problem. Further, in this method, since the transfer speed of the foam by the pinch roll is as slow as 5 to 30 mm / sec, the effect of promoting the replacement of the residual foaming agent with the inorganic gas by the communication of the cell membrane cannot be obtained.

【0005】気泡膜を連通化する方法としては、他に架
橋ポリオレフィン系樹脂発泡体をロール等で圧縮する方
法(例えば、特公昭59−23545号、特開昭57−
191027号等)がある。しかし、圧縮により気泡膜
を連通化するためには、バッチ発泡法にて成形体を加熱
し、架橋剤、発泡剤の分解速度を調節することにより破
泡しやすい気泡膜を形成することが必要であり、連続押
し出し法により無架橋オレフィン系樹脂発泡体において
圧縮のみで連通化することは困難であった。
[0005] As another method for making the cell membrane open, a method of compressing a crosslinked polyolefin resin foam with a roll or the like (for example, Japanese Patent Publication No. 59-23545, Japanese Patent Application Laid-Open No.
No. 191027). However, in order to make the cell membrane open by compression, it is necessary to form a cell membrane that easily breaks by heating the molded body by the batch foaming method and adjusting the decomposition rate of the crosslinking agent and the foaming agent. Therefore, it was difficult to make the non-crosslinked olefin-based resin foam into communication only by compression by the continuous extrusion method.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記の点に
鑑みなされたもので、ポリオレフィンを基材樹脂とする
発泡体中に残留する発泡剤ガスを、非常に短時間で空気
等の不燃性の無機ガスと置換することのできる樹脂発泡
板中の残留発泡剤ガスの無機ガスへの置換方法を提供す
ることを目的とする。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above points, and is intended to reduce the blowing agent gas remaining in a foam using polyolefin as a base resin in a very short time to a nonflammable form such as air. It is an object of the present invention to provide a method for replacing a residual foaming agent gas in a resin foam plate with an inorganic gas, which can be replaced with a water-soluble inorganic gas.

【0007】[0007]

【課題を解決するための手段】本発明の樹脂発泡体中の
残留発泡剤ガスの無機ガス置換方法は、発泡剤として可
燃性ガスを用い、押出発泡法により独立気泡率が40〜
90%の板状樹脂発泡体を得た後、該発泡体を独立気泡
率が10〜60%となるように厚み方向に圧縮すること
により発泡体中に残留する発泡体ガスを無機ガスと置換
することを特徴とする。
According to the method of the present invention, a method for replacing a residual foaming agent gas in a resin foam with an inorganic gas uses a flammable gas as a foaming agent and a closed cell rate of 40 to 40 by an extrusion foaming method.
After obtaining a 90% plate-shaped resin foam, the foam is compressed in the thickness direction so that the closed cell ratio becomes 10 to 60%, thereby replacing the foam gas remaining in the foam with an inorganic gas. It is characterized by doing.

【0008】本発明において発泡体の基材樹脂であるポ
リオレフィン系樹脂としては、高密度ポリエチレン、中
密度ポリエチレン、低密度ポリエチレン、直鎖低密度ポ
リエチレン、直鎖状超低密度ポリエチレン等のポリエチ
レン、ポリプロピレン、ポリブテン、エチレンープロピ
レンブロック共重合体、エチレンープロピレンランダム
共重合体、エチレンーブテンランダム共重合体、エチレ
ンーブテンープロピレンランダム共重合体等が挙げられ
る。これらの樹脂は適宜混合して用いることができる。
また、樹脂全体の70重量%以下、より好ましくは50
重量%以下、さらに好ましくは40重量%以下であれ
ば、ポリスチレン、ハイインパクトポリスチレン等のポ
リスチレン系樹脂を混合することもできる。さらに、ポ
リスチレン系樹脂を混合した場合、相溶性を上げるため
に、樹脂全体の20重量%以下、さらに好ましくは10
重量%以下であれば、水素化されたスチレンーブタジエ
ンブロック共重合体を混合することもできる。
In the present invention, the polyolefin resin as the base resin of the foam includes polyethylene such as high-density polyethylene, medium-density polyethylene, low-density polyethylene, linear low-density polyethylene, linear ultra-low-density polyethylene, and polypropylene. , Polybutene, ethylene-propylene block copolymer, ethylene-propylene random copolymer, ethylene-butene random copolymer, ethylene-butene-propylene random copolymer, and the like. These resins can be appropriately mixed and used.
Also, 70% by weight or less of the whole resin, more preferably 50% by weight.
If it is at most 40% by weight, more preferably at most 40% by weight, a polystyrene-based resin such as polystyrene or high-impact polystyrene can be mixed. Further, when a polystyrene resin is mixed, the content is preferably 20% by weight or less, more preferably 10% by weight, based on the total resin in order to increase the compatibility.
If it is less than the weight percentage, a hydrogenated styrene-butadiene block copolymer can be mixed.

【0009】本発明方法は、特に可燃性発泡剤ガスが残
留する発泡体に適用すると好適であるが、その他の不燃
性である揮発性発泡剤のガスが残留する発泡体にも適用
できる。可燃性発泡剤としては、例えばプロパン、n―
ブタン、i―ブタン、ペンタン、ヘキサン等の脂肪族炭
化水素、シクロブタン、シクロペンタン等の環式脂肪族
炭化水素、クロロジフルオロエタン、ジフルオロエタ
ン、メチルクロライド、エチルクロライド等のハロゲン
化炭化水素が挙げられる。その他の不燃性である揮発性
発泡剤のガスとしては、トリクロロフルオロメタン、ジ
クロロジフルオロメタン、テトラフルオロエタン、ジク
ロロテトラフルオロエタン、メチレンクロライド等のハ
ロゲン化炭化水素が挙げられる。
The method of the present invention is preferably applied to a foam in which a combustible blowing agent gas remains, but can also be applied to other foams in which a non-flammable volatile blowing agent gas remains. As the flammable foaming agent, for example, propane, n-
Examples thereof include aliphatic hydrocarbons such as butane, i-butane, pentane, and hexane; cyclic aliphatic hydrocarbons such as cyclobutane and cyclopentane; and halogenated hydrocarbons such as chlorodifluoroethane, difluoroethane, methyl chloride, and ethyl chloride. Examples of other nonflammable volatile blowing agent gases include halogenated hydrocarbons such as trichlorofluoromethane, dichlorodifluoromethane, tetrafluoroethane, dichlorotetrafluoroethane, and methylene chloride.

【0010】本発明において樹脂と発泡剤との溶融混練
物中に、更に気泡調整剤を添加しても良い。気泡調整剤
としてはタルク、シリカ等の無機粉末や多価カルボン酸
の酸性塩、多価カルボン酸と炭酸ナトリウム或いは重炭
酸ナトリウムとの反応混合物等が挙げられる。
In the present invention, a foam control agent may be further added to the melt-kneaded product of the resin and the foaming agent. Examples of the cell regulator include inorganic powders such as talc and silica, acidic salts of polycarboxylic acids, and reaction mixtures of polycarboxylic acids with sodium carbonate or sodium bicarbonate.

【0011】本発明に用いる発泡体は、押出機内で樹脂
と発泡剤とを溶融混練した後、この溶融混練物を押出機
先端に取り付けたダイスを通して低圧下に押出して発泡
させる押出発泡法により得られる。押出発泡後の発泡体
の独立気泡率(ASTM―D―2856に準拠した方法
にて測定を行った)は40〜90%、好ましくは50〜
80%、更に好ましくは50〜70%とする必要があ
る。独立気泡率が40%未満であると十分大きな断面積
を有する発泡体を得ることができず、また、90%を越
えると続く圧縮工程後の連通化が十分なレベルに達しな
い。押出発泡後の独立気泡率が40〜90%の樹脂発泡
体を得るには、発泡剤添加量、発泡温度、または樹脂組
成等により制御することが可能である。一般に、通常の
レベルより発泡剤添加量を増やす、または、発泡温度を
上げることにより、押出発泡後の樹脂発泡体の独立気泡
率を低下させることができる。例えば、高密度ポリエチ
レン100重量部当たり、i―ブタン30〜60重量
%、i―ペンタンあるいはn―ペンタン70〜40重量
%からなる発泡剤27〜31重量部添加して押出機内で
溶融混練した後、温度139〜141℃にて押出発泡す
ることにより、独立気泡率が60〜80%の発泡体を得
ることができる。
The foam used in the present invention is obtained by an extrusion foaming method in which a resin and a foaming agent are melt-kneaded in an extruder, and the melt-kneaded product is extruded under a low pressure through a die attached to the extruder tip to foam. Can be The closed cell rate of the foam after extrusion foaming (measured by a method according to ASTM-D-2856) is 40 to 90%, preferably 50 to 90%.
It must be 80%, more preferably 50-70%. If the closed cell ratio is less than 40%, a foam having a sufficiently large cross-sectional area cannot be obtained, and if it exceeds 90%, communication after the subsequent compression step does not reach a sufficient level. In order to obtain a resin foam having a closed cell rate of 40 to 90% after extrusion foaming, it can be controlled by the amount of the foaming agent added, the foaming temperature, the resin composition, or the like. In general, by increasing the amount of the foaming agent added or increasing the foaming temperature from the usual level, the closed cell rate of the resin foam after extrusion foaming can be reduced. For example, after adding 27 to 31 parts by weight of a foaming agent consisting of 30 to 60% by weight of i-butane and 70 to 40% by weight of i-pentane or n-pentane per 100 parts by weight of high-density polyethylene, and then melt-kneading in an extruder, By extruding and foaming at a temperature of 139 to 141 ° C., a foam having a closed cell ratio of 60 to 80% can be obtained.

【0012】押出発泡後の独立気泡率が40〜90%に
調整された樹脂発泡体は、冷却固化(発泡体中心部の温
度が樹脂の軟化温度以下に下がった)後、例えば、ピン
チロールによって厚み方向に加圧し圧縮する。圧縮によ
り発泡体の独立気泡率は10〜60%、好ましくは10
〜40%に低減される。独立気泡率が10%未満である
と圧縮後の厚み回復率が良好なレベル(90%以上)ま
で達せず、また、60%を越えると残留発泡剤ガスの無
機ガスへの置換促進効果が十分に得られない。発泡体の
圧縮率は気泡膜が十分に連通化し、かつ、厚み方向の回
復性を良くするために、50〜95%とすることが好ま
しい。発泡体の気泡膜を破り連通化させる効果を高くす
るために、ピンチロール間で発泡体が引き取られる移送
速度を5〜100m/分とすることが好ましい。移送速
度がこの範囲より遅いと連通化が不十分となり、早い場
合は圧縮が不均一になったり発泡体とピンチロール間で
の滑りが生じる。ピンチロール間の発泡体の食い込み性
を良くし、滑りを防止するためロール表面にエンボス加
工されたピンチロールを用いることができる。また、ピ
ンチロールのかわりにプレス装置によって加圧して圧縮
することもでき、この場合には、加圧開始から解放され
るのに要する圧縮時間を5秒以内、発泡体を圧縮する速
度を2cm/秒以上とすることが好ましい。一方、ピン
チロールで加圧して圧縮した場合にはきわめて短時間で
効率良く発泡体の連通化を行うことができるためプレス
装置による圧縮より好ましく用いられる。圧縮後の発泡
体は弾性力・復元性に優れるため、圧縮された発泡体の
厚みは加圧を解除するとほぼ元の厚みまで復元する。圧
縮後に若干残留歪みが生じるが、これは厚み方向の気泡
の小径化と密度の増加により発泡板の断熱性能を向上さ
せる効果がある。さらに、圧縮後の発泡体の特徴とし
て、本発明の圧縮条件下では発泡体表面に孔や割れが生
じないため、穿孔した場合に見られる水分の吸収による
断熱性能の悪化を避けることができる。これらの一連の
処理は通常大気中で行うため、発泡体内の発泡剤ガスは
空気と置換されるが、空気以外の無機ガス雰囲気下で処
理を行っても良い。空気以外の無機ガスとしては二酸化
炭素、窒素、酸素、アルゴン、ネオン等が挙げられる
が、安価な二酸化炭素か窒素を用いることが好ましい。
以下、本発明を実施例に基づいて説明する。
The resin foam having the closed cell ratio adjusted to 40 to 90% after extrusion foaming is cooled and solidified (the temperature at the center of the foam falls below the softening temperature of the resin). Press and compress in the thickness direction. By compression, the closed cell ratio of the foam is 10 to 60%, preferably 10 to 60%.
4040%. If the closed cell ratio is less than 10%, the thickness recovery rate after compression does not reach a satisfactory level (90% or more), and if it exceeds 60%, the effect of promoting the replacement of the residual blowing agent gas with the inorganic gas is sufficient. Can not be obtained. The compression ratio of the foam is preferably set to 50 to 95% in order to sufficiently communicate the cell membrane and to improve the recoverability in the thickness direction. In order to enhance the effect of breaking and communicating the foam film of the foam, it is preferable that the transfer speed of the foam taken between the pinch rolls is 5 to 100 m / min. If the transfer speed is lower than this range, communication becomes insufficient. If the transfer speed is high, compression becomes uneven or slippage occurs between the foam and the pinch roll. A pinch roll embossed on the roll surface can be used to improve the biteability of the foam between the pinch rolls and prevent slippage. Further, instead of the pinch roll, it is also possible to press and compress by a press device. In this case, the compression time required for releasing from the start of pressurization is within 5 seconds, and the speed of compressing the foam is 2 cm / It is preferable to set it to seconds or longer. On the other hand, when compression is performed by pressurizing with a pinch roll, the foam can be efficiently communicated in a very short time, so that it is more preferably used than compression by a press device. Since the foam after compression is excellent in elasticity and restoring property, the thickness of the compressed foam is restored to almost the original thickness when the pressure is released. Although some residual strain is generated after the compression, this has an effect of improving the heat insulating performance of the foam plate by reducing the diameter of the bubbles in the thickness direction and increasing the density. Further, as a characteristic of the foam after compression, under the compression conditions of the present invention, since no pores or cracks are generated on the foam surface, it is possible to avoid deterioration of the heat insulating performance due to absorption of moisture which is observed when the foam is perforated. Since a series of these processes is usually performed in the atmosphere, the blowing agent gas in the foam is replaced with air, but the process may be performed in an inorganic gas atmosphere other than air. Examples of the inorganic gas other than air include carbon dioxide, nitrogen, oxygen, argon, and neon, and it is preferable to use inexpensive carbon dioxide or nitrogen.
Hereinafter, the present invention will be described based on examples.

【0013】[0013]

【実施例1】高密度ポリエチレン100重量部当たり、
i―ブタン50重量%、i―ペンタン50重量%からな
る発泡剤29重量部と気泡調整剤としてタルクを0.1
重量部添加して押出機内で溶融混練した後、混練物の温
度140℃にて押出用ダイス(テーパ角度:10゜、開
口部形状幅:60mm、厚み:1.6mm)を通して3
00kg/時の吐出速度で押出発泡することにより厚み
25mm、幅300mmの発泡体を得た。この発泡体の
独立気泡率をエアーピクノメーター法(ASTM―D―
2856)に準拠して測定したところ72%であった。
独立気泡率は発泡体の幅方向に5等分した各位置から全
厚み方向に切り出したもの(サンプルサイズ:20mm
×20mm×厚み25mm)を測定し、それらの値の平
均値を用いた。この発泡体をピンチロールにより圧縮率
(圧縮率:α、圧縮前の厚み:D 1 、圧縮時の厚み:D
2 とした時、α=(D1 ―D2 )/D1 ×100で示さ
れる値)90%、移送速度20m/分で圧縮を行い、2
3℃に温調した恒温室内にて2時間静置した後測定した
ところ、圧縮前の95%の厚みまで回復し、外観良好な
独立気泡率39%の発泡体が得られた。この発泡体を2
3℃の恒温室内に置きエージングを行い、1日後、3日
後、1週間後、1ヶ月後の残留発泡剤ガスの濃度を測定
した。残留ガス濃度の測定は発泡体中心部を全厚み方向
に切り出したものをガラスボトルに密封した後、オーブ
ンにて加熱溶融して発泡体内部のガスを放出させたもの
をガスクロマトグラフィーにて測定して算出した。測定
結果を表1に示した。なお、残留ガス濃度が測定装置の
検出限界(10ppm)未満の場合は「未検出」と表記
した。また、発泡体内の発泡剤ガス残留量を以下の記号
で表した。 :ガスが検出されない。 △:ガスが検出されるが燃焼下限界未満である。 ×:燃焼下限界以上のガスが残留している。
Example 1 100 parts by weight of high density polyethylene
50% by weight of i-butane and 50% by weight of i-pentane.
29 parts by weight of a foaming agent and 0.1 g of talc as a cell regulator.
After adding by weight and melt-kneading in the extruder, the temperature of the kneaded material
Extrusion dies (taper angle: 10 °, open at 140 ° C)
3 through the mouth shape width: 60 mm, thickness: 1.6 mm)
Thickness by extrusion foaming at a discharge rate of 00 kg / hour
A 25 mm foam having a width of 300 mm was obtained. Of this foam
The closed cell rate is determined by the air pycnometer method (ASTM-D-
When measured according to 2856), it was 72%.
The closed cell ratio is calculated from each position divided into 5 equal parts in the width direction of the foam.
Cut out in the thickness direction (sample size: 20 mm
X 20 mm x thickness 25 mm) and measure the average of those values.
Average values were used. This foam is compressed by a pinch roll
(Compression rate: α, thickness before compression: D 1, Compressed thickness: D
TwoWhere α = (D1-DTwo) / D1× 100
Compression at 90% transfer speed of 20 m / min.
Measurement was carried out after standing for 2 hours in a constant temperature room controlled at 3 ° C.
However, it recovers to a thickness of 95% before compression and has a good appearance.
A foam having a closed cell ratio of 39% was obtained. This foam 2
Aged in a constant temperature room at 3 ° C, 3 days after 1 day
, 1 week, 1 month after measuring the concentration of residual blowing agent gas
did. For measurement of residual gas concentration, the center of the foam is in the entire thickness direction
After sealing in a glass bottle,
Gas released from the foam by heating and melting
Was measured and calculated by gas chromatography. Measurement
The results are shown in Table 1. Note that the residual gas concentration
If the detection limit is less than (10 ppm), "Not detected" is indicated.
did. The residual amount of the blowing agent gas in the foam is represented by the following symbol.
It was expressed by. : Gas is not detected. Δ: Gas is detected but below the lower combustion limit. ×: Gas remaining above the lower limit of combustion remains.

【0014】[0014]

【実施例2】樹脂組成を高密度ポリエチレン80重量
%、ポリスチレン20重量%、発泡剤添加量を樹脂10
0重量部当たり26重量部、発泡温度を138℃とした
他は実施例1と同様の処理を行った。結果を表1に示
す。
Example 2 The resin composition was 80% by weight of high-density polyethylene, 20% by weight of polystyrene, and
The same treatment as in Example 1 was performed except that the foaming temperature was 138 ° C. and 26 parts by weight per 0 parts by weight. Table 1 shows the results.

【0015】[0015]

【実施例3】ピンチロールのかわりにプレス装置を用い
て圧縮を行った他は実施例1と同様の処理を行った。圧
縮時に発泡体の加圧開始から解放されるまでの圧縮時間
は1秒、発泡体を圧縮する速度は10cm/秒であっ
た。結果を表1に示す。
Example 3 The same processing as in Example 1 was performed except that compression was performed using a press device instead of the pinch roll. During the compression, the compression time from the start of pressurizing the foam to the release thereof was 1 second, and the speed of compressing the foam was 10 cm / sec. Table 1 shows the results.

【0016】[0016]

【比較例1】実施例1と同様の条件で押出発泡した発泡
板を、圧縮を行わずに23℃の恒温室内に置きエージン
グを行い、残留発泡剤濃度の測定を行った。1ヶ月後測
定を行ったところ、燃焼下限界濃度以上の値を示した。
結果を表1に示す。
Comparative Example 1 A foamed board extruded and foamed under the same conditions as in Example 1 was placed in a constant temperature room at 23 ° C. without compression, and aged to measure the residual foaming agent concentration. One month later, the measurement showed that the value was equal to or higher than the lower combustion limit concentration.
Table 1 shows the results.

【0017】[0017]

【比較例2】実施例1の発泡剤添加量を樹脂100重量
部当たり34重量部、発泡温度を144℃とし、押出発
泡を行ったところ独立気泡率23%の断面積が小さい
(厚さ15mm、幅170mm)発泡体しか得られなか
った。結果を表1に示す。
COMPARATIVE EXAMPLE 2 Extrusion foaming was carried out at 34 parts by weight per 100 parts by weight of the resin and at a foaming temperature of 144 ° C. in Example 1, and the cross-sectional area with a closed cell ratio of 23% was small (thickness: 15 mm). , 170 mm in width) only a foam was obtained. Table 1 shows the results.

【0018】[0018]

【比較例3】発泡剤添加量を樹脂100重量部当たり2
3重量部、発泡温度を139℃とした他は実施例1と同
様の処理を行った。結果を表1に示す。
Comparative Example 3 The amount of the foaming agent added was 2 per 100 parts by weight of the resin.
The same treatment as in Example 1 was performed except that the foaming temperature was 139 ° C. and 3 parts by weight. Table 1 shows the results.

【0019】[0019]

【比較例4】実施例1の発泡剤添加量を樹脂100重量
部当たり29重量部、発泡温度を142℃とし、押出発
泡を行ったところ独立気泡率43%の発泡体が得られ
た。該発泡体を圧縮率98%で圧縮し、独立気泡率を測
定したところ3%であり、圧縮後2時間経過した時点で
の厚み方向の回復率は82%であった。結果を表1に示
す。
COMPARATIVE EXAMPLE 4 Extrusion foaming was carried out at a foaming agent addition amount of 29 parts by weight per 100 parts by weight of resin and at a foaming temperature of 142 ° C. to obtain a foam having a closed cell ratio of 43%. The foam was compressed at a compression ratio of 98%, and the closed cell ratio was measured. As a result, it was 3%, and the recovery in the thickness direction at the point of time 2 hours after the compression was 82%. Table 1 shows the results.

【0020】[0020]

【比較例5】圧縮率を30%とした他は実施例1と同様
の処理を行った。結果を表1に示す。
Comparative Example 5 The same processing as in Example 1 was performed except that the compression ratio was set to 30%. Table 1 shows the results.

【0021】[0021]

【比較例6】ピンチロールによる発泡体の移送速度を2
m/分とした他は実施例1と同様の処理を行った。結果
を表1に示す。
Comparative Example 6 The transfer speed of the foam by the pinch roll was 2
The same processing as in Example 1 was performed except that the flow rate was set to m / min. Table 1 shows the results.

【0022】[0022]

【比較例7】ピンチロールによる発泡体の移送速度を1
20m/分とした他は実施例1と同様の処理を行ったと
ころ、発泡体とピンチロール間での滑りが生じ圧縮でき
なかった。結果を表1に示す。
Comparative Example 7 The transfer speed of the foam by the pinch roll was 1
The same treatment as in Example 1 was performed except that the speed was 20 m / min. As a result, slippage occurred between the foam and the pinch roll, and compression was not possible. Table 1 shows the results.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【発明の効果】本発明方法によれば、独立気泡率を10
〜60%に低減することにより、オレフィン系樹脂発泡
体内に残留する発泡剤ガスを短期間で空気等と置換する
ことが可能となる。発泡剤が可燃性ガスの場合、発泡体
内の残留ガス濃度を燃焼下限以下に低下させるまでに要
する時間が、大気中に放置するのみの場合と比べて大幅
に短縮できる。さらに、本発明では発泡体表面を傷付け
ることが無いため、発泡体の断熱性能を悪化させること
なく、かつ発泡体外観を損ねずに残留発泡剤を空気と置
換するのに要する時間を短縮できる。
According to the method of the present invention, the closed cell ratio is 10
By reducing to about 60%, it becomes possible to replace the blowing agent gas remaining in the olefin-based resin foam with air or the like in a short period of time. When the foaming agent is a flammable gas, the time required to reduce the residual gas concentration in the foam to the combustion lower limit or less can be significantly reduced as compared with the case where the foaming agent is left alone in the atmosphere. Furthermore, since the present invention does not damage the foam surface, the time required for replacing the residual foaming agent with air can be reduced without deteriorating the heat insulating performance of the foam and without impairing the appearance of the foam.

フロントページの続き Fターム(参考) 4F074 AA16 AA17 AA18 AA19 AA20 AA24 BA35 BA36 BA37 BA38 BA39 BA40 BA44 BA47 BA53 BA54 BA55 CA22 CC03Z CC34Z CD01 DA12 4F207 AA03 AB02 AG20 KA01 KA11 KW21 Continued on the front page F term (reference) 4F074 AA16 AA17 AA18 AA19 AA20 AA24 BA35 BA36 BA37 BA38 BA39 BA40 BA44 BA47 BA53 BA54 BA55 CA22 CC03Z CC34Z CD01 DA12 4F207 AA03 AB02 AG20 KA01 KA11 KW21

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 発泡剤として可燃性ガスを用い、押出発
泡法により独立気泡率が40〜90%の板状樹脂発泡体
を得た後、該発泡体を独立気泡率が10〜60%となる
ように厚み方向に圧縮することを特徴とするオレフィン
系樹脂発泡体の製造方法。
1. A flaky resin having a closed cell ratio of 40 to 90% is obtained by an extrusion foaming method using a flammable gas as a foaming agent. A method for producing an olefin-based resin foam, characterized in that the foam is compressed in the thickness direction.
【請求項2】 ピンチロールまたはプレス装置によって
加圧して圧縮する請求項1記載のオレフィン系樹脂発泡
体の製造方法。
2. The method for producing an olefin resin foam according to claim 1, wherein the olefin resin foam is compressed by pressing with a pinch roll or a press device.
【請求項3】 ピンチロールによる発泡体の移送速度が
5〜100m/分である請求項2記載のオレフィン系樹
脂発泡体の製造方法。
3. The method for producing an olefin resin foam according to claim 2, wherein the transfer speed of the foam by the pinch roll is 5 to 100 m / min.
JP2000124438A 2000-04-25 2000-04-25 Producing method for olefinic resin foam Pending JP2001301002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000124438A JP2001301002A (en) 2000-04-25 2000-04-25 Producing method for olefinic resin foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000124438A JP2001301002A (en) 2000-04-25 2000-04-25 Producing method for olefinic resin foam

Publications (1)

Publication Number Publication Date
JP2001301002A true JP2001301002A (en) 2001-10-30

Family

ID=18634570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000124438A Pending JP2001301002A (en) 2000-04-25 2000-04-25 Producing method for olefinic resin foam

Country Status (1)

Country Link
JP (1) JP2001301002A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063457A (en) * 2005-09-01 2007-03-15 Asahi Kasei Life & Living Corp Extrusion foamed article

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063457A (en) * 2005-09-01 2007-03-15 Asahi Kasei Life & Living Corp Extrusion foamed article
JP4756957B2 (en) * 2005-09-01 2011-08-24 旭化成ケミカルズ株式会社 Extruded foam

Similar Documents

Publication Publication Date Title
EP0585378B1 (en) Foam blowing agent composition and process for producing foams
JP3380816B2 (en) Ultra-low density polyolefin foams, foamable polyolefin compositions and methods of making them
US4925606A (en) Method for enhancing thermal expandability of direct-injection foams
CA2060851A1 (en) Method of providing a dimensionally-stable, closed-cell polyolefin foam having reduced blowing agent content to the end user
CA2346992A1 (en) Process for producing extruded polystyrene foam products with co2 containing blowing agents
HUP0004460A2 (en) Foams comprising 1,1,2,2-tetrafluoro-ethane and a low solubility co-blowing agent and a process for making this foams
EP2746307B1 (en) Polyvinylidene fluoride resin expanded beads, method for producing polyvinylidene fluoride resin expanded beads, and molded articles of polyvinylidene fluoride resin expanded beads
JP2001301002A (en) Producing method for olefinic resin foam
JP3443125B2 (en) Inorganic gas replacement method for residual combustible blowing agent gas in olefin resin foam board
JPS6259640A (en) Foaming of butyral resin composition
JPH07278365A (en) Low-density polyolefin foam, foamable polyolefin compositionand their production
JPH1180262A (en) Polypropylene-based resin for extrusion foaming
JPH0144499B2 (en)
JP2006265341A (en) Styrene-butadiene-based soft resin cross-linked foamed article
JP2000000894A (en) Production of thermoplastic resin foam molding
JP3749409B2 (en) Polystyrene resin multilayer foam sheet for thermoforming
JPH0414058B2 (en)
JPH03169622A (en) Production of open cell foam of olefin-based resin
JPH02232240A (en) Low-density foam of mixed resin and its production
JPH0641161B2 (en) Method for producing styrene resin foam sheet and styrene resin foam sheet for thermoforming
JP3006378B2 (en) Vehicle interior molded product and method of manufacturing the same
JP4782306B2 (en) Open-cell cross-linked polyolefin foam and method for producing the same
JPH0971675A (en) Foam and its production
USRE34123E (en) Method for enhancing thermal expandability of direct-injection foams
JPH11115116A (en) Polystyrene resin laminate foam sheet