JPH03169622A - Production of open cell foam of olefin-based resin - Google Patents
Production of open cell foam of olefin-based resinInfo
- Publication number
- JPH03169622A JPH03169622A JP1312434A JP31243489A JPH03169622A JP H03169622 A JPH03169622 A JP H03169622A JP 1312434 A JP1312434 A JP 1312434A JP 31243489 A JP31243489 A JP 31243489A JP H03169622 A JPH03169622 A JP H03169622A
- Authority
- JP
- Japan
- Prior art keywords
- open
- cell
- olefin resin
- rolls
- cell foam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000006260 foam Substances 0.000 title claims abstract description 77
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 229920005989 resin Polymers 0.000 title abstract description 6
- 239000011347 resin Substances 0.000 title abstract description 6
- 150000001336 alkenes Chemical class 0.000 title abstract 4
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 title abstract 4
- 238000007906 compression Methods 0.000 claims abstract description 42
- 230000006835 compression Effects 0.000 claims abstract description 41
- 239000000203 mixture Substances 0.000 claims abstract description 24
- 238000001816 cooling Methods 0.000 claims abstract description 11
- 238000010438 heat treatment Methods 0.000 claims abstract description 10
- 238000005187 foaming Methods 0.000 claims abstract description 9
- 238000000465 moulding Methods 0.000 claims abstract description 6
- 229920005672 polyolefin resin Polymers 0.000 claims description 40
- 238000000034 method Methods 0.000 claims description 16
- 230000000694 effects Effects 0.000 abstract description 8
- 238000004891 communication Methods 0.000 abstract description 6
- 238000005096 rolling process Methods 0.000 abstract description 2
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 21
- 230000035699 permeability Effects 0.000 description 14
- 239000004604 Blowing Agent Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000004094 surface-active agent Substances 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 150000001451 organic peroxides Chemical class 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 239000004711 α-olefin Substances 0.000 description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000010924 continuous production Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- -1 polypropylene Polymers 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000004156 Azodicarbonamide Substances 0.000 description 1
- 239000004709 Chlorinated polyethylene Substances 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- XOZUGNYVDXMRKW-AATRIKPKSA-N azodicarbonamide Chemical compound NC(=O)\N=N\C(N)=O XOZUGNYVDXMRKW-AATRIKPKSA-N 0.000 description 1
- 235000019399 azodicarbonamide Nutrition 0.000 description 1
- 230000009172 bursting Effects 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 230000008568 cell cell communication Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229920003020 cross-linked polyethylene Polymers 0.000 description 1
- 239000004703 cross-linked polyethylene Substances 0.000 description 1
- 239000002781 deodorant agent Substances 0.000 description 1
- 229920006226 ethylene-acrylic acid Polymers 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- 229920001179 medium density polyethylene Polymers 0.000 description 1
- 239000004701 medium-density polyethylene Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 239000010734 process oil Substances 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 150000003752 zinc compounds Chemical class 0.000 description 1
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical class [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Landscapes
- Molding Of Porous Articles (AREA)
Abstract
Description
〔産業上の利用分野〕
本発明は、連続気泡率が高く、特に、厚味方向の通気度
が改善され、安定した圧縮強度を有するシート状のオレ
フィン系樹脂連続気泡発泡体の製造方法に関する。
〔従来の技術1
オレフィン系樹脂発泡体は、架橋型、未架橋型を含めて
包装用途、建築土木用途、工業材用途、日用雑貨用等に
広く利用されているが、これらの発泡体のほとん゛どは
独立気泡型発泡体である。
本発明者らは、先に、各種の連続気泡型オレフィン系樹
脂発泡体用組成物について提案し、特許出願を行なった
(特開昭62−223243号、特開昭63−1594
48号、特開昭63−268748号、特開昭63−3
09535号)。
これらの組成物から成型したシートを常圧下で加熱発泡
すれば、均一な連続シート状の連続気泡発泡体が得られ
る。この連続気泡発泡体に含まれる独立気泡の割合(独
立気泡率)は、空気比較式比重計で測定した場合、ほぼ
O%であるが、通気性を測定した場合、厚味方向の通気
度は非常に小さい。
その理由としては、連続気泡発泡体が表皮をもっている
ことに加え、支持体上でシート状に発泡させる方法であ
ることから、破泡による気泡の連通のほとんどが横方向
であるためと考えられる。
このように、従来のオレフィン樹脂連続気泡発泡体は、
厚味方向の通気度が小さく、圧縮回復性など連続気泡発
泡体としての諸性能が不十分であり、その改善が求めら
れている。
〔本発明が解決しようとする課題〕
本発明の目的は、連続気泡率が高く、面方向だけではな
く、厚味方向の通気度も大きいシート状のオレフィン系
樹脂連続気泡発泡体を提供することにある。
また、本発明の目的は、オレフィン系樹脂連続気泡発泡
体用組成物を用いて、連続気泡率が高く、かつ、安定し
た圧縮強度を有するシート状のオレフィン系樹脂連続気
泡発泡体を連続的に製造する方法を提供することにある
。
本発明者らは、鋭意研究した結果、シート状で得られた
オレフィン系樹脂連続気泡発泡体を(1)2本のロール
で圧縮率50%以上に連続的に圧縮するか、(2)面方
向に1%以上延伸するか、あるいは(3)これらの方法
を併用し、2本のロールで圧縮率50%以上に連続的に
圧縮するとともに、面方向に1%以上延伸することによ
り、厚味方向の通気度が大幅に改善され、かつ、圧縮強
度も安定化し、柔軟で、圧縮回復性に優れた連続気泡発
泡体の得られることを見出した。
従来、架橋ポリエチレンの独立気泡発泡体に機械的変形
を加えることによって気泡膜を破裂させて連続気泡とす
る方法が知られているが(特公昭49−10350号、
特開昭56−121739号、特開昭57−19102
7号など)、本発明の方法は、連続気泡発泡体を対象と
するものであり、その作用効果ちこれら従来も方法とは
異なるものである。
本発明は、これらの知見に基づいて完成するに至ったも
のである。[Industrial Field of Application] The present invention relates to a method for producing a sheet-like open-cell olefin resin foam having a high open-cell ratio, particularly improved air permeability in the thickness direction, and stable compressive strength. [Prior art 1 Olefin resin foams, both cross-linked and non-cross-linked, are widely used for packaging, construction, civil engineering, industrial materials, daily necessities, etc. Most are closed cell foams. The present inventors previously proposed various open-celled olefin resin foam compositions and filed patent applications (Japanese Patent Application Laid-Open Nos. 62-223243 and 63-1594).
No. 48, JP-A-63-268748, JP-A-63-3
No. 09535). If sheets molded from these compositions are heated and foamed under normal pressure, a uniform continuous sheet-like open-cell foam can be obtained. The proportion of closed cells contained in this open-cell foam (closed cell ratio) is approximately 0% when measured with an air comparison hydrometer, but when the air permeability is measured, the air permeability in the thickness direction is Very small. The reason for this is thought to be that, in addition to the fact that the open-cell foam has a skin, most of the communication of the cells due to cell bursting is in the lateral direction since the foam is formed into a sheet on a support. In this way, conventional olefin resin open-cell foams are
The air permeability in the thickness direction is low, and various performances as an open-cell foam such as compression recovery are insufficient, and improvements are required. [Problems to be Solved by the Present Invention] An object of the present invention is to provide a sheet-shaped olefin resin open-cell foam having a high open cell ratio and high air permeability not only in the surface direction but also in the thickness direction. It is in. Another object of the present invention is to continuously produce a sheet-like open-cell olefin resin foam having a high open cell ratio and stable compressive strength using a composition for an open-cell olefin resin foam. The purpose is to provide a manufacturing method. As a result of intensive research, the present inventors found that the open-cell olefin resin foam obtained in sheet form was either (1) continuously compressed with two rolls to a compression ratio of 50% or more, or (2) The thickness can be increased by stretching 1% or more in the direction, or (3) using a combination of these methods, continuously compressing with two rolls to a compression ratio of 50% or more, and stretching 1% or more in the plane direction. It has been found that an open-cell foam can be obtained which has significantly improved air permeability in the taste direction, stabilized compressive strength, is flexible, and has excellent compression recovery properties. Conventionally, a method has been known in which mechanical deformation is applied to a closed-cell foam of cross-linked polyethylene to cause the cell membrane to rupture and form open cells (Japanese Patent Publication No. 10350/1983).
JP-A-56-121739, JP-A-57-19102
No. 7, etc.), the method of the present invention is aimed at open-cell foams, and its effects are different from those of conventional methods. The present invention has been completed based on these findings.
かくして、本発明によれば、下記の製造方法が提供され
る。
(1) オレフィン系樹脂連続気泡発泡体用組成物を
シート状に成型し、これを加熱、発泡し、冷却して得ら
れたオレフィン系樹脂連続気泡発泡体を2本のロールで
圧縮率50%以上に連続的に圧縮することを特徴とする
連続気泡率の高いオレフィン系樹脂連続気泡発泡体の製
造方法。
(2) オレフィン系樹脂連続気泡発泡体用組或物をシ
ート状に成型し、これを加熱、発泡し、冷却して得られ
たオレフィン系樹脂連続気泡発泡体を面方向に1%以上
延伸することを特徴とする連続気泡率の高いオレフィン
系樹脂連続気泡発泡体の製造方法。
(3) オレフィン系樹脂連続気泡発泡体用組成物をシ
ート状に成型し、これを加熱、発泡し、冷却して得られ
たオレフィン樹脂連続気泡発泡体を2本のロールで圧縮
率50%以上に連続的に圧縮するとともに、面方向に1
%以上延伸することを特徴とする連続気泡率の高いオレ
フィン系樹脂連続気泡発泡体の製造方法。
以下、本発明について詳述する。
(オレフィン系樹脂連続気泡発泡体用組成物)本発明に
おいて使用されるオレフィン系樹脂連続気泡発泡体用組
成物としては、例えば、下記のものが好ましい。
■ オレフィン系樹脂、発泡剤、α−オレフィン変性界
面活性剤を含む組成物.
■ オレフィン系樹脂、発泡剤、α−オレフィン変性界
面活性剤、有機過酸化物を含む組或物。
■ エチレン系樹脂、発泡剤、α−オレフィン変性界面
活性剤、有機過酸化物、プロセスオイルを含む組成物。
■ オレフィン系樹脂、発泡剤、メチルフエニル変性界
面活性剤、有機過酸化物を含む組成物.オレフィン系樹
脂としては,例えば、エチレンー酢酸ビニル共重合体、
エチレンーブロビレン共重合体、エチレンーブロビレン
ージエン共重合体、エチレンーアクリル酸エステル共重
合体、これらの共重合体をブレンドした高、中、低密度
ポリエチレン、ボリブロビレン、塩素化ポリエチレンな
どを挙げることができる。
これらの組成物には、発泡剤の分解温度を調整するため
の亜鉛化合物、尿素化合物、塩化亜鉛化合物等、また、
防菌剤、防カビ剤、消臭剤等を配合してもよい。
さらに、オレフィン系樹脂を用いた連続気泡発泡体用組
成物であれば、特に限定されず、他の組成物であっても
よい。
(製造方法)
本発明の第1の方法は、オレフィン系樹脂連続気泡発泡
体用組成物をシート状に成型し、これを加熱、発泡し、
冷却して得られたオレフィン系樹脂連続気泡発泡体を2
本のロールで圧縮率50%以上に連続的に圧縮する方法
である。
本発明において用いる圧縮用のロールは、特別なものに
限定されず、機械的な強度を有し、充分な圧縮率が得ら
れれば、金属ロール、ゴムライニングロール、木製ロー
ル、あるいはこれらの組み合わせでもよい.しかしなが
ら、耐久性、圧縮率の安定性、連続使用時の加熱を考え
、また、冷却等を考慮した場合、金属製のロールが好ま
しい。
ロールの径についても、特に制約はないが、直径50な
いし200mm程度が実用上好ましい。
圧縮・圧延の回数については多いほど厚味方向の気泡の
連通度は上昇するが、2回目以降の効果は小さく1ない
し5回が好ましいが経済的な面を考えると1ないし2回
が最も好ましい。
圧縮率については、50%以下では厚味方向の気泡の連
通度の改善の効果が小さ<70ないし90%が好ましい
。
第1図は、連続気泡発泡体を2本のロールで圧縮する方
法を示す略図である。
連続気泡発泡体4は、ガイドロール1を通過して、2つ
の圧縮用ロール2.2′の間を厚味方向に圧縮された後
、引き取りロール3を経て巻き取られる。
ここで、圧縮率とは、次式により求めた値である。
本発明の第2の方法は、オレフィン系樹脂連続気泡発泡
体を面方向に1%以上延伸する方法である。
本発明において行なう延伸は、面方向であれば、一軸延
伸でも二軸延伸でもよいが、操作性、経済性、気泡の連
通度の改善の効果から,通常、一軸延伸でよい。
延伸率は1%以上、好ましくは1〜100%、さらに好
ましくは10〜50%である。延伸率が小さすぎると、
気泡の連通性の改善効果が少なく、逆に、あまり延伸率
が大きいと発泡体の厚味が減少してしまい、場合によっ
ては発泡体の機械的強度の低下をまねいてしまう。
第2図は、連続気泡発泡体を面方向に一軸延伸する方法
を示す略図である。
連続気泡発泡体4は、ガイドロール1を通過して、回転
速度の異なるロール系を通過することにより延伸される
.
ここで、ロール5の回転速度なVl、ロール6の回転速
度をV2とすると、延伸率は次式で算出される。
v1
本発明の第3の方法は、2本のロールで圧縮率50%以
上に連続的に圧縮するとともに、面方向にl%以上延伸
する方法である。
本発明において行なう圧縮と延伸の組み合わせについて
は、前記の範囲内で行ない気泡の連通度の改善効果を一
工程で大きく高めようとするものである。
第3図は、圧縮と延伸を併用する方法を示す略図である
。
連続気泡発泡体4は、ガイドロール1を通過して、2つ
の圧縮用ロール2,2′の間を厚味方向に圧縮された後
、延伸ロール系7で延伸される。
延伸してから圧縮してもよいが、効率から見て、圧縮工
程に続いて延伸工程に付するのが好ましい。
本発明において行なう圧縮、延伸は少なくとも連続気泡
発泡体に用いるオレフィン系樹脂の軟化温度以下、好ま
しくは40℃以下で行なう。樹脂の軟化温度近傍か、そ
れ以上の渇度になると発泡体が伸びてしまったり、融着
により気泡が破壊されてしまう。
また、本発明の方法は、一貫した連続工程で効率よく行
なうことができる。例えば、前記組或物を押出機から連
続的にシート状に押し出して、エンドレスベルトからな
る支持体上に移送し、加熱炉で加熱発泡させ、冷却後、
支持体から剥離した連続気泡発泡体を引き続き2本のロ
ールで圧縮する工程および/または延伸する工程に付す
ることにより、連続生産が可能である。
〔作 用〕
オレフィン系樹脂連続気泡発泡体用組成物を押出機等に
よりシート状に成型し、発泡剤の分解温度以上に加熱し
発泡を行ない、冷却することにより均一で良好な連続気
泡発泡体を得ることは可能である。しかしながら、この
発泡体の気泡の連通は主として面方向のみであり、厚味
方向については気泡の連通はほとんど無く、連続気泡と
はいえ完全なものとは言えない。
しかし、前記連続気泡発泡体をロールを用いて圧縮、も
しくは延伸、あるいは圧縮と延伸を同時に行なうことに
より、気泡の連通性が改善されて、厚味方向にも良好な
気泡の連通が得られ、その結果、全方向1こ気泡が連通
した良好な連続気泡発泡体が得られる。
しかも、前記の操作を行うことにより得られた連続気泡
発泡体の硬さは安定し、使用中における硬さの変化も非
常に小さくなる。
〔実施例〕
以下に実施例および比較例を挙げて本発明を具体的に説
明する。
[実施例l]
メルトインデックスMIが7.0、酢酸含有量6重量%
のエチレンー酢酸ビニル共重合体100重量部、アゾジ
カーボナミド8重量部、尿素2重量部および酸化亜鉛2
重量部、α−才レフイン変性界面活性剤(C,。H2。
による50%変性のシリコーン)2重量部を110℃の
ロールミルで混合し、ベレット化した。
このペレットを50mm押出機を用いて厚味0.5mm
、幅500mmのシートに成型し、このシートをポリテ
トラフルオロエチレン製エンドレスベルトと加熱炉を持
つ発泡機に連続的に導入して、200℃に加熱し発泡を
行なった。冷却の後、厚味8mm、発泡倍率1sec/
g、幅500mmの白色で均一な気泡構造を持つ長尺の
連続気泡発泡体を調製した。
次いで、この連続気泡発泡体をロール径150mm、ロ
ール間隔2mmの2つのロールの間を通過させて(圧縮
率75%)、1回ないし数回の圧縮を行なった。
[実施例2]
実施例1で調製した連続気泡発泡体を、第2図に示すよ
うなロール配置を持つ一軸延伸機を用いて、延伸率20
%で延伸を行なった.
第1表に、実施例1で調製した連続気泡発泡体、圧縮率
75%で1回圧縮を行なった後の連続気泡発泡体、延伸
率20%で延伸を行なった連続気泡発泡体の物性を一括
して示す。各物性の測定方法は、JISにしたがった。
第4図に、実施例lによる圧縮の回数と通気度の関係を
示す。
第5図に、実施例1による圧縮の回数と圧縮強度の関係
を示す。
(以下余白)
第1表から明らかなように、圧縮または延伸により、厚
味方向の通気度が発現し、かつ、50%圧縮強度が小さ
くなり、柔軟性が増大したことが分かる。
また、第4図からは、圧縮回数が1ないし2回程度で、
厚味方向の通気度が太き《改善されることが分かる。
さらに、第5図からは、圧縮回数1ないし2回程度で、
圧縮強度が安定的に改善されることが分かる。
【比較例1]
実施例1で調製した連続気泡発泡体をロール径150m
m、ロール間隔5mm (圧縮率=37.5%)で数回
の圧縮を行なったが、圧縮率が小さいため、通気度の改
善はほとんどみられなかった。
[比較例2]
実施例1で調製した連続気泡発泡体を実施例2と同じ一
軸延伸機を用いて、延伸率150%で延伸を行なったと
ころ、通気度は大幅な改善を見たものの、発泡体厚味が
約半分に減少してしまりた。
〔発明の効果〕
本発明により、面方向、厚味方向ともに優れた通気性を
持ち、安定した圧縮強度を持つオレフィン系樹脂連続気
泡発泡体が提供される。この連続気泡発泡体は、吸水性
、耐候性、耐水性に優れ、柔軟で、,圧縮回復性が良好
で、触感に優れているため、緩衝材、断熱材、吸音材、
濾過材等として使用される。Thus, according to the present invention, the following manufacturing method is provided. (1) The composition for open-cell olefin resin foam is molded into a sheet, which is heated, foamed, and cooled. The resulting open-cell olefin resin foam is compressed to 50% with two rolls. A method for producing an open-cell olefin resin foam with a high open-cell ratio, characterized by continuous compression as described above. (2) Molding a composition for an open-cell olefin resin foam into a sheet, heating, foaming, and cooling the resulting open-cell olefin resin foam by stretching 1% or more in the plane direction. A method for producing an open-cell olefin resin foam having a high open-cell ratio. (3) Molding the composition for open-cell olefin resin foam into a sheet, heating, foaming, and cooling the resulting open-cell olefin resin foam using two rolls to compress the resulting composition at a compression rate of 50% or more. While continuously compressing the
1. A method for producing an open-cell olefin resin foam with a high open-cell ratio, which is characterized by stretching % or more. The present invention will be explained in detail below. (Composition for open-cell olefin resin foam) As the composition for open-cell olefin resin foam used in the present invention, the following are preferred, for example. ■ A composition containing an olefin resin, a blowing agent, and an α-olefin modified surfactant. ■ A composition containing an olefin resin, a blowing agent, an α-olefin modified surfactant, and an organic peroxide. ■ A composition containing an ethylene resin, a blowing agent, an α-olefin modified surfactant, an organic peroxide, and a process oil. ■ A composition containing an olefin resin, a blowing agent, a methylphenyl-modified surfactant, and an organic peroxide. Examples of olefin resins include ethylene-vinyl acetate copolymer,
Ethylene-brobylene copolymer, ethylene-brobylene-diene copolymer, ethylene-acrylic acid ester copolymer, high-, medium-, and low-density polyethylene blended with these copolymers, polypropylene, chlorinated polyethylene, etc. can be mentioned. These compositions also contain zinc compounds, urea compounds, zinc chloride compounds, etc. to adjust the decomposition temperature of the blowing agent.
Antibacterial agents, antifungal agents, deodorants, etc. may be added. Furthermore, the composition is not particularly limited as long as it is a composition for open cell foam using an olefin resin, and other compositions may be used. (Manufacturing method) The first method of the present invention is to mold an olefin resin open-cell foam composition into a sheet shape, heat and foam the composition,
The open-cell olefin resin foam obtained by cooling is
This is a method of continuously compressing books with a compression ratio of 50% or more using book rolls. The compression roll used in the present invention is not limited to any special type, and metal rolls, rubber-lined rolls, wooden rolls, or a combination thereof may be used as long as they have mechanical strength and a sufficient compression ratio can be obtained. good. However, in consideration of durability, stability of compressibility, heating during continuous use, cooling, etc., metal rolls are preferable. There are no particular restrictions on the diameter of the roll, but a diameter of about 50 to 200 mm is practically preferred. Regarding the number of times of compression/rolling, the degree of communication of the bubbles in the thickness direction increases as the number of times increases, but the effect after the second time is small and 1 to 5 times is preferable, but 1 to 2 times is most preferable from an economical point of view. . Regarding the compression ratio, if it is less than 50%, the effect of improving the degree of communication of cells in the thickness direction is small, so it is preferably <70 to 90%. FIG. 1 is a diagram illustrating the method of compressing open cell foam with two rolls. The open-cell foam 4 passes through the guide roll 1, is compressed in the thickness direction between two compression rolls 2, 2', and then is wound up via the take-up roll 3. Here, the compression ratio is a value calculated using the following equation. The second method of the present invention is a method in which the open-cell olefin resin foam is stretched by 1% or more in the plane direction. The stretching carried out in the present invention may be uniaxial stretching or biaxial stretching as long as it is in the plane direction, but uniaxial stretching is usually sufficient from the viewpoint of improving operability, economical efficiency, and the degree of cell connectivity. The stretching ratio is 1% or more, preferably 1 to 100%, more preferably 10 to 50%. If the stretching ratio is too small,
The effect of improving cell continuity is small, and conversely, if the stretching ratio is too high, the thickness of the foam decreases, which may lead to a decrease in the mechanical strength of the foam. FIG. 2 is a schematic diagram showing a method of uniaxially stretching an open-cell foam in the plane direction. The open-cell foam 4 is stretched by passing through the guide roll 1 and passing through a roll system having different rotational speeds. Here, when the rotational speed of the roll 5 is Vl and the rotational speed of the roll 6 is V2, the stretching ratio is calculated by the following formula. v1 The third method of the present invention is a method of continuously compressing with two rolls to a compression ratio of 50% or more and stretching in the plane direction by 1% or more. The combination of compression and stretching carried out in the present invention is carried out within the above-mentioned range in order to greatly enhance the effect of improving the degree of cell connectivity in one step. FIG. 3 is a schematic diagram illustrating a method of combining compression and stretching. The open-cell foam 4 passes through a guide roll 1 and is compressed in the thickness direction between two compression rolls 2 and 2', and then stretched by a stretching roll system 7. Although the film may be stretched and then compressed, from the viewpoint of efficiency, it is preferable to perform a stretching process subsequent to the compression process. The compression and stretching carried out in the present invention are carried out at least at a temperature below the softening temperature of the olefin resin used in the open-cell foam, preferably below 40°C. If the degree of dryness is near or above the softening temperature of the resin, the foam will stretch or the bubbles will be destroyed by fusion. Additionally, the method of the present invention can be efficiently carried out in a consistent, continuous process. For example, the composite is continuously extruded into a sheet from an extruder, transferred onto a support made of an endless belt, heated and foamed in a heating furnace, and after cooling,
Continuous production is possible by subjecting the open-cell foam peeled from the support to subsequent compression and/or stretching with two rolls. [Function] The olefin resin open-cell foam composition is molded into a sheet using an extruder, etc., heated above the decomposition temperature of the blowing agent to foam, and cooled to produce a uniform and good open-cell foam. It is possible to obtain. However, the communication of the cells in this foam is mainly only in the surface direction, and there is almost no communication between the cells in the thickness direction, and even though the cells are open, it cannot be said to be perfect. However, by compressing or stretching the open-cell foam using rolls, or compressing and stretching at the same time, the continuity of the cells is improved, and good communication of the cells can be obtained in the thickness direction. As a result, a good open-cell foam with one cell communicating in all directions is obtained. Moreover, the hardness of the open-cell foam obtained by performing the above operation is stable, and the change in hardness during use is very small. [Example] The present invention will be specifically described below with reference to Examples and Comparative Examples. [Example 1] Melt index MI is 7.0, acetic acid content is 6% by weight
100 parts by weight of ethylene-vinyl acetate copolymer, 8 parts by weight of azodicarbonamide, 2 parts by weight of urea, and 2 parts by weight of zinc oxide.
2 parts by weight of α-refin modified surfactant (50% silicone modified with C, H2) were mixed in a roll mill at 110° C. and pelletized. This pellet is made into a thickness of 0.5mm using a 50mm extruder.
This sheet was molded into a sheet with a width of 500 mm, and this sheet was continuously introduced into a foaming machine equipped with an endless belt made of polytetrafluoroethylene and a heating furnace, and heated to 200° C. to perform foaming. After cooling, the thickness is 8 mm and the expansion ratio is 1 sec/
g. A long open-cell foam with a white, uniform cell structure and a width of 500 mm was prepared. Next, this open cell foam was passed between two rolls with a roll diameter of 150 mm and a roll spacing of 2 mm (compression ratio 75%) to perform compression once or several times. [Example 2] The open-cell foam prepared in Example 1 was stretched at a stretching rate of 20 using a uniaxial stretching machine having a roll arrangement as shown in FIG.
%. Table 1 shows the physical properties of the open-cell foam prepared in Example 1, the open-cell foam after one compression at a compression ratio of 75%, and the open-cell foam after stretching at a stretching ratio of 20%. Show all at once. The method for measuring each physical property was in accordance with JIS. FIG. 4 shows the relationship between the number of compressions and the air permeability according to Example 1. FIG. 5 shows the relationship between the number of compressions and the compressive strength according to Example 1. (The following is a blank space) As is clear from Table 1, it can be seen that by compression or stretching, the air permeability in the thickness direction was developed, the 50% compressive strength was reduced, and the flexibility was increased. Also, from Figure 4, the number of compressions is about 1 or 2,
It can be seen that the air permeability in the thickness direction is improved by increasing the thickness. Furthermore, from Fig. 5, the number of compressions is about 1 or 2 times,
It can be seen that the compressive strength is stably improved. [Comparative Example 1] The open-cell foam prepared in Example 1 was rolled into a roll with a diameter of 150 m.
Compression was performed several times with a roll spacing of 5 mm (compression ratio = 37.5%), but since the compression ratio was small, little improvement in air permeability was observed. [Comparative Example 2] When the open-cell foam prepared in Example 1 was stretched at a stretching rate of 150% using the same uniaxial stretching machine as in Example 2, the air permeability was significantly improved; The thickness of the foam was reduced by about half. [Effects of the Invention] According to the present invention, an open-cell olefin resin foam having excellent air permeability in both the planar direction and the thickness direction and stable compressive strength is provided. This open-cell foam has excellent water absorption, weather resistance, and water resistance, is flexible, has good compression recovery, and has excellent texture, so it can be used as a cushioning material, heat insulation material, sound absorption material, etc.
Used as a filter material, etc.
第1図ないし第3図は、本発明の製造方法の実施態様を
示す図である。第4図は、圧縮回数と厚味方向の通気度
との関係を示す図であり、第5図は、圧縮回数と50%
圧縮強度との関係を示す図である。
l:ガイドロール、 2.2’ :圧縮ロール、3:引
き取りロール、4:連続気泡発泡体、5,6,7:延伸
ロール1 to 3 are diagrams showing embodiments of the manufacturing method of the present invention. Figure 4 is a diagram showing the relationship between the number of compressions and the air permeability in the thickness direction, and Figure 5 is a diagram showing the relationship between the number of compressions and the air permeability in the thickness direction.
It is a figure showing the relationship with compressive strength. 1: Guide roll, 2.2': Compression roll, 3: Take-up roll, 4: Open-cell foam, 5, 6, 7: Stretching roll
Claims (4)
ト状に成型し、これを加熱、発泡し、冷却して得られた
オレフィン系樹脂連続気泡発泡体を2本のロールで圧縮
率50%以上に連続的に圧縮することを特徴とする連続
気泡率の高いオレフィン系樹脂連続気泡発泡体の製造方
法。(1) Molding the composition for open-cell olefin resin foam into a sheet, heating, foaming, and cooling the resulting open-cell olefin resin foam with two rolls at a compression rate of 50%. A method for producing an open-cell olefin resin foam with a high open-cell ratio, characterized by continuous compression as described above.
ト状に成型し、これを加熱、発泡し、冷却して得られた
オレフィン系樹脂連続気泡発泡体を面方向に1%以上延
伸することを特徴とする連続気泡率の高いオレフィン系
樹脂連続気泡発泡体の製造方法。(2) Molding the composition for open-cell olefin resin foam into a sheet shape, heating, foaming, and cooling the resulting open-cell olefin resin foam, and stretching the resulting open-cell olefin resin foam by 1% or more in the plane direction. A method for producing an open-cell olefin resin foam having a high open-cell ratio.
ト状に成型し、これを加熱、発泡し、冷却して得られた
オレフィン樹脂連続気泡発泡体を2本のロールで圧縮率
50%以上に連続的に圧縮するとともに、面方向に1%
以上延伸することを特徴とする連続気泡率の高いオレフ
ィン系樹脂連続気泡発泡体の製造方法。(3) Molding the composition for open-cell olefin resin foam into a sheet, heating, foaming, and cooling the resulting open-cell olefin resin foam with two rolls at a compression ratio of 50% or more Continuously compressed to 1% in the surface direction
A method for producing an open-cell olefin resin foam having a high open-cell ratio, the method comprising stretching as described above.
する工程を、シート成型工程、加熱発泡工程および冷却
工程に続いて連続的に行なう請求項1ないし3のいずれ
か1項記載の製造方法。(4) The manufacturing method according to any one of claims 1 to 3, wherein the step of compressing with two rolls and/or the step of stretching is performed continuously following the sheet forming step, the heating foaming step, and the cooling step. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1312434A JPH03169622A (en) | 1989-11-30 | 1989-11-30 | Production of open cell foam of olefin-based resin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1312434A JPH03169622A (en) | 1989-11-30 | 1989-11-30 | Production of open cell foam of olefin-based resin |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03169622A true JPH03169622A (en) | 1991-07-23 |
Family
ID=18029161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1312434A Pending JPH03169622A (en) | 1989-11-30 | 1989-11-30 | Production of open cell foam of olefin-based resin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03169622A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5700407A (en) * | 1995-02-14 | 1997-12-23 | Branger; Robert Michael | Molded polymeric foam preparation method |
US6103154A (en) * | 1998-02-27 | 2000-08-15 | Reebok International Ltd. | Method of molding cross-linked foamed compositions |
DE19840203B4 (en) * | 1998-09-03 | 2008-06-26 | Alveo Ag | Process for producing squeezed polyolefin foam |
JP2010185086A (en) * | 2003-04-11 | 2010-08-26 | Sekisui Chem Co Ltd | Foamed sheet of crosslinked polyolefin resin and adhesive tape |
JP2017066403A (en) * | 2015-09-29 | 2017-04-06 | 積水化学工業株式会社 | Polyolefin resin foamed sheet and adhesive tape |
JP2017066404A (en) * | 2015-09-29 | 2017-04-06 | 積水化学工業株式会社 | Polyolefin resin foamed sheet and adhesive tape |
US11352525B2 (en) | 2015-09-29 | 2022-06-07 | Sekisui Chemical Co., Ltd. | Polyolefin resin foamed sheet and adhesive tape |
-
1989
- 1989-11-30 JP JP1312434A patent/JPH03169622A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5700407A (en) * | 1995-02-14 | 1997-12-23 | Branger; Robert Michael | Molded polymeric foam preparation method |
US6103154A (en) * | 1998-02-27 | 2000-08-15 | Reebok International Ltd. | Method of molding cross-linked foamed compositions |
DE19840203B4 (en) * | 1998-09-03 | 2008-06-26 | Alveo Ag | Process for producing squeezed polyolefin foam |
JP2010185086A (en) * | 2003-04-11 | 2010-08-26 | Sekisui Chem Co Ltd | Foamed sheet of crosslinked polyolefin resin and adhesive tape |
JP2017066403A (en) * | 2015-09-29 | 2017-04-06 | 積水化学工業株式会社 | Polyolefin resin foamed sheet and adhesive tape |
JP2017066404A (en) * | 2015-09-29 | 2017-04-06 | 積水化学工業株式会社 | Polyolefin resin foamed sheet and adhesive tape |
JP2019070156A (en) * | 2015-09-29 | 2019-05-09 | 積水化学工業株式会社 | Polyolefin resin foamed sheet and adhesive tape |
JP2019085576A (en) * | 2015-09-29 | 2019-06-06 | 積水化学工業株式会社 | Polyolefin resin foamed sheet and adhesive tape |
US11352525B2 (en) | 2015-09-29 | 2022-06-07 | Sekisui Chemical Co., Ltd. | Polyolefin resin foamed sheet and adhesive tape |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3314358B2 (en) | Polystyrene foam and method for producing the same | |
JP4036601B2 (en) | Polyolefin resin foam and method for producing the same | |
JPH10500151A (en) | Closed cell low density ethylene polymer foam | |
ES2337613T3 (en) | MIXTURES OF ETHYLENE POLYMERS WITH IMPROVED MODULE AND RESISTANCE OF THE CAST AND ARTICLES MANUFACTURED FROM THESE MIXTURES. | |
JP5410221B2 (en) | Polypropylene resin foam | |
JPH03169622A (en) | Production of open cell foam of olefin-based resin | |
JP5863531B2 (en) | Polyethylene resin composition for foaming and polyethylene resin foam sheet | |
JP2002275298A (en) | Open-cell foam of polyethylene resin composition | |
JP2001353763A (en) | Polyolefin resin open cell foam extrusion foamed sheet | |
EP1647384B1 (en) | Combined compression and shearing process for the production of a crushed polyolefin foam and product obtained thereby | |
JP3279498B2 (en) | Composite thermoplastic resin foam sheet | |
JP4237883B2 (en) | Method for producing cross-linked olefin resin open cell foam | |
JP2000033647A (en) | Production of thermoplastic resin sheet-like material | |
JP4782306B2 (en) | Open-cell cross-linked polyolefin foam and method for producing the same | |
WO2021220967A1 (en) | Polyolefin resin foam sheet and laminate | |
JPH10166425A (en) | Monoaxially orineted foamed body of propylene based resin | |
CN110900937B (en) | Manufacturing method of anti-static foamed pearl cotton | |
US6083999A (en) | Process for the preparation of a super lightweight foamed sheet | |
JPH0259331A (en) | Manufacture of composite film having water proofing property and air permeability | |
JP2634263B2 (en) | Method for producing olefin-based resin open-cell foam | |
JPH0241223A (en) | Porous sheet and manufacture thereof | |
JP3162237B2 (en) | Method for producing thick foamed synthetic resin sheet | |
WO1995002632B1 (en) | Ethylene polymer foams blown with isobutane | |
JPS62218428A (en) | Moisture-permeable film and its production | |
JPS599571B2 (en) | Method for producing polyolefin foam |