JP2001298293A - Cooling device of integrated circuit - Google Patents

Cooling device of integrated circuit

Info

Publication number
JP2001298293A
JP2001298293A JP2000111789A JP2000111789A JP2001298293A JP 2001298293 A JP2001298293 A JP 2001298293A JP 2000111789 A JP2000111789 A JP 2000111789A JP 2000111789 A JP2000111789 A JP 2000111789A JP 2001298293 A JP2001298293 A JP 2001298293A
Authority
JP
Japan
Prior art keywords
integrated circuit
cooling
cooling device
cooler
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000111789A
Other languages
Japanese (ja)
Inventor
Masanori Kobayashi
正則 小林
Takao Yoshimura
多佳雄 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP2000111789A priority Critical patent/JP2001298293A/en
Publication of JP2001298293A publication Critical patent/JP2001298293A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/006Thermal coupling structure or interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent degradation in reliability of an electronic apparatus, related to a cooling device of an integrated circuit used for the electronic apparatus, by preventing dewing at the integrated circuit or other low-temperature member even when the integrated circuit is cooled below a room temperature. SOLUTION: There are provided an electronic apparatus comprising an integrated circuit and the like, a cooling unit 8 for cooling the integrated circuit 10, and a heat-insulating material 21 for enclosing the integrated circuit 10 and a low-temperature part of the cooling unit. Thus, unstable calculation due to overheat of the integrated circuit 10 and dewing when the integrated circuit are cooled below a room temperature is avoided, preventing degradation of reliability.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子機器に使用さ
れる集積回路の冷却装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling device for an integrated circuit used in electronic equipment.

【0002】[0002]

【従来の技術】従来の集積回路の冷却装置に関しては、
特開平5−299548号公報に記載されているものが
知られている。
2. Description of the Related Art With respect to a conventional cooling device for an integrated circuit,
The one described in JP-A-5-299548 is known.

【0003】以下図面を参照しながら上記従来の集積回
路の冷却装置について説明する。
A conventional cooling device for an integrated circuit will be described below with reference to the drawings.

【0004】従来の集積回路の冷却装置の構成を図8に
示す。図8において、1は集積回路の冷却装置であり、
冷却媒体2を封入して送風管3により接続された熱交換
器4、送風機5、制御弁6、筐体7と冷凍機8からな
る。
FIG. 8 shows a configuration of a conventional cooling device for an integrated circuit. In FIG. 8, reference numeral 1 denotes a cooling device for an integrated circuit,
It comprises a heat exchanger 4, a blower 5, a control valve 6, a housing 7, and a refrigerator 8, which are connected by a blower tube 3 with the cooling medium 2 sealed therein.

【0005】筐体7の内部には、絶縁基板9上の配線
(図示せず)に半田付けされた集積回路10が収納さ
れ、集積回路10から筐体7の外部に演算信号を入出力
可能に接続されている。熱交換器4の内部には、冷凍機
8の冷却コイル8aが収納されている。
[0005] Inside the housing 7, an integrated circuit 10 soldered to wiring (not shown) on the insulating substrate 9 is accommodated, and arithmetic signals can be input / output from the integrated circuit 10 to the outside of the housing 7. It is connected to the. Inside the heat exchanger 4, a cooling coil 8a of the refrigerator 8 is housed.

【0006】以上のように構成された集積回路の冷却装
置1について、以下その動作について説明する。
The operation of the cooling device 1 for an integrated circuit configured as described above will be described below.

【0007】冷却媒体2は、熱交換器4内で冷凍機8の
冷却コイル8aにより低温に冷却される。冷却された冷
却媒体2は、送風管3から送風機5と制御弁6で流量を
調節されて筐体7内部に送風され、さらに集積回路10
近傍に噴出される。噴出された冷却媒体2は、演算実行
により発熱した集積回路10の熱を吸熱・冷却した後、
熱交換器4に戻される。
[0007] The cooling medium 2 is cooled to a low temperature in the heat exchanger 4 by the cooling coil 8 a of the refrigerator 8. The cooled cooling medium 2 is blown into the housing 7 by adjusting the flow rate from the blower pipe 3 by the blower 5 and the control valve 6, and further blown into the integrated circuit 10.
Squirted nearby. The jetted cooling medium 2 absorbs and cools the heat of the integrated circuit 10 that has generated heat by performing the operation,
It is returned to the heat exchanger 4.

【0008】[0008]

【発明が解決しようとする課題】しかしながら上記従来
の構成では、集積回路10を室温以下に冷却すると低温
部材に結露が生じ電子機器の信頼性が低下する可能性が
あった。
However, in the above-mentioned conventional configuration, when the integrated circuit 10 is cooled to a temperature lower than room temperature, there is a possibility that dew may be formed on the low-temperature member and the reliability of the electronic device may be reduced.

【0009】本発明は従来の課題を解決するもので、集
積回路を室温以下に冷却しても低温部材に結露が生じな
い集積回路の冷却装置を提供することを目的とする。
An object of the present invention is to solve the conventional problem, and an object of the present invention is to provide a cooling device for an integrated circuit in which condensation does not occur on a low-temperature member even when the integrated circuit is cooled to room temperature or lower.

【0010】また上記従来の構成では、気体の冷却媒体
2による対流熱伝達で集積回路10の冷却を行っている
ため、熱伝達率が小さいことから冷却効率が低下した
り、冷却フィンが大型化する可能性があった。
Further, in the above-mentioned conventional configuration, since the integrated circuit 10 is cooled by convective heat transfer by the gaseous cooling medium 2, the cooling efficiency is reduced due to a small heat transfer coefficient, and the size of the cooling fins is increased. Could be.

【0011】本発明の他の目的は、蒸気圧縮式冷凍サイ
クルの蒸発器で沸騰熱伝達を活用して集積回路を冷却す
ることにより、小型で効率よく冷却できる集積回路の冷
却装置を提供することを目的とする。
Another object of the present invention is to provide a small and efficient cooling device for an integrated circuit, which cools an integrated circuit by utilizing boiling heat transfer in an evaporator of a vapor compression refrigeration cycle. With the goal.

【0012】また上記従来の構成では、集積回路10の
発熱面積が小さいため、演算負荷が増大して発熱量が増
大した場合に冷却能力が不足したり、効率が悪くなる可
能性があった。
Further, in the above-described conventional configuration, since the heat generation area of the integrated circuit 10 is small, there is a possibility that the cooling capacity becomes insufficient or the efficiency becomes poor when the calculation load increases and the heat generation increases.

【0013】本発明の他の目的は、蒸気圧縮式冷凍サイ
クルの冷媒を二酸化炭素とすることで、配管径を大幅に
細くした小型蒸発器で効率良く冷却することを目的とす
る。
Another object of the present invention is to use a carbon dioxide refrigerant as a refrigerant in a vapor compression refrigeration cycle and to efficiently cool the refrigerant with a small evaporator having a significantly reduced pipe diameter.

【0014】また上記従来の構成では、集積回路10を
超低温域まで冷却して演算速度を向上させるためには、
液体窒素等の冷却液を用いて冷却をおこなうため、設備
が大型化すると共に、冷却液を供給し続けるため運転コ
ストが高かった。
Further, in the above-mentioned conventional configuration, in order to cool the integrated circuit 10 to a very low temperature range and improve the operation speed,
Since the cooling is performed using a cooling liquid such as liquid nitrogen, the equipment becomes large, and the operation cost is high because the cooling liquid is continuously supplied.

【0015】本発明の他の目的は、液体窒素等の冷却液
を用いることなく集積回路10を超低温域まで冷却で
き、メンテナンスフリーで長期間の連続高速演算ができ
ることを目的とする。
Another object of the present invention is to cool the integrated circuit 10 to a very low temperature range without using a cooling liquid such as liquid nitrogen, and to perform maintenance-free continuous high-speed operation for a long period of time.

【0016】また上記従来の構成では、集積回路10の
発熱量の増大に対応して冷却媒体2の噴出量を増大する
と、集積回路10の振動が大きくなり、振動に起因する
信号ノイズの発生等、信頼性が低下する可能性があっ
た。
In the above-described conventional configuration, when the amount of the cooling medium 2 ejected in response to the increase in the amount of heat generated by the integrated circuit 10 increases, the vibration of the integrated circuit 10 increases, and the generation of signal noise caused by the vibration, etc. , There is a possibility that the reliability is reduced.

【0017】本発明の他の目的は、振動に起因する信号
ノイズの発生を回避し、信頼性の低下を防止することで
ある。
It is another object of the present invention to avoid the occurrence of signal noise due to vibration and to prevent a decrease in reliability.

【0018】[0018]

【課題を解決するための手段】この目的を達成するため
本発明は、集積回路等から構成される電子機器と、前記
集積回路を冷却する冷却器と、前記集積回路と前記冷却
器の低温部の周囲を囲う断熱材とから成る。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides an electronic device including an integrated circuit, a cooler for cooling the integrated circuit, and a low-temperature section of the integrated circuit and the cooler. And heat insulating material surrounding the periphery of the object.

【0019】これにより、集積回路を室温以下に冷却し
ても断熱材の外側の壁面温度が露点温度以上に保つこと
ができるため、結露を回避でき、信頼性を向上できる。
As a result, even if the integrated circuit is cooled to a room temperature or lower, the temperature of the outer wall surface of the heat insulating material can be maintained at the dew point temperature or higher, so that dew condensation can be avoided and reliability can be improved.

【0020】また、本発明は、集積回路等から構成され
る電子機器と、前記集積回路を冷却する冷却器と、前記
集積回路と前記冷却器の低温部を収納した密閉空間を有
する密閉ケーシングとから成る。
According to another aspect of the present invention, there is provided an electronic device comprising an integrated circuit or the like, a cooler for cooling the integrated circuit, a closed casing having a closed space containing the integrated circuit and a low-temperature portion of the cooler. Consists of

【0021】これにより、密閉空間内の集積回路を室温
以下に冷却しても密閉空間内に含まれる僅かな水蒸気の
結露しか発生せず、信頼性の低下を防止できる。
As a result, even if the integrated circuit in the closed space is cooled to room temperature or lower, only a small amount of dew condensation of the water vapor contained in the closed space occurs, thereby preventing a reduction in reliability.

【0022】また、本発明は、密閉空間が真空である。In the present invention, the closed space is a vacuum.

【0023】これにより、集積回路を室温以下に冷却し
ても真空断熱されるため結露を回避でき、信頼性を向上
できる。
Thus, even if the integrated circuit is cooled to a room temperature or lower, vacuum insulation is provided so that dew condensation can be avoided and reliability can be improved.

【0024】また、本発明は、冷却器が、蒸発器、凝縮
器、減圧器および圧縮機からなる蒸気圧縮式冷凍サイク
ルを形成して前記蒸発器が前記集積回路と接触して冷却
する集積回路の冷却装置である。
Further, according to the present invention, there is provided an integrated circuit in which a cooler forms a vapor compression refrigeration cycle including an evaporator, a condenser, a decompressor and a compressor, and the evaporator comes into contact with the integrated circuit to cool the integrated circuit. Cooling device.

【0025】これにより、蒸気圧縮式冷凍サイクルの蒸
発器で沸騰熱伝達を活用して集積回路を効率よく冷却で
きる。
Thus, the integrated circuit can be efficiently cooled by utilizing the boiling heat transfer in the evaporator of the vapor compression refrigeration cycle.

【0026】また、本発明は、集積回路を冷却する冷却
器が、二酸化炭素を冷媒とする冷凍サイクルである集積
回路の冷却装置である。
Further, the present invention is a cooling device for an integrated circuit, wherein the cooler for cooling the integrated circuit is a refrigeration cycle using carbon dioxide as a refrigerant.

【0027】これにより、蒸気圧縮式冷凍サイクルの冷
媒を二酸化炭素とすることで、配管径を大幅に細くした
小型蒸発器で、発熱面積の小さい集積回路を効率良く冷
却できる。
Thus, by using carbon dioxide as the refrigerant of the vapor compression refrigeration cycle, it is possible to efficiently cool an integrated circuit having a small heat generating area with a small evaporator having a significantly reduced pipe diameter.

【0028】また、本発明は、集積回路を冷却する冷却
器がスターリング冷凍機である集積回路の冷却装置であ
る。
Further, the present invention is a cooling device for an integrated circuit, wherein the cooler for cooling the integrated circuit is a Stirling refrigerator.

【0029】これにより、液体窒素等の冷却液を用いる
ことなく集積回路を超低温域まで冷却でき、メンテナン
スフリーで長期間の連続高速演算ができる。
As a result, the integrated circuit can be cooled to an extremely low temperature range without using a cooling liquid such as liquid nitrogen or the like, and long-term continuous high-speed operation can be performed without maintenance.

【0030】また、本発明は、集積回路を冷却する冷却
器がパルスチューブ冷凍機である集積回路の冷却装置で
ある。
Further, the present invention is a cooling device for an integrated circuit, wherein the cooler for cooling the integrated circuit is a pulse tube refrigerator.

【0031】これにより、集積回路を超低温域まで冷却
でき、メンテナンスフリーで長期間の連続高速演算がで
きると共に、低温部に可動部が無いため振動に起因する
信号ノイズの発生を回避でき、信頼性を向上できる。
As a result, the integrated circuit can be cooled to an extremely low temperature range, maintenance-free, long-term continuous high-speed operation can be performed, and since there is no movable portion in the low temperature portion, generation of signal noise due to vibration can be avoided, and reliability can be reduced. Can be improved.

【0032】[0032]

【発明の実施の形態】本発明の請求項1に記載の発明
は、この目的を達成するため、集積回路等から構成され
る電子機器と、前記集積回路を冷却する冷却器と、前記
集積回路と前記冷却器の低温部の周囲を囲う断熱材を備
えたものであり、集積回路を室温以下に冷却しても、断
熱材により集積回路と冷却器の低温部及び断熱材内の雰
囲気空気が低温に保たれるため、集積回路等の電子部品
は結露しないという作用を有する。
According to the first aspect of the present invention, there is provided an electronic apparatus including an integrated circuit, a cooler for cooling the integrated circuit, and the integrated circuit. And a heat insulator surrounding the low-temperature portion of the cooler. Even if the integrated circuit is cooled to a room temperature or less, the heat insulating material causes the low-temperature portion of the integrated circuit and the cooler and the atmosphere air in the heat insulator. Since the temperature is kept low, electronic components such as integrated circuits have an effect of preventing condensation.

【0033】本発明の請求項2に記載の発明は、集積回
路等から構成される電子機器と、前記集積回路を冷却す
る冷却器と、前記集積回路と前記冷却器の低温部を収納
した密閉空間を有する密閉ケーシングとを備えたもので
あり、密閉空間内の集積回路を室温以下に冷却しても密
閉空間内に含まれる僅かな水蒸気の結露しか発生せず、
信頼性の低下を防止できるという作用を有する。
According to a second aspect of the present invention, there is provided an electronic apparatus including an integrated circuit, a cooler for cooling the integrated circuit, and a hermetically sealed housing containing the integrated circuit and a low-temperature portion of the cooler. And a closed casing having a space, even if the integrated circuit in the closed space is cooled to room temperature or less, only slight condensation of water vapor contained in the closed space is generated,
This has the effect of preventing a decrease in reliability.

【0034】本発明の請求項3に記載の発明は、請求項
2に記載の発明において密閉空間を真空にしたものであ
り、集積回路を室温以下に冷却しても真空である密閉空
間内は結露せず、密閉空間の外側も真空断熱により断熱
されるため結露しない。従って、集積回路等の電子部品
の信頼性の低下を防止できるという作用を有する。
According to a third aspect of the present invention, in the second aspect, the closed space is evacuated. Even when the integrated circuit is cooled to a room temperature or lower, the inside of the closed space remains vacuum. There is no condensation, and the outside of the closed space is also insulated by vacuum insulation, so there is no condensation. Therefore, there is an effect that the reliability of electronic components such as integrated circuits can be prevented from lowering.

【0035】本発明の請求項4に記載の発明は、請求項
1から請求項3のいずれかに記載の発明において冷却器
が、蒸発器、凝縮器、減圧器および圧縮機からなる蒸気
圧縮式冷凍サイクルを形成して冷却するものであり、蒸
気圧縮式冷凍サイクルの蒸発器で沸騰熱伝達を活用して
集積回路を効率よく冷却できるため、演算速度が増大し
信頼性が向上するという作用を有する。
[0035] According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, the cooler is a vapor compression type comprising an evaporator, a condenser, a decompressor and a compressor. It forms a refrigeration cycle and cools it.Evaporators in a vapor compression refrigeration cycle can efficiently cool an integrated circuit by utilizing boiling heat transfer, increasing the operation speed and improving reliability. Have.

【0036】本発明の請求項5に記載の発明は、請求項
4記載の発明において集積回路を冷却する冷却器が、二
酸化炭素を冷媒とする冷凍サイクルであり、冷媒を二酸
化炭素とすることで、配管径を大幅に細くした小型蒸発
器で、発熱面積の小さい集積回路を効率良く冷却できる
という作用を有する。
According to a fifth aspect of the present invention, in the fourth aspect, the cooler for cooling the integrated circuit is a refrigeration cycle using carbon dioxide as a refrigerant. A small evaporator having a significantly reduced pipe diameter has an effect of efficiently cooling an integrated circuit having a small heat generating area.

【0037】本発明の請求項6に記載の発明は、請求項
1から請求項3のいずれかに記載の発明において集積回
路を冷却する冷却器がスターリング冷凍機であり、スタ
ーリング冷凍機の冷却ヘッドで直接集積回路を冷却する
ことで液体窒素等の冷却液を用いることなく集積回路を
超低温域まで冷却でき、メンテナンスフリーで長期間の
連続高速演算ができるという作用を有する。
According to a sixth aspect of the present invention, in the invention according to any one of the first to third aspects, the cooler for cooling the integrated circuit is a Stirling refrigerator, and a cooling head of the Stirling refrigerator. By directly cooling the integrated circuit, the integrated circuit can be cooled to an extremely low temperature range without using a cooling liquid such as liquid nitrogen, and has an effect that maintenance-free continuous high-speed operation can be performed for a long period of time.

【0038】本発明の請求項7に記載の発明は、請求項
1から請求項3のいずれかに記載の発明において集積回
路を冷却する冷却器がパルスチューブ冷凍機であり、冷
凍機の冷却ヘッドで直接集積回路を超低温域まで冷却で
き、メンテナンスフリーで長期間の連続高速演算ができ
ると共に、冷凍機の低温部に可動部が無いため振動に起
因する信号ノイズの発生を回避でき、信頼性を向上でき
るという作用を有する。
According to a seventh aspect of the present invention, in the invention according to any one of the first to third aspects, the cooler for cooling the integrated circuit is a pulse tube refrigerator, and the cooling head of the refrigerator is provided. In this way, the integrated circuit can be cooled directly to the ultra-low temperature range, maintenance-free, long-term continuous high-speed operation can be performed, and since there is no moving part in the low-temperature part of the refrigerator, the generation of signal noise due to vibration can be avoided, and reliability is reduced. It has the effect of being able to improve.

【0039】[0039]

【実施例】以下、本発明による集積回路の冷却装置の実
施例について、図面を参照しながら説明する。なお、従
来と同一構成については、同一符号を付して詳細な説明
を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a cooling device for an integrated circuit according to the present invention will be described below with reference to the drawings. The same components as those in the related art are denoted by the same reference numerals, and detailed description is omitted.

【0040】(実施例1)図1は、本発明の実施例1に
よる集積回路の冷却装置の構成図である。図1におい
て、20は集積回路の冷却装置であり、冷却コイル8a
内の冷却水を冷却する冷凍機8と断熱材21からなる。
断熱材21の内部には、絶縁基板9上の配線(図示せ
ず)に半田付けされた集積回路10とその近傍に配置さ
れた冷却コイル8aが収納され、集積回路10は断熱材
21の外部の機器22に演算信号を入出力可能に接続さ
れている。
(Embodiment 1) FIG. 1 is a configuration diagram of a cooling device for an integrated circuit according to Embodiment 1 of the present invention. In FIG. 1, reference numeral 20 denotes a cooling device for an integrated circuit, and a cooling coil 8a
It comprises a refrigerator 8 for cooling the cooling water inside and a heat insulating material 21.
An integrated circuit 10 soldered to a wiring (not shown) on the insulating substrate 9 and a cooling coil 8a disposed near the integrated circuit 10 are housed inside the heat insulating material 21. The apparatus 22 is connected to input / output an arithmetic signal.

【0041】以上のように構成された集積回路の冷却装
置20について、以下その動作について説明する。
The operation of the cooling device 20 for an integrated circuit configured as described above will be described below.

【0042】冷却コイル8a内の冷却水は、冷凍機8に
より室温以下に冷却されて循環しており、冷凍機8から
冷却水が排出された後、断熱材21内の集積回路10近
傍を通過した後、冷凍機8に戻される。
The cooling water in the cooling coil 8a is circulated after being cooled to a room temperature or lower by the refrigerator 8, and after the cooling water is discharged from the refrigerator 8, it passes near the integrated circuit 10 in the heat insulating material 21. After that, it is returned to the refrigerator 8.

【0043】この時、断熱材21内で演算実行により発
熱している集積回路10は、冷却水に放熱し、常温以下
に冷却されて、過熱等により演算が不安定になることも
ない。また、集積回路10が室温以下に冷却された場合
においても断熱材21により断熱されて、断熱材21の
内部は低温に保たれ、外部は常温に保たれるため、集積
回路10や断熱材21の近傍の雰囲気空気が露点温度以
下に冷却されて結露することはない。
At this time, the integrated circuit 10 which is generating heat by performing the calculation in the heat insulating material 21 radiates heat to the cooling water and is cooled to a normal temperature or lower, and the calculation does not become unstable due to overheating or the like. Further, even when the integrated circuit 10 is cooled to a room temperature or lower, it is insulated by the heat insulating material 21 and the inside of the heat insulating material 21 is kept at a low temperature and the outside is kept at room temperature. Is cooled below the dew point temperature and does not condense.

【0044】従って、集積回路10の過熱により生じる
演算の不安定や、集積回路10を室温以下に冷却した時
の結露を回避でき、信頼性の低下を防止できる。
Accordingly, unstable operations caused by overheating of the integrated circuit 10 and dew condensation when the integrated circuit 10 is cooled to room temperature or lower can be avoided, and a decrease in reliability can be prevented.

【0045】以上のように本実施例の集積回路の冷却装
置は、集積回路等から構成される電子機器と、前記集積
回路を冷却する冷却器と、前記集積回路と前記冷却器の
低温部の周囲を囲う断熱材とを備えたので、集積回路1
0の過熱により生じる演算の不安定や、集積回路10を
室温以下に冷却した時の結露を回避でき、信頼性の低下
を防止できる。
As described above, the cooling device for an integrated circuit according to the present embodiment includes an electronic device including an integrated circuit, a cooler for cooling the integrated circuit, and a low-temperature portion of the integrated circuit and the cooler. With the heat insulating material surrounding the periphery, the integrated circuit 1
It is possible to avoid instability of calculation caused by overheating of 0 and dew condensation when the integrated circuit 10 is cooled to room temperature or lower, thereby preventing a decrease in reliability.

【0046】なお本実施例においては、集積回路の冷却
器として冷凍機で冷却した冷却水を用いたが、集積回路
を室温以下に冷却できれば本冷却方式以外の冷却器でも
良い。
In this embodiment, cooling water cooled by a refrigerator is used as a cooler for the integrated circuit. However, a cooler other than the main cooling method may be used as long as the integrated circuit can be cooled to room temperature or lower.

【0047】(実施例2)図2は、本発明の実施例2に
よる集積回路の冷却装置の構成図である。図2におい
て、23は密閉ケーシングであり、密閉空間24を有す
る。密閉空間24内には、絶縁基板9上の配線(図示せ
ず)に半田付けされた集積回路10とその近傍に配置さ
れた冷却コイル8aが収納され、集積回路10は密閉ケ
ーシング23の外部の機器22に演算信号を入出力可能
に接続されている。
(Embodiment 2) FIG. 2 is a configuration diagram of an integrated circuit cooling device according to Embodiment 2 of the present invention. In FIG. 2, reference numeral 23 denotes a closed casing, which has a closed space 24. In the closed space 24, an integrated circuit 10 soldered to wiring (not shown) on the insulating substrate 9 and a cooling coil 8a arranged in the vicinity thereof are accommodated. The operation signal is connected to the device 22 so that the operation signal can be input and output.

【0048】以上のように構成された集積回路の冷却装
置について、以下その動作について説明する。
The operation of the cooling device for an integrated circuit configured as described above will be described below.

【0049】冷却コイル8a内の冷却水は、冷凍機8に
より室温以下に冷却されて循環しており、冷凍機8から
冷却水が排出された後、密閉ケーシング23内の集積回
路10近傍を通過した後、冷凍機8に戻される。
The cooling water in the cooling coil 8a is circulated after being cooled by the refrigerator 8 to a temperature lower than room temperature. After the cooling water is discharged from the refrigerator 8, it passes near the integrated circuit 10 in the closed casing 23. After that, it is returned to the refrigerator 8.

【0050】この時、断熱材21内で演算実行により発
熱している集積回路10は、冷却水に放熱し、常温以下
に冷却されて、過熱等により演算が不安定になることも
ない。また、集積回路10が室温以下に冷却されて密閉
空間24内に結露が生じる条件が発生しても、密閉空間
24内に含まれる水蒸気が僅かであるため、ほとんど結
露は生じない。
At this time, the integrated circuit 10 that is generating heat by performing the operation in the heat insulating material 21 radiates heat to the cooling water and is cooled to a room temperature or lower, and the operation does not become unstable due to overheating or the like. Further, even if the condition where the integrated circuit 10 is cooled to a room temperature or less and dew condensation occurs in the sealed space 24 occurs, the dew condensation hardly occurs because the water vapor contained in the sealed space 24 is small.

【0051】従って、集積回路10の過熱により生じる
演算の不安定や、集積回路10を室温以下に冷却した時
の結露を回避でき、信頼性の低下を防止できる。
Accordingly, unstable operations caused by overheating of the integrated circuit 10 and dew condensation when the integrated circuit 10 is cooled to room temperature or lower can be avoided, and a decrease in reliability can be prevented.

【0052】以上のように本実施例の集積回路の冷却装
置は、集積回路等から構成される電子機器と、前記集積
回路を冷却する冷却器と、前記集積回路と前記冷却器の
低温部を収納した密閉空間を有する密閉ケーシングとを
備えたので、集積回路10の過熱により生じる演算の不
安定や、集積回路10を室温以下に冷却した時の結露を
回避でき、信頼性の低下を防止できる。
As described above, the cooling device for an integrated circuit according to the present embodiment includes an electronic device including an integrated circuit, a cooler for cooling the integrated circuit, and a low-temperature section of the integrated circuit and the cooler. The provision of the closed casing having the enclosed space accommodated therein prevents unstable operation caused by overheating of the integrated circuit 10 and dew condensation when the integrated circuit 10 is cooled to room temperature or lower, thereby preventing a reduction in reliability. .

【0053】なお本実施例においては、集積回路の冷却
器として冷凍機で冷却した冷却水を用いたが、集積回路
を室温以下に冷却できれば本冷却方式以外の冷却器でも
良い。
In this embodiment, cooling water cooled by a refrigerator is used as a cooler for the integrated circuit. However, a cooler other than the main cooling method may be used as long as the integrated circuit can be cooled to room temperature or lower.

【0054】また本実施例において、密閉空間内に乾燥
剤を入れたり、密閉ケーシングを封止する時に乾燥空気
や他の乾燥気体を封入して密閉空間内の水蒸気量を減ら
すことで、より結露し難くなることは結うまでも無い。 (実施例3)図3は、本発明の実施例3による集積回路
の冷却装置の構成図である。図3において、30は真空
の密閉空間であり、実施例2による集積回路の冷却装置
の密閉空間24を真空にしたものである。
Further, in the present embodiment, when a desiccant is put in the closed space, or when the closed casing is sealed, dry air or other dry gas is sealed to reduce the amount of water vapor in the closed space, so that more dew condensation can be achieved. Needless to say, it will not be difficult. (Embodiment 3) FIG. 3 is a configuration diagram of an integrated circuit cooling device according to Embodiment 3 of the present invention. In FIG. 3, reference numeral 30 denotes a vacuum sealed space, in which the sealed space 24 of the cooling device for an integrated circuit according to the second embodiment is evacuated.

【0055】以上のように構成された集積回路の冷却装
置について、以下その動作について説明する。
The operation of the cooling device for an integrated circuit configured as described above will be described below.

【0056】冷却コイル8a内の冷却水は、冷凍機8に
より室温以下に冷却されて循環しており、冷凍機8から
冷却水が排出された後、密閉ケーシング23内の集積回
路10近傍を通過した後、冷凍機8に戻される。
The cooling water in the cooling coil 8a is circulated after being cooled to below room temperature by the refrigerator 8, and after the cooling water is discharged from the refrigerator 8, it passes near the integrated circuit 10 in the closed casing 23. After that, it is returned to the refrigerator 8.

【0057】この時、断熱材21内で演算実行により発
熱している集積回路10は、冷却水に放熱し、常温以下
に冷却されて、過熱等により演算が不安定になることも
ない。また、集積回路10が室温以下に冷却されても、
密閉空間30内が真空のため結露する事はなく、密閉空
間30の外側も真空断熱により断熱されるため結露しな
い。
At this time, the integrated circuit 10 which is generating heat by performing the operation in the heat insulating material 21 radiates heat to the cooling water and is cooled to a room temperature or lower, and the operation does not become unstable due to overheating or the like. Further, even when the integrated circuit 10 is cooled to a room temperature or less,
There is no condensation in the closed space 30 due to the vacuum, and no condensation occurs because the outside of the closed space 30 is also insulated by the vacuum insulation.

【0058】従って、集積回路10の過熱により生じる
演算の不安定や、集積回路10を室温以下に冷却した時
の結露を回避でき、信頼性の低下を防止できる。
Accordingly, unstable operations caused by overheating of the integrated circuit 10 and dew condensation when the integrated circuit 10 is cooled to room temperature or lower can be avoided, and a decrease in reliability can be prevented.

【0059】以上のように本実施例の集積回路の冷却装
置は、密閉空間が真空である密閉ケーシングとを備えた
ので、集積回路10の過熱により生じる演算の不安定
や、集積回路10を室温以下に冷却した時の結露を回避
でき、信頼性の低下を防止できる。
As described above, the cooling device for an integrated circuit according to the present embodiment is provided with the closed casing in which the closed space is vacuum, so that the operation of the integrated circuit 10 becomes unstable due to overheating, In the following, dew condensation at the time of cooling can be avoided, and a decrease in reliability can be prevented.

【0060】なお本実施例においては、集積回路の冷却
器として冷凍機で冷却した冷却水を用いたが、集積回路
を室温以下に冷却できれば本冷却方式以外の冷却器でも
良い。 (実施例4)図4は、本発明の実施例4による集積回路
の冷却装置の構成図である。図4において、40は集積
回路の冷却装置であり、プレート型蒸発器41、凝縮器
42、減圧器43および圧縮機44が配管45により接
続され、冷媒を封入して蒸気圧縮式冷凍サイクルを形成
している。プレート型蒸発器41は、冷媒通路46を有
しており集積回路10に接触する様に配置されている。
この様に本実施例は、実施例1から実施例3による集積
回路の冷却装置の冷却器を、蒸気圧縮式冷凍サイクルに
したものである。
In this embodiment, cooling water cooled by a refrigerator is used as a cooler for the integrated circuit. However, a cooler other than the main cooling method may be used as long as the integrated circuit can be cooled to room temperature or lower. (Embodiment 4) FIG. 4 is a configuration diagram of an integrated circuit cooling device according to Embodiment 4 of the present invention. In FIG. 4, reference numeral 40 denotes an integrated circuit cooling device, in which a plate-type evaporator 41, a condenser 42, a decompressor 43, and a compressor 44 are connected by a pipe 45, and a refrigerant is sealed to form a vapor compression refrigeration cycle. are doing. The plate-type evaporator 41 has a refrigerant passage 46 and is arranged so as to be in contact with the integrated circuit 10.
As described above, in the present embodiment, the cooler of the integrated circuit cooling device according to the first to third embodiments is a vapor compression refrigeration cycle.

【0061】以上のように構成された集積回路の冷却装
置について、以下その動作について説明する。
The operation of the cooling device for an integrated circuit configured as described above will be described below.

【0062】圧縮機44によって圧縮された高圧ガス冷
媒は凝縮器42で放熱凝縮し、減圧器43で減圧され、
低圧液冷媒となってプレート型蒸発器41で集積回路1
0の演算実行により発生する熱を吸熱して蒸発する。こ
の時、プレート型蒸発器41の冷媒通路46内で沸騰熱
伝達で吸熱し、集積回路10を効率よく冷却できる。
The high-pressure gas refrigerant compressed by the compressor 44 is radiated and condensed by the condenser 42 and decompressed by the decompressor 43.
It becomes a low-pressure liquid refrigerant, and the integrated circuit 1 is
The heat generated by the execution of the calculation of 0 is absorbed and evaporated. At this time, heat is absorbed by boiling heat transfer in the refrigerant passage 46 of the plate type evaporator 41, and the integrated circuit 10 can be efficiently cooled.

【0063】以上のように本実施例の集積回路の冷却装
置は、冷却器が、蒸発器、凝縮器、減圧器および圧縮機
からなる蒸気圧縮式冷凍サイクルを形成し、前記蒸発器
が前記集積回路と接触して冷却するので、蒸気圧縮式冷
凍サイクルの蒸発器で沸騰熱伝達を活用して集積回路を
効率よく冷却できるため、演算速度が増大し信頼性が向
上する。 (実施例5)図5は、本発明の実施例5による集積回路
の冷却装置の構成図である。図5において、50は、二
酸化炭素を冷媒とする蒸気圧縮式冷凍サイクルの集積回
路の冷却装置であり、プレート型蒸発器51、凝縮器5
2、減圧器53および圧縮機54が配管55により接続
され、二酸化炭素冷媒を封入して蒸気圧縮式冷凍サイク
ルを形成している。プレート型蒸発器51は、冷媒通路
56を有しており集積回路10に接触する様に配置され
ている。この様に本実施例は、実施例4による集積回路
の冷却装置の蒸気圧縮式冷凍サイクルの冷媒を二酸化炭
素にしたものである。
As described above, in the cooling device for an integrated circuit according to this embodiment, the cooler forms a vapor compression refrigeration cycle including an evaporator, a condenser, a decompressor, and a compressor. Since cooling is performed in contact with the circuit, the integrated circuit can be efficiently cooled by utilizing the boiling heat transfer in the evaporator of the vapor compression refrigeration cycle, so that the operation speed is increased and the reliability is improved. (Embodiment 5) FIG. 5 is a configuration diagram of an integrated circuit cooling device according to Embodiment 5 of the present invention. In FIG. 5, reference numeral 50 denotes a cooling device for an integrated circuit of a vapor compression refrigeration cycle using carbon dioxide as a refrigerant.
2. The decompressor 53 and the compressor 54 are connected by a pipe 55, and form a vapor compression refrigeration cycle by filling a carbon dioxide refrigerant. The plate type evaporator 51 has a refrigerant passage 56 and is arranged so as to be in contact with the integrated circuit 10. As described above, in the present embodiment, the refrigerant in the vapor compression refrigeration cycle of the cooling device for an integrated circuit according to the fourth embodiment is carbon dioxide.

【0064】以上のように構成された集積回路の冷却装
置について、以下その動作について説明する。
The operation of the cooling device for an integrated circuit configured as described above will be described below.

【0065】圧縮機54によって圧縮された高圧ガスの
状態の二酸化炭素は凝縮器52で放熱凝縮し、減圧器5
3で減圧され、低圧液体の状態となってプレート型蒸発
器51で集積回路10の演算実行により発生する熱を吸
熱して蒸発する。
The carbon dioxide in the state of the high-pressure gas compressed by the compressor 54 is radiated and condensed in the condenser 52,
3, the pressure is reduced to a low-pressure liquid state, and the plate-type evaporator 51 absorbs heat generated by the arithmetic operation of the integrated circuit 10 to evaporate.

【0066】この時、プレート型蒸発器51は、冷媒通
路56内で沸騰熱伝達で吸熱して集積回路10を冷却す
るが、熱伝達率が大きく圧力損失が小さいとの二酸化炭
素冷媒の特性に応じたプレート型蒸発器51を適用する
ことで、より効率良い冷却が可能となる。
At this time, the plate-type evaporator 51 cools the integrated circuit 10 by absorbing heat by boiling heat transfer in the refrigerant passage 56. However, the plate-type evaporator 51 has characteristics of a carbon dioxide refrigerant having a large heat transfer coefficient and a small pressure loss. By applying the corresponding plate type evaporator 51, more efficient cooling becomes possible.

【0067】例えば、同じ寸法の蒸発器でHCFC22
冷媒と比較すると二酸化炭素冷媒は、熱伝達率は2倍で
圧力損失は5分の1である。すなわち、同じ熱交換性能
の蒸発器で大きさを比較すると二酸化炭素冷媒の方が大
幅に小型化可能であり、そのため発熱面積の小さい集積
回路をより効率良く冷却できる。
For example, in an evaporator of the same size, HCFC22
Compared to refrigerant, carbon dioxide refrigerant has twice the heat transfer coefficient and one-fifth the pressure loss. That is, comparing the sizes of the evaporators with the same heat exchange performance, the carbon dioxide refrigerant can be significantly reduced in size, so that an integrated circuit having a small heat generating area can be cooled more efficiently.

【0068】以上のように本実施例の集積回路の冷却装
置は、二酸化炭素を冷媒とする蒸気圧縮式冷凍サイクル
の集積回路の冷却装置であり、二酸化炭素冷媒の高熱伝
達率、低圧力損失との特性を適用した小型蒸発器を用い
ることができるため、発熱面積の小さい集積回路をより
効率良く冷却でき、演算速度が増大し信頼性が向上す
る。
As described above, the cooling device for an integrated circuit according to the present embodiment is a cooling device for an integrated circuit of a vapor compression refrigeration cycle using carbon dioxide as a refrigerant, and has a high heat transfer rate and a low pressure loss of a carbon dioxide refrigerant. Since a small evaporator to which the above characteristics are applied can be used, an integrated circuit having a small heat-generating area can be cooled more efficiently, the operation speed is increased, and the reliability is improved.

【0069】なお、本実施例ではプレート型蒸発器を用
いたが、集積回路を効率的に冷却できる蒸発器であれば
他形式のものでも良い。 (実施例6)図6は、本発明の実施例6による集積回路
の冷却装置の構成図である。図6において、60はスタ
ーリング冷凍機であり冷却ヘッド61が集積回路に接触
する様に配置されている。この様に本実施例は、実施例
1から実施例3による集積回路の冷却装置の冷却器を、
スターリング冷凍機にしたものである。
Although a plate-type evaporator is used in this embodiment, any other type of evaporator can be used as long as it can efficiently cool the integrated circuit. (Embodiment 6) FIG. 6 is a configuration diagram of an integrated circuit cooling device according to Embodiment 6 of the present invention. In FIG. 6, reference numeral 60 denotes a Stirling refrigerator, which is arranged such that a cooling head 61 contacts an integrated circuit. As described above, in the present embodiment, the cooler of the cooling device for the integrated circuit according to the first to third embodiments includes:
It is a Stirling refrigerator.

【0070】以上のように構成された集積回路の冷却装
置について、以下その動作について説明する。
The operation of the cooling device for an integrated circuit configured as described above will be described below.

【0071】スターリング冷凍機60は、その冷凍機内
部で逆スターリングサイクルを形成して冷却ヘッド61
を常温から最低温度4K程度の極低温域まで冷却でき
る。冷却された冷却ヘッド61は、集積回路10の演算
実行により発生する熱を吸熱して集積回路10を低温に
冷却できる。
The Stirling refrigerator 60 forms a reverse Stirling cycle inside the refrigerator, and
Can be cooled from room temperature to a very low temperature range of about 4K. The cooled cooling head 61 can cool the integrated circuit 10 to a low temperature by absorbing the heat generated by performing the operation of the integrated circuit 10.

【0072】従って、スターリング冷凍機の冷却ヘッド
61で直接集積回路を冷却することで液体窒素等の冷却
液を用いることなく集積回路を超低温域まで冷却でき、
メンテナンスフリーで長期間の連続高速演算ができる。
Therefore, by directly cooling the integrated circuit by the cooling head 61 of the Stirling refrigerator, the integrated circuit can be cooled to an extremely low temperature range without using a cooling liquid such as liquid nitrogen.
Maintenance-free, long-term continuous high-speed operation is possible.

【0073】以上のように本実施例の集積回路の冷却装
置は、集積回路の冷却装置の冷却器を、スターリング冷
凍機にしたものであり、スターリング冷凍機の冷却ヘッ
ド61で直接集積回路を冷却することで液体窒素等の冷
却液を用いることなく集積回路を超低温域まで冷却で
き、メンテナンスフリーで長期間の連続高速演算ができ
る。
As described above, the cooling device for an integrated circuit of this embodiment is such that the cooling device of the cooling device for the integrated circuit is a Stirling refrigerator, and the integrated circuit is directly cooled by the cooling head 61 of the Stirling refrigerator. By doing so, the integrated circuit can be cooled down to an ultra-low temperature range without using a cooling liquid such as liquid nitrogen or the like, and long-term continuous high-speed operation can be performed without maintenance.

【0074】なお本実施例では、スターリング冷凍機を
集積回路の下側に配置したが、冷却ヘッドが集積回路に
接触すればどの様な配置でも良い。 (実施例7)図7は、本発明の実施例7による集積回路
の冷却装置の構成図である。図7において、70はパル
スチューブ冷凍機であり冷却ヘッド71が集積回路に接
触する様に配置されている。この様に本実施例は、実施
例1から実施例3による集積回路の冷却装置の冷却器
を、パルスチューブ冷凍機にしたものである。
In this embodiment, the Stirling refrigerator is arranged below the integrated circuit. However, any arrangement may be used as long as the cooling head contacts the integrated circuit. (Embodiment 7) FIG. 7 is a configuration diagram of an integrated circuit cooling device according to Embodiment 7 of the present invention. In FIG. 7, reference numeral 70 denotes a pulse tube refrigerator, which is disposed so that a cooling head 71 contacts an integrated circuit. As described above, in this embodiment, the cooler of the integrated circuit cooling device according to the first to third embodiments is a pulse tube refrigerator.

【0075】以上のように構成された集積回路の冷却装
置について、以下その動作について説明する。
The operation of the cooling device for an integrated circuit configured as described above will be described below.

【0076】パルスチューブ冷凍機70は、その冷凍機
内部でパルスチューブ冷凍サイクルを形成して冷却ヘッ
ド71を常温から最低温度4K程度の極低温域まで冷却
できる。冷却された冷却ヘッド71は、集積回路10の
演算実行により発生する熱を吸熱して集積回路10を低
温に冷却できる。
The pulse tube refrigerator 70 forms a pulse tube refrigeration cycle inside the refrigerator, and can cool the cooling head 71 from a room temperature to an extremely low temperature range of about 4K minimum temperature. The cooled cooling head 71 can cool the integrated circuit 10 to a low temperature by absorbing heat generated by the execution of the operation of the integrated circuit 10.

【0077】従って、パルスチューブ冷凍機の冷却ヘッ
ド71で直接集積回路を冷却することで液体窒素等の冷
却液を用いることなく集積回路を超低温域まで冷却で
き、メンテナンスフリーで長期間の連続高速演算ができ
る。また、パルスチューブ冷凍機は、冷凍機の低温部に
可動部が無いため振動に起因する信号ノイズの発生を回
避でき、信頼性を向上できる。
Therefore, by directly cooling the integrated circuit by the cooling head 71 of the pulse tube refrigerator, the integrated circuit can be cooled to an ultra-low temperature range without using a cooling liquid such as liquid nitrogen, and is maintenance-free and has a long-term continuous high-speed operation. Can be. Further, in the pulse tube refrigerator, since there is no movable part in the low temperature part of the refrigerator, generation of signal noise due to vibration can be avoided, and reliability can be improved.

【0078】以上のように本実施例の集積回路の冷却装
置は、集積回路の冷却装置の冷却器を、パルスチューブ
冷凍機にしたものであり、パルスチューブ冷凍機の冷却
ヘッド71で直接集積回路を冷却することで液体窒素等
の冷却液を用いることなく集積回路を超低温域まで冷却
でき、メンテナンスフリーで長期間の連続高速演算がで
きると共に、冷凍機の低温部に可動部が無いため振動に
起因する信号ノイズの発生を回避でき、信頼性を向上で
きる。
As described above, the cooling device for an integrated circuit according to the present embodiment is such that the cooling device of the cooling device for the integrated circuit is a pulse tube refrigerator, and the integrated circuit is directly cooled by the cooling head 71 of the pulse tube refrigerator. Cooling the integrated circuit to an ultra-low temperature range without using a cooling liquid such as liquid nitrogen, maintenance-free, long-term continuous high-speed operation, and vibration due to no moving parts in the low-temperature part of the refrigerator. The occurrence of signal noise due to this can be avoided, and the reliability can be improved.

【0079】なお本実施例では、パルスチューブ冷凍機
を集積回路の下側に配置したが、冷却ヘッドが集積回路
に接触すればどの様な配置でも良い。
In this embodiment, the pulse tube refrigerator is arranged below the integrated circuit. However, any arrangement is possible as long as the cooling head contacts the integrated circuit.

【0080】[0080]

【発明の効果】以上説明したように請求項1に記載の発
明は、集積回路等から構成される電子機器と、前記集積
回路を冷却する冷却器と、前記集積回路と前記冷却器の
低温部の周囲を囲う断熱材とを備えることにより、集積
回路の過熱により生じる演算の不安定や、集積回路を室
温以下に冷却した時の結露を回避でき、信頼性の低下を
防止できる。
As described above, according to the first aspect of the present invention, there is provided an electronic apparatus including an integrated circuit, a cooler for cooling the integrated circuit, and a low-temperature section of the integrated circuit and the cooler. By providing a heat insulating material surrounding the periphery of the integrated circuit, it is possible to avoid unstable operations caused by overheating of the integrated circuit and dew condensation when the integrated circuit is cooled to room temperature or lower, thereby preventing a reduction in reliability.

【0081】また、請求項2に記載の発明は、集積回路
等から構成される電子機器と、前記集積回路を冷却する
冷却器と、前記集積回路と前記冷却器の低温部を収納し
た密閉空間を有する密閉ケーシングとを備えたので、集
積回路の過熱により生じる演算の不安定や、集積回路1
0を室温以下に冷却した時の密閉空間内の結露を回避で
き、信頼性の低下を防止できる。
According to a second aspect of the present invention, there is provided an electronic device including an integrated circuit, a cooler for cooling the integrated circuit, and a sealed space containing the integrated circuit and a low-temperature portion of the cooler. And the sealed casing having the
Dew condensation in the closed space when 0 is cooled to room temperature or less can be avoided, and a decrease in reliability can be prevented.

【0082】また、請求項3に記載の発明は、実施例2
による発明の密閉空間を真空にしたものであり、集積回
路が室温以下に冷却されても、密閉空間内が真空のため
結露する事はなく、密閉空間の外側も真空断熱により断
熱されて結露しないため、信頼性の低下を防止できる。
The third aspect of the present invention is directed to the second embodiment.
The closed space according to the invention is evacuated, and even if the integrated circuit is cooled to a room temperature or lower, the inside of the closed space is not vacuum-condensed even if the integrated circuit is cooled to room temperature or lower, and the outside of the closed space is also insulated by the vacuum insulation to prevent condensation Therefore, a decrease in reliability can be prevented.

【0083】また、請求項4に記載の発明は、実施例1
から実施例3による発明の冷却器が、蒸発器、凝縮器、
減圧器および圧縮機からなる蒸気圧縮式冷凍サイクルを
形成し、前記蒸発器が前記集積回路と接触して冷却する
ので、蒸気圧縮式冷凍サイクルの蒸発器で沸騰熱伝達を
活用して集積回路を効率よく冷却できるため、演算速度
が増大し信頼性を向上することができる。
The invention according to claim 4 is the same as that of the first embodiment.
To the evaporator, the condenser,
A vapor compression refrigeration cycle comprising a decompressor and a compressor is formed, and the evaporator contacts and cools the integrated circuit, so that the evaporator of the vapor compression refrigeration cycle utilizes the boiling heat transfer to form an integrated circuit. Since cooling can be performed efficiently, the calculation speed can be increased and the reliability can be improved.

【0084】また、請求項5に記載の発明は、請求項4
記載の発明において二酸化炭素を冷媒とする蒸気圧縮式
冷凍サイクルとしたものであり、二酸化炭素冷媒の高熱
伝達率、低圧力損失との特性を適用した小型蒸発器を用
いることができるため、発熱面積の小さい集積回路をよ
り効率良く冷却でき、演算速度が増大し信頼性を向上す
ることができる。
Further, the invention described in claim 5 is the same as claim 4
The present invention is a vapor compression refrigeration cycle in which carbon dioxide is used as a refrigerant in the described invention, and a small evaporator to which characteristics of high heat transfer coefficient and low pressure loss of carbon dioxide refrigerant can be used can be used. The integrated circuit having a small size can be cooled more efficiently, the operation speed can be increased, and the reliability can be improved.

【0085】また、請求項6に記載の発明は、実施例1
から実施例3による発明の冷却器を、スターリング冷凍
機にしたものであり、液体窒素等の冷却液を用いること
なく集積回路を超低温域まで冷却でき、メンテナンスフ
リーで長期間の連続高速演算ができる。
The invention according to claim 6 relates to the first embodiment.
The cooling device of the invention according to Embodiment 3 is a Stirling refrigerator, which can cool an integrated circuit to an ultra-low temperature range without using a cooling liquid such as liquid nitrogen, and can perform continuous high-speed operation for a long time without maintenance. .

【0086】また、請求項7に記載の発明は、実施例1
から実施例3による発明の冷却器をパルスチューブ冷凍
機にしたものであり、液体窒素等の冷却液を用いること
なく集積回路を超低温域まで冷却でき、メンテナンスフ
リーで長期間の連続高速演算ができると共に、冷凍機の
低温部に可動部が無いため振動に起因する信号ノイズの
発生を回避でき、信頼性を向上できる。
The invention described in claim 7 is the same as that of the first embodiment.
The pulse cooler of the invention according to the third embodiment is a pulse tube refrigerator. The integrated circuit can be cooled to an ultra-low temperature range without using a cooling liquid such as liquid nitrogen, and maintenance-free and long-term continuous high-speed operation can be performed. In addition, since there is no movable part in the low-temperature part of the refrigerator, it is possible to avoid the generation of signal noise due to vibration and improve the reliability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による集積回路の冷却装置の実施例1の
構成図
FIG. 1 is a configuration diagram of a first embodiment of an integrated circuit cooling device according to the present invention;

【図2】本発明による集積回路の冷却装置の実施例2の
構成図
FIG. 2 is a configuration diagram of an integrated circuit cooling device according to a second embodiment of the present invention;

【図3】本発明による集積回路の冷却装置の実施例3の
構成図
FIG. 3 is a configuration diagram of a third embodiment of an integrated circuit cooling device according to the present invention;

【図4】本発明による集積回路の冷却装置の実施例4の
構成図
FIG. 4 is a configuration diagram of an integrated circuit cooling device according to a fourth embodiment of the present invention;

【図5】本発明による集積回路の冷却装置の実施例5の
構成図
FIG. 5 is a configuration diagram of an integrated circuit cooling device according to a fifth embodiment of the present invention.

【図6】本発明による集積回路の冷却装置の実施例6の
構成図
FIG. 6 is a configuration diagram of Embodiment 6 of an integrated circuit cooling device according to the present invention.

【図7】本発明による集積回路の冷却装置の実施例7の
構成図
FIG. 7 is a configuration diagram of an integrated circuit cooling device according to a seventh embodiment of the present invention.

【図8】従来の集積回路の冷却装置の構成図FIG. 8 is a configuration diagram of a conventional integrated circuit cooling device.

【符号の説明】[Explanation of symbols]

8a 冷却器 10 集積回路 21 断熱材 23 密閉ケーシング 24 密閉空間 41 蒸発器 42 凝縮器 43 減圧器 44 圧縮機 60 スターリング冷凍機 70 パルスチューブ冷凍機 8a cooler 10 integrated circuit 21 heat insulating material 23 closed casing 24 closed space 41 evaporator 42 condenser 43 decompressor 44 compressor 60 Stirling refrigerator 70 pulse tube refrigerator

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F25B 9/14 520 F25B 9/14 520 H01L 23/473 H01L 23/46 Z Fターム(参考) 5E322 AA05 AB11 CA02 CA06 DB02 DB06 EA11 FA01 5F036 BA26 BA28 BB43 BB53 BB56 BB60 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F25B 9/14 520 F25B 9/14 520 H01L 23/473 H01L 23/46 Z F-term (Reference) 5E322 AA05 AB11 CA02 CA06 DB02 DB06 EA11 FA01 5F036 BA26 BA28 BB43 BB53 BB56 BB60

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 集積回路等から構成される電子機器と、
前記集積回路を冷却する冷却器と、前記集積回路と前記
冷却器の低温部の周囲を囲う断熱材とから成る集積回路
の冷却装置。
An electronic device comprising an integrated circuit or the like,
A cooling device for an integrated circuit, comprising: a cooler for cooling the integrated circuit; and a heat insulating material surrounding a periphery of a low temperature portion of the cooler.
【請求項2】 集積回路等から構成される電子機器と、
前記集積回路を冷却する冷却器と、前記集積回路と前記
冷却器の低温部を収納した密閉空間を有する密閉ケーシ
ングとから成る集積回路の冷却装置。
2. An electronic device comprising an integrated circuit or the like;
A cooling device for an integrated circuit, comprising: a cooler for cooling the integrated circuit; and a closed casing having a closed space accommodating the integrated circuit and a low-temperature portion of the cooler.
【請求項3】 密閉空間が真空である請求項2記載の集
積回路の冷却装置。
3. The cooling device for an integrated circuit according to claim 2, wherein the closed space is a vacuum.
【請求項4】 冷却器は、蒸発器、凝縮器、減圧器およ
び圧縮機からなる蒸気圧縮式冷凍サイクルを形成し、前
記蒸発器が前記集積回路と接触して冷却する請求項1か
ら請求項3のいずれか一項に記載の集積回路の冷却装
置。
4. The cooler according to claim 1, wherein the cooler forms a vapor compression refrigeration cycle including an evaporator, a condenser, a decompressor, and a compressor, and the evaporator contacts and cools the integrated circuit. 4. The cooling device for an integrated circuit according to claim 3.
【請求項5】 集積回路を冷却する冷却器が、二酸化炭
素を冷媒とする冷凍サイクルである請求項4記載の集積
回路の冷却装置。
5. The integrated circuit cooling device according to claim 4, wherein the cooler for cooling the integrated circuit is a refrigeration cycle using carbon dioxide as a refrigerant.
【請求項6】 集積回路を冷却する冷却器がスターリン
グ冷凍機である請求項1から請求項3のいずれか一項に
記載の集積回路の冷却装置。
6. The cooling device for an integrated circuit according to claim 1, wherein the cooler for cooling the integrated circuit is a Stirling refrigerator.
【請求項7】 集積回路を冷却する冷却器がパルスチュ
ーブ冷凍機である請求項1から請求項3のいずれか一項
に記載の集積回路の冷却装置。
7. The integrated circuit cooling device according to claim 1, wherein the cooler for cooling the integrated circuit is a pulse tube refrigerator.
JP2000111789A 2000-04-13 2000-04-13 Cooling device of integrated circuit Withdrawn JP2001298293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000111789A JP2001298293A (en) 2000-04-13 2000-04-13 Cooling device of integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000111789A JP2001298293A (en) 2000-04-13 2000-04-13 Cooling device of integrated circuit

Publications (1)

Publication Number Publication Date
JP2001298293A true JP2001298293A (en) 2001-10-26

Family

ID=18624065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000111789A Withdrawn JP2001298293A (en) 2000-04-13 2000-04-13 Cooling device of integrated circuit

Country Status (1)

Country Link
JP (1) JP2001298293A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007247934A (en) * 2006-03-14 2007-09-27 Canon Anelva Technix Corp Free piston type stirling cycle refrigerating system and free piston type stirling cycle refrigerating machine
CN103460828A (en) * 2011-04-04 2013-12-18 丹佛斯动力公司 Cooling system for a power module
CN108592481A (en) * 2018-05-09 2018-09-28 上海理工大学 Using the multi-temperature zone refrigerator of pulse type free-piston Stirling cooler

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007247934A (en) * 2006-03-14 2007-09-27 Canon Anelva Technix Corp Free piston type stirling cycle refrigerating system and free piston type stirling cycle refrigerating machine
JP4542056B2 (en) * 2006-03-14 2010-09-08 キヤノンアネルバ株式会社 Free piston type Stirling cycle refrigerator and free piston type Stirling cycle refrigerator
CN103460828A (en) * 2011-04-04 2013-12-18 丹佛斯动力公司 Cooling system for a power module
JP2014515816A (en) * 2011-04-04 2014-07-03 ダンフォス・ドライブス・エイ/エス Cooling system for power module
CN103460828B (en) * 2011-04-04 2016-03-23 丹佛斯硅动力股份有限公司 For the cooling system of power model
CN108592481A (en) * 2018-05-09 2018-09-28 上海理工大学 Using the multi-temperature zone refrigerator of pulse type free-piston Stirling cooler
CN108592481B (en) * 2018-05-09 2020-09-01 上海理工大学 Multi-temperature-zone refrigerator adopting pulse tube type free piston Stirling refrigerator

Similar Documents

Publication Publication Date Title
JP3660616B2 (en) Refrigeration cooling system for semiconductor devices
CN106196706B (en) Semiconductor overlay cryogenic energy stores refrigerating plant and its working method
KR102455080B1 (en) Mobile air conditioner and its cooling method
JP5289784B2 (en) Refrigerator integrated cryogenic container
CA2345766A1 (en) Refrigerated merchandiser system
JP2001298293A (en) Cooling device of integrated circuit
JP2015052401A (en) Refrigerator
KR100550581B1 (en) Refrigerator with a deep freezer
JPH07332829A (en) Freezer
KR200161214Y1 (en) Apparatus for cooling of a refrigerator
JP2005283023A (en) Stirling cooler
KR100379683B1 (en) Heat exchanger of showcase
KR100394000B1 (en) Refrigerated cooling system for computer
KR100218327B1 (en) Cooling apparatus of semiconductor package
KR20010111419A (en) Refrigerator with Phase change material
JP2000329414A (en) Hybrid refrigerating machine
Duband et al. Socool: A 300 K-0.3 K pulse tube/sorption cooler
JP2001118134A (en) Vending machine
US8191385B2 (en) Two-stage expansion cooling system and evaporator thereof
RU2447377C1 (en) Refrigerating plant
JP2007129157A (en) Semiconductor cooling device
JP2003139416A (en) Cooling system
CN115615029A (en) sub-Kelvin temperature zone refrigerating mechanism
KR20050062078A (en) Dual refrigerating system
KR0114925Y1 (en) Refrigerating apparatus combined with refrigerant compression cycle and refrigerant absorptive cycle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070413

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070514

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070730