JP2001296274A - Dielectric migration device, its manufacturing method and separation method of material using the device - Google Patents

Dielectric migration device, its manufacturing method and separation method of material using the device

Info

Publication number
JP2001296274A
JP2001296274A JP2000112337A JP2000112337A JP2001296274A JP 2001296274 A JP2001296274 A JP 2001296274A JP 2000112337 A JP2000112337 A JP 2000112337A JP 2000112337 A JP2000112337 A JP 2000112337A JP 2001296274 A JP2001296274 A JP 2001296274A
Authority
JP
Japan
Prior art keywords
electrode
electrodes
substance
substrate
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000112337A
Other languages
Japanese (ja)
Other versions
JP4587112B2 (en
Inventor
Masao Washizu
正夫 鷲津
Tomohisa Kawabata
智久 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Wako Pure Chemical Corp
Original Assignee
Wako Pure Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000112337A priority Critical patent/JP4587112B2/en
Application filed by Wako Pure Chemical Industries Ltd filed Critical Wako Pure Chemical Industries Ltd
Priority to EP06008220A priority patent/EP1716926A3/en
Priority to CA002343873A priority patent/CA2343873A1/en
Priority to AT01109169T priority patent/ATE370793T1/en
Priority to DE60130052T priority patent/DE60130052T2/en
Priority to EP01109169A priority patent/EP1145766B1/en
Priority to ES01109169T priority patent/ES2288154T3/en
Priority to US09/833,566 priority patent/US6875329B2/en
Publication of JP2001296274A publication Critical patent/JP2001296274A/en
Priority to US11/064,828 priority patent/US20050139473A1/en
Priority to US12/588,268 priority patent/US20100126865A1/en
Application granted granted Critical
Publication of JP4587112B2 publication Critical patent/JP4587112B2/en
Priority to US13/067,876 priority patent/US20110259746A1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a dielectric migration device, having improved collection ability of material, in a device for allowing liquid including the material to be separated to exist in a nonuniform electric field formed by a dielectric migration electrode, and executing by a dielectric migration force applied on the material. SOLUTION: In this dielectric migration device, formed by installing electrodes on a substrate, a lower part than the electrodes is formed between the facing electrodes, and thereby increase in the nonuniform electric field region is realized, to improve collection capability.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】この発明は、捕集能力を向上
させた誘電泳動装置、その製法及び該装置を使用する物
質の分離方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectrophoresis apparatus having an improved collecting ability, a method for producing the same, and a method for separating substances using the apparatus.

【0002】[0002]

【従来の技術】近年、半導体技術の進歩によりフォトリ
ソグラフィー等の微細加工技術によってnmからμm単位
での物質加工技術が確立され、現在もその微細加工技術
は進歩しつづけている。
2. Description of the Related Art In recent years, with the advance of semiconductor technology, a material processing technology in units of nm to μm has been established by a fine processing technology such as photolithography, and the fine processing technology continues to advance at present.

【0003】化学・生化学分野に於いては、この微細加
工技術を利用して、生体試料からの分析対象成分の抽出
(抽出工程),化学・生化学反応を用いる当該成分の分
析(分析工程),並びにそれに続く分離処理(分離工
程)及び検出(検出工程)といった一連の化学的・生化
学的分析工程の全てを一辺数cm〜数十cmのチップ上に集
積化等した極小の分析装置を用いて行う、微細総分析シ
ステム〔Micro Total Analysis System(μ-TAS)、Lab
oratory on a chip〕と呼ばれる新技術が発展しつつあ
る。
In the field of chemistry and biochemistry, this fine processing technology is used to extract a component to be analyzed from a biological sample (extraction process), and to analyze the component using a chemical or biochemical reaction (analysis process). ), Followed by a series of chemical and biochemical analysis processes such as separation process (separation process) and detection (detection process) all integrated on a chip of several cm to several tens of cm Micro Total Analysis System (μ-TAS), Lab
Oratory on a chip] is evolving.

【0004】このμ-TASの手法は、化学的・生化学的分
析工程全てを通じて、分析時間の短縮化、使用するサン
プル量や化学・生化学反応に必要な試薬量の低減化、分
析機器や分析スペースの縮小化に大きく貢献するものと
期待されている。
This μ-TAS technique shortens the analysis time, reduces the amount of sample used and the amount of reagents necessary for chemical and biochemical reactions, throughout the chemical and biochemical analysis steps, reduces It is expected to greatly contribute to reducing the analysis space.

【0005】特に、μ-TASに於ける分離工程について
は、テフロン(登録商標)やシリカ等を材料として作製
された内径1mm以下のキャピラリー(細管)を分離カラ
ムとして使用して高電界中で物質の持つ電荷の差を利用
して分離を行うキャピラリー電気泳動法や、同様のキャ
ピラリーを用いてカラム担体と物質との相互作用の差を
利用して分離を行うキャピラリーカラムクロマトグラフ
ィー法が開発されている。
[0005] In particular, in the separation step in μ-TAS, a capillary (thin tube) having an inner diameter of 1 mm or less made of Teflon (registered trademark), silica, or the like is used as a separation column, and a substance is applied in a high electric field. Capillary electrophoresis, in which separation is performed using the difference in electric charge of the cells, and capillary column chromatography, in which separation is performed using the difference in interaction between a column carrier and a substance using a similar capillary, have been developed. .

【0006】しかしながら、キャピラリー電気泳動法
は、分離に高電圧が必要であることや、検出領域でのキ
ャピラリー容量が制約されるため検出感度が低いという
問題、更には、チップ上のキャピラリーチップでは、分
離のためのキャピラリー長に制約があり、高分子の分離
に充分なキャピラリー長が得られないため、低分子の物
質の分離には適しているが高分子の物質の分離には適さ
ないという問題を有している。また、キャピラリーカラ
ムクロマトグラフィー法は、分離処理の高速化に限界が
あり、処理時間の短縮化が困難であるという問題を有し
ている。
[0006] However, the capillary electrophoresis method requires a high voltage for separation, and the detection sensitivity is low due to the restriction of the capillary capacity in the detection area. The problem is that the capillary length for separation is limited and the capillary length is not sufficient for polymer separation, so it is suitable for separating low-molecular substances but not for high-molecular substances. have. In addition, the capillary column chromatography method has a problem in that the speed of the separation process is limited, and it is difficult to shorten the processing time.

【0007】そこで、近年、上記した如き問題を解決す
る手段の一つとして、物質を不均一な交流電界内に置く
と、物質内に正と負の分極が起こり、物質を取り囲む媒
質の誘電率が物質よりも大きいと物質は電界の低い方向
へ移動し、媒質の誘電率が物質よりも小さいと物質は電
界の強い方向へと移動する力が働く現象、いわゆる誘電
泳動力〔H.A.Pohl: "Dielectrophoresis", Cambridge U
niv. Press (1978)、T.B.Jones: "Electromechanics of
Particles", Cambridge Univ. Press (1995)等〕を利
用した分離方法が、注目されている。
In recent years, as one of means for solving the above-mentioned problems, when a substance is placed in a non-uniform alternating electric field, positive and negative polarization occurs in the substance, and the dielectric constant of the medium surrounding the substance is increased. Is larger than the substance, the substance moves in the direction of the lower electric field, and if the dielectric constant of the medium is smaller than the substance, the substance moves in the direction of the stronger electric field, so-called dielectrophoretic force (HAPohl: "Dielectrophoresis ", Cambridge U
niv. Press (1978), TBJones: "Electromechanics of
Particles ", Cambridge Univ. Press (1995), etc.] have attracted attention.

【0008】この分離方法は、(1)誘電泳動力の大き
さは、物質(粒子)の大きさ・誘電的性質に依存し、電
界傾度に比例するため、微細加工電極を用いれば、電界
および電界傾度をきわめて大きくとることができるの
で、キャピラリー電気泳動のように高電圧を必要とせ
ず、低い印加電圧で高速な分離が期待できる、(2)電
界の強い場所が微小領域に極限されるため、電界印加に
よる温度上昇も最小限にとどめることができ、また、高
電界場の形成が可能となる、(3)誘電泳動は、電界傾
度に比例する力であることからわかるように、印加電圧
の極性に依存しないので、交流電界下でも直流同様に力
が働く。従って、高周波交流を用いれば水溶液での電極
反応(電気分解反応)は抑えられるので、電極自体をチ
ャネル(サンプル流路)中に集積化することが可能とな
る、(4)キャピラリー電気泳動のように検出部分のチ
ャンバ容量に制約がないことから検出感度の向上も望め
る、等の点から、現在ではμ-TASに於ける最も適した分
離方法と考えられている。
In this separation method, (1) the magnitude of dielectrophoretic force depends on the size and dielectric properties of a substance (particle) and is proportional to the electric field gradient. Since the electric field gradient can be made extremely large, high-voltage separation is not required as in capillary electrophoresis, and high-speed separation can be expected with a low applied voltage. (2) The place where the electric field is strong is limited to a very small area. The temperature rise due to the application of an electric field can be minimized, and a high electric field can be formed. (3) As can be seen from the fact that dielectrophoresis is a force proportional to the electric field gradient, the applied voltage Does not depend on the polarity of the dc. Therefore, the use of high-frequency alternating current suppresses the electrode reaction (electrolysis reaction) in an aqueous solution, so that the electrode itself can be integrated in a channel (sample flow path). (4) Like capillary electrophoresis In view of the fact that there is no restriction on the chamber capacity of the detection part, the improvement of the detection sensitivity can be expected, and so on, and it is considered to be the most suitable separation method in μ-TAS at present.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、誘電泳
動のμ−TASへの応用を考えた場合、捕集能力を向上
させることは、極めて重大なことであり、この点で従来
の誘電泳動装置は未だ十分満足すべきものではない。
However, considering the application of dielectrophoresis to μ-TAS, it is very important to improve the trapping ability. It is not yet satisfactory.

【0010】即ち、物質の捕集能力が向上すれば、電極
領域での分離が可能となることと、効率よく保持するこ
とによって、S/N(シグナル/ノイズ)比の高い分離
が実現される。また例えば、特に物質に働く誘電泳動力
と流体抗力との相互作用によって分離を行うField-Flow
fractionationにおいては、同じ流速でも短い電極領域
での分離が可能となるからである。
That is, if the trapping ability of the substance is improved, separation in the electrode region becomes possible, and separation with a high S / N (signal / noise) ratio is realized by holding efficiently. . Also, for example, Field-Flow, which separates by interaction between dielectrophoretic force and fluid drag acting on a substance in particular
This is because, in fractionation, separation can be performed in a short electrode region even at the same flow rate.

【0011】この発明のうち請求項1及び2に記載の発
明は、このような点に着目してなされたものであり、誘
電泳動電極により形成された不均一電界内に分離すべき
物質を含む液体を存在させ、該物質に働く誘電泳動力に
よって分離を行う装置において、物質の捕集能力を向上
させた誘電泳動装置を提供することを目的とする。
In the present invention, the first and second aspects of the present invention have been made in view of such a point, and include a substance to be separated in a non-uniform electric field formed by a dielectrophoretic electrode. An object of the present invention is to provide a dielectrophoretic device in which a liquid is present and separation is performed by a dielectrophoretic force acting on the substance, in which the substance-capturing ability is improved.

【0012】請求項4に記載の発明は、請求項1に記載
の装置を製造する方法を提供することを目的とする。
[0012] An object of the invention according to claim 4 is to provide a method for manufacturing the device according to claim 1.

【0013】また、請求項7に記載の発明は、請求項1
に記載の装置を使用した物質の分離方法を提供すること
を目的とする。
The invention according to claim 7 is the first invention.
It is an object of the present invention to provide a method for separating a substance using the apparatus described in (1).

【0014】[0014]

【課題を解決するための手段】上記問題点を解決するた
め本発明者等は鋭意研究の結果、電極と電極の基板部分
を掘削し、該電極よりも低い部位を形成することによっ
て、不均一電界領域が増大することと流体の抗力が低減
することから、捕集能力が向上することを想到し、本発
明に到達した。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have made intensive studies and have found that an electrode and a substrate portion of the electrode are excavated to form a portion lower than the electrode, whereby unevenness is obtained. Since the electric field region is increased and the drag of the fluid is reduced, the present inventors have conceived that the trapping ability is improved, and arrived at the present invention.

【0015】しかして、従来、誘電泳動力を利用した分
離装置及び方法、特にField-Flow fractionationにおけ
る装置及び方法についての特許及び論文は多数見られる
が、「電極よりも低い部位」を形成させることによって
物質の捕集能力を向上させる装置及び方法は全く知られ
ていないし、このような発想も全く知られていない。
[0015] Thus, there have been many patents and articles on a separation apparatus and a method using a dielectrophoretic force, in particular, an apparatus and a method in a field-flow fractionation. There is no known device or method for improving the ability to collect substances, and no such idea is known.

【0016】本発明のうち、請求項1記載の発明は、基
板上に電極を設けた誘電泳動装置において、対向する前
記電極間に、不均一電界領域の増加を実現する手段を形
成したことを特徴とする。
According to a first aspect of the present invention, in a dielectrophoresis apparatus having electrodes provided on a substrate, means for realizing an increase in a non-uniform electric field region is formed between the opposed electrodes. Features.

【0017】請求項2記載の発明は、不均一電界領域の
増加を実現する手段として、対向する電極間に該電極よ
りも低い部位を形成したことを特徴とする。「電極より
も低い部位」を形成することによって、電極間の上方だ
けでなく下方にも電解が形成されるので不均一電界領域
が増加し、更には、例えばField-Flow fractionationに
用いた場合には、この部分の流体の流速が落ちるので流
体抗力が低減することから、物質の捕集能力が向上す
る。
According to a second aspect of the present invention, as means for realizing an increase in the non-uniform electric field region, a portion lower than the electrode is formed between the opposed electrodes. By forming the "lower part than the electrode", the non-uniform electric field region increases because the electrolysis is formed not only above but also below the electrode, and furthermore, for example, when used for Field-Flow fractionation Since the flow velocity of the fluid in this portion is reduced, the fluid drag is reduced, so that the ability to capture substances is improved.

【0018】また、請求項4記載の発明は、物理的又は
/及び化学的手段により電極間の基板を掘削して、対向
する前記電極間に該電極よりも低い部位を形成したこと
を特徴とする。ここで、物理的手段とは、例えば適当な
刃物等を使用して掘削する方法、例えばシンクロトロン
放射光を用いるLIGA(Lithographile Galvanoformu
ng Abformung)法等のことであり、また、化学的手段と
は、例えば基板に対するエッチング液を用いて基板を掘
削するエッチング等のことである。また、例えば物理的
掘削と化学的掘削とを同時に行う、高周波電源によりプ
ラズマとした反応性ガスを用いるエッチング[反応性イ
オンエッチング:Reactive Ion Etching(RIE)]によ
っても電極間の基板を掘削することができる。尚、上記
した如き手段を適宜組み合わせて基板の掘削を行っても
良い。
Further, the invention according to claim 4 is characterized in that a substrate lower than the electrodes is formed between the opposing electrodes by excavating a substrate between the electrodes by physical or / and chemical means. I do. Here, the physical means is, for example, a method of excavating using an appropriate blade or the like, for example, a LIGA (Lithographile Galvanoformu) using synchrotron radiation.
ng Abformung) method, and the chemical means is, for example, etching for excavating a substrate using an etching solution for the substrate. In addition, for example, the substrate between the electrodes is also excavated by etching using a reactive gas converted into plasma by a high-frequency power supply [Reactive Ion Etching (RIE)] in which physical excavation and chemical excavation are performed simultaneously. Can be. The substrate may be excavated by appropriately combining the above-described means.

【0019】また、請求項6に記載の発明は、誘電泳動
電極により形成された不均一電界内に分離すべき物質を
含む液体を存在させ、該物質に働く誘電泳動力の差によ
って分離を行う物質の分離方法において、対向する電極
間に形成した電極よりも低い部位により、不均一電界領
域の増加を実現することによって、捕集能力を向上させ
たことを特徴とする。
According to the present invention, a liquid containing a substance to be separated is present in a non-uniform electric field formed by a dielectrophoretic electrode, and separation is performed by a difference in dielectrophoretic force acting on the substance. The method for separating a substance is characterized in that a non-uniform electric field region is increased by a portion lower than an electrode formed between opposing electrodes, so that a trapping ability is improved.

【0020】尚、誘電泳動(Dielectrophoresis,DEP)
とは、物質の電導率及び誘電率と媒質の電導率及び誘電
率と、印加する周波数との相互作用により、不均一な電
界内で中性粒子が移動する現象のことであり、この際に
分子に働く力を誘電泳動力と呼ぶ。また、誘電泳動力
は、物質が電界の強い方へと移動する正の誘電泳動力と
電界の弱い方へと移動する負の誘電泳動力の2種類に分
けられる。以下に、分子に正の誘電泳動力が働く場合を
例にとり説明する。
Incidentally, dielectrophoresis (DEP)
Is a phenomenon in which neutral particles move in a non-uniform electric field due to the interaction between the conductivity and permittivity of a substance, the conductivity and permittivity of a medium, and the applied frequency. The force acting on the molecule is called dielectrophoretic force. The dielectrophoretic force is classified into two types: a positive dielectrophoretic force in which a substance moves toward a stronger electric field and a negative dielectrophoretic force in which a substance moves toward a weaker electric field. Hereinafter, a case where a positive dielectrophoretic force acts on a molecule will be described.

【0021】即ち、電界内に置かれた中性分子には、図
1に示すように電界の下流側に正極性の分極電荷+q
が、上流側には負極性の分極電荷−qが夫々誘導され、
+qには電界Eにより大きさ+qEの力が働き、この部
分を電界の上流側へと引く。分子が中性ならば、+qと
−qの絶対値は等しく、仮に電界が場所によらず一定で
あるならば、両者に働く力は釣り合って分子は動かな
い。しかし、電界が一様でない場合には、強い電界側へ
引く力の方が大きくなり、分子は電界の強い側へと駆動
されることとなる。
That is, as shown in FIG. 1, the neutral molecule placed in the electric field has a positive polarization charge + q on the downstream side of the electric field.
However, a negatively polarized charge -q is induced on the upstream side, respectively.
A force of magnitude + qE acts on + q due to the electric field E, and pulls this portion toward the upstream side of the electric field. If the molecule is neutral, the absolute values of + q and -q are equal, and if the electric field is constant regardless of location, the forces acting on both are balanced and the molecule does not move. However, when the electric field is not uniform, the force to be pulled toward the strong electric field is larger, and the molecules are driven to the strong electric field.

【0022】上記したように、溶液中の分子は、該分子
に生じる誘電泳動力に応じて電界領域内を種々移動する
が、例えばField-Flow fractionationにおける分子の運
動は、該分子に生じる誘電泳動力Fdの他に、流体抗力
(流路内の流れによる抗力)Fvと熱運動による力Fth
の3つの要因により支配される。即ち、Fd>>Fv+
Fthの場合には、分子は電極に捕集(トラップ)され、
Fd<<Fv+Fthの場合には、電界に関わらず、分子
は流路内の流れにのって流出する。また、Fd≒Fv+
Fthの場合には、分子は電極に吸着・脱着を繰り返しな
がら下流へと運ばれる結果、本来の流路内の流れよりも
遅れて出口に到達する。
As described above, the molecules in the solution move variously in the electric field region in accordance with the dielectrophoretic force generated in the molecules. For example, the movement of the molecules in the field-flow fractionation is caused by the dielectrophoresis generated in the molecules. In addition to the force Fd, the fluid drag (drag due to the flow in the flow path) Fv and the thermal motion Fth
Is governed by three factors: That is, Fd >> Fv +
In the case of Fth, molecules are trapped on the electrode,
In the case of Fd << Fv + Fth, molecules flow out of the flow channel regardless of the electric field. Also, Fd ≒ Fv +
In the case of Fth, the molecule is carried downstream while repeating adsorption and desorption to the electrode, and as a result, reaches the outlet with a delay from the flow in the original flow path.

【0023】本発明においては、対向する電極間を深く
掘削することによって、電極間の下方にも不均一電界が
形成されるから、不均一電界領域が増加することと、こ
の部分の流体の流れが遅くなり、流体の抗力Fvが低減
することから、上記の如き条件でFdがより大とな
り、Fvがより小となるから、捕集率が向上する。ま
た、電極間の下方に形成された電界にトラップされた粒
子は、「電極よりも低い部位」に位置することとなるか
ら、流出され難くなる。
In the present invention, since a non-uniform electric field is formed below the electrodes by excavating deeply between the opposing electrodes, the non-uniform electric field region increases, and the fluid flow in this part is increased. And the drag Fv of the fluid is reduced, so that Fd becomes larger and Fv becomes smaller under the above-mentioned conditions, so that the collection rate is improved. Further, the particles trapped by the electric field formed below the electrodes are located at the “lower part than the electrodes”, so that they are less likely to flow out.

【0024】[0024]

【発明の実施の形態】次に、本発明の実施の形態を説明
する。
Next, an embodiment of the present invention will be described.

【0025】図2は、本発明の実施例を示すものであ
り、基板(ガラス基板)1上の凸状物(支柱)2で、長
さ方向に間隔付けて電極3を支持した例を示す。
FIG. 2 shows an embodiment of the present invention, in which a convex (post) 2 on a substrate (glass substrate) 1 supports electrodes 3 at intervals in the longitudinal direction. .

【0026】対向する電極3,3間には、図2(B)に
示すように、断面半円状の「電極よりも低い部位」(連
通溝)4が形成され、隣接する連通溝4,4は、図2
(A)に示すように、凸状物2以外の部分で連通するよ
うになっている。しかしながら、図3(B)に示すよう
に、電極3を壁体(凸状物)2′で支持し、隣接する溝
4′,4′を同壁体2′で隔離して、連通しないように
しても差し支えない。
As shown in FIG. 2 (B), a “part lower than the electrode” (communication groove) 4 having a semicircular cross section is formed between the opposing electrodes 3, 3. 4 is FIG.
As shown in (A), communication is made at a portion other than the convex object 2. However, as shown in FIG. 3B, the electrode 3 is supported by a wall (convex) 2 ', and the adjacent grooves 4', 4 'are separated by the wall 2' so as not to communicate with each other. But it doesn't hurt.

【0027】また、図2及び図3に示す実施例では、凸
状物2及び2′以外の部分は「電極3よりも低い部位」
(4及び4′)に形成されている。
In the embodiment shown in FIGS. 2 and 3, the portions other than the projections 2 and 2 'are "the portions lower than the electrode 3".
(4 and 4 ').

【0028】しかしながら、対向する電極3,3間の一
部に、凹部(穴)を単独若しくは間隔付けて複数設けて
も差し支えないが、図2及び図3に示すように、対向す
る電極の全部若しくは大部分を電極よりも低い部位(4
若しくは4′)に形成する方が、捕集能力が向上するこ
とから好ましい。
However, it is permissible to provide a single recess or a plurality of recesses (holes) at a part between the opposed electrodes 3 and 3, but as shown in FIGS. 2 and 3, all of the opposed electrodes are provided. Alternatively, a portion that is mostly lower than the electrode (4
Alternatively, the formation in 4 ′) is preferable because the trapping ability is improved.

【0029】対向する電極3,3間の一部に、凹部
(穴)を設ける場合は、対向する電極間の最小ギャップ
間5に設けるのが好ましい。この部分が電界強度が強い
ので、この部分に設ければ、捕集能力がより向上するか
らである。しかしながら、この部分を含んだ全体に形成
すれば、分子をトラップする部分が増大するから、更に
捕集能力が向上する。
When a concave portion (hole) is provided in a part between the opposing electrodes 3, 3, it is preferable to provide the concave portion 5 in the minimum gap 5 between the opposing electrodes. This is because this portion has a high electric field strength, and if provided in this portion, the trapping ability is further improved. However, if the entirety including this portion is formed, the portion for trapping molecules is increased, so that the trapping ability is further improved.

【0030】溝4の広さ(図2及び図3に示す場合は、
電極3,3間の距離と同じ)は、電界強度に大きく影響
するが、誘導泳動対象とする物質の大きさによって適宜
決定するものであり一概には言えない。その大きさがマ
イクロメーターサイズの物質では、好ましくはその物質
が持つ直径の100倍以下1倍以上、更に好ましくは1
0倍以下1倍以上の広さとするのが良い。また、タンパ
ク質、遺伝子等の生体分子の場合、例えばペプチド鎖、
タンパク質等では、通常10μm以下1nm以上、好ま
しくは5μm以下1nm以上であり、ヌクレオチド鎖
(ポリヌクレオチド、オリゴグクレオチド)等の場合、
通常100μm以下1nm以上、好ましくは50μm以
下1nm以上とするのが良い。
The width of the groove 4 (in the case shown in FIGS. 2 and 3,
The same as the distance between the electrodes 3 and 3) greatly affects the electric field strength, but is appropriately determined depending on the size of the substance to be subjected to the induction electrophoresis, and cannot be said unconditionally. In the case of a substance having a micrometer size, the diameter is preferably 100 times or less and 1 or more times the diameter of the substance, more preferably 1 time or more.
It is preferable that the area be 0 times or less and 1 time or more. In the case of biomolecules such as proteins and genes, for example, peptide chains,
For proteins and the like, it is usually 10 μm or less and 1 nm or more, preferably 5 μm or less and 1 nm or more. In the case of nucleotide chains (polynucleotides, oligonucleotides) and the like,
It is usually 100 μm or less and 1 nm or more, preferably 50 μm or less and 1 nm or more.

【0031】一般には、深いほど分子をトラップする部
分が増大し、更には特にField-Flowfractionationの場
合には、溝の部分での流速が抑えられ捕集能力(捕集
率)が向上する。しかしながら、深すぎると、誘電泳動
によって電極上にトラップした分子を測定する必要があ
る場合、トラップされていた分子が溝部分から放出され
難いか、放出されない場合が生じる。従って、溝の深さ
は、好ましくは溝の広さの10倍以下1/1000倍以
上、更に好ましくは1倍以下1/1000倍以上であ
る。
Generally, as the depth increases, the portion for trapping molecules increases, and in particular, in the case of Field-Flow fractionation, the flow velocity in the groove portion is suppressed, and the trapping ability (trapping rate) is improved. However, if the depth is too deep, when it is necessary to measure the molecules trapped on the electrode by dielectrophoresis, the trapped molecules may be hardly released from the groove portion or may not be released. Therefore, the depth of the groove is preferably 10 times or less and 1/1000 times or more, more preferably 1 time or less and 1/1000 times or more the width of the groove.

【0032】溝の深さは、図2及び図3(A)に示すよう
な等方性エッチングにより形成すれば、電極幅以上に掘
ると電極3を保持している凸状物2が全て削り取られる
ので、電極3が剥離する。従って、この方法で溝を形成
する場合は、溝の深さは、最大電極幅部分の1/2以下
となる。
If the depth of the groove is formed by isotropic etching as shown in FIGS. 2 and 3 (A), if the groove is dug beyond the electrode width, all the protrusions 2 holding the electrode 3 are cut off. As a result, the electrode 3 peels off. Therefore, when a groove is formed by this method, the depth of the groove is 1 / or less of the maximum electrode width.

【0033】図3(B)に示すように、シリコンウェハ
ーの異方性エッチングにより形成する場合は、55度の
角度で深さ方向のみにエッチングが進む。従って、この
方法でエッチングする場合は、深さ方向の最大距離は、
(電極間の距離÷2)×1.42(tan55度)とな
る。図3(C)に示すように、RIEやLIGA等によ
り形成する場合は、ほぼ垂直にエッチングが進む。従っ
て、これらの方法でエッチングする場合は、溝の深さ
は、前述した範囲、即ち、好ましくは溝の深さの10倍
以下1/1000倍以上、更に好ましくは1倍以下1/
1000倍以上である。
As shown in FIG. 3B, when the silicon wafer is formed by anisotropic etching, the etching proceeds only in the depth direction at an angle of 55 degrees. Therefore, when etching by this method, the maximum distance in the depth direction is:
(Distance between electrodes ÷ 2) × 1.42 (tan 55 degrees). As shown in FIG. 3C, when the film is formed by RIE, LIGA, or the like, the etching proceeds almost vertically. Therefore, when etching is performed by these methods, the depth of the groove is in the above-mentioned range, that is, preferably 10 times or less 1/1000 times or more, more preferably 1 time or less 1 / times of the groove depth.
1000 times or more.

【0034】溝の間隔(=電極自体の幅)は、正の誘電
泳動による分離に限定すれば、分離対象によって左右さ
れない。微細加工技術の加工精度から、通常は50μm
以下1nm以上、好ましくは10μm以下1nm以上で
ある。
The spacing between the grooves (= the width of the electrode itself) does not depend on the object of separation, provided that the separation is limited to positive dielectrophoresis. Normally 50 μm due to the processing accuracy of the fine processing technology
1 nm or less, preferably 10 μm or less and 1 nm or more.

【0035】図3(A)に示す等方性エッチングは、ガ
ラス基板若しくはプラスチック基板をエッチングするこ
とにより形成される。等方性エッチングは、基板上の壁
体2上で電極3を支持し、隣接する溝4,4は同壁体2
で隔離されるように形成される場合や、基板上の凸状物
2で電極3を支持し、隣接する溝(連通溝)4,4は連
通するように形成される場合等、エッチングの程度によ
り種々の形状が形成される。
The isotropic etching shown in FIG. 3A is formed by etching a glass substrate or a plastic substrate. The isotropic etching supports the electrode 3 on the wall 2 on the substrate, and the adjacent grooves 4, 4
In the case where the electrodes 3 are formed so as to be isolated from each other, or when the electrodes 3 are supported by the protrusions 2 on the substrate and the adjacent grooves (communication grooves) 4 and 4 are formed to communicate with each other, Thus, various shapes are formed.

【0036】図3(B)に示す異方性エッチングは、シ
リコン基板をエッチングすることにより形成される。こ
の場合は、基板上の壁体2′上で電極3を支持し、隣接
する溝4′,4′は同壁体2′で隔離されるようになっ
ている。図3(C)に示すRIEは、シリコンやSiO
基板等をエッチングすることにより形成され、また、
LIGAは、ポリマー、セラミック、プラスチック基板
等をエッチングすることにより形成される。これらの場
合は、基板上の壁体2”上で電極3を支持し、隣接する
溝4”,4”は同壁体2”で隔離されるようになってい
る。
The anisotropic etching shown in FIG. 3B is formed by etching a silicon substrate. In this case, the electrode 3 is supported on the wall 2 'on the substrate, and the adjacent grooves 4', 4 'are isolated by the wall 2'. The RIE shown in FIG.
2 formed by etching a substrate or the like,
LIGA is formed by etching a polymer, ceramic, plastic substrate, or the like. In these cases, the electrode 3 is supported on a wall 2 "on the substrate, and the adjacent grooves 4", 4 "are isolated by the wall 2".

【0037】図2及び図3(A)に示す等方性エッチン
グでは、一般には、溝又は連通溝4は断面が半円若しく
は半楕円形のような形状に形成される。図3(B)に示
す異方性エッチングで溝を形成すると、一般には、溝
4′は断面略台形を通って最終的に略V字形にエッチン
グされる。また、図3(C)に示すRIEやLIGA等
で溝を形成すると、一般には、ほぼ断面方形にエッチン
グされる。従って、エッチングの仕方及び「電極より低
い部位」の形成の仕方によって、種々の断面形状のもの
が形成されるが、本発明においては「電極より低い部
位」(連通溝、溝、凹部等)の形状は特に限定されな
い。
In the isotropic etching shown in FIGS. 2 and 3A, the groove or the communication groove 4 is generally formed in a semicircular or semielliptical cross section. When a groove is formed by anisotropic etching shown in FIG. 3B, generally, the groove 4 'is finally etched in a substantially V shape through a substantially trapezoidal cross section. When a groove is formed by RIE, LIGA, or the like shown in FIG. 3C, etching is generally performed in a substantially rectangular cross section. Therefore, although various cross-sectional shapes are formed depending on the method of etching and the method of forming the “portion lower than the electrode”, in the present invention, the “portion lower than the electrode” (communication groove, groove, concave portion, etc.) is formed. The shape is not particularly limited.

【0038】図3(A)の壁体又は凸状物2は、中央部
が括れた形状に形成され、図3(B)の壁体2′は、台
形に形成され、また、図3(C)の壁体2”は、方形に
形成されているが、壁体又は凸状物2、壁体2′及び壁
体2”は、電極3を支持し得るならどのような形状でも
良く、特に限定されない。
The wall or projection 2 shown in FIG. 3A is formed in a shape in which the central portion is constricted, and the wall 2 'shown in FIG. 3B is formed in a trapezoidal shape. The wall 2 ″ of C) is formed in a square shape, but the wall or convex body 2, the wall 2 ′, and the wall 2 ″ may have any shape as long as the electrode 3 can be supported. There is no particular limitation.

【0039】本発明に使用する電極3は、例えばアルミ
ニウム、金等の導電性の材質からなり、その構造は、誘
電泳動力、即ち、水平及び垂直方向に不均一電界を生じ
得るものであればよく、例えば、インターデジタル形状
〔J. Phys. D:Appl. Phys. 258, 81-88,(1992)、Biochi
m. Biophys. Acta., 964, 221-230,(1988)等〕が挙げら
れる。
The electrode 3 used in the present invention is made of a conductive material such as aluminum, gold or the like, and its structure is a dielectrophoretic force, that is, a material capable of generating a non-uniform electric field in the horizontal and vertical directions. Well, for example, interdigital shapes [J. Phys. D: Appl. Phys. 258, 81-88, (1992), Biochi
m. Biophys. Acta., 964, 221-230, (1988) and the like.

【0040】より具体的には、図4に示すように、
(A)直線状の帯状部6の上下に対向して三角形の外方
突出部7aを間隔付けて多数形成した形状、(B)直線
状の帯状部6の上下に対向して四角形の外方突出部7b
を間隔付けて多数形成した形状、(C)直線状の帯状部
6の上下に対向して台形の外方突出部7cを間隔付けて
多数形成した形状、(D)上下に正弦波形であり、同正
弦波の凸部8と凹部9(凹部9と凸部8)とが上下に対
向して直線状に多数連設された形状、(D)上下に鋸歯
形であり、同鋸歯の凸部8′と凹部9′(凹部9′と凸
部8′)とが上下に対向して直線状に多数連設された形
状が好ましい。しかしながら、誘電泳動に使用し得る電
極であれば、どのようなものでも使用することが出来、
特に限定されない。
More specifically, as shown in FIG.
(A) A shape in which a large number of triangular outward protruding portions 7a are formed at intervals above and below the linear band portion 6, and (B) A rectangular outer portion faces above and below the linear band portion 6. Projection 7b
(C) a shape in which a large number of trapezoidal outward protruding portions 7c are formed above and below the linear band-shaped portion 6 opposed to each other, and (D) a sinusoidal waveform in the up and down direction. A shape in which a large number of convex portions 8 and concave portions 9 (concave portions 9 and convex portions 8) of the same sine wave are vertically arranged facing each other in a straight line, and It is preferable that a large number of 8 'and concave portions 9' (concave portions 9 'and convex portions 8') are vertically arranged so as to be linearly connected to each other. However, any electrode that can be used for dielectrophoresis can be used,
There is no particular limitation.

【0041】このような電極は、通常、例えばガラス、
プラスチック、石英、シリコン等の非導電性の材質から
なる基板上に、それ自体公知の微細加工技術〔Biochim.
Biophys. Acta., 964, 221-230等〕を用いて、1対以
上の上記した如き形状の電極を櫛歯状に設けることによ
り作製される。また、対向(隣接)する電極3間の距離
は、強電界強度の不均一交流電界を形成し得るものであ
れば特に限定されず、目的の分子の種類により適宜設定
すべきものである。
Such electrodes are usually made of, for example, glass,
Plastic, quartz, on a substrate made of a non-conductive material such as silicon, a fine processing technology known per se [Biochim.
Biophys. Acta., 964, 221-230 etc.] and one or more pairs of electrodes having the above-mentioned shapes are provided in a comb-like shape. The distance between the opposing (adjacent) electrodes 3 is not particularly limited as long as a non-uniform AC electric field having a strong electric field strength can be formed, and should be appropriately set depending on the kind of the target molecule.

【0042】電極3の厚さは、従来と同様で良く、具体
的には、通常0.5nm以上、好ましくは0.5nm〜
1nm、更に好ましくは1nm〜1000nmである。
The thickness of the electrode 3 may be the same as the conventional one, and specifically, is usually 0.5 nm or more, preferably 0.5 nm to
It is 1 nm, more preferably 1 nm to 1000 nm.

【0043】電極3は、厚さ以外は、従来と同様で良
く、電極上への種々の物質の吸着防止のため、有機薄膜
を電極にコーティングしても差し支えない。
The electrode 3 may be the same as the conventional one except for the thickness, and an organic thin film may be coated on the electrode in order to prevent adsorption of various substances on the electrode.

【0044】上記本発明の誘電泳動装置を製造するに
は、誘電泳動電極及び流路のような「電極よりも低い部
位」(連通溝4、溝4′、凹部等)以外は、従来と同様
に形成すれば良い。
The dielectrophoretic apparatus of the present invention is manufactured in the same manner as in the prior art except for the “lower part than the electrode” (communication groove 4, groove 4 ′, concave portion, etc.) such as the dielectrophoretic electrode and the flow path. What is necessary is just to form.

【0045】「電極よりも低い部位」を形成するには、
例えば適当な刃物等を使用して掘削する方法や例えばシ
ンクロトロン放射光を用いるLIGA(Lithographile
Galvanoformung Abformung)法等の物理的手段、例えば
基板に対するエッチング液を用いて基板を掘削するエッ
チング等の化学的手段、又は、高周波電源によりプラズ
マとした反応性ガスを用いるエッチング[反応性イオン
エッチング:ReactiveIon Etching(RIE)]等の物理的
及び化学的手段、等により電極間の基板を掘削して形成
すればよい。尚、上記した如き手段を適宜組み合わせて
基板の掘削を行っても良い
In order to form the “part lower than the electrode”,
For example, a method of excavating using a suitable cutting tool or the like, or a LIGA (Lithographile) using synchrotron radiation, for example.
Physical means such as the Galvanoformung Abformung method, for example, chemical means such as etching for excavating a substrate using an etchant for the substrate, or etching using a reactive gas which is turned into plasma by a high-frequency power supply [Reactive Ion Etching: Reactive Ion Etching (RIE)] may be used to excavate and form the substrate between the electrodes by physical or chemical means. The substrate may be excavated by appropriately combining the above-described means.

【0046】エッチング液は、基板の材質に応じて公知
のエッチング液を選択すれば良く、また基板の一部に電
極よりも低い部分を形成する場合は、掘削したくない部
分を適当にマスキングしてエッチングすれば良い。
As the etching solution, a known etching solution may be selected according to the material of the substrate. When a portion lower than the electrode is formed in a part of the substrate, a portion which is not desired to be excavated is appropriately masked. Etching.

【0047】本発明の誘電泳動装置を使用して、本発明
の分離方法を実施するには、分離方法自体は従来と同じ
ように行えばよい。
In order to carry out the separation method of the present invention using the dielectrophoresis apparatus of the present invention, the separation method itself may be performed in the same manner as in the prior art.

【0048】即ち、上記した如き電極(電極基板)を用
いて形成させた不均一電界内に、分離すべき物質を含む
液体、例えば2種以上の物質(分子若しくは粒子)が溶
解若しくは懸濁している液体を存在させて、当該物質に
働く誘電泳動力の差によって分離すれば良い。
That is, a liquid containing a substance to be separated, for example, two or more substances (molecules or particles) dissolved or suspended in a non-uniform electric field formed using the electrodes (electrode substrates) as described above. The liquid may be separated by the difference in dielectrophoretic force acting on the substance in the presence of the liquid.

【0049】一般には、基板上の流路内に水平及び垂直
方向に不均一な電界を形成させ、入口から分離すべき物
質を含む液体を流して、当該物質に働く誘電泳動力の差
によって分離すれば良い。しかしながら、流れを生じさ
せることなく、電極の特定部分に保持される成分と保持
されない成分とに分離しても勿論良い。
In general, a non-uniform electric field is formed in the flow path on the substrate in the horizontal and vertical directions, a liquid containing a substance to be separated flows from an inlet, and the liquid is separated by a difference in dielectrophoretic force acting on the substance. Just do it. However, it is of course possible to separate the components retained in a specific portion of the electrode and the components not retained without causing a flow.

【0050】物質(分子、粒子)に働く誘電泳動力の差
によって分離するには、電極の特定部分に保持される分
子等と保持されない分子等とに分離したり、より強い誘
電泳動力を受ける分子等は弱い誘電泳動力を受ける分子
等よりも遅延して移動するため、移動時間に差が生じる
ことを利用して分離したりすれば良い。
In order to perform separation by the difference in dielectrophoretic force acting on a substance (molecule, particle), the electrode is separated into molecules and the like not retained in a specific portion of the electrode, or receives a stronger dielectrophoretic force. Molecules and the like move later than molecules and the like that receive weak dielectrophoretic force, and may be separated by utilizing the difference in movement time.

【0051】図5の矢印で示すように、本発明の装置の
流路に電極の長さ方向と交差する方向から分離すべき物
質を含む液体を流すと、連通溝4の中の流速は流路部分
に比べて遅くなり、連通溝4の中に入った分子にかかる
流体の抗力Fvを減らすことが出来る。また、電極3,
3間に連通溝4を形成したことによって、電界の影響範
囲が広くなることと、トラップされた分子がストックさ
れる場所が広がることから、捕集率が向上したものと思
われる。
As shown by the arrows in FIG. 5, when a liquid containing a substance to be separated flows from the direction intersecting the length direction of the electrode into the flow path of the apparatus of the present invention, the flow velocity in the communication groove 4 is increased. It is slower than the path portion, and the drag Fv of the fluid applied to the molecules entering the communication groove 4 can be reduced. In addition, electrodes 3,
By forming the communication groove 4 between the three, the range of influence of the electric field is widened, and the place where trapped molecules are stocked is widened, so that it is considered that the collection rate is improved.

【0052】本発明の測定方法は、本発明の分離方法を
利用する以外は、上記した如きそれ自体公知の方法に準
じて実施すればよく、使用される試薬類も、それ自体公
知の試薬類の中から適宜選択すればよい。
The measuring method of the present invention may be carried out in accordance with the above-mentioned method known per se, except that the separation method of the present invention is used, and the reagents used may be those known per se. May be selected as appropriate.

【0053】以下に実施例及び参考例を挙げ、本発明を
更に具体的に説明するが、本発明はこれらにより何等限
定されるものではない。
Hereinafter, the present invention will be described more specifically with reference to Examples and Reference Examples, but the present invention is not limited thereto.

【0054】[0054]

【実施例】参考例 1:誘電泳動電極基板の作製 最小ギャップ7μm 、電極ピッチ20μm、電極数2016(10
08対)の多段電極列を設計し、それに基づいて、電極作
製用のフォトマスクを作製した。
[Example] Reference Example 1: Preparation of dielectrophoretic electrode substrate Minimum gap 7 μm, electrode pitch 20 μm, number of electrodes 2016 (10
08 pairs) was designed, and based on this, a photomask for electrode fabrication was fabricated.

【0055】即ち、アルミ蒸着したガラス基板にレジス
トを塗布して、電子ビーム描画装置にて上記設計通りの
電極パターンを描画した後、レジストを現像し、アルミ
をエッチングすることによってフォトマスクを作製し
た。
That is, a resist was applied to a glass substrate on which aluminum was deposited, and an electrode pattern as designed as described above was drawn by an electron beam drawing apparatus. Then, the resist was developed and aluminum was etched to produce a photomask. .

【0056】電極基板の作製は、図解フォトファブリケ
ーション、橋本貴夫著、総合電子出版、(1985)に記載
の方法に準じて以下の如く行った。
The production of the electrode substrate was carried out as follows in accordance with the method described in Illustrated Photofabrication, Takao Hashimoto, Sogo Denshi Shuppan, (1985).

【0057】即ち、上記の如くして作製したフォトマス
クと、レジストを塗布したアルミ蒸着ガラス基板を密着
させたのち、水銀ランプで電極パターンを露光した。露
光後の電極用ガラス基板はレジストの現像、アルミ面の
エッチングに続き、アルミ面に残ったレジストを除去す
ることによって電極基板を作製した。
That is, after the photomask prepared as described above was brought into close contact with the resist-coated aluminum-deposited glass substrate, the electrode pattern was exposed with a mercury lamp. The electrode glass substrate after the exposure was prepared by developing the resist and etching the aluminum surface, and then removing the resist remaining on the aluminum surface.

【0058】実施例 1:エッチングにより基板に「電
極よりも低い部位」を形成 図6に示すように、参考例1に記載のようにして作製し
た誘導泳動電極のガラス基板1をエッチングして、基板
1の電極3対向部に連通溝4を形成した。
Example 1: "Parts Lower than Electrodes" are Formed on a Substrate by Etching As shown in FIG. 6, a glass substrate 1 of an induction electrophoretic electrode manufactured as described in Reference Example 1 was etched. A communication groove 4 was formed in a portion of the substrate 1 facing the electrode 3.

【0059】エッチング液として、フッ化ナトリウム硫
酸(NHF3%、HSO、HO)を使用し
た。フッ化ナトリウム硫酸は、ガラス、アルミの両方を
溶かす性質を有するが、ガラスをエッチングする速度
は、アルミをエッチングする速度に比べて非常に早いの
で、アルミ電極をマスクとしてアルミ電極以外のガラス
部分をエッチングすることが出来る。
As an etching solution, sodium fluoride sulfuric acid (NH 4 F 3%, H 2 SO 4 , H 2 O) was used. Sodium fluoride sulfuric acid has the property of dissolving both glass and aluminum, but the rate of etching glass is much faster than the rate of etching aluminum. Can be etched.

【0060】電極のアルミの厚さを40nmとすると、
深さ3μm以上エッチングすると、エッチング液を純水
で洗浄する時に、電極が水流によって折れ曲がる様子が
観察されるが、250nmの厚さで行うと電極が折れ曲
がる現象は観察されなかった。
Assuming that the thickness of the electrode aluminum is 40 nm,
When the etching was performed at a depth of 3 μm or more, the electrode was observed to be bent by a water flow when the etching solution was washed with pure water. However, when the etching was performed at a thickness of 250 nm, the electrode was not bent.

【0061】上記のようにエッチングして、エッチング
時間(sec.)と電極間に形成される連通溝の深さ
(μm)との関係を測定した。結果は、図7に示すよう
に、エッチング時間と形成される溝の深さとは、比例関
係を示した。尚、溝の深さは、電極をガラス切りで切断
し、断面を顕微鏡で観察して測定した。 参考例 2 流路を有する電極基板の作製 不均一電界中に分子を移動させることによる分子の分離
を行うため、実施例1で作製した電極基板上にシリコン
ゴムを用いて流路を作製した。
The etching was performed as described above, and the relationship between the etching time (sec.) And the depth (μm) of the communication groove formed between the electrodes was measured. As a result, as shown in FIG. 7, the etching time and the depth of the formed groove showed a proportional relationship. The depth of the groove was measured by cutting the electrode with a glass cutter and observing the cross section with a microscope. Reference Example 2 Fabrication of Electrode Substrate Having Flow Channel In order to separate molecules by moving molecules in a non-uniform electric field, a flow channel was formed on the electrode substrate fabricated in Example 1 using silicon rubber.

【0062】電極上に分子が溶解した溶液を送流するた
めのシリコンゴム流路は、深さ25μm、幅400μmで、電
極基板上の電極が配置されている領域を通るように設計
した。
The silicon rubber flow channel for sending the solution in which the molecules were dissolved on the electrode was designed to have a depth of 25 μm and a width of 400 μm, and to pass through the region where the electrode was arranged on the electrode substrate.

【0063】作製は、図解フォトファブリケーション、
橋本貴夫著、総合電子出版、1985に記載の方法に準じて
行った。先ず、ガラス板上に厚さ25μmのシート状ネガ
レジストを貼り付けた後、流路作製用に設計したフォト
マスクを用いて露光した後、ネガレジストの現像を行っ
た。このネガレジスト基板を鋳型として未硬化のシリコ
ンゴムを流し込んだ後、硬化させることによって、電極
が配置されている部分に高さ25μmの凹面を持つシリコ
ンゴムを作製した。
The fabrication is illustrated by photo fabrication,
Performed according to the method described in Takao Hashimoto, Sogo Denshi Shuppan, 1985. First, a sheet-shaped negative resist having a thickness of 25 μm was attached to a glass plate, and then exposed using a photomask designed for producing a channel, and then the negative resist was developed. Uncured silicone rubber was poured using the negative resist substrate as a mold, and then cured to produce a silicone rubber having a concave surface with a height of 25 μm at the portion where the electrodes were arranged.

【0064】電極基板とシリコンゴム流路を、電極基板
上の電極が配置されている領域にシリコンゴム凹面があ
うように2液硬化型シリコンゴムで接着し、流路上流部
に、溶液注入用のシリンジを差し込み、該電極基板に、
電極上を分子が溶解している溶液を送流させる装置を付
加した。
The electrode substrate and the silicone rubber flow path are adhered to each other with a two-liquid curing type silicone rubber so that the silicon rubber concave surface is located on the region of the electrode substrate where the electrodes are arranged. Insert the syringe into the electrode substrate,
A device for sending a solution in which molecules are dissolved on the electrode was added.

【0065】実施例 2 牛血清アルブミン(BSA)
タンパクについての捕集率の測定 実施例1のようにして、深さ2μm又は4μmの連通溝
を形成した電極を作製し、参考例2に記載のように流路
を形成して、本発明の誘導泳動クロマトグラフィー装置
を作製し、下記のようにしてこの装置の捕集率を測定し
た。尚、比較のため、連通溝を形成しない以外は同様に
して作製した誘導泳動クロマトグラフィー装置について
も捕集率を測定した。
Example 2 Bovine Serum Albumin (BSA)
Measurement of collection rate of protein An electrode in which a communication groove having a depth of 2 μm or 4 μm was formed as in Example 1 and a flow path was formed as described in Reference Example 2, An induction electrophoresis chromatography device was prepared, and the collection rate of this device was measured as described below. For comparison, the collection rate was also measured for an inductive electrophoresis chromatography device produced in the same manner except that no communication groove was formed.

【0066】(試料)サンプルとして、FITC標識さ
れたBSA(分子量約65kD)60μg/mlを用い
た。
(Sample) As a sample, 60 μg / ml of FITC-labeled BSA (molecular weight: about 65 kD) was used.

【0067】(操作)タンパク分子の電極基板や流路へ
の吸着を防止するため、ブロックA(雪印乳業(株)社
製)を用いて流路表面をブロッキングした後、FITC
標識BSAを誘導泳動クロマトグラフィーに供した。
(Operation) In order to prevent protein molecules from adsorbing to the electrode substrate and the flow channel, the surface of the flow channel was blocked using Block A (manufactured by Snow Brand Milk Products Co., Ltd.).
Labeled BSA was subjected to induction migration chromatography.

【0068】使用したサンプルの平均流速は556μm
/sec.であり、電界印加は測定開始から30〜12
0秒の間に行った。この時の印加する電界強度は、2.
14Mv/m、2.5Mv/m、2.86Mv/mの3
種類について捕集率を測定した。
The average flow rate of the sample used was 556 μm
/ Sec. And electric field application is 30 to 12 from the start of measurement.
Performed during 0 seconds. The applied electric field strength at this time is as follows:
14 Mv / m, 2.5 Mv / m, 2.86 Mv / m
The collection rate was measured for each species.

【0069】捕集率の測定は、次式により求めた。The collection rate was determined by the following equation.

【0070】捕集率(%)=[(I-Imin)×1
00]/(I-Iback) 式中、Iは、電界印加前の蛍光強度の定常値を表し、
minは、電界印加中の蛍光強度の最小値を表し、I
backは、バックグラウンドを表す。 (結果)結果を図8に示す。尚、図8中、−△―は深さ
4μm、−□−は深さ2μm、−◇―は深さ0μmの誘
導泳動クロマトグラフィー装置を使用した結果を表す。
Collection rate (%) = [(I 0 -I min ) × 1
00] / (I 0 −I back ) where I 0 represents a steady-state value of the fluorescence intensity before the electric field is applied,
I min represents the minimum value of the fluorescence intensity during the application of the electric field, and I min
back represents the background. (Results) The results are shown in FIG. In FIG. 8,-△-indicates the results obtained by using a 4 μm deep,-□-indicates a depth of 2 μm, and-◇-indicates a depth of 0 μm using an electrophoresis chromatography apparatus.

【0071】図8の結果から明らかなように、溝の深さ
が深いほど捕集率(%)が向上し、2.86Mv/mで
は、4μmの連通溝を持つ本発明の装置は、持たない従
来の装置の捕集率28%と比べて40%であり、捕集率
が約43%向上すること、言い換えれば、このように本
発明の装置を使用することにより目的物質の捕集能力が
著しく向上することが判る。
As is clear from the results shown in FIG. 8, the trapping rate (%) increases as the depth of the groove increases. At 2.86 Mv / m, the apparatus of the present invention having a communication groove of 4 μm has The trapping efficiency is about 40% compared to the trapping rate of 28% of the conventional apparatus, and the trapping rate is improved by about 43%. In other words, the trapping ability of the target substance can be improved by using the apparatus of the present invention. It can be seen that is significantly improved.

【0072】実施例 3:500bpDNAについての
捕集率の測定 インターカーレーター蛍光色素YOYO―1(モレキュ
ラープローブ社)で標識した500bpDNAを試料と
して使用し、実施例2と同様にして、溝の深さ0μm、
2μm及び4μmの誘導泳動クロマトグラフィー装置に
より捕集率(%)を測定した。
Example 3 Measurement of Collection Rate for 500 bp DNA Using 500 bp DNA labeled with the intercalator fluorescent dye YOYO-1 (Molecular Probes) as a sample, the groove depth was determined in the same manner as in Example 2. 0 μm,
The collection rate (%) was measured with a 2 μm and 4 μm induction electrophoresis chromatography apparatus.

【0073】結果を図9に示す。尚、図9中、−△―は
深さ4μm、−□−は深さ2μm、−◇―は深さ0μm
の連通溝を有する誘導泳動クロマトグラフィー装置を使
用した結果を表す。
FIG. 9 shows the results. In FIG. 9,-△-is 4 μm in depth,-□-is 2 μm in depth, and-◇-is 0 μm in depth.
2 shows the results obtained by using an induction electrophoresis chromatography apparatus having a communication groove of No.

【0074】図9の結果から明らかなように、この場合
でも1.5Mv/m以上の電界強度において、深さ4μ
mの連通溝を形成した本発明の装置は、連通溝を有しな
い従来の装置より、約20%程度捕集率(%)が向上し
た。
As is apparent from the results shown in FIG. 9, even in this case, when the electric field strength is 1.5 Mv / m or more, the depth is 4 μm.
The device of the present invention in which m communication grooves were formed improved the collection rate (%) by about 20% as compared with the conventional device having no communication grooves.

【0075】[0075]

【発明の効果】以上述べた如く、本発明によれば、対向
する電極間に電極よりも低い部位を設けるという従来全
く行われていなかったことを行うことによって、誘導泳
動による物質の分離に極めて重要な役割を有する捕集率
が著しく向上するという絶大な効果を奏するものであ
り、それゆえ極めて画期的な発明である。
As described above, according to the present invention, a portion which is lower than the electrode is provided between the opposing electrodes, which has not been performed at all, so that the separation of a substance by induction migration can be performed extremely. This is a tremendous effect that the collection rate, which plays an important role, is significantly improved, and is therefore an extremely innovative invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】誘電泳動の原理を示す図である。FIG. 1 is a diagram showing the principle of dielectrophoresis.

【図2】本発明の実施例を示す平面図(A)と断面図
(B)である。
FIG. 2 is a plan view (A) and a cross-sectional view (B) showing an embodiment of the present invention.

【図3】等方性エッチング(A)、異方性エッチング
(B)、及びRIE若しくはLIGA(C)により形成
した本発明の「電極よりも低い部位」の例を示す断面図
である。
FIG. 3 is a cross-sectional view showing an example of “a part lower than an electrode” of the present invention formed by isotropic etching (A), anisotropic etching (B), and RIE or LIGA (C).

【図4】本発明に使用する電極の例を示す平面図であ
る。
FIG. 4 is a plan view showing an example of an electrode used in the present invention.

【図5】本発明の誘導泳動クロマトグラフィー装置の断
面図である。
FIG. 5 is a cross-sectional view of the induction electrophoresis chromatography device of the present invention.

【図6】本発明の方法により基板に「電極よりも低い部
位」を形成する例を示す断面図である。
FIG. 6 is a cross-sectional view showing an example of forming a “part lower than an electrode” on a substrate by the method of the present invention.

【図7】実施例1で測定したエッチング時間と溝の深さ
との関係を示すグラフである。
FIG. 7 is a graph showing a relationship between an etching time measured in Example 1 and a groove depth.

【図8】本発明の誘導泳動クロマトグラフィー装置と従
来の誘導泳動クロマトグラフィー装置を使用して、牛血
清アルブミン(BSA)タンパクについて捕集率を測定
したグラフである。
FIG. 8 is a graph showing the measurement of the bovine serum albumin (BSA) collection rate using the induction electrophoresis chromatography apparatus of the present invention and a conventional induction electrophoresis chromatography apparatus.

【図9】本発明の誘導泳動クロマトグラフィー装置と従
来の誘導泳動クロマトグラフィー装置を使用して、50
0bpDNAについて捕集率を測定したグラフである。
FIG. 9 shows the results obtained by using the induction electrophoresis chromatography apparatus of the present invention and a conventional induction electrophoresis chromatography apparatus.
It is the graph which measured the collection rate about 0bpDNA.

【符号の説明】[Explanation of symbols]

1:基板 2:凸状物(支柱) 2′:凸状物(壁体) 3:電極 4:電極よりも低い部位(連通溝) 4′:電極よりも低い部位(溝) 5:電極間の最小ギャップ 1: Substrate 2: Convex object (post) 2 ': Convex object (wall) 3: Electrode 4: Area lower than electrode (communication groove) 4': Area lower than electrode (groove) 5: Between electrodes Minimum gap

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】基板上に電極を設けた誘電泳動装置におい
て、対向する前記電極間に、不均一電界領域の増加を実
現する構造を形成したことを特徴とする誘電泳動装置。
1. A dielectrophoretic device in which electrodes are provided on a substrate, wherein a structure for increasing a non-uniform electric field region is formed between the opposing electrodes.
【請求項2】基板上に電極を設けた誘電泳動装置におい
て、対向する前記電極間に該電極よりも低い部位を形成
したことを特徴とする誘電泳動装置。
2. A dielectrophoretic device in which electrodes are provided on a substrate, wherein a portion lower than the electrodes is formed between the opposing electrodes.
【請求項3】前記電極を前記基板上の凸状物で保持し
て、前記対向する前記電極間に該電極よりも低い部位を
形成する請求項2に記載の誘電泳動装置。
3. The dielectrophoretic device according to claim 2, wherein the electrode is held by a convex on the substrate, and a portion lower than the electrode is formed between the opposed electrodes.
【請求項4】物理的又は/及び化学的手段により電極間
の基板を掘削して、対向する前記電極間に該電極よりも
低い部位を形成したことを特徴とする請求項1〜3のい
ずれか1項に記載の誘電泳動装置の製造方法。
4. A substrate according to claim 1, wherein a substrate lower than said electrode is formed between said opposing electrodes by excavating a substrate between said electrodes by physical and / or chemical means. The method for producing a dielectrophoresis apparatus according to claim 1.
【請求項5】前記化学的手段が、誘電泳動装置の基板に
対するエッチング液を用いるエッチングである請求項4
に記載の誘電泳動装置の製造方法。
5. The method according to claim 4, wherein the chemical means is etching using an etchant for a substrate of the dielectrophoresis apparatus.
3. The method for manufacturing a dielectrophoretic apparatus according to item 1.
【請求項6】誘電泳動電極により形成された不均一電界
内に、分離すべき物質を含む液体を存在させ、該物質に
働く誘電泳動力の差によって分離を行う物質の分離方法
において、対向する電極間に形成した電極よりも低い部
位により、不均一電界領域の増加を実現することによっ
て、物質の捕集能力を向上させたことを特徴とする物質
の分離方法。
6. A method for separating a substance in which a liquid containing a substance to be separated is present in a non-uniform electric field formed by a dielectrophoretic electrode and separation is performed by a difference in dielectrophoretic force acting on the substance. A method for separating a substance, characterized in that the ability to trap a substance is improved by realizing an increase in a non-uniform electric field region by a portion lower than an electrode formed between the electrodes.
【請求項7】誘電泳動電極により形成された不均一電界
内に、分離すべき物質を含む液体を流し、該物質に働く
誘電泳動力と流体抗力の相互作用によって分離を行う物
質の分離方法において、対向する電極間に形成した電極
よりも低い部位により、不均一電界領域の増加と流体抗
力の低減を実現することによって、物質の捕集能力を向
上させる請求項6に記載の分離方法。
7. A method for separating a substance in which a liquid containing a substance to be separated is caused to flow in a non-uniform electric field formed by a dielectrophoretic electrode and separation is performed by an interaction between dielectrophoretic force and fluid drag acting on the substance. 7. The separation method according to claim 6, wherein a portion lower than the electrodes formed between the opposing electrodes realizes an increase in the non-uniform electric field region and a reduction in the fluid drag, thereby improving the trapping ability of the substance.
JP2000112337A 2000-04-12 2000-04-13 Dielectrophoresis apparatus and material separation method Expired - Fee Related JP4587112B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2000112337A JP4587112B2 (en) 2000-04-13 2000-04-13 Dielectrophoresis apparatus and material separation method
CA002343873A CA2343873A1 (en) 2000-04-12 2001-04-12 Electrode for dielectrophoretic apparatus, dielectrophoretic apparatus, methdo for manufacturing the same, and method for separating substances using the elctrode or dielectrophoretic apparatus
AT01109169T ATE370793T1 (en) 2000-04-13 2001-04-12 ELECTRODE CONSTRUCTION FOR DIELECTROPHORETIC ARRANGEMENT AND DIELECTROPHORETIC SEPARATION
DE60130052T DE60130052T2 (en) 2000-04-13 2001-04-12 Electrode structure for dielectrophoretic arrangement and dielectrophoretic separation
EP01109169A EP1145766B1 (en) 2000-04-13 2001-04-12 Electrode construction for dielectrophoretic apparatus and separation by dielectrophoresis
ES01109169T ES2288154T3 (en) 2000-04-13 2001-04-12 CONSTRUCTION OF ELECTRODES FOR DIELECTROPHORETIC DEVICE AND SEPARATION BY DIELECTROPHORESIS.
EP06008220A EP1716926A3 (en) 2000-04-13 2001-04-12 Electrode for dielectrophoretic apparatus, dielectrophoretic apparatus, method for manufacturing the same, and method for separating substances using the electrode or dielectrophoretic apparatus
US09/833,566 US6875329B2 (en) 2000-04-13 2001-04-13 Method for separating substances using a dielectrophoretic apparatus
US11/064,828 US20050139473A1 (en) 2000-04-13 2005-02-25 Electrode for dielectrophoretic apparatus, dielectrophoretic apparatus, method for manufacturing the same, and method for separating substances using the electrode or dielectrophoretic apparatus
US12/588,268 US20100126865A1 (en) 2000-04-13 2009-10-09 Electrode for dielectrophoretic apparatus, dielectrophoretic apparatus, method for manufacturing the same, and method for separating substances using the electrode or dielectrophoretic apparatus
US13/067,876 US20110259746A1 (en) 2000-04-13 2011-07-01 Electrode for dielectrophoretic apparatus, dielectrophoretic apparatus, method for manufacturing the same, and method for separating substances using the electrode or dielectrophoretic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000112337A JP4587112B2 (en) 2000-04-13 2000-04-13 Dielectrophoresis apparatus and material separation method

Publications (2)

Publication Number Publication Date
JP2001296274A true JP2001296274A (en) 2001-10-26
JP4587112B2 JP4587112B2 (en) 2010-11-24

Family

ID=18624526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000112337A Expired - Fee Related JP4587112B2 (en) 2000-04-12 2000-04-13 Dielectrophoresis apparatus and material separation method

Country Status (1)

Country Link
JP (1) JP4587112B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003200081A (en) * 2002-01-10 2003-07-15 Japan Science & Technology Corp Dielectro-phoresis filtering apparatus and suspended particulates removing method by dielectro-phoresis
JP2004045358A (en) * 2001-08-03 2004-02-12 Nec Corp Separating apparatus and method for manufacturing the same
JP2004243238A (en) * 2003-02-14 2004-09-02 National Institute Of Advanced Industrial & Technology Particle sorting method
WO2005121767A1 (en) * 2004-05-25 2005-12-22 Fluid Incorporated Microfluidic device and analyzing/sorting device using the same
JP2006518847A (en) * 2003-02-12 2006-08-17 イギリス国 Particle assembly device
KR101395149B1 (en) * 2012-07-20 2014-05-15 부산대학교 산학협력단 Microfluidic channel using ac voltage, and method for detecting using the microfluidic channel
CN107267382A (en) * 2017-07-26 2017-10-20 南方科技大学 A kind of micro-fluidic chip based on dielectrophoresis and its preparation method and application
JP2018028457A (en) * 2016-08-16 2018-02-22 東ソー株式会社 Method and device for collecting target particle
WO2019182186A1 (en) * 2018-03-23 2019-09-26 한국과학기술연구원 Vertical nanogap dielectrophoretic electrode, manufacturing method therefor, and particle capture and separation method using same
KR20220016645A (en) * 2020-08-03 2022-02-10 한국과학기술연구원 Particle collecting device and particle sensing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101284725B1 (en) * 2011-07-22 2013-07-17 한국항공대학교산학협력단 System for high throughput particle separation using dielectrophoresis and the same method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01285184A (en) * 1988-05-10 1989-11-16 Advance Co Ltd Treating device of fine particle
JPH06501159A (en) * 1990-10-31 1994-02-10 フラウンホッファー ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ. Method for processing microscopically fine induced particles and apparatus for carrying out the method
JPH06509745A (en) * 1991-08-19 1994-11-02 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ. Method for continuous separation of microscopic dielectric particle mixture and apparatus for carrying out the method
WO1998004355A1 (en) * 1996-07-26 1998-02-05 Btg International Limited Apparatus and method for testing particles using dielectrophoresis
WO2000000293A1 (en) * 1998-06-26 2000-01-06 Evotec Biosystems Ag Electrode arrangement for generating functional field barriers in microsystems
JP2000125846A (en) * 1998-10-27 2000-05-09 Matsushita Electric Ind Co Ltd Device for measuring number of microorganism and method therefor
WO2001005512A1 (en) * 1999-07-20 2001-01-25 University Of Wales, Bangor Dielectrophoretic apparatus & method
JP2001252065A (en) * 2000-03-15 2001-09-18 Tokai Rika Co Ltd Particle-moving/fixing device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01285184A (en) * 1988-05-10 1989-11-16 Advance Co Ltd Treating device of fine particle
JPH06501159A (en) * 1990-10-31 1994-02-10 フラウンホッファー ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ. Method for processing microscopically fine induced particles and apparatus for carrying out the method
JPH06509745A (en) * 1991-08-19 1994-11-02 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ. Method for continuous separation of microscopic dielectric particle mixture and apparatus for carrying out the method
WO1998004355A1 (en) * 1996-07-26 1998-02-05 Btg International Limited Apparatus and method for testing particles using dielectrophoresis
WO2000000293A1 (en) * 1998-06-26 2000-01-06 Evotec Biosystems Ag Electrode arrangement for generating functional field barriers in microsystems
JP2000125846A (en) * 1998-10-27 2000-05-09 Matsushita Electric Ind Co Ltd Device for measuring number of microorganism and method therefor
WO2001005512A1 (en) * 1999-07-20 2001-01-25 University Of Wales, Bangor Dielectrophoretic apparatus & method
JP2001252065A (en) * 2000-03-15 2001-09-18 Tokai Rika Co Ltd Particle-moving/fixing device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MICHAEL P ET AL.: "Dielectrophoretic Characterization and Separation of Antibody-Coated Submicrometer Latex Spheres", ANAL. CHEM., vol. 71, no. 16, JPN6010047193, 15 August 1999 (1999-08-15), pages 3441 - 3445, ISSN: 0001700959 *
鷲津正夫 他: "誘電泳動による生体分子のハンドリング技術と分離分析への応用", 電子情報通信学会論文誌C, vol. 83, no. 1, JPN6010009580, January 2000 (2000-01-01), pages 1 - 8, ISSN: 0001700958 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004045358A (en) * 2001-08-03 2004-02-12 Nec Corp Separating apparatus and method for manufacturing the same
JP2003200081A (en) * 2002-01-10 2003-07-15 Japan Science & Technology Corp Dielectro-phoresis filtering apparatus and suspended particulates removing method by dielectro-phoresis
JP2006518847A (en) * 2003-02-12 2006-08-17 イギリス国 Particle assembly device
JP2004243238A (en) * 2003-02-14 2004-09-02 National Institute Of Advanced Industrial & Technology Particle sorting method
WO2005121767A1 (en) * 2004-05-25 2005-12-22 Fluid Incorporated Microfluidic device and analyzing/sorting device using the same
KR101395149B1 (en) * 2012-07-20 2014-05-15 부산대학교 산학협력단 Microfluidic channel using ac voltage, and method for detecting using the microfluidic channel
JP2018028457A (en) * 2016-08-16 2018-02-22 東ソー株式会社 Method and device for collecting target particle
CN107267382A (en) * 2017-07-26 2017-10-20 南方科技大学 A kind of micro-fluidic chip based on dielectrophoresis and its preparation method and application
CN107267382B (en) * 2017-07-26 2024-04-23 南方科技大学 Microfluidic chip based on dielectrophoresis and preparation method and application thereof
WO2019182186A1 (en) * 2018-03-23 2019-09-26 한국과학기술연구원 Vertical nanogap dielectrophoretic electrode, manufacturing method therefor, and particle capture and separation method using same
KR20220016645A (en) * 2020-08-03 2022-02-10 한국과학기술연구원 Particle collecting device and particle sensing method
KR102362856B1 (en) 2020-08-03 2022-02-15 한국과학기술연구원 Particle collecting device and particle sensing method

Also Published As

Publication number Publication date
JP4587112B2 (en) 2010-11-24

Similar Documents

Publication Publication Date Title
EP1145766B1 (en) Electrode construction for dielectrophoretic apparatus and separation by dielectrophoresis
KR100624460B1 (en) A microfluidic device comprising a membrane formed with nano to micro sized pores and method for separating a polarizable material using the same
EP1984723B1 (en) Impedance measurement device for characterizing particles in a micro channel
Jones et al. Continuous separation of DNA molecules by size using insulator-based dielectrophoresis
Chou et al. Electrodeless dielectrophoresis for micro total analysis systems
JP4093740B2 (en) Fine particle sorting microchip and fine particle sorting device
CN108977343B (en) Micro-fluidic chip for cell separation and capture based on dielectrophoresis principle
KR100813254B1 (en) An apparatus for separating a polarizable analyte using dielectrophoresis and a method of separating a polarizable analyte using the same
JP6114694B2 (en) Systems and methods for automated reusable parallel biological reactions
Anand et al. Bipolar electrode focusing: faradaic ion concentration polarization
US9387488B2 (en) Molecular entrapment and enrichment
US7666289B2 (en) Methods and devices for high-throughput dielectrophoretic concentration
Cabodi et al. Continuous separation of biomolecules by the laterally asymmetric diffusion array with out‐of‐plane sample injection
JP4587112B2 (en) Dielectrophoresis apparatus and material separation method
CN106757376B (en) Biochip for biomolecule detection or sequencing and manufacturing method thereof
WO2017039080A1 (en) Sample concentration apparatus and method for extracting concentrated sample by using same
Bu et al. Continuous-flow label-free size fractionation of extracellular vesicles through electrothermal fluid rolls and dielectrophoresis synergistically integrated in a microfluidic device
Boettcher et al. Filtration at the microfluidic level: enrichment of nanoparticles by tunable filters
KR101034350B1 (en) Devices for Particle Concentration and Separation using Electric Current Density Differences in Plate Electrodes
Mokkapati et al. DNA tracking within a nanochannel: device fabrication and experiments
Velmanickam et al. Dielectrophoretic cell isolation in microfluidics channels for high-throughput biomedical applications
Al-Ali et al. A microfluidic platform with castellated electrodes to separate cancer cells from blood cells
EP4161698A1 (en) Dielectrophoresis detection device
Hashimoto et al. Design of Flow Channel with Surface Electrodes to Detect Dielectrophoretic Movement of Floating Myoblast
Buyong et al. Tapered dielectrophoresis microelectrodes: Device, operation, and application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100829

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees