JP2001295700A - Control for energy supply system - Google Patents

Control for energy supply system

Info

Publication number
JP2001295700A
JP2001295700A JP2000116520A JP2000116520A JP2001295700A JP 2001295700 A JP2001295700 A JP 2001295700A JP 2000116520 A JP2000116520 A JP 2000116520A JP 2000116520 A JP2000116520 A JP 2000116520A JP 2001295700 A JP2001295700 A JP 2001295700A
Authority
JP
Japan
Prior art keywords
energy
heat
control
map data
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000116520A
Other languages
Japanese (ja)
Other versions
JP2001295700A5 (en
JP3988853B2 (en
Inventor
Shinya Obara
伸哉 小原
Hiroko Takano
裕子 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
C & A Kk
Original Assignee
C & A Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by C & A Kk filed Critical C & A Kk
Priority to JP2000116520A priority Critical patent/JP3988853B2/en
Publication of JP2001295700A publication Critical patent/JP2001295700A/en
Publication of JP2001295700A5 publication Critical patent/JP2001295700A5/ja
Application granted granted Critical
Publication of JP3988853B2 publication Critical patent/JP3988853B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

PROBLEM TO BE SOLVED: To conduct the optimum operation of an energy supply system, constituted by plural energy apparatus of many types to eliminate the disadvantages of prior art, and achieve cost saving, energy saving or low environmental load, in energy supply for a dwelling house or multiple dwelling houses. SOLUTION: The optimization control for the whole system is conducted according to the arithmetic result of one system controller. In the system controller, a calendar and a timer are incorporated, and two energy demand data bases, corrected according to the history of past energy demand and three system operation map data previously obtained by test evaluation and simulation, are stored. The three system operation map data are the summary of data on energy saving, low cost and reduction in exhaust emission, and the energy demand amount estimated according to the energy demand data base and the actual energy demand amount are compared to select the scheduled operation control and the load follow-up control, thereby performing the optimized operation of the system.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,特に熱エネルギ需
要の多い施設や寒冷地住宅でのエネルギ供給装置,ある
いはエネルギ供給のインフラストラクチャが整備されて
いない僻地でのエネルギ供給装置,あるいは災害時に利
用する施設でのエネルギ供給装置,あるいは既設施設で
の非常用エネルギ供給装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an energy supply device in a facility having a high demand for heat energy or a house in a cold area, an energy supply device in a remote place where an energy supply infrastructure is not provided, or a disaster. The present invention relates to an energy supply device in an existing facility or an emergency energy supply device in an existing facility.

【0002】[0002]

【従来の技術】従来,自律型エネルギ供給システムとし
て,太陽電池モジュール,燃料電池,さらに堆肥化装置
などを組み合わせたものが提案されている(例えば,特
願平10−225155,特願平10−158228,
特願平10−141465)。また,コージェネレーシ
ョンの最適運転方法を演算してシステムを制御する方法
として例えば特願平特開平08−086243が提案さ
れている。
2. Description of the Related Art Hitherto, as an autonomous energy supply system, a combination of a solar cell module, a fuel cell, and a composting device has been proposed (for example, Japanese Patent Application No. 10-225155, Japanese Patent Application No. 158228,
Japanese Patent Application No. 10-141465). As a method of controlling the system by calculating the optimal operation method of cogeneration, for example, Japanese Patent Application No. 08-086243 has been proposed.

【0003】[0003]

【発明が解決しようとする課題】特に寒冷地では暖房,
給湯および融雪などの熱利用が多いことから,別途ボイ
ラなどの熱供給機器を付加することが多く,これに際し
て太陽電池もしくは燃料電池で発電された電力もしくは
排熱を熱需要側で満足するような機器の選定を行うと,
化石燃料を用いる従来のボイラに比べて高コストとなっ
たり,設備の大型化が伴う。また,特願平特開平08−
086243に記されているコージェネレーションシス
テムの制御手法では,過去の運転実績や季節等のデー
タ,所定時間経過後の電力負荷を推定する手段,推定電
力負荷に基づいた電力負荷追従運転,熱負荷追従運転,
複数台定格運転,1台部分負荷運転,原動機停止運転の
夫々の運転方式についてのエネルギシミュレーションを
行う手段,エネルギシミュレーションの結果から各運転
方式のエネルギ消費量を算出する手段,算出した夫々の
運転方式を比較して,エネルギ消費量,コスト等の最小
化すべき目的関数に合致する運転方式を選択する手段
と,選択した運転方式に基づいてシステムを運転する手
段を要することから,住宅などの小規模なシステムを制
御するには煩雑なデータの準備と制御コンピュータでの
複雑なアルゴリズムの入力を要し,制御を行うための設
備や準備に要するコストが高いという問題がある。そこ
で本発明では太陽電池,燃料電池および内燃機関や外燃
機関によるコージェネレーションシステム,ボイラなど
の熱供給機器とを組み合わせて,特に寒冷地での熱需要
についても十分自律可能なエネルギ供給システムを構築
し,エネルギコストが最小となるような最適化運転,あ
るいは例えば排気ガスの排出量が必要最小限となるよう
な最適化運転,あるいは従来のエネルギ供給方法と比較
して省エネルギが最も達成されるシステムの最適化運転
について,熱需要量の予測マップデータと,予め電力需
要と熱需要に対するシステム動作を計算した運転マップ
データとを制御コンピュータに記憶しておくことで,エ
ネルギ需要予測マップデータに基づくスケジュール運転
制御を行い,エネルギ需要予測マップデータと実際のエ
ネルギ需要量とが大きく外れる場合には,即座に負荷追
従制御に切り替えることで,システムの最適化制御につ
いて低コストで行うことを可能とする。
SUMMARY OF THE INVENTION Particularly in a cold region, heating,
Because of the large amount of heat utilization such as hot water supply and snow melting, additional heat supply equipment such as a boiler is often added. In this case, the power generated by the solar cell or fuel cell or the exhaust heat is satisfied on the heat demand side. After selecting the equipment,
The cost is higher and the equipment is larger than conventional boilers using fossil fuels. In addition, Japanese Patent Application Laid-Open No.
In the control method of the cogeneration system described in Japanese Patent No. 086243, means for estimating power load after a lapse of a predetermined time, data on past operation results and seasons, power load following operation based on the estimated power load, heat load following operation,
Means for performing energy simulation for each of the operation modes of multiple-unit rated operation, single-unit partial-load operation, and motor stop operation, means for calculating the energy consumption of each operation mode from the results of the energy simulation, and each calculated operation mode And a means for selecting an operation method that matches the objective function to be minimized, such as energy consumption and cost, and a means for operating the system based on the selected operation method are required. Controlling a complicated system requires complicated data preparation and input of a complicated algorithm on a control computer, and there is a problem that the equipment required for the control and the cost for preparation are high. Thus, in the present invention, a solar cell, a fuel cell, a cogeneration system using an internal combustion engine or an external combustion engine, and a heat supply device such as a boiler are combined to construct an energy supply system capable of sufficiently autonomous heat demand especially in cold regions. In addition, an optimization operation that minimizes energy costs, or an optimization operation that minimizes exhaust gas emissions, for example, or energy saving that is most achieved compared to conventional energy supply methods The optimized operation of the system is based on the energy demand prediction map data by storing the prediction map data of the heat demand and the operation map data in which the system operation for the power demand and the heat demand is calculated in advance in the control computer. Performs scheduled operation control, energy demand forecast map data and actual energy demand It is when the outside is large immediately by switching the load following control, making it possible to present at low cost optimization control of the system.

【0004】本発明の目的は,前述の不都合を解消し,
住宅や集合住宅などのエネルギ供給について省コスト,
省エネルギ,あるいは低環境負荷の低減を目的関数とし
て,多種複数の既設エネルギ設備,もしくは新設エネル
ギ設備,もしくは既設設備へのエネルギ設備の付加に対
してシステム全体での最適化運転を低コストで行うこと
を目的とする。
An object of the present invention is to solve the above-mentioned disadvantages,
Cost saving for energy supply of houses and apartment houses,
With the objective function of energy saving or reduction of low environmental load, optimized operation of the whole system is performed at a low cost for multiple existing energy facilities, new energy facilities, or the addition of energy facilities to existing facilities. The purpose is to:

【0005】[0005]

【課題を解決するための手段】上記の問題点を解決する
ために,本発明では,システム全体をコントロールする
システムコントローラにエネルギコストが最小となるよ
うな最適化運転データマップ,あるいは例えば排気ガス
の排出量などの環境負荷が最小限となるような最適化運
転データマップ,あるいは灯油ボイラと商用電力との組
み合わせに代表される従来型のエネルギ供給方法や既設
のエネルギ設備と比較して省エネルギが最も多く達成さ
れる最適化運転データマップを,予めシステムを構成す
る要素の試験やシミュレーションを行った結果を利用し
て作成し,システムコントローラに記憶させておく。各
最適化運転マップデータは,事前に試験やシミュレーシ
ョンなどで得られた燃料消費量,電力消費量,および動
作範囲などについて近似式を用いて数式化しておく。シ
ステムコントローラ内部では,スケジュール制御を行う
ためのエネルギ需要マップデータとカレンダおよびタイ
マがセットされており,通常システムの動作ではエネル
ギ需要マップデータと各最適化運転マップデータからス
ケジュール運転制御される。これに対して,エネルギ需
要マップデータと実際のエネルギ需要量とが大きくずれ
るような場合には,即座に各最適化運転マップデータと
実際のエネルギ需要量に基づいて負荷追従制御を行い,
この際のずれの量をコントローラの記憶装置に記憶して
エネルギ需要マップデータを更新して負荷の将来予測に
用いる。
In order to solve the above-mentioned problems, according to the present invention, a system controller for controlling the entire system is provided with an optimized operation data map for minimizing the energy cost, or for example, for the exhaust gas. Optimized operation data map that minimizes environmental load such as emission, or energy saving compared with existing energy supply method or existing energy equipment represented by combination of kerosene boiler and commercial power The optimized operation data map that is most frequently achieved is created in advance by using the results of tests and simulations of the components that constitute the system, and stored in the system controller. Each optimized operation map data is formed into a mathematical expression using an approximate expression for the fuel consumption, the power consumption, the operating range, and the like obtained in advance by a test, a simulation, and the like. Inside the system controller, energy demand map data for performing schedule control, a calendar, and a timer are set. In normal system operation, schedule operation is controlled from the energy demand map data and each optimized operation map data. On the other hand, when the energy demand map data and the actual energy demand greatly deviate, the load following control is immediately performed based on each optimized operation map data and the actual energy demand,
The amount of deviation at this time is stored in the storage device of the controller, and the energy demand map data is updated and used for future prediction of the load.

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【実施例1】図1は本発明の運転動作マップによる制御
を伴うエネルギ供給装置の基本概念図であり,4の燃料
電池,5の太陽光発電装置,6の商用電力,7のエンジ
ン発電機,8の太陽光集熱器,10のボイラ,11のそ
の他のエネルギ機器の付加について,1のシステムコン
トローラ演算結果から与えられる指令に基づいてシステ
ム全体の最適化運転制御を行う。1のシステムコントロ
ーラ内部には,カレンダおよびタイマが組み込まれてお
り,さらに過去のエネルギ需要の履歴に基づいて補正さ
れる2のエネルギ需要マップデータ,および予め試験評
価やシミュレーションなどによって得られた3のシステ
ム動作マップデータも記憶されている。3のシステム動
作マップデータは,省エネルギ,低コストおよび排ガス
の低減などについて集約したデータであり,17のエネ
ルギ需要者が必要とする電力需要量と熱需要量の値と,
2のエネルギ需要データベースから求められる各需要量
とを常に比較しつつ,今後の需要量予測を行う。この際
に,14の蓄熱タンクでの蓄熱量,および燃料電池を用
いる際での18の電気分解槽で製造されて貯蔵される1
9の水素タンクと20の酸素タンクの残量をモニタする
などして3のシステム動作マップデータと共に最適化さ
れたスケジュール運転制御との差を常時監視して,再度
最適化の演算を行ってシステムの運転制御を行う。電力
の供給については,4の燃料電池,5の太陽光発電装
置,および7のエンジン発電機などによる電力供給系統
と6の商用電力系用とは13の切替器に個別に接続され
ており,高速切替器で電力供給系統の選択を行うことか
ら,瞬停は生じない。また,電力の一部を14の蓄熱タ
ンク内に設置されている15の電気ヒータによって熱に
変換できることから,内燃機関や外燃機関での最高効率
点における運転を行い,余剰電力を熱に変換して蓄熱す
ることができる。システムからの熱供給量が需要に対し
て少ない場合には,16の補助ボイラによって追い炊き
ができる。
Embodiment 1 FIG. 1 is a basic conceptual diagram of an energy supply device with control based on a driving operation map according to the present invention. The fuel supply device 4 includes a solar power generation device 5, a commercial power supply 6, and an engine generator 7. , 8, a solar heat collector, 10, a boiler, and 11 other energy devices, the system performs an optimized operation control based on a command given from a system controller operation result. A calendar and a timer are incorporated in the system controller 1. The energy demand map data 2 is corrected based on the history of the past energy demand, and the energy demand map data 3 is obtained in advance by test evaluation and simulation. System operation map data is also stored. The system operation map data of No. 3 is data that summarizes energy saving, low cost, reduction of exhaust gas, etc., and the values of power demand and heat demand required by 17 energy consumers,
The future demand is predicted while constantly comparing the demands obtained from the second energy demand database. At this time, the amount of heat stored in the 14 heat storage tanks, and the amount of heat produced and stored in the 18 electrolysis tanks when using the fuel cell 1
The difference between the optimized schedule operation control together with the system operation map data of 3 is constantly monitored by, for example, monitoring the remaining amounts of the hydrogen tank 9 and the oxygen tank 20 and the calculation of the optimization is performed again. Operation control. As for the power supply, a power supply system including a fuel cell 4, a solar power generator 5, and an engine generator 7 and a commercial power system 6 are individually connected to 13 switches. Since the power supply system is selected by the high-speed switch, no instantaneous interruption occurs. In addition, since a part of the electric power can be converted to heat by the 15 electric heaters installed in the 14 heat storage tanks, the operation is performed at the highest efficiency point in the internal combustion engine or the external combustion engine, and the surplus electric power is converted to heat. Heat can be stored. When the amount of heat supplied from the system is small relative to the demand, additional cooking can be performed with 16 auxiliary boilers.

【0006】図2はエンジン発電機による電力と熱エネ
ルギ供給量の関係を例としたときの,システム動作マッ
プデータ作成時の基本となる要素データである。各種エ
ネルギ機器について電力出力量,熱エネルギ出力量,エ
ネルギ損失量,および燃料消費量を本図の例のように事
前に試験もしくはシミュレーションしてデータを得てお
く。図1はエンジン発電機のエンジン回転数と電力出
力,および電力単位出力当りの燃料消費量を例としたと
きの,システム動作マップデータ作成の基本となる要素
データである。この例ではエンジン発電機の回転数に対
する電力出力を挙げているが,他のエネルギ機器につい
ても,電力出力や熱出力に対して影響を与える要因とそ
の量との関係を求めておく。
FIG. 2 shows basic element data at the time of creating system operation map data when the relationship between the power generated by the engine generator and the amount of heat energy supplied is taken as an example. As for the various types of energy devices, the power output amount, the heat energy output amount, the energy loss amount, and the fuel consumption amount are previously tested or simulated as shown in the example of FIG. FIG. 1 shows basic element data for creating system operation map data when the engine speed, power output, and fuel consumption per power unit output of the engine generator are taken as examples. In this example, the power output with respect to the number of revolutions of the engine generator is described. However, for other energy devices, the relationship between the factor affecting the power output and the heat output and the amount thereof are obtained in advance.

【0007】数1はサンプリング時刻におけるエンジン
発電機の燃料消費量の関係式を示す。ボイラなどのシス
テムを構成する要素全てについて同様な関係式を導入す
る。
Equation 1 shows a relational expression of the fuel consumption of the engine generator at the sampling time. A similar relational expression is introduced for all the components of the system such as the boiler.

【数1】 数2は サンプリング時刻におけるエンジン発電機のジ
ャケット温水熱出力の関係式を示す。ボイラなどのシス
テムを構成する要素全てについて同様な関係式を導入す
る。
(Equation 1) Equation 2 shows the relational expression of the jacket hot water heat output of the engine generator at the sampling time. A similar relational expression is introduced for all the components of the system such as the boiler.

【数2】 数3はサンプリング時刻におけるエンジン発電機の排ガ
ス熱出力の関係式を示す。ボイラなどのシステムを構成
する要素全てについて同様な関係式を導入する。
(Equation 2) Equation 3 shows the relational expression of the exhaust gas heat output of the engine generator at the sampling time. A similar relational expression is introduced for all the components of the system such as the boiler.

【数3】 数4はエンジン発電機に投入する燃料量の拘束条件式を
示す。ボイラなどのシステムを構成する要素全てについ
て,燃料消費量,流量,電力消費量などを用いて同様な
拘束条件式を与える。
(Equation 3) Equation 4 shows a constraint condition expression for the amount of fuel to be supplied to the engine generator. A similar constraint condition expression is given for all components constituting a system such as a boiler, using fuel consumption, flow rate, power consumption, and the like.

【数4】 (Equation 4)

【0008】数5はサンプリング時刻間隔における商用
電力供給時およびシステムによるエネルギ供給時の運転
コスト計算式を示す。別個のボイラなど,他にエネルギ
機器を追加する場合には,本式に該当する各式を付与す
る。この他に省エネルギや環境負荷などについての式も
与えられ,従来型エネルギ供給方法(買電やボイラある
いは既設設備など)と比較演算される。
Equation 5 shows an operation cost calculation formula at the time of supply of commercial power and at the time of energy supply by the system at sampling time intervals. When additional energy equipment such as a separate boiler is added, each equation corresponding to this equation is added. In addition, equations for energy saving, environmental load, and the like are also given, and compared with conventional energy supply methods (such as power purchase, boilers, or existing facilities).

【数5】 数6は制御動作の目的関数を示す。この場合にはシステ
ムは1日間を最低コストで運転するように制御される。
この他の目的関数として,省エネルギや環境負荷などに
ついて与えられ,従来型エネルギ供給方法(買電やボイ
ラあるいは既設設備など)と比較演算される。
(Equation 5) Equation 6 shows the objective function of the control operation. In this case, the system is controlled to operate at a minimum cost for one day.
Other objective functions, such as energy saving and environmental load, are given and compared with conventional energy supply methods (such as power purchase, boilers or existing equipment).

【数6】 数7は制御動作の目的関数を示す。この場合にはシステ
ムは1年間を最低コストで運転するように制御される。
この他の目的関数として,省エネルギや環境負荷などに
ついて与えられ,従来型エネルギ供給方法(買電やボイ
ラあるいは既設設備など)と比較演算される。
(Equation 6) Equation 7 shows the objective function of the control operation. In this case, the system is controlled to operate at a minimum cost for one year.
Other objective functions, such as energy saving and environmental load, are given and compared with conventional energy supply methods (such as power purchase, boilers or existing equipment).

【数7】 (Equation 7)

【0009】図2は本発明のシステムの最適化運転動作
を決める計算のフロー図である。システムコントローラ
では,エネルギ需要量の信号を入力し,この値とエネル
ギ需要予測マップデータとを比較して,その差が小さい
場合にはスケジュール運転制御のフローに進み,大きい
場合には負荷追従制御のフローに進む。この図のフロー
に則り,システムコントローラで随時最適化運転動作を
演算して,システムに運転制御信号を発する。図3は図
4のアルゴリズムを計算して得られた代表日各時刻での
システムの動作と運転コストとの関係を示したものであ
る。運転コストが最小となるような動作条件を得る場合
には,各時刻での縦軸方向に最も低い谷を探索すること
で決まる。同様にして,省エネルギや環境負荷などにつ
いてもこの図と同様な3次元での関係が得られる。
FIG. 2 is a flow chart of a calculation for determining the optimized operation of the system of the present invention. The system controller inputs an energy demand signal and compares this value with the energy demand prediction map data. If the difference is small, the flow proceeds to the schedule operation control flow. Proceed to flow. According to the flow of this figure, the system controller calculates the optimized operation at any time, and issues an operation control signal to the system. FIG. 3 shows the relationship between the operation of the system and the operating cost at each time on a representative day obtained by calculating the algorithm of FIG. In order to obtain an operating condition that minimizes the operating cost, it is determined by searching for the lowest valley in the vertical axis direction at each time. Similarly, a three-dimensional relationship similar to that in this figure is obtained for energy saving and environmental load.

【0010】図4は図5に基づいて作成されたシステム
動作と,電力および熱出力の関係を示すマップデータで
ある。各動作について供給すべき燃料の発熱量が知れる
ことから,これに燃料単価を乗じるとコストマップとし
て利用できる。同様にして省エネルギや環境負荷などに
ついてもこのようなマップデータが与えられる。図5は
本発明の実施例1による最適化運転動作に基づくスケジ
ュール制御および負荷追従制御を加えたときのシステム
運転動作の例である。
FIG. 4 is map data showing the relationship between the system operation and the power and heat output created based on FIG. Since the calorific value of the fuel to be supplied for each operation is known, it can be used as a cost map by multiplying this by the fuel unit price. Similarly, such map data is provided for energy saving and environmental load. FIG. 5 is an example of the system operation when the schedule control and the load following control based on the optimized operation according to the first embodiment of the present invention are added.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の基本的な概念図である。FIG. 1 is a basic conceptual diagram of the present invention.

【図2】エンジン発電機の燃料消費量とエネルギ出力の
関係図である。
FIG. 2 is a diagram showing a relationship between fuel consumption of an engine generator and energy output.

【図3】エンジン発電機の回転数と電力出力、および単
位発電出力あたりの燃料消費量の関係である。
FIG. 3 is a relationship between the number of revolutions of an engine generator, a power output, and a fuel consumption per unit power generation output.

【図4】本発明による制御アルゴリズムのフロー図であ
る。
FIG. 4 is a flowchart of a control algorithm according to the present invention.

【図5】制御アルゴリズムによって求められる、システ
ムの動作と運転コストの結果グラフである。
FIG. 5 is a result graph of the operation of the system and the operating cost, as determined by the control algorithm.

【図6】システムの動作を最適化したときの運転動作マ
ップデータの例である。
FIG. 6 is an example of driving operation map data when the operation of the system is optimized.

【図7】本発明による制御アルゴリズムを搭載したシス
テムコントローラを持つエネルギ供給システムの制御運
転結果の例である。
FIG. 7 is an example of a control operation result of an energy supply system having a system controller equipped with a control algorithm according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 太陽電池モジュールによる発電手段と,
太陽光による熱の供給手段と,燃料電池による発電手段
と,エンジンやガスタービンなどの内燃機関や外燃機関
で発電した電力やその排熱によるエネルギ供給手段と,
ボイラによる熱の供給手段と,商用電力による電力供給
手段のすべてあるいはいずれかを設けた多種複数のエネ
ルギ機器を有する住宅や集合住宅などのエネルギ供給設
備に対して,システムの運転動作とエネルギコストとの
関係,あるいはシステムの運転動作と排気ガス排出量な
どの環境負荷との関係,あるいはシステムの運転動作と
省エネルギとの関係を運転マップデータとして制御コン
ピュータに記憶しておき,予め予測される電力と熱の需
要量データに基づくスケジュールデータを制御コンピュ
ータに記憶しておき,制御コンピュータの指令により上
記の運転マップデータを基本としてシステムをスケジュ
ール運転し,この際に,スケジュールデータと実際のエ
ネルギ需要量が大きく外れる場合には,速やかに負荷追
従制御を行わせてシステムの最適化運転を行わせること
を特徴とするエネルギ供給システムの制御装置。
1. A power generating means using a solar cell module,
A means for supplying heat by sunlight, a means for generating power by a fuel cell, a means for supplying power generated by an internal combustion engine or an external combustion engine such as an engine or a gas turbine, and an energy supply means by exhaust heat thereof.
The operation of the system, energy costs, and energy supply facilities such as houses and condominiums that have multiple and / or multiple types of energy equipment equipped with boiler heat supply means and / or commercial power supply means The relationship between the operation of the system, and the relationship between the operation of the system and the environmental load such as exhaust gas emission, or the relationship between the operation of the system and energy saving is stored in the control computer as operation map data, and the power predicted in advance is stored. And the schedule data based on the demand data of heat are stored in the control computer, and the system is scheduled to be operated on the basis of the above operation map data according to the command of the control computer. At this time, the schedule data and the actual energy demand If the load deviates significantly, promptly follow the load following control. Controller of the energy supply system, characterized in that to perform the optimization operation of the stem.
JP2000116520A 2000-04-18 2000-04-18 Energy supply system control device and control method thereof Expired - Fee Related JP3988853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000116520A JP3988853B2 (en) 2000-04-18 2000-04-18 Energy supply system control device and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000116520A JP3988853B2 (en) 2000-04-18 2000-04-18 Energy supply system control device and control method thereof

Publications (3)

Publication Number Publication Date
JP2001295700A true JP2001295700A (en) 2001-10-26
JP2001295700A5 JP2001295700A5 (en) 2005-05-26
JP3988853B2 JP3988853B2 (en) 2007-10-10

Family

ID=18627976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000116520A Expired - Fee Related JP3988853B2 (en) 2000-04-18 2000-04-18 Energy supply system control device and control method thereof

Country Status (1)

Country Link
JP (1) JP3988853B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003075427A1 (en) * 2002-03-06 2003-09-12 Matsushita Electric Industrial Co., Ltd. Setting device of distributed energy supply system
JP2003329292A (en) * 2002-05-10 2003-11-19 Tokyo Gas Co Ltd Cogeneration apparatus and control method for it
JP2005011694A (en) * 2003-06-19 2005-01-13 Chofu Seisakusho Co Ltd Output control device and output control method of cogeneration system
CN105739308A (en) * 2016-02-01 2016-07-06 北方工业大学 Power optimization control method and system applied to temperature control electric appliance
US9804655B2 (en) 2011-05-24 2017-10-31 Panasonic Intellectual Property Management Co., Ltd. Apparatus control system, mobile terminal and program
KR20190060633A (en) * 2017-11-24 2019-06-03 한국전자통신연구원 Mathod of generating energy map and apparatus thereof
KR102520773B1 (en) * 2022-11-09 2023-04-12 주식회사 미래이앤아이 Artificial lighting system for smart farm

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8843238B2 (en) * 2011-09-30 2014-09-23 Johnson Controls Technology Company Systems and methods for controlling energy use in a building management system using energy budgets

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003075427A1 (en) * 2002-03-06 2003-09-12 Matsushita Electric Industrial Co., Ltd. Setting device of distributed energy supply system
JP2003329292A (en) * 2002-05-10 2003-11-19 Tokyo Gas Co Ltd Cogeneration apparatus and control method for it
JP2005011694A (en) * 2003-06-19 2005-01-13 Chofu Seisakusho Co Ltd Output control device and output control method of cogeneration system
JP4535694B2 (en) * 2003-06-19 2010-09-01 株式会社長府製作所 Output control device and output control method for cogeneration system
US9804655B2 (en) 2011-05-24 2017-10-31 Panasonic Intellectual Property Management Co., Ltd. Apparatus control system, mobile terminal and program
CN105739308A (en) * 2016-02-01 2016-07-06 北方工业大学 Power optimization control method and system applied to temperature control electric appliance
KR20190060633A (en) * 2017-11-24 2019-06-03 한국전자통신연구원 Mathod of generating energy map and apparatus thereof
KR102141020B1 (en) 2017-11-24 2020-08-04 한국전자통신연구원 Mathod of generating energy map and apparatus thereof
KR102520773B1 (en) * 2022-11-09 2023-04-12 주식회사 미래이앤아이 Artificial lighting system for smart farm

Also Published As

Publication number Publication date
JP3988853B2 (en) 2007-10-10

Similar Documents

Publication Publication Date Title
Rong et al. Polygeneration systems in buildings: A survey on optimization approaches
US5432710A (en) Energy supply system for optimizing energy cost, energy consumption and emission of pollutants
JP2008083971A (en) Method for simulating system having solar generator/wind generator/cogenerator
KR20150018621A (en) Method of regulating a plant comprising cogenerating installations and thermodynamic systems intended for air conditioning and/or heating
CN103778485B (en) Distributed power generation and energy supply system and optimization method thereof
CN103439941A (en) Optimizing operation method of combined cooling heating and power system of gas engine
Wei et al. Evaluation and optimization of PEM Fuel Cell-based CCHP system based on Modified Mayfly Optimization Algorithm
JP2001295700A (en) Control for energy supply system
JPH1042472A (en) Private power generation system
JP2001295700A5 (en)
JP2000274308A (en) Operation control method for cogeneration system and cogeneration system
CN111555362B (en) Optimal regulation and control method and device for full-renewable energy source thermoelectric storage coupling system
Huang et al. Modeling of distributed energy system with multiple energy complementation
Wolfrum et al. Optimal control of combined heat and power units under varying thermal loads
Xing et al. Multi-energy simulation and optimal scheduling strategy based on digital twin
US20090013940A1 (en) Steam generator system
JP2003173808A (en) System coordination system of distributed power generating facility
CN101395431A (en) Cogeneration system
CN109709909B (en) Control method and device for cogeneration equipment in hybrid energy system
CN113283170A (en) CCHP system considering operation mode and equipment capacity and model selection optimization method thereof
Danti et al. Performance analysis of an optimization management algorithm on a multi-generation small size power plant
Stojiljković et al. Optimization of operation of energy supply systems with co-generation and absorption refrigeration
CN113393053B (en) Equipment model selection optimization method of CCHP system based on prime motor
Alfstad Performance evaluation of combined heat and power (CHP) applications in low-energy houses
JPH0743001A (en) Method and device for operating regional cooling/heating apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040721

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040721

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070711

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3988853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees