JP2001295501A - Base isolation frame - Google Patents

Base isolation frame

Info

Publication number
JP2001295501A
JP2001295501A JP2000108594A JP2000108594A JP2001295501A JP 2001295501 A JP2001295501 A JP 2001295501A JP 2000108594 A JP2000108594 A JP 2000108594A JP 2000108594 A JP2000108594 A JP 2000108594A JP 2001295501 A JP2001295501 A JP 2001295501A
Authority
JP
Japan
Prior art keywords
building
cable
frame
seismic isolation
seismic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000108594A
Other languages
Japanese (ja)
Inventor
Hideki Kimura
秀樹 木村
Keizo Iwashita
敬三 岩下
Yasuhiro Kasuga
康博 春日
Soichi Kitani
宋一 木谷
Tomoyuki Sagami
友行 相模
Daisaku Yuki
大作 結城
Hajime Taniguchi
元 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2000108594A priority Critical patent/JP2001295501A/en
Publication of JP2001295501A publication Critical patent/JP2001295501A/en
Pending legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a base isolating frame which allows floating of a building, when rocking vibrations are caused by earthquakes, reduces seismic inputs by utilizing the floating, can adjust the occurrence of the floating over a wide range, and can satisfactorily secure the stability and vibration isolating performance of the building under all design conditions. SOLUTION: In this base isolation frame, in which a building is isolated floatably from a foundation structure, such as bearing ground, footing piles, etc., the building and structure are connected to each other via a cable housed in a sleeve pipe laid via the bearing point between the building and structure and both ends of the cable are fixed to the building side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、地震時のロッキ
ング振動に伴う浮き上がりを許容し、この浮き上がりを
利用して地震入力を低減させる、建物等の免震構造架構
の技術分野に属する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention belongs to the technical field of a base-isolated structural frame such as a building, which allows lifting due to rocking vibration during an earthquake, and reduces the earthquake input using the lifting.

【0002】[0002]

【従来の技術】従来、アスペクト比(高さと幅の比)が
大きい建物の免震構造架構の技術としては、例えば実公
平6−18996号公報、特許第631486号公報等
に開示された技術が公知である。これらの免震構造架構
は建物と支持版(基礎構造体)とを上下方向へ緊結した
構成を基本とし、建物の地震時のロッキング振動に伴う
浮き上がりを剛強に抑え込み、一般的な免震方法と同様
に当該建物を水平方向へ相対変位させて同建物に作用す
る地震入力を低減させる技術である。
2. Description of the Related Art Conventionally, as a technique of a base-isolated structure of a building having a large aspect ratio (ratio of height to width), for example, techniques disclosed in Japanese Utility Model Publication No. 6-18996 and Japanese Patent No. 631486 are disclosed. It is known. These seismic isolation structures are based on a structure in which a building and a supporting plate (foundation structure) are tied up and down, and rigidly restrain the building from rising due to rocking vibration during an earthquake. Similarly, this is a technique for reducing the earthquake input acting on the building by relatively displacing the building in the horizontal direction.

【0003】一方、図7に例示した本出願人の特願平1
1−42759号明細書記載の発明(以下、単に特願平
11−42759号発明と言う。)のように、アスペク
ト比が大きい建物1と支持版(基礎構造体)2との間を
縁切りすることで、前記した従来公知の免震構造架構と
は逆に、当該建物1の地震時のロッキング振動に伴う浮
き上がりを許容し、この浮き上がりを利用して、上下方
向への相対変位により同建物1に作用する地震入力を低
減させる画期的な技術も提案されている。
On the other hand, as shown in FIG.
As in the invention described in the specification of Japanese Patent Application No. 1-42759 (hereinafter simply referred to as the invention of Japanese Patent Application No. 11-42759), a boundary between a building 1 having a large aspect ratio and a support plate (base structure) 2 is cut off. Thus, contrary to the above-described conventionally known seismic isolation structure frame, the building 1 is allowed to lift due to rocking vibration during an earthquake, and the building 1 is used by the relative displacement in the vertical direction by using the lift. A groundbreaking technology has been proposed to reduce the earthquake input acting on tsunami.

【0004】[0004]

【本発明が解決しようとする課題】上記特願平11−4
2759号発明の免震構造架構は、通常、建物1がスケ
ール効果によって転倒しない構成とされるが、それと共
に地震時における建物1の浮き上がりの発生(浮き上が
り量及び浮き上がり周期)の調整を、当該建物1と支持
版(基礎構造体)2との間の支持点(凹凸部)3、3の
間隔Lを設定して行い、同建物1の安定性と免震性能と
のバランスを良好に確保している。
[Problems to be solved by the present invention]
The seismic isolation frame of the 2759 invention is generally configured so that the building 1 does not fall due to the scale effect. At the same time, the generation of the building 1 during the earthquake (the amount of lifting and the period of the lifting) is adjusted. The distance L between the support points (concavities and convexities) 3, 3 between the support plate 1 and the support plate (foundation structure) 2 is set to ensure a good balance between the stability of the building 1 and the seismic isolation performance. ing.

【0005】即ち、建物1の浮き上がり量を大きく、且
つ浮き上がり周期を短く調整するには、支持点(凹凸
部)3、3の間隔Lを小さくし、建物1のアスペクト比
がより大きい場合と同様な支持状態とすればよい。例え
ば重量の大きな地下階を有する建物の免震性能を向上さ
せる場合などに有効な調整である。
In other words, in order to increase the amount of lift of the building 1 and to shorten the period of the lift, the distance L between the support points (concavo-convex portions) 3, 3 is reduced and the aspect ratio of the building 1 is increased. What is necessary is just to make it a suitable support state. For example, this adjustment is effective when improving the seismic isolation performance of a building having a heavy underground floor.

【0006】これに対し、浮き上がり量を小さく、且つ
浮き上がり周期を長く調整するには、支持点(凹凸部)
3、3の間隔Lを大きくして建物1のアスペクト比がよ
り小さい場合と同様な支持状態とすればよい。例えば地
下階を有しない建物の安定性を向上させる場合などに有
効な調整である。しかしながら、この場合には建物1の
底面の幅以上に支持点(凹凸部)3、3の間隔Lを大き
くすることができないので、必要な調整が行えないこと
がある。
On the other hand, in order to adjust the lifting amount to be small and the lifting period to be long, it is necessary to use support points (uneven portions).
What is necessary is just to make the space | interval L of 3 and 3 large, and to set it as the support state similar to the case where the aspect ratio of the building 1 is small. For example, the adjustment is effective when improving the stability of a building having no basement floor. However, in this case, since the interval L between the support points (concavo-convex portions) 3 and 3 cannot be made larger than the width of the bottom surface of the building 1, necessary adjustment may not be performed.

【0007】そこで、建物1と支持版(基礎構造体)2
との間を補助的な部材等で繋ぎ、同部材等を介して地震
時に前記両者間で浮き上がりに抵抗する必要な反力が働
く構成とすることが考えられる。しかしながら、例えば
特開平10−317713号公報に開示された、建物と
支持版の間をロープ状又はロッド状の抗張材によりプリ
テンション状態で連結する技術や、特開平11−311
038号公報に開示された、建物と基礎杭との間をプレ
ストレスケーブルで連結する技術等を応用しようにも、
これらの技術はそもそも建物と支持版・基礎杭等の基礎
構造体を上下方向へ緊結した構成を基本とする上記従来
公知の免震構造架構を対象とした技術である。さらにこ
れらの技術は建物の浮き上がりに抵抗する反力を支持版
又は基礎杭等の基礎構造体側に抗張材又はケーブルの引
抜き力に対する抵抗力として大きく負担させる構成なの
で、当該基礎構造体をこれに耐え得る高い強度に構築す
ることが要求され、施工が煩雑となりその分コストも嵩
む。
Therefore, a building 1 and a support plate (foundation structure) 2
May be connected by an auxiliary member or the like, and a necessary reaction force may be exerted between the two members via the same member or the like in the event of an earthquake. However, for example, a technique of connecting a building and a support plate in a pretension state with a rope-shaped or rod-shaped tensile material disclosed in Japanese Patent Application Laid-Open No. 10-317713, and Japanese Patent Application Laid-Open No. 11-311.
In order to apply the technology disclosed in Japanese Patent Publication No. 038 for connecting a building and a foundation pile with a prestressed cable,
These techniques are intended for the above-mentioned conventionally known seismic isolation frames based on a structure in which a building and a foundation structure such as a support plate and a foundation pile are connected in the vertical direction. Furthermore, since these technologies have a structure in which the reaction force that resists the lifting of the building is largely borne by the supporting structure or the foundation structure such as foundation piles as the resistance to the pullout force of the tensile material or the cable, the foundation structure is used for this purpose. Construction is required to have a high strength that can be endured, and the construction becomes complicated, and the cost increases accordingly.

【0008】ところで、上記特願平11−42759号
発明の免震構造架構を広義に応用した実施形態として、
図8に一例を示したように、アスペクト比が大きい建物
1を中間階で上下に縁切りして免震化することが考えら
れる。この場合も、建物1の安定性と免震性能とのバラ
ンスを良好に確保するため、前記建物1の上層階部分1
Aと下層階部分1Bとの間の浮き上がりの発生(浮き上
がり量及び浮き上がり周期)の必要な調整を様々な設計
条件下において如何にうまく行える構成とするかが課題
となる。
As an embodiment in which the seismic isolation frame of the invention of Japanese Patent Application No. 11-42759 is broadly applied,
As shown in an example in FIG. 8, it is conceivable that the building 1 having a large aspect ratio is vertically cut off at the middle floor and seismically isolated. Also in this case, in order to ensure a good balance between the stability of the building 1 and the seismic isolation performance, the upper floor portion 1 of the building 1 is used.
The problem is how to properly adjust the occurrence of the lift (lift amount and lift cycle) between A and the lower floor portion 1B under various design conditions.

【0009】また、建物を構成する耐震壁・ブレース等
の耐震要素と建物躯体(建物内部の柱、梁等)との間を
縁切りして免震化することも考えられる。この場合も、
前記耐震要素と建物躯体との間の浮き上がりの発生(浮
き上がり量及び浮き上がり周期)の必要な調整を様々な
設計条件下において如何にうまく行える構成とするかが
課題となる。
It is also conceivable to cut off the seismic elements such as earthquake-resistant walls and braces constituting the building and the building frame (columns, beams, etc. inside the building) to make them seismic isolated. Again,
The challenge is how to properly adjust the occurrence (lift amount and lift cycle) of the rise between the seismic element and the building frame under various design conditions.

【0010】従って、本発明の目的は、特に地震時のロ
ッキング振動に伴う浮き上がりを許容し、この浮き上が
りを利用して地震入力を低減させるアスペクト比が大き
い建物等において、縁切りされた、建物と支持版・基礎
杭等の基礎構造体との間、又は建物の上層階部分と下層
階部分との間、若しくは建物を構成する耐震壁・ブレー
ス等の耐震要素と建物躯体との間の浮き上がりの発生
(浮き上がり量及び浮き上がり周期)の調整を広い範囲
で行え、同建物の安定性と免震性能とのバランスを如何
なる設計条件下においても良好に確保でき、しかも施工
が容易で経済的に実施できる免震構造架構を提供するこ
とである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to allow a lift, particularly a rocking vibration caused by an earthquake, to reduce an earthquake input by utilizing the lift, and to cut off the support of a building having a large aspect ratio. Occurrence between the building and the foundation structure such as plates and foundation piles, or between the upper and lower floors of the building, or between the seismic elements such as earthquake-resistant walls and braces constituting the building and the building frame (Lift amount and lift period) can be adjusted in a wide range, and the balance between the stability of the building and the seismic isolation performance can be secured well under any design conditions, and the construction is easy and economical. To provide a seismic frame.

【0011】[0011]

【課題を解決するための手段】上述した課題を解決する
ための手段として、請求項1に記載した発明に係る免震
構造架構は、建物と支持版・基礎杭等の基礎構造体との
間が浮き上がり可能に縁切りされた免震構造架構におい
て、前記建物と基礎構造体とが両者間の支持点を経由し
て通したスリーブ管に内蔵されたケーブルにより繋が
れ、当該ケーブルの両端部が建物側へ定着されているこ
とを特徴とする。
As a means for solving the above-mentioned problems, a seismic isolation structure according to the first aspect of the present invention is a method for mounting a structure between a building and a foundation structure such as a support plate or a foundation pile. In a base-isolated structure frame that is cut off so that it can be lifted, the building and the foundation structure are connected by a cable built in a sleeve tube that passes through a support point between the two, and both ends of the cable are connected to the building at both ends. It is fixed to the side.

【0012】請求項2記載の発明に係る免震構造架構
は、建物が中間階で浮き上がり可能に上下に縁切りされ
た免震構造架構において、前記建物の上層階部分と下層
階部分とが両者間の支持点を経由して通したスリーブ管
に内蔵されたケーブルにより繋がれ、当該ケーブルの両
端部が上層階部分又は下層階部分のいずれか一方の側へ
定着されていることを特徴とする。
According to a second aspect of the present invention, there is provided a seismic isolation structure frame in which a building is vertically separated so as to be lifted up on an intermediate floor, wherein an upper floor portion and a lower floor portion of the building are located between the two floors. Are connected by a cable built in the sleeve tube passing through the support point, and both ends of the cable are fixed to either one of the upper floor portion and the lower floor portion.

【0013】請求項3記載の発明に係る免震構造架構
は、建物を構成する耐震壁・ブレース等の耐震要素と建
物躯体との間が浮き上がり可能に縁切りされた免震構造
架構において、前記耐震要素と建物躯体とが両者間の支
持点を経由して通したスリーブ管に内蔵されたケーブル
により繋がれ、当該ケーブルの両端部が耐震要素側へ定
着されていることを特徴とする。
According to a third aspect of the present invention, there is provided a seismic isolation structure frame in which a seismic element such as an earthquake-resistant wall or a brace constituting the building and a building frame are cut off so as to be lifted. The element and the building frame are connected by a cable built in a sleeve tube that passes through a support point between the two, and both ends of the cable are fixed to the seismic element side.

【0014】請求項4記載の発明は、請求項1〜3のい
ずれか一に記載した免震構造架構において、ケーブルの
少なくとも一方の定着端部にエネルギー吸収機構が設け
られていることを特徴とする。
According to a fourth aspect of the present invention, in the seismic isolation structure according to any one of the first to third aspects, an energy absorbing mechanism is provided at at least one fixing end of the cable. I do.

【0015】請求項5記載の発明は、請求項1〜4のい
ずれか一に記載した免震構造架構において、ケーブルに
プレストレスが導入されていることを特徴とする。
According to a fifth aspect of the present invention, in the seismic isolation structure according to any one of the first to fourth aspects, a prestress is introduced into the cable.

【0016】請求項6記載の発明は、請求項1〜5のい
ずれか一に記載した免震構造架構において、スリーブ管
の内部には内蔵されたケーブルとの間に粘弾性体が封入
されていることを特徴とする。
According to a sixth aspect of the present invention, in the seismic isolation structure frame according to any one of the first to fifth aspects, a viscoelastic body is sealed between the sleeve tube and a built-in cable. It is characterized by being.

【0017】[0017]

【発明の実施形態及び実施例】請求項1〜6に記載した
発明に係る免震構造架構について、図1〜図6に示した
実施形態により説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The seismic isolation frame according to the first to sixth aspects of the present invention will be described with reference to FIGS.

【0018】図1は、建物1(の全体)と支持版(基礎
構造体)2との間が浮き上がり可能に縁切りされた免震
構造架構へ適用した請求項1記載の発明の実施形態を示
している。
FIG. 1 shows an embodiment of the invention as claimed in claim 1, wherein the invention is applied to a base-isolated structure frame in which a space between (a whole of) a building 1 and a support plate (foundation structure) 2 is cut off so as to be lifted. ing.

【0019】即ち、縁切りされた建物1と支持版(基礎
構造体)2とが、両者間の2つの支持点3、3を経由し
連続して通したスリーブ管4に内蔵されたケーブル5に
より繋がれ、当該ケーブル5の両端部5a、5aが建物
1の柱(又は外周壁等)の内側へそれぞれ定着されてい
る。
That is, the cut-off building 1 and the supporting plate (substructure) 2 are connected to each other by the cable 5 built in the sleeve tube 4 which continuously passes through the two supporting points 3 between the two. Both ends 5a, 5a of the cable 5 are fixed to the inside of a pillar (or an outer peripheral wall or the like) of the building 1, respectively.

【0020】本実施形態では、ケーブル5の定着端部5
a、5aに、図2に一例を示したように、エネルギー吸
収機構6が設けられ、想定範囲内の地震力が建物1に作
用した場合には弾性変形し、想定範囲外の大きな地震力
が建物1に作用した場合には当該エネルギー吸収機構6
が塑性変形してケーブル5に過大な張力が働かず、建物
1の柱(又は外周壁等)へ無理な反力が作用しない構成
とされている(請求項4記載の発明)。前記エネルギー
吸収機構6としては、例えば鉛、低降伏点鋼等による弾
塑性ダンパー等が好適に使用されるが、これに限定され
ず、同様な弾塑性性状を示すものであれば良い。前記エ
ネルギー吸収機構6は、ケーブル5の定着端部5a、5
aの少なくとも一方に設ければその機能を果たす。
In this embodiment, the fixing end 5 of the cable 5
a and 5a, as shown in FIG. 2, an energy absorbing mechanism 6 is provided. When a seismic force within the assumed range acts on the building 1, the structure is elastically deformed, and a large seismic force outside the assumed range is generated. When acting on the building 1, the energy absorbing mechanism 6
Is plastically deformed, so that excessive tension does not act on the cable 5, and no unreasonable reaction force acts on columns (or outer peripheral walls, etc.) of the building 1 (the invention according to claim 4). As the energy absorbing mechanism 6, for example, an elasto-plastic damper made of lead, low-yield-point steel, or the like is preferably used, but is not limited to this, and any material having the same elasto-plastic property may be used. The energy absorbing mechanism 6 includes a fixing end 5a, 5
If it is provided in at least one of a, the function is achieved.

【0021】また、ケーブル5に適切なプレストレスを
導入すれば、建物1の浮き上がり周期をより広い範囲で
調整できる(請求項5記載の発明)。詳しくは図3及び
図4に基いて後述する。
In addition, if an appropriate prestress is introduced into the cable 5, the lifting period of the building 1 can be adjusted in a wider range (the invention according to claim 5). Details will be described later with reference to FIGS.

【0022】さらに図2に例示したように、スリーブ管
4の内部には内蔵されたケーブル5との間に粘弾性体7
が封入されており、これにより建物1の地震時の浮き上
がりによって生ずる建物1と支持版(基礎構造体)2と
の間の衝撃力が緩和される構成である(請求項6記載の
発明)。
As further illustrated in FIG. 2, a viscoelastic body 7 is provided between the sleeve tube 4 and the built-in cable 5.
Is sealed, whereby the impact force between the building 1 and the supporting plate (foundation structure) 2 caused by the rising of the building 1 at the time of the earthquake is reduced (the invention according to claim 6).

【0023】本発明では、建物1の浮き上がりの発生
(浮き上がり量及び浮き上がり周期)は、従来の支持点
3、3の間隔Lによる調整に加え、建物1と基礎構造体
2との間を繋いだケーブル5の働きによっても調整が行
われる。図3は前記図1の実施形態において建物1に地
震力が作用してロッキング振動に伴い浮き上がりが生じ
た状態を示しており、図4はこの際の建物1の浮き上が
り量とケーブル5の張力との関係を示したグラフであ
る。これらの図を基に本発明の原理を説明する。
In the present invention, the occurrence of the lifting of the building 1 (the lifting amount and the lifting period) is performed by connecting the building 1 and the substructure 2 in addition to the conventional adjustment by the distance L between the support points 3 and 3. The adjustment is also performed by the function of the cable 5. FIG. 3 shows a state in which seismic force acts on the building 1 in the embodiment of FIG. 1 to cause lifting due to rocking vibration. FIG. 4 shows the amount of lifting of the building 1 and the tension of the cable 5 at this time. 5 is a graph showing the relationship of FIG. The principle of the present invention will be described with reference to these drawings.

【0024】即ち、建物1に作用した地震力によって導
入したプレストレスAを超えた張力がケーブル5に加わ
ると同建物1が矢印で示した如くロッキング振動に伴い
浮き上がりを発生する。つまり前記プレストレスの設定
値Aによっても建物1の浮き上がり周期の調整が行え
る。ケーブル5はスリーブ管4内である程度自由に動き
得る状態にあるので、当該ケーブル5の建物1の浮き上
がりに抵抗する反力は、主としてその両端部5a、5a
から建物1自身(柱又は外周壁)へ働き、この反力によ
っても建物1の浮き上がり量の調整が行える。但し、図
4のグラフはケーブル5の張力がBの値以下となる地震
力が作用することを想定している。
That is, when a tension exceeding the prestress A introduced by the seismic force acting on the building 1 is applied to the cable 5, the building 1 is lifted by rocking vibration as indicated by an arrow. That is, the rising cycle of the building 1 can be adjusted by the set value A of the prestress. Since the cable 5 is in a state in which it can move freely within the sleeve tube 4 to some extent, the reaction force of the cable 5 that resists the rising of the building 1 is mainly caused by both ends 5a and 5a.
Works on the building 1 itself (column or outer peripheral wall), and the amount of lift of the building 1 can be adjusted by this reaction force. However, the graph of FIG. 4 assumes that a seismic force acts on which the tension of the cable 5 becomes equal to or less than the value of B.

【0025】仮に想定範囲外の大きな地震力が作用し、
ケーブル5にBの値を超える過大な張力が働こうとした
場合でも、エネルギー吸収機構6が塑性変形して、それ
以上ケーブル5に無理な張力が働かない構成である。よ
って、ケーブル5の端部5a、5aが定着される建物1
の柱(又は外周壁等)は通常の強度で施工できる。
If a large seismic force outside the expected range acts,
Even when an excessive tension exceeding the value B is applied to the cable 5, the energy absorbing mechanism 6 is plastically deformed, so that no excessive tension is applied to the cable 5. Therefore, the building 1 where the ends 5a, 5a of the cable 5 are fixed.
Can be constructed with ordinary strength.

【0026】なお、本実施形態は、前述したようにエネ
ルギー吸収機構6が塑性変形してしまっても当該エネル
ギー吸収機構6は建物1側に設けてあるので、容易に交
換できる構成である。万一ケーブル5までもが塑性変形
してしまった場合も、粘弾性体7をスリーブ管4から吸
引して回収した後に当該ケーブル5を引き抜いて交換す
ることが可能である。
In this embodiment, even if the energy absorbing mechanism 6 is plastically deformed as described above, the energy absorbing mechanism 6 is provided on the building 1 side, so that it can be easily replaced. Even in the event that even the cable 5 is plastically deformed, the cable 5 can be pulled out and replaced after the viscoelastic body 7 has been sucked and collected from the sleeve tube 4.

【0027】上記図1の実施形態では、基礎構造体とし
て支持版2を用いたが、基礎構造体に基礎杭を用い、同
基礎杭の杭頭を建物底面(直接基礎)に設けた凹部へ嵌
め込んで支持する形態等で実施してもよい(図示は省
略)。
In the embodiment shown in FIG. 1, the support plate 2 is used as the foundation structure. However, the foundation pile is used as the foundation structure, and the pile head of the foundation pile is inserted into the recess provided on the bottom of the building (direct foundation). It may be carried out in a form of being fitted and supported (not shown).

【0028】次に、図5は、建物1が中間階で浮き上が
り可能に上層階の部分1Aと下層階の部分1Bとに縁切
りされた免震構造架構へ適用した請求項2記載の発明の
実施形態を示している。
Next, FIG. 5 shows an embodiment of the invention as claimed in claim 2, in which the building 1 is applied to a base-isolated structure frame which is divided into an upper floor portion 1A and a lower floor portion 1B so as to be able to lift up on an intermediate floor. The form is shown.

【0029】本実施形態では、縁切りされた建物1の上
層階部分1Aと下層階部分1Bとが、両者間の支持点
3、3を経由し連続して通したスリーブ管4に内蔵され
たケーブル5により繋がれ、当該ケーブル5の両端部5
a、5aが上層階部分1Aの柱(又は外周壁等)の内側
へ定着されている。基本的な原理は上記した図1の実施
形態と同様である。前記ケーブル5の端部5a、5aの
詳細もやはり図2に例示した如く実施できる。但し、こ
の場合においては、ケーブル5の両端部5a、5aを下
層階部分1B側へ定着した形態でも実施可能である(図
示は省略)。
In this embodiment, the upper floor portion 1A and the lower floor portion 1B of the cut off building 1 have the cable built in the sleeve tube 4 continuously passed through the support points 3 between them. 5 and both ends 5 of the cable 5
a, 5a are fixed inside the pillar (or the outer peripheral wall or the like) of the upper floor portion 1A. The basic principle is the same as that of the embodiment shown in FIG. The details of the ends 5a, 5a of the cable 5 can also be implemented as illustrated in FIG. However, in this case, it is also possible to implement the embodiment in which both ends 5a, 5a of the cable 5 are fixed to the lower floor portion 1B side (not shown).

【0030】次に、図6は、建物1を構成する耐震要素
である耐震壁1aと当該耐震壁1a下部の大梁(建物躯
体)1bとの間が縁切りされた免震構造架構へ適用した
請求項3記載の発明の実施形態を示している。
Next, FIG. 6 shows a claim applied to a base-isolated structural frame in which the space between a seismic wall 1a, which is a seismic element constituting the building 1, and a girder (building body) 1b below the seismic wall 1a is cut off. An embodiment of the invention described in Item 3 is shown.

【0031】即ち、縁切りされた建物1の2つの耐震壁
1aとその下部の大梁(建物躯体)1bとの間が、それ
ぞれ耐震壁1a底面の周縁部近傍(耐震壁1aの浮き上
がりを発生する支持点)3、3を経由し連続して通した
スリーブ管4に内蔵されたケーブル5により繋がれ、当
該ケーブル5の両端部5a、5aが耐震壁1aの側面へ
定着されている。この場合も耐震要素である耐震壁1a
と大梁(建物躯体)1bとの間が上記した図1の実施形
態と同様な原理で浮き上がりの発生(浮き上がり量及び
浮き上がり周期)の調整を行える構成である。
That is, the space between the two shear walls 1a and the lower girder (building frame) 1b of the cut-off building 1 is in the vicinity of the periphery of the bottom surface of the earthquake resistant wall 1a (the support which causes the rising of the earthquake resistant wall 1a). (Points) 3, 3 are connected by a cable 5 built in a sleeve tube 4 continuously passed through, and both ends 5a, 5a of the cable 5 are fixed to the side surface of the earthquake-resistant wall 1a. In this case, the earthquake-resistant wall 1a which is also an earthquake-resistant element
In this configuration, it is possible to adjust the occurrence of the lift (the lift amount and the lift cycle) between the first beam and the girder (building body) 1b based on the same principle as that of the embodiment of FIG.

【0032】図示については省略したが、ブレースその
他の耐震要素においても前記図6の実施形態と同様に実
施できる。
Although illustration is omitted, the present invention can be applied to a brace and other seismic elements in the same manner as the embodiment shown in FIG.

【0033】その他、ケーブル5の定着端部5a、5a
にエネルギー吸収機構6を設けず、同ケーブル5にプレ
ストレスも導入せずに緩めの状態で、縁切りされた、建
物と支持版・基礎杭等の基礎構造体との間、又は建物の
上層階部分と下層階部分との間、若しくは建物を構成す
る耐震壁・ブレース等の耐震要素と建物躯体との間を繋
いで、主に前記両者間の浮き上がり量のみを制限する最
も単純な構成などでも実施できる。
In addition, the fixing ends 5a, 5a of the cable 5
Without the energy absorbing mechanism 6 and without introducing prestress into the cable 5, in a loosened state, between the building and the foundation structure such as the support plate and foundation pile, or the upper floor of the building Even the simplest configuration, such as connecting the part and the lower floor part, or connecting the building frame with the earthquake-resistant elements such as the earthquake-resistant walls and braces that make up the building, and mainly limiting only the amount of lift between the two Can be implemented.

【0034】[0034]

【本発明が奏する効果】請求項1〜6に記載した発明に
係る免震構造架構によれば、特に地震時のロッキング振
動に伴う浮き上がりを許容し、この浮き上がりを利用し
て地震入力を低減させるアスペクト比が大きい建物等に
おいて、縁切りされた、建物全体と支持版・基礎杭等の
基礎構造体との間、又は建物の上層階部分と下層階部分
との間、若しくは建物を構成する耐震壁・ブレース等の
耐震要素と建物躯体との間の浮き上がりの発生(浮き上
がり量及び浮き上がり周期)の調整を広い範囲で行える
ので、同建物の安定性と免震性能とのバランスを如何な
る設計条件下においても良好に確保できる。しかも本発
明の免震構造架構は施工が容易であり、経済的に実施す
ることができる。
According to the seismic isolation structure according to the first to sixth aspects of the present invention, floating up due to rocking vibration during an earthquake is particularly allowed, and seismic input is reduced by using this floating up. In buildings with a large aspect ratio, the margins are cut off between the entire building and the foundation structure such as support plates and foundation piles, or between the upper and lower floors of the building, or the earthquake-resistant walls that compose the building・ Because it is possible to adjust the occurrence of the lift (lift amount and lift cycle) between the seismic elements such as braces and the building frame in a wide range, the balance between the stability of the building and the seismic isolation performance can be adjusted under any design conditions. Can be secured well. Moreover, the seismic isolation structure of the present invention is easy to construct and can be implemented economically.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る免震構造架構の一実施形態を示し
た立面図である。
FIG. 1 is an elevation view showing one embodiment of a seismic isolation structure frame according to the present invention.

【図2】ケーブルの定着端部の詳細を示した拡大図であ
る。
FIG. 2 is an enlarged view showing details of a fixing end of a cable.

【図3】図1の実施形態における地震時の建物のロッキ
ング振動に伴う浮き上がり状態を示した図である。
FIG. 3 is a diagram showing a floating state due to rocking vibration of a building during an earthquake in the embodiment of FIG. 1;

【図4】本発明に係る免震構造架構における地震時の建
物の浮き上がり量とケーブルの張力との関係を示したグ
ラフである。
FIG. 4 is a graph showing a relationship between a lift amount of a building and a tension of a cable during an earthquake in a base-isolated structure frame according to the present invention.

【図5】本発明に係る免震構造架構の異なる実施形態を
示した立面図である。
FIG. 5 is an elevation view showing a different embodiment of the base isolation frame according to the present invention.

【図6】本発明に係る免震構造架構の異なる実施形態を
示した立面図である。
FIG. 6 is an elevation view showing a different embodiment of a base isolation frame according to the present invention.

【図7】従来の免震構造架構を示した立面図である。FIG. 7 is an elevation view showing a conventional seismic isolation structure frame.

【図8】従来の異なる免震構造架構を示した立面図であ
る。
FIG. 8 is an elevational view showing a different conventional seismic isolation frame.

【符号の説明】[Explanation of symbols]

1 建物 2 支持版(基礎構造体) 3 支持点 4 スリーブ管 5 ケーブル 5a ケーブルの端部(定着端部) 6 エネルギー吸収機構 7 粘弾性体 1A 建物の上層階部分 1B 建物の下層階部分 1a 耐震壁(耐震要素) 1b 大梁(建物躯体) DESCRIPTION OF SYMBOLS 1 Building 2 Support plate (foundation structure) 3 Support point 4 Sleeve tube 5 Cable 5a Cable end (fixed end) 6 Energy absorption mechanism 7 Viscoelastic body 1A Upper floor part of building 1B Lower floor part of building 1a Seismic resistance Walls (seismic elements) 1b Girders (building frame)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 春日 康博 千葉県印西市大塚一丁目5番地1 株式会 社竹中工務店技術研究所内 (72)発明者 木谷 宋一 大阪府大阪市中央区本町四丁目1番13号 株式会社竹中工務店大阪本店内 (72)発明者 相模 友行 東京都中央区銀座八丁目21番1号 株式会 社竹中工務店東京本店内 (72)発明者 結城 大作 東京都中央区銀座八丁目21番1号 株式会 社竹中工務店東京本店内 (72)発明者 谷口 元 千葉県印西市大塚一丁目5番地1 株式会 社竹中工務店技術研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yasuhiro Kasuga 1-5-1, Otsuka, Inzai City, Chiba Prefecture Inside the Takenaka Corporation Technical Research Institute (72) Inventor Soichi Kitani 4-chome Honmachi, Chuo-ku, Osaka-shi, Osaka No. 1-13 Takenaka Corporation Osaka Main Store (72) Inventor Tomoyuki Sagami 8-21-1, Ginza, Chuo-ku, Tokyo Inside Tokyo Takenaka Corporation Tokyo Main Store 8-21-1, Ginza-ku, Tokyo Takenaka Corporation Tokyo Main Store (72) Inventor Gen Taniguchi 1-5-1, Otsuka, Inzai City, Chiba Pref.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】建物と支持版・基礎杭等の基礎構造体との
間が浮き上がり可能に縁切りされた免震構造架構におい
て、 前記建物と基礎構造体とが両者間の支持点を経由して通
したスリーブ管に内蔵されたケーブルにより繋がれ、当
該ケーブルの両端部が建物側へ定着されていることを特
徴とする、免震構造架構。
1. A seismic isolation structure in which a building and a base structure such as a support plate and a foundation pile are cut off so as to be lifted, wherein the building and the base structure are connected via a support point therebetween. A seismic isolation frame, characterized by being connected by a cable built in a sleeve tube that has passed through, and both ends of the cable being fixed to the building side.
【請求項2】建物が中間階で浮き上がり可能に上下に縁
切りされた免震構造架構において、 前記建物の上層階部分と下層階部分とが両者間の支持点
を経由して通したスリーブ管に内蔵されたケーブルによ
り繋がれ、当該ケーブルの両端部が上層階部分又は下層
階部分のいずれか一方の側へ定着されていることを特徴
とする、免震構造架構。
2. A seismic isolation structure frame in which a building is vertically separated so that it can be lifted up on an intermediate floor, wherein an upper floor portion and a lower floor portion of the building pass through a sleeve pipe passing through a support point therebetween. A seismic isolation frame, wherein the frames are connected by a built-in cable, and both ends of the cable are fixed to one of an upper floor portion and a lower floor portion.
【請求項3】建物を構成する耐震壁・ブレース等の耐震
要素と建物躯体との間が浮き上がり可能に縁切りされた
免震構造架構において、 前記耐震要素と建物躯体とが両者間の支持点を経由して
通したスリーブ管に内蔵されたケーブルにより繋がれ、
当該ケーブルの両端部が耐震要素側へ定着されているこ
とを特徴とする、免震構造架構。
3. A seismic isolation structure in which a seismic element such as a seismic wall or a brace constituting a building and a building frame are cut off so as to be lifted up, wherein the seismic element and the building frame form a support point therebetween. Connected by a cable built into the sleeve tube passed through,
A seismic isolation frame, wherein both ends of the cable are fixed to the seismic element side.
【請求項4】ケーブルの少なくとも一方の定着端部にエ
ネルギー吸収機構が設けられていることを特徴とする、
請求項1〜3のいずれか一に記載した免震構造架構。
4. An energy absorbing mechanism is provided at at least one fixing end of the cable.
The seismic isolation structure frame according to claim 1.
【請求項5】ケーブルにプレストレスが導入されている
ことを特徴とする、請求項1〜4のいずれか一に記載し
た免震構造架構。
5. The seismic isolation frame according to claim 1, wherein a prestress is introduced into the cable.
【請求項6】スリーブ管の内部には内蔵されたケーブル
との間に粘弾性体が封入されていることを特徴とする、
請求項1〜5のいずれか一に記載した免震構造架構。
6. A viscoelastic body is sealed between the sleeve tube and a built-in cable inside the sleeve tube.
The seismic isolation structure frame according to any one of claims 1 to 5.
JP2000108594A 2000-04-10 2000-04-10 Base isolation frame Pending JP2001295501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000108594A JP2001295501A (en) 2000-04-10 2000-04-10 Base isolation frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000108594A JP2001295501A (en) 2000-04-10 2000-04-10 Base isolation frame

Publications (1)

Publication Number Publication Date
JP2001295501A true JP2001295501A (en) 2001-10-26

Family

ID=18621406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000108594A Pending JP2001295501A (en) 2000-04-10 2000-04-10 Base isolation frame

Country Status (1)

Country Link
JP (1) JP2001295501A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2328880A1 (en) * 2006-12-14 2009-11-18 F. Javier Porras Vila System of anti-seism balances. (Machine-translation by Google Translate, not legally binding)
JP2012520954A (en) * 2009-03-18 2012-09-10 ファウ・エス・エル・インターナツイオナール・アクチエンゲゼルシヤフト Support structure with high structure buffer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2328880A1 (en) * 2006-12-14 2009-11-18 F. Javier Porras Vila System of anti-seism balances. (Machine-translation by Google Translate, not legally binding)
JP2012520954A (en) * 2009-03-18 2012-09-10 ファウ・エス・エル・インターナツイオナール・アクチエンゲゼルシヤフト Support structure with high structure buffer

Similar Documents

Publication Publication Date Title
JP4585046B1 (en) Post restraint device in seismic retrofitting frame
JP2016216900A (en) Structure
JP2004176460A (en) Earthquake-resistant reinforcing structure
JP4700816B2 (en) Building construction method and seismic control building with excellent seismic safety
JP2005163432A (en) Antiseismic reinforcing frame using tension material
JP4041004B2 (en) Frame structure
JP2001295501A (en) Base isolation frame
JP3803949B2 (en) Seismic isolation method and seismic isolation structure for buildings with large aspect ratio
JP4010981B2 (en) Upper extension method for existing buildings
JP3412042B2 (en) Seismic isolation wall structure
JP2001140343A (en) Theree-storied dwelling house
JP4722560B2 (en) Building materials that effectively use the strength of reinforced steel
Preti et al. Example of the benefits of a dissipative roof diaphragm in the seismic response of masonry buildings
JP6342743B2 (en) Existing building reinforcement structure
JP2012233374A (en) Seismic reinforcement structure
JP5069713B2 (en) Basic structure of buildings over railway tracks
JP2003328585A (en) Vibration control structure for building having piloti
JP2013049954A (en) Structure with vibration control reinforcement frame
JP4452372B2 (en) Seismic isolation system and seismic isolation structure for column base of reinforced concrete columns
JP6368534B2 (en) Structure
JP4588836B2 (en) Seismic isolation system and seismic isolation structure for reinforced concrete walls
JP2934744B2 (en) Frame structure of high-rise building
JP2009174282A (en) Seismic strengthening method
JP3367893B2 (en) Pier
JP2008297801A (en) Building, addition structure thereof, and adding method