JP2001295062A - Grain oriented silicon steel sheet having excellent magnetic characteristic and film characteristic - Google Patents

Grain oriented silicon steel sheet having excellent magnetic characteristic and film characteristic

Info

Publication number
JP2001295062A
JP2001295062A JP2000110717A JP2000110717A JP2001295062A JP 2001295062 A JP2001295062 A JP 2001295062A JP 2000110717 A JP2000110717 A JP 2000110717A JP 2000110717 A JP2000110717 A JP 2000110717A JP 2001295062 A JP2001295062 A JP 2001295062A
Authority
JP
Japan
Prior art keywords
coating
annealing
tin
film
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000110717A
Other languages
Japanese (ja)
Other versions
JP3562433B2 (en
Inventor
Hiroaki Toda
広朗 戸田
Makoto Watanabe
渡辺  誠
Atsuto Honda
厚人 本田
Michiro Komatsubara
道郎 小松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2000110717A priority Critical patent/JP3562433B2/en
Publication of JP2001295062A publication Critical patent/JP2001295062A/en
Application granted granted Critical
Publication of JP3562433B2 publication Critical patent/JP3562433B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a grain oriented silicon steel sheet having a foresteritic film which acts more advantageously on magnetic characteristics than the conventional forsterite film and has an excellent film adhesion property as well. SOLUTION: The chief components of the foresteritic film are formed of Mg2SiO4, FeAl2O4 and TiN.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、変圧器その他の
電気機器の鉄心等の用途に供して好適な磁気特性と被膜
特性に優れた方向性けい素鋼板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grain-oriented silicon steel sheet excellent in magnetic properties and coating properties suitable for use as an iron core of a transformer or other electric equipment.

【0002】[0002]

【従来の技術】方向性けい素鋼板は、主として変圧器あ
るいは回転機器等の鉄心材料として使用され、磁気特性
として磁束密度が高く、かつ鉄損および磁気歪が小さい
ことが要求される。特に近年、省エネルギーおよび省資
源の観点から、磁気特性に優れた方向性けい素鋼板のニ
ーズはますます高まっている。
2. Description of the Related Art Grain-oriented silicon steel sheets are mainly used as iron core materials for transformers and rotating equipment, and are required to have high magnetic flux density and small iron loss and magnetostriction as magnetic characteristics. In particular, in recent years, from the viewpoint of energy saving and resource saving, there is an increasing need for a grain-oriented silicon steel sheet having excellent magnetic properties.

【0003】磁気特性に優れる方向性けい素鋼板を得る
には、{110}<001>方位、いわゆるゴス方位に
高度に集積した2次再結晶組織を得ることが肝要であ
る。かかる方向性けい素鋼板は、二次再結晶に必要なイ
ンヒビター、例えばMnS,MnSe,AlN,BN等を含むけ
い素鋼スラブを、加熱して熱間圧延を行った後、必要に
応じて熱延板焼鈍を行い、1回または中間焼鈍を挟む2
回以上の冷間圧延によって最終板厚とし、ついで脱炭焼
鈍を行った後、鋼板にMgOを主成分とする焼鈍分離剤を
塗布してから、最終仕上げ焼鈍を行うことによって製造
される。
[0003] In order to obtain a grain-oriented silicon steel sheet having excellent magnetic properties, it is important to obtain a secondary recrystallized structure highly integrated in the {110} <001> orientation, the so-called Goss orientation. Such a grain-oriented silicon steel sheet is prepared by heating a hot rolled silicon steel slab containing an inhibitor required for secondary recrystallization, for example, a silicon steel slab containing MnS, MnSe, AlN, BN, etc. Rolled sheet annealing, and once or intermediate annealing 2
The steel sheet is manufactured by performing a final strip thickness by cold rolling more than once, performing decarburization annealing, applying an annealing separator mainly containing MgO to the steel sheet, and then performing final finish annealing.

【0004】そして、この方向性けい素鋼板の表面に
は、特殊な場合を除いて、フォルステライト(Mg2SiO4)
を主体とする絶縁被膜(以下、単にフォルステライト絶
縁被膜またはフォルステライト被膜という)が形成され
ているのが一般的である。この被膜は、表面の電気的絶
縁だけでなく、その低熱膨張性に起因する引張応力を鋼
板に付与することによって、鉄損さらには磁気歪をも効
果的に改善する。従って、フォルステライト被膜の熱膨
張係数を何らかの方法で低下させることができれば、更
なる鉄損の向上が期待できる。
[0004] The surface of this grain-oriented silicon steel sheet is forsterite (Mg 2 SiO 4 ) except for special cases.
In general, an insulating coating mainly composed of a forsterite coating (hereinafter simply referred to as a forsterite insulating coating or a forsterite coating) is formed. The coating effectively improves iron loss and magnetostriction by applying not only electrical insulation on the surface but also tensile stress to the steel sheet due to its low thermal expansion property. Therefore, if the coefficient of thermal expansion of the forsterite film can be reduced by any method, further improvement in iron loss can be expected.

【0005】上記の観点から検討を行い、フォルステラ
イト被膜中にフォルステライトより熱膨張係数が低い化
合物を形成させて磁気特性や被膜特性を向上させた例と
しては、特許第 2710000号公報に開示されているMgAl2O
4 および特許第 2984195号公報に開示されているTiNが
知られている。ここに、 MgAl2O4の存在は、Fujii らに
よる報告「Glass Film Structure ofGrain-Oriented Si
licon Steel Using Aluminum Nitride as an Inhibitor
」(Journal of Materials Engineering and Performanc
e, Vo1.3 (2) April 1994, P.214)から、X線ターゲッ
トとしてCuKαを用いた場合、2θ=37°付近のピーク
から確認できることが判る。これは、MgAl2O4 の (311)
ピークであり、Mg2SiO4の (211)ピークとは明確に分離
して存在することがわかる(図1参照)。また、特許第
2984195 号公報に開示されているように、TiNの存在は
X線ターゲットとしてCuKαを用いた場合、2θ=42.6
°付近のピークから確認でき、これはTiN (200)ピーク
である。
From the above viewpoints, an example in which a compound having a lower coefficient of thermal expansion than forsterite is formed in a forsterite film to improve the magnetic characteristics and film characteristics is disclosed in Japanese Patent No. 270000. MgAl 2 O
4 and Patent No. 2984195 are known. Here, the existence of MgAl 2 O 4 was reported by Fujii et al. In `` Glass Film Structure of Grain-Oriented Si
licon Steel Using Aluminum Nitride as an Inhibitor
(Journal of Materials Engineering and Performanc
e, Vo1.3 (2) April 1994, p. 214), it can be seen that when CuKα is used as the X-ray target, it can be confirmed from a peak near 2θ = 37 °. This is MgAl 2 O 4 (311)
It can be seen that the peak is clearly separated from the (211) peak of Mg 2 SiO 4 (see FIG. 1). Patent No.
As disclosed in Japanese Patent No. 2984195, the presence of TiN is determined by using 2θ = 42.6 when CuKα is used as an X-ray target.
It can be confirmed from a peak near °, which is a TiN (200) peak.

【0006】これらにより、方向性けい素鋼板の磁気特
性や被膜特性は向上したものの、省エネルギー化という
時代の流れは、更なる特性の向上を求めている。そこ
で、発明者らは、フォルステライト被膜中にTiNとMgAl
2O4 を共存させれば、一層の磁気特性と被膜特性の向上
が図れるのではないかと考え、種々検討を行ったが、意
に反して必ずしも良好な結果を得ることはできなかっ
た。フォルステライト被膜中にTiNとMgAl2O4 を共存さ
せても、その被膜形成挙動は、鋼中のMnS,MnSe,AlN
等のインヒビターの挙動にも影響するため、優れた磁気
特性を得るために必須の過程である二次再結晶そのもの
にも影響を及ぼす。従って、目的とする被膜組成が得ら
れても、必ずしも磁気特性の向上に結びつかなかったも
のと考えられる。
Although the magnetic properties and the coating properties of the grain-oriented silicon steel sheet have been improved by these, the trend of the energy saving era calls for further improvement of the properties. Therefore, the inventors have found that TiN and MgAl are contained in the forsterite film.
It was considered that the coexistence of 2 O 4 could further improve the magnetic properties and the film properties, and various investigations were carried out. However, unsatisfactory results could not always be obtained. Even when TiN and MgAl 2 O 4 coexist in the forsterite film, the film formation behavior is still limited to MnS, MnSe, and AlN in steel.
In addition, it also affects the behavior of inhibitors, such as secondary recrystallization itself, which is an essential process for obtaining excellent magnetic properties. Therefore, it is considered that even if the intended coating composition was obtained, it did not necessarily lead to improvement in magnetic properties.

【0007】[0007]

【発明が解決しようとする課題】この発明は、上記の問
題を有利に解決するもので、従来のフォルステライト被
膜に比べて磁気特性に有利に作用し、かつ被膜密着性に
も優れたフォルステライト質被膜を有する方向性けい素
鋼板を提案することを目的とする。
SUMMARY OF THE INVENTION The present invention advantageously solves the above-mentioned problems. Forsterite which has an advantageous effect on magnetic properties as compared with a conventional forsterite coating and has excellent coating adhesion. The purpose is to propose a grain-oriented silicon steel sheet having a porous coating.

【0008】[0008]

【課題を解決するための手段】以下、この発明の解明経
緯について説明する。上述したとおり、フォルステライ
ト被膜中にTiNとMgAl2O4 を共存させても、必ずしも良
好な磁気特性を得ることはできなかった。そこで、発明
者らは、良好な二次再結晶を生じさせ、かつTiNとMgAl
2O4 を共存させるために、特許第 2710000号公報および
特許第 2984195号公報に開示されている技術内容を再検
討した結果、フォルステライト被膜は焼鈍分離剤を一方
の原料とし、また脱炭焼鈍時に生成するサブスケールを
他方の原料として生成するものであるのに対し、上記の
技術では、脱炭焼鈍条件に関する検討が不十分だったの
ではないかとの考えに至った。
The details of the invention will be described below. As described above, even when TiN and MgAl 2 O 4 coexist in the forsterite film, good magnetic properties could not always be obtained. Therefore, the present inventors have developed good secondary recrystallization and have developed TiN and MgAl.
To coexist 2 O 4, a result of reviewing the technical contents disclosed in Japanese Patent No. 2710000 Patent Publication and Patent No. 2984195 publication, forsterite film is an annealing separator and one of the raw materials, also decarburization annealing In contrast to the occasional generation of sub-scale as the other raw material, the above-mentioned technology led to the idea that the study on the conditions for decarburizing annealing was insufficient.

【0009】そこで、フォルステライト被膜中にTiNを
生成させる特許第 2984195号公報の技術をベースにし
て、脱炭焼鈍時の昇温速度と雰囲気酸化度に着目し、脱
炭焼鈍条件に関する検討を行った。脱炭焼鈍時の昇温速
度に着目した理由は、昇温速度については、過去に多く
の検討がなされている(例えば特開昭60−121222号公
報、特開平4−160114号公報、特開平6−128646号公
報)が、いずれも磁気特性向上の観点からなされたもの
であって、被膜特性に着目したものではなかったからで
ある。
Therefore, based on the technology disclosed in Japanese Patent No. 2984195 for forming TiN in the forsterite film, the decarburizing annealing conditions were examined by focusing on the temperature rise rate and the atmospheric oxidation degree during decarburizing annealing. Was. The reason for paying attention to the heating rate during decarburization annealing is that many studies have been made on the heating rate in the past (for example, JP-A-60-121222, JP-A-4-160114, and JP-A-4-160114). No. 6,128,646) are all made from the viewpoint of improving the magnetic properties, and do not focus on the film properties.

【0010】すなわち、発明者らは、脱炭焼鈍条件につ
いて鋭意検討した結果、 800℃以上、900 ℃以下の均熱
温度で、常温から 750℃までは平均昇温速度:12〜35℃
/sで昇温すると共に、 750℃から均熱温度までは平均昇
温速度:1〜10℃/sで昇温し、かつ均熱時の雰囲気酸化
度(P(H2O)/P(H2);雰囲気の水素分圧に対する水蒸気
分圧の比)を0.35〜0.50とする条件で脱炭焼鈍を行った
場合に、極めて優れた磁気特性と被膜特性が得られるこ
とが判明した。
That is, the present inventors have conducted intensive studies on the conditions for decarburization annealing. As a result, the average heating rate from normal temperature to 750 ° C. is 12 to 35 ° C. at a soaking temperature of 800 ° C. or more and 900 ° C. or less.
/ s, and from 750 ° C to the soaking temperature, the average heating rate: 1 to 10 ° C / s, and the degree of atmospheric oxidation (P (H 2 O) / P ( (H 2 ); the ratio of the partial pressure of steam to the partial pressure of hydrogen in the atmosphere) was 0.35 to 0.50, and it was found that when decarburizing annealing was performed, extremely excellent magnetic properties and coating properties were obtained.

【0011】しかしながら、それらのフォルステライト
被膜を調べたところ、被膜中にTiNは生成していたが、
MgAl2O4は生成していなかった。その例を図2に示す
が、2θ=37°付近に MgAl2O4の (311)ピークが見られ
ないことが判る。しかしながら、2θ=19°や31°付近
には、 Mg2SiO4とTiNでは同定できない不明ピーク(☆
印)が存在するので、それらがAl化合物に起因するもの
ではないかと考え、調査したところ、FeAl2O4 のピーク
であることが判明した。JCPDS カードで調べると、FeAl
2O4 (JCPDS No.34−192)の (311)ピークはMg2SiO4 (JCP
DS No.34−189)の(211) ピークとほぼ重なることが判
る。これに対し、前述したように、MgAl2O4 (JCPDS No.
21−1152) の場合、その (311)ピークは Mg2SiO4
(211)ピークとは明確に区別できる。従って、FeAl2O4
は、その (311)ピークと前述の☆印のピークによりMgAl
2O4と分別することが可能である。
However, when those forsterite films were examined, TiN was generated in the films.
MgAl 2 O 4 was not formed. An example is shown in FIG. 2, but it can be seen that the (311) peak of MgAl 2 O 4 is not observed near 2θ = 37 °. However, at around 2θ = 19 ° or 31 °, an unknown peak which cannot be identified by Mg 2 SiO 4 and TiN (☆
Mark), it was considered that they were caused by the Al compound, and an investigation revealed that it was a FeAl 2 O 4 peak. According to the JCPDS card, FeAl
The (311) peak of 2 O 4 (JCPDS No.34-192) is Mg 2 SiO 4 (JCP
It can be seen that the peak almost overlaps with the (211) peak in DS No. 34-189). On the other hand, as described above, MgAl 2 O 4 (JCPDS No.
21-1152), the (311) peak of Mg 2 SiO 4
(211) It can be clearly distinguished from the peak. Therefore, FeAl 2 O 4
Is the MgAl due to its (311) peak and the above-mentioned ☆ mark.
It can be separated from 2 O 4 .

【0012】その結果、鋼中にAlを含みインヒビターと
してAlNを使用する場合、Al酸化物として特許第 27100
00号公報に開示されている MgAl2O4ではなく、 FeAl2O4
を生成させ、かつフォルステライト被膜中にTiNと共存
させることによって、極めて優れた磁気特性と被膜特性
が得られることが新たに究明されたのである。この発明
は、上記の知見に立脚するものである。
As a result, in the case where Al is contained in steel and AlN is used as an inhibitor, Patent No. 27100 is used as Al oxide.
Instead MgAl 2 O 4 is disclosed in 00 JP, FeAl 2 O 4
It has been newly found that the formation of and the coexistence of TiN in the forsterite coating provide extremely excellent magnetic properties and coating properties. The present invention is based on the above findings.

【0013】すなわち、この発明は、表面にフォルステ
ライト質被膜を有する方向性けい素鋼板であって、該フ
ォルステライト質被膜が、Mg2SiO4, FeAl2O4およびTiN
を主体とすることを特徴とする磁気特性と被膜特性に優
れた方向性けい素鋼板である。
That is, the present invention is directed to a grain-oriented silicon steel sheet having a forsterite coating on its surface, wherein the forsterite coating is made of Mg 2 SiO 4 , FeAl 2 O 4 and TiN.
This is a grain-oriented silicon steel sheet having excellent magnetic properties and coating properties, characterized by being mainly composed of.

【0014】また、この発明は、表面にフォルステライ
ト質被膜を有する方向性けい素鋼板であって、該フォル
ステライト質被膜が、Mg2SiO4, FeAl2O4およびTiNを主
体とし、かつ被膜表面の薄膜X線回折によるMg2SiO4(13
1)ピークの強度をI0 、FeAl 2O4(111)ピークの強度をI
1 、TiN(200) ピークの強度をI2 とするとき、これら
が、次式(1), (2) 3/100 ≦I1 /I0 ≦40/100 --- (1) 3/100 ≦I2 /I0 ≦40/100 --- (2) 但し、I1 /I0 +I2 /I0 ≦50/100 の関係を満足することを特徴とする磁気特性と被膜特性
に優れた方向性けい素鋼板である。
Further, the present invention provides a
A grain-oriented silicon steel sheet having a
Stellite coating is MgTwoSiOFour, FeAlTwoOFourAnd TiN
And Mg by thin film X-ray diffraction on the coating surfaceTwoSiOFour(13
1) Set the peak intensity to I0 , FeAl TwoOFourThe intensity of the (111) peak is I
1 , TiN (200) peak intensity ITwo And when
Is given by the following formula (1), (2) 3/100 ≦ I1 / I0 ≤40 / 100 --- (1) 3/100 ≤ITwo / I0 ≤40 / 100 --- (2) where I1 / I0 + ITwo / I0 Magnetic characteristics and film characteristics characterized by satisfying the relationship of ≤50 / 100
This is a highly oriented silicon steel sheet.

【0015】[0015]

【発明の実施の形態】以下、この発明を由来するに至っ
た実験結果について説明する。なお、以後、各元素の含
有量の表示に用いる「%」は、特に断わりがない限り質
量百分率(mass%)を表すものとする。 実験1 C:0.072 %,Si:3.42%,Mn:0.069 %,Se:0.019
%,Al:0.025 %,N:0.0084%,Cu:0.10%,Sb:0.
043 %を含む組成になる鋼スラブを、1430℃の温度で20
分間加熱後、熱間圧延により2.4 mm厚の熱延板とした。
ついで、1000℃, 1分間の熱延板焼鈍後、1回目の冷間
圧延により板厚:1.7mm の中間厚とし、1050℃, 1分間
の中間焼鈍後、2回目の冷間圧延により最終板厚:0.23
mmに仕上げた。その後、得られた冷延板を脱脂して表面
を清浄化したのち、H2 −H2O −N2雰囲気中にて 850
℃の温度で、片面当たりの酸素目付量が 0.4〜0.8 g/m2
になるように脱炭焼鈍を施した。その際、室温からT1
℃(T1 =600 , 650 , 700 ,750 , 800 , 850)までの
昇温速度とT1 ℃から 850℃までの昇温速度をそれぞれ
独立して、前者は5〜50℃/s、後者は 0.5〜20℃/sの範
囲で変化させた。また均熱時のP(H2O)/P(H2)で表され
る雰囲気の酸化度は 0.2〜0.7 とした。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, experimental results which led to the present invention will be described. Hereinafter, “%” used to indicate the content of each element indicates a mass percentage (mass%) unless otherwise specified. Experiment 1 C: 0.072%, Si: 3.42%, Mn: 0.069%, Se: 0.019
%, Al: 0.025%, N: 0.0084%, Cu: 0.10%, Sb: 0.
At a temperature of 1430 ° C.
After heating for one minute, a hot-rolled sheet having a thickness of 2.4 mm was formed by hot rolling.
Then, after the hot-rolled sheet was annealed at 1000 ° C for 1 minute, the first sheet was cold-rolled to an intermediate thickness of 1.7 mm, the intermediate sheet was annealed at 1050 ° C for 1 minute, and the second sheet was cold-rolled. Thickness: 0.23
mm. Thereafter, in after the surface was degreased resulting cold-rolled sheet was cleaned, H 2 -H 2 O -N 2 atmosphere 850
At a temperature of ° C., the basis weight of oxygen per side is 0.4 to 0.8 g / m 2
The steel was subjected to decarburization annealing. At that time, T 1
° C (T 1 = 600, 650, 700, 750, 800, 850) and the rate of temperature increase from T 1 ° C to 850 ° C are independent of each other. Was changed in the range of 0.5 to 20 ° C./s. The degree of oxidation of the atmosphere represented by P (H 2 O) / P (H 2 ) during soaking was set to 0.2 to 0.7.

【0016】ついで、MgOを主成分として、マグネシ
ア:100 重量部に対しTiO2を10重量部配合した焼鈍分離
剤をスラリー状にし、それぞれの脱炭焼鈍板コイルに塗
布したのち、乾燥させた。なお、マグネシアは水和量が
2%、30℃でのクエン酸活性度(CAA40) が75秒、BET
(比表面積)が 25 m2/gのものを用いた。その後、窒素
雰囲気中にて 850℃, 20時間の保定処理に引き続き、窒
素:25 vol%,水素:75 vol%の雰囲気中にて10℃/hの
速度で1150℃まで昇温する二次再結晶焼鈍および水素雰
囲気中で1200℃, 5時間焼鈍する仕上げ焼鈍を行った。
その際、試料を 850〜1150℃の温度域にて98 MPaの荷重
で加圧すると共に、鋼板単位重量(kg)および単位時間
(h) 当たりのガス流量を1×10-2 m3/(kg ・h)にした。
なお、加圧は、実際の工程での巻取り張力と昇温中のコ
イルの熱膨張による鋼板間の圧力を想定したものであ
る。
Next, an annealing separator containing MgO as a main component and 10 parts by weight of TiO 2 with respect to 100 parts by weight of magnesia was formed into a slurry, applied to each decarburized annealed plate coil, and dried. Magnesia had a hydration of 2%, a citric acid activity (CAA40) at 30 ° C of 75 seconds, and a BET
(Specific surface area) of 25 m 2 / g was used. After that, in a nitrogen atmosphere, after a holding treatment at 850 ° C for 20 hours, a secondary reheating is performed at a rate of 10 ° C / h to 1150 ° C in an atmosphere of nitrogen: 25 vol% and hydrogen: 75 vol%. The crystal was annealed and a final annealing was performed in a hydrogen atmosphere at 1200 ° C. for 5 hours.
At that time, the sample was pressed at a temperature of 850 to 1150 ° C with a load of 98 MPa, and the unit weight (kg) and
The gas flow rate per (h) was 1 × 10 -2 m 3 / (kg · h).
The pressurization is based on the winding tension in the actual process and the pressure between the steel plates due to the thermal expansion of the coil during temperature rise.

【0017】かくして得られた試料のフォルステライト
被膜の外観と曲げ密着性および磁気特性を評価したが、
室温から一定の速さで昇温することに該当するT1 =85
0 ℃の場合、この条件ではいずれの場合も優れた磁気特
性と被膜特性の両者を得ることはできなかった。また、
室温からT1 ℃までの昇温速度が、T1 ℃から850 ℃ま
での昇温速度より遅い場合も優れた特性を得ることはで
きなかった。逆に室温からT1 ℃までの昇温速度が、T
1 ℃から850 ℃までの昇温速度より速い場合には優れた
被膜特性が得られ易かったが、それでもT1 <700 ℃の
場合には良好な磁気特性を得ることはできなかった。こ
の場合は形成される1次再結晶集合組織への影響が大き
かったためと思われる。
The appearance, bending adhesion and magnetic properties of the forsterite film of the sample thus obtained were evaluated.
T 1 = 85, which corresponds to heating at a constant rate from room temperature
At 0 ° C., under these conditions, it was not possible to obtain both excellent magnetic properties and coating properties in any case. Also,
Even when the rate of temperature rise from room temperature to T 1 ° C was slower than the rate of temperature rise from T 1 ° C to 850 ° C, excellent characteristics could not be obtained. Conversely, the rate of temperature rise from room temperature to T 1 ° C is
When the heating rate was higher than 1 ° C. to 850 ° C., it was easy to obtain excellent coating properties. However, when T 1 <700 ° C., good magnetic properties could not be obtained. In this case, it is considered that the influence on the formed primary recrystallization texture was great.

【0018】これに対し、比較的広い範囲で非常に良好
な磁気特性と被膜特性が得られたのは、T1 =750 ℃の
場合であった。特に、脱炭焼鈍均熱時のP(H2O)/P(H2)
で表される雰囲気の酸化度が0.35〜0.50の時に、極めて
優れた磁気特性と被膜特性の両者を併せて得ることがで
きた。図3に、T1 =750 ℃、均熱時の雰囲気酸化度が
0.35〜0.50の時の磁気特性と被膜特性の評価結果を示
す。なお、被膜の曲げ密着性は、直径:5mm間隔の種々
の径を有する丸棒に試験片を巻き付け、被膜が剥離しな
い最小径で評価した。
On the other hand, very good magnetic properties and coating properties were obtained over a relatively wide range when T 1 = 750 ° C. In particular, P (H 2 O) / P (H 2 )
When the degree of oxidation of the atmosphere represented by was 0.35 to 0.50, both excellent magnetic properties and coating properties could be obtained. FIG. 3 shows that the degree of oxidation of the atmosphere at T 1 = 750 ° C.
The evaluation results of the magnetic characteristics and the film characteristics at 0.35 to 0.50 are shown. The bending adhesion of the coating was evaluated by wrapping a test piece around a round bar having a diameter of 5 mm and having various diameters, and evaluating the minimum diameter at which the coating did not peel off.

【0019】同図から明らかなように、室温から 750℃
までの昇温速度を12〜35℃/sにすると共に、 750〜850
℃間の昇温速度を1〜10℃/sにすることによって、極め
て優れた磁気特性と被膜特性が併せて得られることが判
る(均熱時の雰囲気酸化度は0.35〜0.50)。また、これ
らのフォルステライト質被膜を調査したところ、被膜中
にはフォルステライト以外にTiNとFeAl2O4 が生成して
おり、 MgAl2O4は生成していなかった。
As is apparent from FIG.
Up to 12-35 ° C / s and 750-850
It can be seen that by setting the rate of temperature rise between 1 ° C and 1 ° C / s to 10 ° C / s, extremely excellent magnetic properties and film properties can be obtained together (the degree of oxidation of the atmosphere during soaking is 0.35 to 0.50). Further, when these forsterite coatings were examined, TiN and FeAl 2 O 4 were formed in the coatings in addition to forsterite, and MgAl 2 O 4 was not formed.

【0020】脱炭焼鈍時に、常温から750 ℃までの昇温
速度を12〜35℃/sにすると共に750℃から均熱温度まで
の昇温速度を1〜10℃/sにすることで磁気特性および被
膜特性が向上する理由について、発明者らは次のように
考えている。すなわち、発明者らは、予備実験を行って
脱炭焼純板の5%HCl・60℃・60秒間の酸洗条件で酸洗前
後の重量変化すなわち酸洗減量を調べたところ、酸洗減
量値と磁気特性および被膜特性との間には相関があり、
酸洗減量値が低いほど磁気・被膜特性は向上する傾向に
あることが判明した。この酸洗減量値はサブスケール最
表面の性質を反映すると考えられ、従って何らかのかた
ちで被膜形成初期の反応に影響を及ぼすものと考えられ
る。
At the time of decarburizing annealing, the temperature is raised from room temperature to 750 ° C. at a rate of 12 to 35 ° C./s and the rate of temperature rise from 750 ° C. to a soaking temperature is 1 to 10 ° C./s. The inventors consider the reason why the characteristics and the film characteristics are improved as follows. That is, the inventors conducted a preliminary experiment to examine the weight change before and after pickling under the pickling conditions of 5% HCl at 60 ° C. for 60 seconds, that is, the pickling weight loss of the decarburized and baked pure plate. And there is a correlation between magnetic properties and film properties,
It was found that the lower the pickling loss value, the better the magnetic and coating properties tended to be. It is considered that the pickling weight loss value reflects the properties of the outermost surface of the sub-scale, and therefore affects the reaction in the initial stage of film formation in some way.

【0021】そこで、脱炭焼鈍時の昇温速度と酸洗減量
値との関係を調べたところ、昇温速度を上記の範囲に制
御した場合には、そうでない場合に比べて酸洗減量値は
低くなって、酸洗減量値を 0.3 g/m2 以下の低い値に抑
制できることが判った。酸洗減量値が低いほど磁気・被
膜特性が向上する理由は、明確に解明されたわけではな
いが、おそらくこれは鋼板表面での雰囲気との反応性す
なわち活性度を表すものと考えられる。従って、酸洗減
量値が低くて活性度が低いほど仕上げ焼鈍における雰囲
気、つまりマグネシアの水和水から放出される水蒸気の
影響を受けにくいからだと考えられる。昇温速度を上述
のように規定することで酸洗減量値が低下するのは、酸
化初期の昇温速度を遅くすることで、酸化初期に緻密な
サブスケールが形成されるためと考えられる。
Therefore, the relationship between the heating rate during decarburization annealing and the pickling weight loss value was examined. When the heating rate was controlled within the above range, the pickling weight loss value was higher than in the other cases. Was low, and it was found that the pickling weight loss value could be suppressed to a low value of 0.3 g / m 2 or less. The reason that the lower the pickling weight loss value, the better the magnetic and coating properties are, is not clearly understood, but it is presumed to indicate the reactivity with the atmosphere on the steel sheet surface, that is, the activity. Therefore, it is considered that the lower the pickling weight loss value and the lower the activity, the less the influence of the atmosphere in the finish annealing, that is, the water vapor released from the water of hydration of magnesia. It is considered that the reason why the pickling weight loss value is reduced by defining the heating rate as described above is that a dense subscale is formed in the initial oxidation by lowering the heating rate in the initial oxidation.

【0022】また、 脱炭焼鈍均熟時のP(H2O)/P(H2)
で表される雰囲気の酸化度を0.35〜0.50にすることで磁
気・被膜特性が向上する理由については、発明者らは次
のように考えている。すなわち、脱炭焼鈍・均熱時雰囲
気の酸化度の違いによってサブスケール中SiO2層の構造
が変化するが、その構造の違いにより仕上げ焼鈍中の被
膜形成過程が変化し、極めて優れた磁気特性につながる
インヒビター分解過程をもたらすためと考えられる。
In addition, P (H 2 O) / P (H 2 ) during decarburization annealing and ripening
The inventors believe that the reason why the magnetic / coating property is improved by setting the degree of oxidation of the atmosphere represented by the above to 0.35 to 0.50 is as follows. In other words, the structure of the SiO 2 layer in the subscale changes due to the difference in the degree of oxidation of the atmosphere during decarburization annealing and soaking, but the difference in the structure changes the film formation process during finish annealing, resulting in extremely excellent magnetic properties. It is thought to cause an inhibitor degradation process that leads to

【0023】すなわち、脱炭焼鈍・均熱雰囲気の酸化度
の違いによるサブスケール中SiO2層の構造の変化は、特
開平8−218124号公報に開示されている電気化学的なサ
ブスケールの評価法で把握することができる。この方法
による電圧−時間曲線から得られる電圧変化量V34値は
サブスケール中のSiO2層の性状を反映するが、均熱時の
雰囲気酸化度を0.35〜0.50の範囲にすることでV34値は
−0.05〜+0.05 (V)の一定範囲となった。つまり、常温
から 50℃までは平均昇温速度:12〜35℃/sで昇温する
と共に、750 ℃から850 ℃までは平均昇温速度:1〜10
℃/sで昇温し、かつ均熱時の雰囲気酸化度(P(H2O)/P
(H2);雰囲気の水素分圧に対する水蒸気分圧の比)を0.
35〜0.50の条件で脱炭焼鈍を行うことにより、サブスケ
ールの酸洗減量値を 0.3 g/m2 以下、V34値を−0.05〜
0.05(V)に制御し、表面の反応性と内部構造を一定範囲
に規制することによって、極めて優れた磁気特性と被膜
特性を有する方向性けい素鋼板を得ることができるわけ
である。ここに、V34値とは、電圧変化曲線の第3領域
の電圧に関する値で、次式 V34値=(第3領域の終わりの電圧値)−(第3領域の
始まりの電圧値) で定義されるものである。ただし、第3領域の始まりの
電圧値とは、1秒間の電圧降下量が0.01V未満でかつそ
れが連続して2秒以上続き始める時の電圧値、また第3
領域の終わりの電圧値とは1秒間の電圧降下量が0.01V
以上でかつそれが連続して4秒以上続いて後の電圧値の
ことである。
That is, the change in the structure of the SiO 2 layer in the subscale due to the difference in the degree of oxidation in the decarburizing annealing / soaking atmosphere is evaluated by the electrochemical subscale evaluation disclosed in JP-A-8-218124. Can be grasped by law. Voltage of this method - the time the voltage change amount V 34 values obtained from the curve is reflecting the properties of the SiO 2 layer in the subscale, V 34 by the atmosphere oxidizing degree during soaking in the range of 0.35 to 0.50 Values ranged from -0.05 to +0.05 (V). That is, the temperature rises at an average rate of 12 to 35 ° C / s from normal temperature to 50 ° C, and the average rate of temperature rise is 1 to 10 from 750 ° C to 850 ° C.
Temperature rise at ℃ / s, and the degree of atmospheric oxidation at the time of soaking (P (H 2 O) / P
(H 2 ); the ratio of the partial pressure of water vapor to the partial pressure of hydrogen in the atmosphere).
By performing the decarburization annealing under conditions of 35 to 0.50, a pickling weight loss values of the subscales 0.3 g / m 2 or less, the V 34 value -0.05
By controlling to 0.05 (V) and regulating the surface reactivity and internal structure to a certain range, it is possible to obtain a grain-oriented silicon steel sheet having extremely excellent magnetic properties and coating properties. Here, the V34 value is a value relating to the voltage in the third region of the voltage change curve, and is expressed by the following formula: V34 value = (voltage value at end of third region) − (voltage value at beginning of third region) It is defined. However, the voltage value at the beginning of the third region is a voltage value when the amount of voltage drop for one second is less than 0.01 V and it starts to continue continuously for two seconds or more.
The voltage value at the end of the area means that the voltage drop per second is 0.01 V
This is the voltage value that is as described above and that continues for more than 4 seconds.

【0024】次に、上記の知見事実を基にして、フォル
ステライト質被膜中のTiN量およびFeAl2O4 量と磁気・
被膜特性との関係を調べる実験を行った。 実験2 C:0.069 %, Si:3.44%,Mn:0.071 %,Se:0.018
%,Al:0.026 %,N:0.0087%,Cu:0.10%,Ni:0.
20%,Sb:0.043 %を含む組成になる鋼スラブを、1430
℃の温度で20分間加熱後、熱間圧延により2.6 mm厚の熱
延板とした。ついで1000℃, 1分間の熱延板焼鈍後、1
回目の冷間圧延により板厚:1.8 mmの中間厚とし、1100
℃, 1分間の中間焼鈍後、2回目の冷間圧延によって最
終板厚:0.23mmに仕上げた。その後、得られた冷延板を
脱脂して表面を清浄化したのち、H2 −H2O −N2雰囲
気中にて 820℃の温度で、片面当たりの酸素目付量が
0.4〜0.8 g/m2になるように脱炭焼鈍を施した。その
際、室温からT1 ℃(T1 =600 , 650 , 700 ,750 , 8
00 , 850)までの昇温速度とT1 ℃から 850℃までの昇
温速度をそれぞれ独立して、前者は5〜50℃/s,後者は
0.5 〜40℃/sの範囲で変化させた。また均熱時のP(H
2O)/P(H2)で表される雰囲気の酸化度は0.30〜0.55とし
た。
Next, based on the above findings, the amount of TiN and the amount of FeAl 2 O 4 in the
An experiment was conducted to examine the relationship with the coating properties. Experiment 2 C: 0.069%, Si: 3.44%, Mn: 0.071%, Se: 0.018
%, Al: 0.026%, N: 0.0087%, Cu: 0.10%, Ni: 0.
A steel slab having a composition containing 20% and Sb: 0.043%
After heating at a temperature of 20 ° C. for 20 minutes, a hot-rolled sheet having a thickness of 2.6 mm was formed by hot rolling. Then, after hot-rolled sheet annealing at 1000 ° C for 1 minute,
The first cold rolling makes the sheet thickness: 1.8 mm intermediate thickness, 1100
After the intermediate annealing at 1 ° C. for 1 minute, a final thickness of 0.23 mm was obtained by the second cold rolling. Thereafter, the obtained cold-rolled sheet was degreased to clean the surface, and then, in an atmosphere of H 2 —H 2 O—N 2 at a temperature of 820 ° C., an oxygen basis weight per one side was reduced.
Decarburization annealing was performed to 0.4 to 0.8 g / m 2 . At that time, from room temperature to T 1 ° C (T 1 = 600, 650, 700, 750, 8
00, 850) and the rate of temperature rise from T 1 ° C to 850 ° C, respectively, the former being 5 to 50 ° C / s and the latter being
It was changed in the range of 0.5 to 40 ° C / s. In addition, P (H
2 O) / P oxidation degree of the atmosphere represented by (H 2) was 0.30 to 0.55.

【0025】ついで、MgOを主成分として、マグネシ
ア:100 重量部に対しTiO2を8重量部配合した焼鈍分離
剤をスラリー状にし、それぞれの脱炭焼鈍板コイルに塗
布してから乾燥させた。なお、マグネシアは水和量が
1.5%、30℃でのクエン酸活性度CAA40)が65秒、BET
(比表面積)が 15 m2/gのものを用いた。その後、窒素
雰囲気中にて 850℃, 20時間の保定処理に引き続き、窒
素:25 vol%、水素:75 vol%の雰囲気中にて10℃/hの
速度で1150℃まで昇温する二次再結晶焼鈍および水素雰
囲気中で1200℃, 5時間焼鈍する仕上げ焼鈍を行った。
その際、試料を 850〜1150℃の温度域にて0,49,98,
147, 196 MPaの5条件で加圧すると共に、鋼板単位重量
(kg)および単位時間(h) 当たりのガス流量を1×10-5
1×10-4,1×10-3,1×10-2,1×10-1,1 m3/(kg
・h)の6段階で変化させた。なお、加圧は、実際の工程
での巻取り張力と昇温中のコイルの熱膨張による鋼板間
の圧力を想定したものであり、またガス流量の変化はそ
れに伴うコイル層間雰囲気の変化を想定したものであ
る。
Next, an annealing separator containing MgO as a main component and 8 parts by weight of TiO 2 with respect to 100 parts by weight of magnesia was made into a slurry, applied to each decarburized annealed plate coil, and dried. In addition, magnesia has a hydrated amount.
1.5%, citric acid activity at 30 ° C CAA40) 65 seconds, BET
(Specific surface area) of 15 m 2 / g was used. After that, in a nitrogen atmosphere, after a holding treatment at 850 ° C. for 20 hours, a secondary reheating is performed at a rate of 10 ° C./h to 1150 ° C. in an atmosphere of nitrogen: 25 vol% and hydrogen: 75 vol%. The crystal was annealed and a final annealing was performed in a hydrogen atmosphere at 1200 ° C. for 5 hours.
At that time, samples were taken at 0,49,98,
Pressurized under 5 conditions of 147, 196 MPa and unit weight of steel plate
(kg) and gas flow rate per unit time (h) are 1 × 10 -5 ,
1 × 10 -4 , 1 × 10 -3 , 1 × 10 -2 , 1 × 10 -1 , 1 m 3 / (kg
・ Changed in 6 steps of h). The pressurization is based on the winding tension in the actual process and the pressure between the steel plates due to the thermal expansion of the coil during temperature rise. It was done.

【0026】かくして得られた試料のフォルステライト
質被膜と磁気・被膜特性との関係について、とくに被膜
表面の薄膜X線回折によるMg2SiO4(131)ピークの強度I
0 ,FeAl2O4(111)ピークの強度I1 ,TiN(200) ピーク
の強度I2 と磁気・被膜特性との関係について調査し
た。この時、脱炭焼鈍板サブスケールの酸洗減量値が
0.3 g/m2 以下,V34値が−0.05〜+0.05 (V)の範囲を
満足する条件下では、フォルステライト被膜中にMgAl 2O
4 ではなく FeAl2O4が生成していた。
The forsterite of the sample thus obtained
The relationship between porous coatings and magnetic and coating properties, especially coatings
Mg by thin film X-ray diffraction on the surfaceTwoSiOFour(131) Peak intensity I
0 , FeAlTwoOFour(111) Peak intensity I1 , TiN (200) peak
Strength ITwo Of the relationship between magnetic properties and magnetic and coating properties
Was. At this time, the pickling weight loss value of the decarburized annealed plate subscale
0.3 g / mTwo Below, V34Value in the range of -0.05 to +0.05 (V)
Under satisfactory conditions, MgAl in the forsterite coating TwoO
Four Not FeAlTwoOFourHad been generated.

【0027】I2 /I0 が5/100以上 10/100 以下であ
る場合のI1 /I0 と磁気特性との関係を図4に示す。
1 /I0 が3/100以上の場合に、W17/50 ≦ 0.82 W/
kgという極めて良好な鉄損が得らることが判る。また、
FeAl2O4が生成すると磁束密度 (B8)が向上しているこ
とから、おそらくFeAl2O4 生成による鉄損低減効果は、
被膜張力向上効果以外に磁束密度 (B8)向上効果も大き
いものと考えられる。インヒビター分解過程は被膜形成
過程の差異により影響を受けるが、TiNが生成する条件
では、被膜形成過程において MgAl2O4が生成する場合に
よりFeAl2O4が生成する方が、Goss方位に近い粒が二次
再結晶する意味において、有利なインヒビター分解過程
となるものと考えられる。但し、I1 /I0 が40/100を
超えると、FeAl2O4 に対する Mg2SiO4の生成量が相対的
に不足するためか、被膜表面に若干の欠陥がみられ、外
観の均一性がやや劣化した。
FIG. 4 shows the relationship between I 1 / I 0 and the magnetic characteristics when I 2 / I 0 is not less than 5/100 and not more than 10/100.
When I 1 / I 0 is 3/100 or more, W 17/50 ≦ 0.82 W /
It can be seen that an extremely good iron loss of kg is obtained. Also,
When FeAl 2 O 4 is generated from the magnetic flux density (B 8) is improved, possibly iron loss reducing effect by FeAl 2 O 4 produced,
It is considered that the effect of improving the magnetic flux density (B 8 ) is large in addition to the effect of improving the film tension. The inhibitor decomposition process is affected by the difference in the film formation process, but under conditions where TiN is formed, it is more likely that MgAl 2 O 4 is formed during the film formation process and that FeAl 2 O 4 is formed. Is considered to be an advantageous inhibitor decomposition process in the sense of secondary recrystallization. However, if I 1 / I 0 is more than 40/100, it may be because the amount of Mg 2 SiO 4 generated relative to FeAl 2 O 4 is relatively insufficient, or some defects are observed on the film surface, and the uniformity of appearance is observed. Slightly deteriorated.

【0028】次に、図5に、I1 /I0 , I2 /I0
磁気・被膜特性との関係を示す。この図から、極めて優
れた磁気・被膜特性が得られる領域は、次式(1), (2) 3/100 ≦I1 /I0 ≦40/100 --- (1) 3/100 ≦I2 /I0 ≦40/100 --- (2) 但し、I1 /I0 +I2 /I0 ≦50/100 の関係を満足する範囲であることが判る。この場合も、
この領域では磁束密度 (B8)が向上していたことから、
おそらくFeAl2O4 とTiNの生成が関与した二次再結晶過
程への影響による磁束密度 (B8)向上効果も大きいと考
えられる。
Next, FIG. 5 shows the relationship between I 1 / I 0 , I 2 / I 0 and the properties of the magnetic film. From this figure, the region where extremely excellent magnetic and coating characteristics can be obtained is represented by the following formulas (1) and (2): 3/100 ≦ I 1 / I 0 ≦ 40/100 --- (1) 3/100 ≦ I 2 / I 0 ≤40 / 100 --- (2) However, it can be seen that the range satisfies the relationship of I 1 / I 0 + I 2 / I 0 ≤50 / 100. Again,
Since the magnetic flux density (B 8 ) was improved in this region,
Probably, the effect of improving the magnetic flux density (B 8 ) by the influence on the secondary recrystallization process involving the formation of FeAl 2 O 4 and TiN is considered to be large.

【0029】また、TiNが全く生成していない場合(I
2 /I0 =0)には、FeAl2O4 の生成により逆に鉄損は
劣化しており、 FeAl2O4の生成が鉄損の低減に有利にな
るのはTiNが生成する場合であることが一目瞭然であ
る。なお、I1 /I0 >40/100 またはI2 /I0 >40
/100 あるいはI1 /I0+I2 /I0 >50/100 の範
囲では、フォルステライト質被膜中の Mg2SiO4の生成量
が相対的に不足するためか、被膜表面に若干の欠陥がみ
られ、外観の均一性がやや劣る傾向が見られた。
When no TiN is produced (I
2 / I 0 = 0), the iron loss is degraded by the generation of FeAl 2 O 4 , and the generation of FeAl 2 O 4 is advantageous for the reduction of the iron loss when TiN is generated. It is obvious at a glance. Note that I 1 / I 0 > 40/100 or I 2 / I 0 > 40
In the range of / 100 or I 1 / I 0 + I 2 / I 0 > 50/100, the generation of Mg 2 SiO 4 in the forsterite coating is relatively insufficient, and some defects are present on the coating surface. The appearance uniformity tended to be slightly inferior.

【0030】以上の実験結果により、フォルステライト
質被膜が、Mg2SiO4, FeAl2O4およびTiNを主体とし、特
に被膜表面の薄膜X線回折によるMg2SiO4(131)ピークの
強度I0 ,FeAl2O4(111)ピークの強度I1 ,TiN(200)
ピークの強度I2 が、次式(1), (2) 3/100 ≦I1 /I0 ≦40/100 --- (1) 3/100 ≦I2 /I0 ≦40/100 --- (2) 但し、I1 /I0 +I2 /I0 ≦50/100 の関係を満足する場合に、極めて優れた磁気特性と被膜
特性の両者が併せて得られることが解明されたのであ
る。
From the above experimental results, the forsterite coating is mainly composed of Mg 2 SiO 4 , FeAl 2 O 4 and TiN. In particular, the intensity I of the Mg 2 SiO 4 (131) peak by thin film X-ray diffraction on the coating surface is 0 , intensity I 1 of FeAl 2 O 4 (111) peak, TiN (200)
The peak intensity I 2 is given by the following formula (1), (2) 3/100 ≦ I 1 / I 0 ≦ 40/100 --- (1) 3/100 ≦ I 2 / I 0 ≦ 40/100- -(2) However, it was clarified that when the relationship of I 1 / I 0 + I 2 / I 0 ≦ 50/100 was satisfied, both excellent magnetic properties and coating properties could be obtained. .

【0031】次に、この発明における素材鋼板の好適組
成範囲について述べる。この発明で対象とする含けい素
鋼スラブの成分組成としては、C:0.03〜0.12%、Si:
2.0 〜4.5 %、sol.Al:0.005 〜0.05%およびN:0.00
3 〜0.012 %を含有させることが必要である。sol.Alお
よびNは、AlNインヒビターを形成させるために必要で
あり、良好に二次再結晶させるためには、sol.Al:0.00
5 〜0.05%、N:0.003 〜0.012 %とする必要がある。
なお、これを超える量ではAlNの粗大化を招いて抑制力
を失い、一方これ未満ではAlNの量が不足する。また、
Alはフォルステライト被膜中に生成させる FeAl2O4の原
料としても必要である。Cは、熱間圧延時のα−γ変態
を利用して結晶組織の改善を行うために重要な成分であ
る。含有量が0.03%に満たないと良好な一次再結晶組織
が得られず、一方0.12%を超えると脱炭が難しくなって
脱炭不良となり磁気特性が劣化するので、0.03〜0.12%
とする。Siは、製品の電気抵抗を高め、渦電流損を低減
させる上で重要な成分である。含有量が 2.0%に満たな
いと最終仕上げ焼鈍中にα−γ変態によって結晶方位が
損なわれ、一方 4.5%を超えると冷延性に問題が生じる
ので、 2.0〜4.5 %に限定する。
Next, the preferred composition range of the steel sheet according to the present invention will be described. The component composition of the silicon steel slab targeted in the present invention is as follows: C: 0.03 to 0.12%, Si:
2.0 to 4.5%, sol. Al: 0.005 to 0.05% and N: 0.00
It is necessary to contain 3 to 0.012%. sol. Al and N are necessary to form an AlN inhibitor, and for good secondary recrystallization, sol. Al: 0.00
It must be 5 to 0.05% and N: 0.003 to 0.012%.
It should be noted that if the amount exceeds this, AlN becomes coarse and the suppressing power is lost, while if less than this, the amount of AlN becomes insufficient. Also,
Al is also required as a raw material of FeAl 2 O 4 formed in the forsterite film. C is an important component for improving the crystal structure by utilizing the α-γ transformation during hot rolling. If the content is less than 0.03%, a good primary recrystallized structure cannot be obtained. On the other hand, if the content exceeds 0.12%, decarburization becomes difficult, decarburization becomes poor, and magnetic properties deteriorate, so 0.03 to 0.12%
And Si is an important component in increasing the electrical resistance of products and reducing eddy current loss. If the content is less than 2.0%, the crystal orientation is impaired by the α-γ transformation during the final annealing, while if it exceeds 4.5%, there is a problem in the cold rolling property. Therefore, the content is limited to 2.0 to 4.5%.

【0032】その他、必要に応じて、Mn:0.02〜0.20
%、SおよびSeのうちから選んだ少なくとも一種:0.01
0 〜0.040 %、Sb:0.0l〜0.20%、Cu:0.0l〜0.20%、
Mo:0.005 〜0.10%、Sn:0.02〜0.30%、Ge:0.02〜0.
30%、Ni:0.01〜0.50%、Cr:0.05〜0.5 %、P:0.00
2 〜0.30%、Nb:0.003 〜0.10%、V:0.003 〜0.10%
およびBi:0.005 〜0.20%の範囲で各成分を含有させる
ことができる。MnとSeおよびSもインヒビターとして機
能するものであるが、Mn量が0.02%未満またはSとSeの
単独もしくは合計量が 0.010%未満では、インヒビター
機能が不十分であり、一方Mn量が0.20%を超えまたはS
とSeの単独もしくは合計量が0.040 %を超えるとスラブ
加熱の際に必要とする温度が高くなりすぎて実用的でな
いので、Mnは0.02〜0.20%、S, Seは単独または合計量
で 0.010〜0.040 %の範囲とするのが好ましい。
In addition, if necessary, Mn: 0.02 to 0.20
%, At least one selected from S and Se: 0.01
0 to 0.040%, Sb: 0.01 to 0.20%, Cu: 0.01 to 0.20%,
Mo: 0.005 to 0.10%, Sn: 0.02 to 0.30%, Ge: 0.02 to 0.
30%, Ni: 0.01-0.50%, Cr: 0.05-0.5%, P: 0.00
2 to 0.30%, Nb: 0.003 to 0.10%, V: 0.003 to 0.10%
And Bi: each component can be contained in the range of 0.005 to 0.20%. Mn, Se and S also function as inhibitors, but when the Mn content is less than 0.02% or the S or Se content alone or the total content is less than 0.010%, the inhibitor function is insufficient, while the Mn content is 0.20% Exceeds or S
If the total amount of S and Se exceeds 0.040%, the temperature required for heating the slab is too high to be practical, so Mn is 0.02 to 0.20%, and S and Se are single or total of 0.010 to It is preferably in the range of 0.040%.

【0033】また、さらに磁束密度を向上させるため
に、Sb, Cu, Sn, Ge, Ni, P, NbおよびV等を単独また
は複合して添加することが可能である。しかしながら、
Sbは、含有量が0.20%を超えると脱炭性が悪くなり、一
方0.0l%に満たないと効果がないので、その含有量は0.
01〜0.20%程度とするのが好ましい。Cuは、含有量が0.
20%を超えると酸洗性が悪化し、一方0.01%に満たない
と効果がないので、その含有量は0.01〜0.20%程度とす
るのが好ましい。Sn, Geは、含有量が0.30%を超えると
良好な一次再結晶組織が得られず、一方0.02%未満では
効果がないので、それぞれの含有量は0.02〜0.30%程度
とするのが好ましい。Niは、含有量が0.50%を超えると
熱間強度が低下し、一方0.0l%未満では効果がないの
で、その含有量は0.01〜0.50%程度とするのが好まし
い。Pは、含有量が0.30%を超えると良好な一次再結晶
組織が得られず、一方0.002 %未満では効果がないの
で、その含有量は 0.002〜0.30%程度とするのが好まし
い。Nb, Vは、含有量が0.10%を超えると脱炭性が悪く
なり、一方 0.003%に満たないと効果がないので、それ
ぞれの含有量は 0.003〜0.10%程度とするのが好まし
い。
In order to further improve the magnetic flux density, it is possible to add Sb, Cu, Sn, Ge, Ni, P, Nb and V alone or in combination. However,
If the content of Sb exceeds 0.20%, the decarburization property deteriorates, whereas if it is less than 0.0l%, there is no effect, so the content of Sb is 0.1%.
It is preferred to be about 01 to 0.20%. Cu has a content of 0.
If it exceeds 20%, the pickling property deteriorates, while if it is less than 0.01%, there is no effect, so its content is preferably about 0.01 to 0.20%. If the content of Sn and Ge exceeds 0.30%, a good primary recrystallized structure cannot be obtained, and if the content is less than 0.02%, there is no effect. Therefore, the respective contents are preferably set to about 0.02 to 0.30%. If the content of Ni exceeds 0.50%, the hot strength decreases, while if it is less than 0.01%, there is no effect, so the content is preferably about 0.01 to 0.50%. If the content of P exceeds 0.30%, a good primary recrystallized structure cannot be obtained, while if it is less than 0.002%, there is no effect, so the content is preferably about 0.002 to 0.30%. If the content of Nb and V exceeds 0.10%, the decarburization property is deteriorated, whereas if it is less than 0.003%, there is no effect. Therefore, the content of each is preferably about 0.003 to 0.10%.

【0034】また、表面性状を改善するためにMoを添加
することができる。しかしながら、含有量が0.10%を超
えると脱炭性が悪くなり、一方 0.005%に満たないと効
果がないので、その含有量は 0.005〜0.10%程度とする
のが好ましい。Crは、被膜特性の更なる改善に有効であ
る。しかしながら、含有量が0.05%未満では目立った改
善効果が得られず、一方0.50%を超えると磁気特性が劣
化するので、Crは0.05〜0.50%程度が好適である。
Further, Mo can be added to improve the surface properties. However, if the content exceeds 0.10%, the decarburization property deteriorates, while if it is less than 0.005%, there is no effect, so the content is preferably about 0.005 to 0.10%. Cr is effective for further improving the film properties. However, if the content is less than 0.05%, no remarkable improvement effect is obtained, while if it exceeds 0.50%, the magnetic properties are deteriorated. Therefore, the content of Cr is preferably about 0.05 to 0.50%.

【0035】さらに、Biは、磁気特性を大きく向上さ
せ、高磁束密度の素材を得る上で有用な元素である。し
かしながら、含有量が0.20%を超えると良好な一次再結
晶組織が得られず、磁束密度の向上が見られなくなり、
一方 0.005%に満たないとその添加効果に乏しいので、
その含有量は 0.005〜0.20%程度とするのが好ましい。
但し、Biの添加は、被膜特性を劣化させるので、その改
善にCrを併せて含有させることが効果的である。この場
合におけるCr量は、上述した0.05〜0.50%の範囲で構わ
ない。
Further, Bi is an element useful for greatly improving magnetic properties and obtaining a material having a high magnetic flux density. However, if the content exceeds 0.20%, a good primary recrystallization structure cannot be obtained, and no improvement in magnetic flux density can be seen.
On the other hand, if it is less than 0.005%, the effect of its addition is poor,
Its content is preferably about 0.005 to 0.20%.
However, the addition of Bi degrades the film properties, so it is effective to add Cr together with the improvement. In this case, the amount of Cr may be in the range of 0.05 to 0.50% described above.

【0036】次に、この発明の対象とする方向性けい素
鋼板の製造条件について述べる。従来より用いられてい
る製鋼法を利用して、上記の好適成分組成に調整した溶
鋼を連続鋳造法あるいは造塊法で鋳造し、必要に応じて
分塊工程を挟んでスラブとしたのち、1100〜1450℃の温
度範囲でスラブ加熱を行い、その後熱間圧延を行う。つ
いで、必要に応じて熱延板焼鈍を行ったのち、1回ない
しは中間焼鈍を挟む2回以上の冷間圧延により最終板厚
の冷延板とする。なお、最終冷間圧延時に、圧延ロール
出側直後の鋼板温度が 150〜350 ℃となる圧延を少なく
とも1パス以上行うことが望ましい。
Next, the manufacturing conditions of the grain-oriented silicon steel sheet to which the present invention is applied will be described. Utilizing a steelmaking method conventionally used, molten steel adjusted to the above-mentioned preferred component composition is cast by a continuous casting method or an ingot-forming method, and if necessary, a slab is sandwiched by a lumping step, and then 1100 Slab heating is performed in a temperature range of 〜1450 ° C., followed by hot rolling. Next, after performing hot-rolled sheet annealing as necessary, a cold-rolled sheet having a final thickness is obtained by cold rolling once or twice or more with intermediate annealing. In the final cold rolling, it is desirable to perform at least one or more passes of rolling in which the temperature of the steel sheet immediately after the rolling roll exit side becomes 150 to 350 ° C.

【0037】ついで、脱炭焼鈍を行うわけであるが、こ
の発明では脱炭焼純により生成するサブスケールの酸洗
減量値を0.3 g/m2以下、V34値を−0.05〜+0.05 (V)の
範囲にすることが肝要である。そのためには、例えば常
温から 750℃までは平均昇温速度:12〜35℃/sで昇温
し、ついで 750℃から均熱温度までは平均昇温速度:1
〜10℃/sで昇温し、しかも均熱時の雰囲気酸化度(P(H
2O)/P(H2);雰囲気の水素分圧に対する水蒸気分圧の
比) が0.35〜0.50の条件で行うことが望ましいが、本質
的には、酸洗減量値とV34値を上述の範囲に制御できる
脱炭焼純条件であればいずれでも良い。また、均熱温度
は 800〜900 ℃の範囲が好適である。というのは、均熱
温度がこれより低くても高くても、脱炭に要する時間が
実操業を考えた場合に実際的でなくなるからである。ま
た、サブスケール量については、鋼板の酸素目付量(片
面当たり) で 0.4〜0.8 g/m2とするのが好ましい。とい
うのは、0.4 g/m2未満では、フォルステライトの原料と
なるサブスケールが不足するために良好な被膜が形成さ
れ難く、一方 0.8 g/m2 を超えるとフォルステライト被
膜が過剰に生成し厚くなるため占積率の低下を来すから
である。なお、脱炭焼鈍に引き続いて30〜200 ppm 程度
鋼板を窒化させる処理を行っても良い。
[0037] Then, although not performing decarburization annealing, pickling weight loss values of the subscale formed by removing charcoal pure in this invention 0.3 g / m 2 or less, -0.05 and V 34 value + 0.05 ( It is important to keep it in the range of V). For this purpose, for example, from normal temperature to 750 ° C, the average heating rate is 12 to 35 ° C / s, and then from 750 ° C to the soaking temperature, the average heating rate: 1
The temperature rises at up to 10 ° C / s, and the degree of oxidation of the atmosphere (P (H
2 O) / P (H 2 ); but a ratio) of the steam partial pressure to hydrogen partial pressure of the atmosphere is preferably performed in a condition of from 0.35 to 0.50, in essence, above the pickling weight loss value and the V 34 value Any condition can be used as long as the decarburization firing condition can be controlled within the range described above. The soaking temperature is preferably in the range of 800 to 900 ° C. This is because, even if the soaking temperature is lower or higher than this, the time required for decarburization becomes impractical considering the actual operation. Further, the amount of subscale is preferably 0.4 to 0.8 g / m 2 in terms of the basis weight of oxygen (per side) of the steel sheet. , In less than 0.4 g / m 2, hardly favorable coat is formed to subscale as the raw material of forsterite is insufficient, whereas 0.8 g / m 2 by weight, is forsterite film excessively generated because This is because the space factor is reduced due to the increase in thickness. After the decarburizing annealing, a treatment for nitriding the steel sheet at about 30 to 200 ppm may be performed.

【0038】この脱炭焼鈍を施した鋼板表面に、マグネ
シアを主成分にした焼純分離剤をスラリー状にして塗布
したのち、乾燥する。ここで、焼鈍分離剤に用いるマグ
ネシアは、水和量 (20℃, 6分間にて水和後、1000℃,
1時間の強熱による減量) が1〜4%の範囲のものを用
いることが有利である。というのは、MgO の水和量が1
%未満ではフォルステライト被膜の生成が不十分とな
り、一方4%を超えるとコイル層間への持ち込み水分量
が多くなりすぎるためか、TiNの生成が不十分になるか
らである。また、30℃でのクエン酸活性度(CAA40) は、
45秒から120 秒のものが好適である。というのは、45秒
未満では反応性が強すぎてフォルステライトが急激に生
成して剥落し易く、一方 120秒を超えると反応性が弱す
ぎてフォルステライト生成が進行しないからである。さ
らに、BET(比表面積) は12〜40 m2/g のものを用いるこ
とが好ましい。というのは、12 m2/g 未満では反応性が
弱すぎてフォルステライト生成が進行せず、一方 40 m2
/gを超えると反応性が強すぎてフォルステライトが急激
に生成して剥落し易くなるからである。
On the surface of the steel sheet subjected to the decarburizing annealing, a sintering agent containing magnesia as a main component is applied in a slurry state, and then dried. Here, the magnesia used for the annealing separator is a hydrated amount (after hydration at 20 ° C for 6 minutes, 1000 ° C,
It is advantageous to use those having a (loss by one-hour ignition) in the range of 1 to 4%. This is because the hydration of MgO is 1
If the amount is less than 4%, the formation of the forsterite film becomes insufficient, while if the amount exceeds 4%, the amount of water carried between the coil layers becomes too large, or the generation of TiN becomes insufficient. The citric acid activity at 30 ° C (CAA40) is
A time of 45 seconds to 120 seconds is preferred. The reason is that if the duration is less than 45 seconds, the reactivity is too strong and forsterite is rapidly generated and easily peels off, while if the duration is longer than 120 seconds, the reactivity is too weak and the production of forsterite does not proceed. Further, it is preferable to use one having a BET (specific surface area) of 12 to 40 m 2 / g. At less than 12 m 2 / g, the reactivity is so weak that forsterite formation does not proceed, while 40 m 2 / g
If the amount exceeds / g, the reactivity is too strong, and forsterite is rapidly generated and easily peeled off.

【0039】また、焼純分離剤の塗布量は、鋼板片面当
たリ4〜10 g/m2 の範囲とするのが好適である。という
のは、塗布量が4g/m2より少ないとフォルステライトの
生成が不十分となり、一方 10 g/m2を超えるとTiNがほ
とんど生成しなくなるからである。さらに、焼純分離剤
中にTi酸化物または加熱によりTi酸化物になるTi化合物
を、マグネシア:100 重量部に対するTiO2を換算で 2.0
〜20重量部の範囲で含有させることが重要である。この
Ti化合物は、フォルステライト質被膜中に生成するTiN
の成分中、Tiの供給源となる。Ti酸化物または加熱によ
りTi酸化物になるTi化合物としては、たとえばTiO2,TiO
3・H20, TiO・(OH)2, Ti(OH)4などが挙げられる。ま
た、焼純分離剤中のTi酸化物または加熱によりTi酸化物
になるTi化合物の量が、TiO2換算でマグネシア:100 重
量部に対して 2.0重量部に満たないとTiNの生成が不十
分となり磁気特性および被膜特性の改善効果に乏しく、
一方20重量部を超えるとマグネシアの量が相対的少なく
なり、フォルステライトの生成反応が進まない。
It is preferable that the amount of the burnt separating agent applied is in the range of 4 to 10 g / m 2 per one surface of the steel sheet. The reason is that when the coating amount is less than 4 g / m 2 , forsterite is insufficiently generated, while when it exceeds 10 g / m 2 , almost no TiN is generated. Further, a Ti oxide or a Ti compound which becomes a Ti oxide by heating is added to the incineration separating agent by adding TiO 2 in terms of TiO 2 to magnesia: 100 parts by weight.
It is important that the content be in the range of 2020 parts by weight. this
Ti compound is TiN produced in forsterite coating.
Is a source of Ti. Examples of Ti oxides or Ti compounds which become Ti oxides by heating include TiO 2 , TiO 2
3 · H 2 0, TiO · (OH) 2 , Ti (OH) 4 and the like. In addition, if the amount of Ti oxide in the incineration separator or the amount of Ti compound which becomes Ti oxide by heating is less than 2.0 parts by weight with respect to 100 parts by weight of magnesia in terms of TiO 2 , the generation of TiN is insufficient. And the effect of improving magnetic properties and film properties is poor.
On the other hand, if it exceeds 20 parts by weight, the amount of magnesia becomes relatively small, and the forsterite formation reaction does not proceed.

【0040】なお、被膜・ 磁気特性の一層の均一性向上
を目的として、焼鈍分離剤中にSnO2, Fe203, CaOのよう
な酸化物、 MgSO4やSnSO4 のような硫化物、あるいはSr
SO4、 Sr(OH)2・8H2OようなSr化合物の1種または2種
以上をそれぞれ単独または複合して添加してもよい。特
に、マグネシア:100 重量部に対し、Sr化合物をSr換算
で 0.5〜5重量部添加することは、フォルステライト被
膜中に FeAl2O4とTiNを共に生成させる上で有効に作用
する。これに反して、 Na2B4O7のようなB系化合物、Sb
2O3 やSb2(SO4)3 のようなSb系化合物は、フォルステラ
イト被膜中での FeAl2O4の生成を妨げて MgAl2O4を生成
し易くするので、その添加は好ましくない。
It should be noted, further for the purpose of improving uniformity, oxides such as SnO 2, Fe 2 0 3, CaO during annealing separator, sulfides such as MgSO 4 and SnSO 4 coating-magnetic properties, Or Sr
One or more of Sr compounds such as SO 4 and Sr (OH) 2 .8H 2 O may be added alone or in combination. In particular, adding 0.5 to 5 parts by weight of Sr compound in terms of Sr with respect to 100 parts by weight of magnesia effectively acts to form both FeAl 2 O 4 and TiN in the forsterite film. On the contrary, B-based compounds such as Na 2 B 4 O 7 and Sb
Sb-based compounds such as 2 O 3 and Sb 2 (SO 4 ) 3 are not preferable because they hinder the formation of FeAl 2 O 4 in the forsterite film and facilitate the formation of MgAl 2 O 4 .

【0041】加えて、TiN生成のためには、分離剤塗布
後の巻き取り張力を29.4〜245 MPaにすることが好適で
ある。その理由は、巻き取り張力が29.4 MPaより小さい
と生成する被膜はほぼフォルステライトであってTiNは
ほとんど生成せず、一方 245MPa を超えるとTiNは生成
するものの、FeAl2O4 の生成量が不足して、被膜の均一
性が劣化するからである。
In addition, in order to form TiN, it is preferable that the winding tension after application of the separating agent is 29.4 to 245 MPa. The reason is that if the winding tension is less than 29.4 MPa, the film formed is almost forsterite and hardly generates TiN, while if it exceeds 245 MPa, TiN is generated, but the amount of FeAl 2 O 4 generated is insufficient. As a result, the uniformity of the coating deteriorates.

【0042】その後、二次再結晶焼鈍ついで純化焼鈍
(最終仕上げ焼純)を行うわけであるが、この純化焼鈍
では、まず1050℃以上の温度範囲で、少なくとも3時間
は窒素濃度:15 vol%以上の非酸化性雰囲気中で、その
後1150〜1250℃の温度範囲で少なくとも2時間は窒素濃
度:2 vol%未満の水素雰囲気中で焼鈍を行う。すなわ
ち、純化焼純の前半部ではTiNを生成させ易くするた
め、TiO2が分解し始める温度である1100℃以上で雰囲気
中に窒素を導入することが肝要である。このとき、雰囲
気中の窒素濃度が15 vol%に満たないとTiNの生成が十
分ではなくなるので、15 vol%以上とする。また、焼鈍
時間が3時間に満たないとTiNの生成が十分ではなくな
るので、焼鈍時間は3時間以上とする。なお、残余の雰
囲気成分はTiNを優先的に形成させるために非酸化性で
あればよく、具体的には水素雰囲気や不活性ガス雰囲気
が挙げられる。また、純化焼鈍の後半部の温度が1150℃
に満たないとSないしSe等の除去が不十分となって磁気
特性が劣化し、一方1250℃を超えると熱間強度が低下し
コイル形状が悪化して巻き取りができなくなるので、11
50〜1250℃の範囲とする。また、窒素濃度が2 vol%以
上あるいは焼鈍時間が2時間に満たないと、SないしSe
等の除去が不十分となって磁気特性が劣化するので、純
化焼純後半部の窒素濃度は2 vol%未満かつ焼鈍時間は
2時間以上とする。
After that, the secondary recrystallization annealing and the purification annealing (final finish annealing) are performed. In this purification annealing, first, the nitrogen concentration is 15 vol% in a temperature range of 1050 ° C. or more for at least 3 hours. Annealing is performed in the above-described non-oxidizing atmosphere, and then in a hydrogen atmosphere having a nitrogen concentration of less than 2 vol% in a temperature range of 1150 to 1250 ° C. for at least 2 hours. That is, it is important to introduce nitrogen into the atmosphere at a temperature of 1100 ° C. or higher, which is the temperature at which TiO 2 starts to decompose, in order to facilitate generation of TiN in the first half of the purification and inking. At this time, if the nitrogen concentration in the atmosphere is less than 15 vol%, the generation of TiN becomes insufficient, so that the content is set to 15 vol% or more. If the annealing time is less than 3 hours, the generation of TiN becomes insufficient, so the annealing time is 3 hours or more. The remaining atmosphere components may be non-oxidizing in order to form TiN preferentially, and specific examples include a hydrogen atmosphere and an inert gas atmosphere. In addition, the temperature in the latter half of the purification annealing is 1150 ℃
If the temperature is less than 1250 ° C., the removal of S or Se becomes insufficient and the magnetic properties are deteriorated. On the other hand, if the temperature exceeds 1250 ° C., the hot strength is reduced, the coil shape is deteriorated, and winding cannot be performed.
The temperature should be in the range of 50 to 1250 ° C. If the nitrogen concentration is 2 vol% or more or the annealing time is less than 2 hours, S or Se
Since the removal of these elements becomes insufficient and the magnetic properties deteriorate, the nitrogen concentration in the latter half of the purification and annealing is set to less than 2 vol% and the annealing time is set to 2 hours or more.

【0043】最後に、鋼板単位重量(kg)および単位時間
(h) 当たりの雰囲気ガスの導入量を100 ×10-6〜2000×
10-6 m3/(kg ・h)程度とすることが重要である。という
のは、雰囲気ガス導入量が 100×10-6 m3/(kg ・h)より
少ないと、コイル層間でのガス流通が不足するためか、
TiNの生成が十分でない上、被膜の均一性にも劣り、一
方ガス導入量が2000×10-6 m3/(kg ・h)より多いと経済
性に劣るばかりか、特にコイル外巻き部で被膜中にTiN
がほとんど生成しなくなるからである。
Finally, the unit weight (kg) and the unit time of the steel sheet
(h) The amount of ambient gas introduced per 100 × 10 -6 to 2000 ×
It is important that it is about 10 -6 m 3 / (kg · h). The reason is that if the atmospheric gas introduction amount is less than 100 × 10 -6 m 3 / (kg ・ h), gas circulation between coil layers will be insufficient,
Insufficient production of TiN and poor uniformity of the coating. On the other hand, if the gas introduction amount is more than 2000 × 10 -6 m 3 / (kg · h), not only is the economic efficiency inferior, but also especially in the outer winding part of the coil. TiN in the coating
Is hardly generated.

【0044】上述したように、フォルステライト質被膜
中にTiNを生成させるには、(a) マグネシア水和量、
(b) 分離剤塗布量、(c) 分離剤塗布後の鋼板巻き取り張
力および(d) 純化焼純時の雰囲気とガス流量などを適正
に制御することが重要であり、実際、これらを制御する
ことによって、フォルステライト質被膜中に FeAl2O4
TiNの両者を形成させることができた。
As described above, in order to generate TiN in the forsteritic film, it is necessary to (a) hydrate magnesia;
It is important to properly control (b) the amount of the separating agent applied, (c) the winding tension of the steel sheet after applying the separating agent, and (d) the atmosphere and gas flow rate during purification and sintering. By doing so, FeAl 2 O 4
Both of TiN could be formed.

【0045】その後、りん酸塩系の絶縁コーティング好
ましくは張力を有する絶縁コーティングを施して製品と
する。また、最終冷延後、最終仕上げ焼鈍後あるいは絶
縁コーティング後に既知の磁区細分化処理を行うことも
よく、さらなる鉄損の低減に有効である。
Thereafter, a phosphate insulating coating, preferably an insulating coating having tension, is applied to obtain a product. Further, a known magnetic domain refining treatment may be performed after the final cold rolling, the final finish annealing, or the insulating coating, which is effective for further reducing iron loss.

【0046】[0046]

【実施例】実施例1 C:0.068 %, Si:3.45%, Mn:0.069 %, sol.Al:0.
025 %, N:0.0089%, Se:0.020 %, Cu:0.12%およ
びSb:0.040 %を含む組成になる鋼スラブ、計10本 (各
スラブ重量は10t)をそれぞれ、1430℃で30分間加熱
後、熱間圧延により2.5 mm厚の熱延板とした。ついで、
1000℃, 1分間の熱延板焼鈍後、1回目の冷間圧延によ
り板厚:1.8 mmの中間厚とし、1100℃, 1分間の中間焼
鈍後、2回目の冷間圧延により最終板厚:0.26mmに仕上
げた。なお、この際、圧延ロール出側直後の鋼板温度が
200 ℃以上となる圧延を2パス行った。ついで、H2
H2O −N2 雰囲気中にて 830℃の脱炭焼純を施した。こ
の時、750 ℃までの昇温速度と 750℃から830 ℃までの
昇温速度を変化させると共に、均熱帯雰囲気の酸化性ポ
テンシャル(P(H2O)/P(H2))を 0.2〜0.7 の範囲で変
化させることによって、脱炭焼鈍板サブスケールの酸洗
減量値とV34値を表1に示すように変化させた。また、
脱炭焼鈍時の均熱時間や最終冷延後(脱炭焼純前)の電
解脱脂条件(有無を含めて)等を適宜変更して、酸素目
付量(片面当たり)が0.4 g/m2以上、0.8 g/m2以下にな
るように調整した。その後は、表1に示す条件で処理し
た。なお、以後の工程における共通条件は、マグネシ
ア:100 重量部に対してTiO2を10重量部、Sr化合物をSr
換算で1重量部含有させた焼純分離剤を鋼板表面に塗布
し、その後、窒素雰囲気中で 850℃まで昇温した後、窒
素:20 vol%、水素:80 vol%の雰囲気中で12℃/hの速
度で1050℃まで昇温する二次再結晶焼鈍を行い、ついで
窒素濃度が2 vol%未満の水素雰囲気中にて1160℃, 5
時間の純化焼鈍を行ったことである。そして、かような
純化焼鈍後、りん酸マグネシウムとコロイダルシリカを
主成分とするコーティングを施した。
EXAMPLES Example 1 C: 0.068%, Si: 3.45%, Mn: 0.069%, sol.
025%, N: 0.0089%, Se: 0.020%, Cu: 0.12% and Sb: 0.040% A total of 10 steel slabs (each slab weight is 10t) were heated at 1430 ° C for 30 minutes. Then, a hot-rolled sheet having a thickness of 2.5 mm was formed by hot rolling. Then
After hot-rolled sheet annealing at 1000 ° C for 1 minute, the first cold-rolling makes the thickness: 1.8 mm intermediate thickness. After 1100 ° C, 1-minute intermediate annealing, the second cold-rolling gives the final thickness: Finished to 0.26mm. In this case, the temperature of the steel sheet immediately after the roll exit side was
Rolling to 200 ° C. or more was performed in two passes. Then, H 2
Decarburization baking at 830 ° C. was performed in an H 2 O—N 2 atmosphere. At this time, the rate of temperature rise to 750 ° C and the rate of temperature rise from 750 ° C to 830 ° C were changed, and the oxidizing potential (P (H 2 O) / P (H 2 )) of the sootropic atmosphere was 0.2 to by varying in the range of 0.7, and the pickling weight loss value and the V 34 value of decarburization annealed sheet subscale varied as shown in Table 1. Also,
Change the soaking time during decarburization annealing and the conditions for electrolytic degreasing (including before and after) after final cold rolling (before decarburization annealing), etc., and adjust the oxygen basis weight (per side) to 0.4 g / m 2 or more. , And 0.8 g / m 2 or less. Thereafter, the treatment was performed under the conditions shown in Table 1. The common conditions in the subsequent steps are as follows: magnesia: 10 parts by weight of TiO 2 and 100 parts by weight of Sr compound for 100 parts by weight of Sr compound.
1 part by weight of the incinerated separating agent was applied to the surface of the steel sheet, and then heated to 850 ° C in a nitrogen atmosphere, and then 12 ° C in an atmosphere of 20 vol% nitrogen and 80 vol% hydrogen. A second recrystallization annealing is performed at a rate of 1050 ° C./h at a rate of 1160 ° C., 5 ° C. in a hydrogen atmosphere having a nitrogen concentration of less than 2 vol%.
That is, time purification annealing was performed. Then, after such purification annealing, a coating containing magnesium phosphate and colloidal silica as main components was applied.

【0047】かくして得られた各製品コイルの磁気特性
(磁束密度B8 、鉄損W17/50)と被膜の曲げ密着性およ
び被膜外観について調査した。なお、被膜の曲げ密着性
は、5mm間隔の種々の径を有する丸棒に試験片を巻き付
け、被膜が剥離しない最小径で評価した。また、被膜表
面の薄膜X線測定を行い、Mg2SiO4(131)ピークI0 ,Fe
Al2O4(111)ピークI1 , TiN(200) ピークI2 の強度と
MgA12O4(311)ピークの有無についても調査した。得られ
た結果を整理して表2に示す。
The magnetic properties (magnetic flux density B 8 , iron loss W 17/50 ), bending adhesion of the coating, and appearance of the coating were investigated for each product coil thus obtained. The bending adhesion of the coating was evaluated by wrapping a test piece around a round bar having various diameters at intervals of 5 mm and evaluating the minimum diameter at which the coating did not peel. Further, a thin film X-ray measurement of the film surface was performed, and the Mg 2 SiO 4 (131) peak I 0 , Fe
The intensity of Al 2 O 4 (111) peak I 1 , TiN (200) peak I 2
The presence or absence of the MgA1 2 O 4 (311) peak was also investigated. Table 2 summarizes the obtained results.

【0048】[0048]

【表1】 [Table 1]

【0049】[0049]

【表2】 [Table 2]

【0050】表2から明らかなように、この発明に従
い、フォルステライト質被膜の主体をMg2SiO4, FeAl2O4
およびTiNを主体としたものはいずれも、極めて優れた
被膜特性および磁気特性を示している。
As is apparent from Table 2, according to the present invention, the main component of the forsterite coating is Mg 2 SiO 4 , FeAl 2 O 4
And those mainly composed of TiN show extremely excellent film properties and magnetic properties.

【0051】実施例2 C:0.065 %, Si:3.26%, Mn:0.068 %, sol.Al:0.
024 %, N:0.0083%, Se:0.018 %, Cu:0.10%およ
びSb:0.025 %を含む組成になる鋼スラブ、計10本(各
スラブ重量は10t)をそれぞれ、1430℃で30分間加熱
後、熱間圧延により2.7mm 厚の熱延板とした。ついで、
1000℃, 1分間の熱延板焼鈍後、1回目の冷間圧延によ
り板厚:1.9 mmの中間厚とし、1100℃, 1分間の中間焼
鈍後、2回目の冷間圧延により最終板厚:0.34mmに仕上
げた。なお、この際、圧延ロール出側直後の鋼板温度が
220℃となる圧延を1パス行った。ついで、H2 −H2O
−N2 雰囲気中にて 850℃の脱炭焼鈍を施した。この
時、750 ℃までの昇温速度と 750℃から850 ℃までの昇
温速度を変化させると共に、均熱帯雰囲気の酸化性ポテ
ンシャル(P(H2O)/P(H2))を 0.2〜0.7 の範囲で変化
させることによって、脱炭焼純板サブスケールの酸洗減
量値とV34値を表3に示すように変化させた。また、脱
炭焼鈍時の均熱時間や最終冷延後(脱炭焼純前)の電解
脱脂条件(有無を含めて)等を適宜変更して、酸素目付
量(片面当たり)が0.4 g/m2以上、0.8 g/m2以下になる
ように調整した。その後は、表3に示す条件で工程処理
した。なお、以後の工程における共通条件は、マグネシ
ア:100 重量部に対してTiO2を6重量部含有させた焼純
分離剤を鋼板表面に塗布し、その後、窒素雰囲気中での
850℃, 25時間の保定処理に続いて、窒素:25 vol%、
水素:75 vol%の雰囲気中にて10℃/hの速度で1050℃ま
で昇温する二次再結晶焼純を行ったのち、窒素濃度が2
vol%未満の水素雰囲気中にて1200℃, 3時間の純化焼
鈍を行ったことである。そして、かような純化焼鈍後、
りん酸マグネシウムとコロイダルシリカを主成分とする
コーティングを施した。
Example 2 C: 0.065%, Si: 3.26%, Mn: 0.068%, sol.
A total of 10 steel slabs each containing 024%, N: 0.0083%, Se: 0.018%, Cu: 0.10% and Sb: 0.025% (each slab weight is 10t) are heated at 1430 ° C for 30 minutes, respectively. Then, a hot-rolled sheet having a thickness of 2.7 mm was formed by hot rolling. Then
After the hot-rolled sheet was annealed at 1000 ° C for 1 minute, the first cold rolling was performed to obtain an intermediate thickness of 1.9 mm. After the intermediate annealing at 1100 ° C for 1 minute, the final thickness was obtained by the second cold rolling. Finished to 0.34mm. In this case, the temperature of the steel sheet immediately after the roll exit side was
One pass of rolling at 220 ° C. was performed. Then, H 2 -H 2 O
Decarburization annealing at 850 ° C. was performed in a —N 2 atmosphere. At this time, the rate of temperature rise to 750 ° C and the rate of temperature rise from 750 ° C to 850 ° C were changed, and the oxidizing potential (P (H 2 O) / P (H 2 )) of the sootropic atmosphere was set to 0.2 to by varying in the range of 0.7, and the de-charcoal pickling weight loss value of the net plate subscale and V 34 value was varied as shown in Table 3. Also, the soaking time during decarburization annealing and the conditions of electrolytic degreasing (including the presence or absence) after final cold rolling (before decarburization annealing) are appropriately changed, and the basis weight of oxygen (per side) is 0.4 g / m2. Adjustment was made to be 2 or more and 0.8 g / m 2 or less. Thereafter, the process was performed under the conditions shown in Table 3. The common conditions in the subsequent steps are as follows: magnesia: 100 parts by weight of TiO 2 and 6 parts by weight of TiO 2 were applied to the surface of the steel sheet, and then, the mixture was applied in a nitrogen atmosphere.
Following the holding treatment at 850 ° C for 25 hours, nitrogen: 25 vol%,
Hydrogen: After performing secondary recrystallization baking in which the temperature is raised to 1050 ° C. at a rate of 10 ° C./h in an atmosphere of 75 vol%, the nitrogen concentration becomes 2%.
That is, purification annealing was performed at 1200 ° C. for 3 hours in a hydrogen atmosphere of less than vol%. And after such purification annealing,
A coating mainly composed of magnesium phosphate and colloidal silica was applied.

【0052】かくして得られた各製品コイルの磁気特性
(磁束密度B8 、鉄損W17/50)と被膜の曲げ密着性およ
び被膜外観について調査した。また、被膜表面の薄膜X
線測定を行い、Mg2SiO4(131)ピークI0 ,FeAl2O4(111)
ピークI1 , TiN(200) ピークI2 の強度とMgA12O4(31
1)ピークの有無についても調査した。得られた結果を整
理して表4に示す。
The magnetic properties (magnetic flux density B 8 , iron loss W 17/50 ), bending adhesion of the coating and appearance of the coating were investigated for each of the product coils thus obtained. The thin film X on the surface of the coating
Line measurement, and the Mg 2 SiO 4 (131) peak I 0 , FeAl 2 O 4 (111)
Peak I 1 , TiN (200) Intensity of peak I 2 and MgA1 2 O 4 (31
1) The presence or absence of a peak was also investigated. Table 4 summarizes the results obtained.

【0053】[0053]

【表3】 [Table 3]

【0054】[0054]

【表4】 [Table 4]

【0055】表4から明らかなように、この発明に従
い、フォルステライト質被膜の主体をMg2SiO4, FeAl2O4
およびTiNを主体としたものはいずれも、極めて優れた
被膜特性および磁気特性を示している。
As is clear from Table 4, according to the present invention, the forsterite coating is mainly composed of Mg 2 SiO 4 , FeAl 2 O 4
And those mainly composed of TiN show extremely excellent film properties and magnetic properties.

【0056】実施例3 表5に示す種々の成分組成になる含けい素鋼スラブを用
意した。これらの鋼スラブを1430℃で30分間加熱後、熱
間圧延により 2.3mm厚の熱延板とした。ついで、1000
℃, 1分間の熱延板焼鈍後、1回目の冷間圧延により板
厚:1.7 mmの中間厚とし、1050℃, 1分間の中間焼鈍
後、2回目の冷間圧延により最終板厚:0.22mmに仕上げ
た。なお、この際、圧延ロール出側直後の鋼板温度が 2
00℃以上となる圧延を2パス行った。ついで、H2 −H2
O −N2 雰囲気中にて 840℃の脱炭焼鈍を施した。この
時、750 ℃までの昇温速度と 750℃から 840℃までの昇
温速度を変化させると共に、均熱帯雰囲気の酸化性ポテ
ンシャル(P(H2O)/P(H2))を 0.2〜0.7 の範囲で変化
させることによって、脱炭焼鈍板サブスケールの酸洗減
量値とV34値を表6に示すように変化させた。また、脱
炭焼鈍時の均熱時間や最終冷延後(脱炭焼純前)の電解
脱脂条件(有無を含めて)等を適宜変更して、酸素目付
量(片面当たり)が0.4 g/m2以上、0.8 g/m2以下になる
ように調整した。なお、表5中、F組成のコイルは、脱
炭焼鈍後に窒化処理を行って窒素量を 200 ppmとした。
その後は、表6に示す条件で処理した。なお、以後の工
程における共通条件は、マグネシア:100 重量部に対し
てTiO2を8重量部、Sr化合物をSr換算で 2.5重量部含有
させた焼純分離剤を鋼板表面に塗布し、その後、窒素雰
囲気中での 850℃, 20時間の保定に続いて、窒素:25 v
ol%、水素:75 vol%の雰囲気中で10℃/hの速度で1050
℃まで昇温する二次結晶焼鈍を行ったのち、窒素濃度が
2 vol%未満の水素雰囲気中にて1180℃, 3時間の純化
焼鈍を行ったことである。そして、かような純化焼鈍
後、りん酸マグネシウムとコロイダルシリカを主成分と
するコーティングを施した。
Example 3 Silicon-containing slabs having various component compositions shown in Table 5 were prepared. These steel slabs were heated at 1430 ° C. for 30 minutes and then hot-rolled into hot-rolled 2.3 mm thick sheets. Then 1000
After the hot-rolled sheet was annealed at ℃ for 1 minute, the first cold rolling was performed to obtain an intermediate thickness of 1.7 mm. After the intermediate annealing at 1050 ° C. for one minute, the final cold-rolled thickness was 0.22. mm. At this time, the temperature of the steel sheet immediately after
Rolling to at least 00 ° C. was performed in two passes. Then, H 2 -H 2
Decarburization annealing at 840 ° C. was performed in an O—N 2 atmosphere. At this time, the rate of temperature rise up to 750 ° C and the rate of temperature rise from 750 ° C to 840 ° C are changed, and the oxidizing potential (P (H 2 O) / P (H 2 )) of the sootropic atmosphere is set to 0.2 to by varying in the range of 0.7, and the pickling weight loss value and the V 34 value of decarburization annealed sheet subscale varied as shown in Table 6. Also, the soaking time during decarburization annealing and the conditions of electrolytic degreasing (including the presence or absence) after final cold rolling (before decarburization annealing) are appropriately changed, and the basis weight of oxygen (per side) is 0.4 g / m2. Adjustment was made to be 2 or more and 0.8 g / m 2 or less. In Table 5, the coil having the F composition was subjected to a nitriding treatment after the decarburizing annealing to reduce the nitrogen content to 200 ppm.
Thereafter, the treatment was performed under the conditions shown in Table 6. The common conditions in the subsequent steps are as follows. Magnesia: 100 parts by weight, 8 parts by weight of TiO 2 and 2.5 parts by weight of an Sr compound in terms of Sr are applied to the surface of the steel sheet, and thereafter, Following a 20-hour hold at 850 ° C in a nitrogen atmosphere, nitrogen: 25 v
ol%, hydrogen: 1050 at a rate of 10 ° C / h in an atmosphere of 75 vol%
After performing the secondary crystal annealing to raise the temperature to ° C., purifying annealing was performed at 1180 ° C. for 3 hours in a hydrogen atmosphere having a nitrogen concentration of less than 2 vol%. Then, after such purification annealing, a coating containing magnesium phosphate and colloidal silica as main components was applied.

【0057】かくして得られた各製品コイルの磁気特性
(磁束密度B8 、鉄損W17/50)と被膜の曲げ密着性およ
び被膜外観について調査した。また、被膜表面の薄膜X
線測定を行い、Mg2SiO4(131)ピークI0 ,FeAl2O4(111)
ピークI1 , TiN(200) ピークI2 の強度とMgA12O4(31
1)ピークの有無についても調査した。得られた結果を整
理して表7に示す。
The magnetic properties (magnetic flux density B 8 , iron loss W 17/50 ), bending adhesion of the coating and appearance of the coating were investigated for each product coil thus obtained. The thin film X on the surface of the coating
Line measurement, and the Mg 2 SiO 4 (131) peak I 0 , FeAl 2 O 4 (111)
Peak I 1 , TiN (200) Intensity of peak I 2 and MgA1 2 O 4 (31
1) The presence or absence of a peak was also investigated. Table 7 summarizes the results obtained.

【0058】[0058]

【表5】 [Table 5]

【0059】[0059]

【表6】 [Table 6]

【0060】[0060]

【表7】 [Table 7]

【0061】表7から明らかなように、この発明に従っ
て、フォルステライト質被膜の主体をMg2SiO4, FeAl2O4
およびTiNを主体とした場合はいずれも、極めて優れた
被膜特性および磁気特性が得られている。
As is clear from Table 7, according to the present invention, the main component of the forsterite coating is Mg 2 SiO 4 , FeAl 2 O 4
In the case of using TiN or TiN as a main component, extremely excellent film properties and magnetic properties were obtained.

【0062】[0062]

【発明の効果】かくして、この発明に従い、フォルステ
ライト質被膜の主体をMg2SiO4 ,FeAl 2O4 およびTiNに
することによって、極めて優れた磁気特性および被膜特
性の両者を同時に得ることができる。
According to the present invention, the forster
The main body of the light coating is MgTwoSiOFour , FeAl TwoOFour And TiN
By doing so, extremely excellent magnetic properties and coating characteristics
Both sexes can be obtained at the same time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】フォルステライト被膜中の Mg2SiO4とMgAl204
の生成例を示した図である。
Figure 1: Mg 2 SiO 4 and MgAl 2 0 4 in forsterite coating
FIG. 4 is a diagram showing an example of generation of.

【図2】フォルステライト質被膜表面の薄膜X線回折に
よる Mg2SiO4とFeAl2O4およびTiNの生成例を示した図
である。
FIG. 2 is a view showing an example of generation of Mg 2 SiO 4 , FeAl 2 O 4 and TiN by thin-film X-ray diffraction on a forsterite coating film surface.

【図3】脱炭焼鈍時の昇温速度が磁気特性および被膜特
性に及ばす影響を示した図である。
FIG. 3 is a diagram showing the effect of the temperature rise rate during decarburization annealing on magnetic properties and coating properties.

【図4】Mg2SiO4(131)ピークの強度I0 とTiN(200) ピ
ークの強度I2 の関係が5/100 ≦I2 /I0 ≦10/10
0 である場合に、Mg2SiO4(131)ピークの強度I0に対す
るFeAl2O4(111)ピークの強度I1 の比I1 /I0 が磁気
特性に及ぼす影響を示した図である。
[4] Mg 2 SiO 4 (131) peak intensity I 0 and TiN (200) relationship strength I 2 peaks 5/100 ≦ I 2 / I 0 ≦ 10/10
FIG. 4 is a diagram showing the effect of the ratio I 1 / I 0 of the intensity I 1 of the FeAl 2 O 4 (111) peak to the intensity I 0 of the Mg 2 SiO 4 (131) peak on the magnetic properties when the ratio is 0 . .

【図5】Mg2SiO4(131)ピークの強度I0 , FeAl2O4(111)
ピークの強度I1 およびTiN(200) ピークの強度I2
の強度比I1 /I0 、I2 /I0 が磁気・被膜特性に及
ぼす影響を示した図である。
FIG. 5 shows the intensity I 0 of the Mg 2 SiO 4 (131) peak, FeAl 2 O 4 (111)
FIG. 4 is a diagram showing the influence of the intensity ratios I 1 / I 0 and I 2 / I 0 between the peak intensity I 1 and the TiN (200) peak intensity I 2 on the magnetic and coating characteristics.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/00 303 C22C 38/00 303U 38/06 38/06 38/60 38/60 (72)発明者 本田 厚人 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 小松原 道郎 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 Fターム(参考) 4K026 AA03 AA22 BA02 BA11 BB05 BB10 CA16 CA18 4K033 AA02 BA01 BA02 CA01 CA02 CA03 CA04 CA07 CA08 CA09 FA01 FA12 HA01 HA03 HA05 JA05 LA01 LA04 NA01 NA02 NA03 PA04 RA04 SA02 TA03 5E041 AA02 BC01 CA02 HB14 NN05──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22C 38/00 303 C22C 38/00 303U 38/06 38/06 38/60 38/60 (72) Inventor Atsuto Honda 1-chome, Mizushima-Kawasaki-dori, Kurashiki-shi, Okayama Pref. F-term in steel works (reference) 4K026 AA03 AA22 BA02 BA11 BB05 BB10 CA16 CA18 4K033 AA02 BA01 BA02 CA01 CA02 CA03 CA04 CA07 CA08 CA09 FA01 FA12 HA01 HA03 HA05 JA05 LA01 LA04 NA01 NA02 NA03 PA04 RA04 SA02 TA03 5E041AB HA02

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 表面にフォルステライト質被膜を有する
方向性けい素鋼板であって、該フォルステライト質被膜
が、Mg2SiO4, FeAl2O4およびTiNを主体とすることを特
徴とする磁気特性と被膜特性に優れた方向性けい素鋼
板。
1. A grain-oriented silicon steel sheet having a forsterite coating on a surface thereof, wherein the forsterite coating is mainly composed of Mg 2 SiO 4 , FeAl 2 O 4 and TiN. Grain-oriented silicon steel sheet with excellent properties and coating properties.
【請求項2】 表面にフォルステライト質被膜を有する
方向性けい素鋼板であって、該フォルステライト質被膜
が、Mg2SiO4, FeAl2O4およびTiNを主体とし、かつ被膜
表面の薄膜X線回折によるMg2SiO4(131)ピークの強度を
0 、FeAl2O4(111)ピークの強度をI1 、TiN(200) ピ
ークの強度をI2 とするとき、これらが、次式(1), (2) 3/100 ≦I1 /I0 ≦40/100 --- (1) 3/100 ≦I2 /I0 ≦40/100 --- (2) 但し、I1 /I0 +I2 /I0 ≦50/100 の関係を満足することを特徴とする磁気特性と被膜特性
に優れた方向性けい素鋼板。
2. A grain-oriented silicon steel sheet having a forsterite coating on its surface, wherein the forsterite coating is mainly composed of Mg 2 SiO 4 , FeAl 2 O 4 and TiN, and a thin film X on the coating surface. When the intensity of the Mg 2 SiO 4 (131) peak by line diffraction is I 0 , the intensity of the FeAl 2 O 4 (111) peak is I 1 , and the intensity of the TiN (200) peak is I 2 , (1), (2) 3/100 ≦ I 1 / I 0 ≦ 40/100 --- (1) 3/100 ≦ I 2 / I 0 ≦ 40/100 --- (2) where, I 1 / A grain-oriented silicon steel sheet having excellent magnetic properties and coating properties, satisfying the relationship of I 0 + I 2 / I 0 ≦ 50/100.
JP2000110717A 2000-04-12 2000-04-12 Grain-oriented silicon steel sheet with excellent magnetic and coating properties Expired - Fee Related JP3562433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000110717A JP3562433B2 (en) 2000-04-12 2000-04-12 Grain-oriented silicon steel sheet with excellent magnetic and coating properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000110717A JP3562433B2 (en) 2000-04-12 2000-04-12 Grain-oriented silicon steel sheet with excellent magnetic and coating properties

Publications (2)

Publication Number Publication Date
JP2001295062A true JP2001295062A (en) 2001-10-26
JP3562433B2 JP3562433B2 (en) 2004-09-08

Family

ID=18623184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000110717A Expired - Fee Related JP3562433B2 (en) 2000-04-12 2000-04-12 Grain-oriented silicon steel sheet with excellent magnetic and coating properties

Country Status (1)

Country Link
JP (1) JP3562433B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016104813A1 (en) * 2014-12-24 2016-06-30 Jfeスチール株式会社 Oriented electromagnetic steel sheet and method for manufacturing same
JP2016196669A (en) * 2015-04-02 2016-11-24 新日鐵住金株式会社 Unidirectional magnetic steel sheet, decarburized sheet for unidirectional magnetic steel sheet, and manufacturing method therefor
WO2021085421A1 (en) * 2019-10-31 2021-05-06 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet and method for manufacturing same
JP2021139040A (en) * 2020-02-28 2021-09-16 Jfeスチール株式会社 Manufacturing method of directional magnetic steel sheet
US11505843B2 (en) 2015-12-18 2022-11-22 Posco Annealing separator for oriented electrical steel sheet, oriented electrical steel sheet, and manufacturing method of oriented electrical steel sheet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101638766B (en) * 2008-07-28 2011-03-30 宝山钢铁股份有限公司 Method and device for spraying silicic acid produced from oriented silicon steel having good bottom layer

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11174526B2 (en) * 2014-12-24 2021-11-16 Jfe Steel Corporation Grain-oriented electrical steel sheet and method of manufacturing same
JPWO2016104813A1 (en) * 2014-12-24 2017-04-27 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
KR20170091676A (en) * 2014-12-24 2017-08-09 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet and method of manufacturing same
US20180002773A1 (en) * 2014-12-24 2018-01-04 Jfe Steel Corporation Grain-oriented electrical steel sheet and method of manufacturing same
RU2669666C1 (en) * 2014-12-24 2018-10-12 ДжФЕ СТИЛ КОРПОРЕЙШН Texture sheet made of electric steel and method for manufacture thereof
KR101963990B1 (en) 2014-12-24 2019-03-29 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet and method of manufacturing same
US10626474B2 (en) 2014-12-24 2020-04-21 Jfe Steel Corporation Grain-oriented electrical steel sheet and method of manufacturing same
WO2016104813A1 (en) * 2014-12-24 2016-06-30 Jfeスチール株式会社 Oriented electromagnetic steel sheet and method for manufacturing same
JP2016196669A (en) * 2015-04-02 2016-11-24 新日鐵住金株式会社 Unidirectional magnetic steel sheet, decarburized sheet for unidirectional magnetic steel sheet, and manufacturing method therefor
US11505843B2 (en) 2015-12-18 2022-11-22 Posco Annealing separator for oriented electrical steel sheet, oriented electrical steel sheet, and manufacturing method of oriented electrical steel sheet
WO2021085421A1 (en) * 2019-10-31 2021-05-06 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet and method for manufacturing same
JPWO2021085421A1 (en) * 2019-10-31 2021-11-25 Jfeスチール株式会社 Electrical steel sheet and its manufacturing method
KR20220057582A (en) * 2019-10-31 2022-05-09 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet and manufacturing method thereof
CN114466940A (en) * 2019-10-31 2022-05-10 杰富意钢铁株式会社 Grain-oriented electromagnetic steel sheet and method for producing same
JP7268724B2 (en) 2019-10-31 2023-05-08 Jfeスチール株式会社 Grain-oriented electrical steel sheet and its manufacturing method
CN114466940B (en) * 2019-10-31 2023-07-18 杰富意钢铁株式会社 Grain-oriented electrical steel sheet and method for producing same
KR102634154B1 (en) * 2019-10-31 2024-02-05 제이에프이 스틸 가부시키가이샤 Grain-oriented electrical steel sheet and method for producing same
JP2021139040A (en) * 2020-02-28 2021-09-16 Jfeスチール株式会社 Manufacturing method of directional magnetic steel sheet
JP7463976B2 (en) 2020-02-28 2024-04-09 Jfeスチール株式会社 Manufacturing method of grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP3562433B2 (en) 2004-09-08

Similar Documents

Publication Publication Date Title
KR100597772B1 (en) Grain-oriented silicon steel sheet having excellent coating film properties and magnetic properties and method for making the same
JP3386751B2 (en) Method for producing grain-oriented silicon steel sheet with excellent coating and magnetic properties
JP3539028B2 (en) Forsterite coating on high magnetic flux density unidirectional silicon steel sheet and its forming method.
JP2003096520A (en) Method of producing high magnetic flux density grain oriented silicon steel sheet having excellent film property and high magnetic field core loss
JP4784347B2 (en) Method for producing grain-oriented electrical steel sheet
JP2000204450A (en) Grain oriented silicon steel sheet excellent in film characteristic and magnetic property and its production
KR940009126B1 (en) Decarburized steel sheet for thin oriented silicon steel sheet having improved coating/magnetic characteristics and method of producing the same
JP2015175036A (en) Manufacturing method of oriented electromagnetic steel sheet
JP3240035B2 (en) Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic properties over the entire coil length
JP3873489B2 (en) Method for producing grain-oriented silicon steel sheet having excellent coating properties and magnetic properties
JP6624028B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP3562433B2 (en) Grain-oriented silicon steel sheet with excellent magnetic and coating properties
JP3301629B2 (en) Method for producing oriented silicon steel sheet having metallic luster and excellent magnetic properties
JP2004332071A (en) Method for producing high magnetic flux density grain-oriented magnetic steel sheet
JP3312000B2 (en) Method for producing grain-oriented silicon steel sheet with excellent coating and magnetic properties
JP3382804B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent glass coating
JP3885428B2 (en) Method for producing grain-oriented electrical steel sheet
JP3268198B2 (en) Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic and film properties
JP3893766B2 (en) Method for producing grain oriented silicon steel sheet having homogeneous forsterite coating
JP4029432B2 (en) Method for producing grain-oriented silicon steel sheet
JP4258202B2 (en) Oriented electrical steel sheet having no forsterite coating and method for producing the same
US5269853A (en) Decarburized steel sheet for thin oriented silicon steel sheet having improved coating/magnetic characteristics and method of producing the same
JP2007177298A (en) Method for producing grain oriented silicon steel sheet coil
JPH06158167A (en) High magnetic flux density grain-oriented silicon steel sheet and its production
JP3357615B2 (en) Method for manufacturing oriented silicon steel sheet with extremely low iron loss

Legal Events

Date Code Title Description
A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20040120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040524

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3562433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140611

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees