JP2001295055A - Thin film deposition method - Google Patents

Thin film deposition method

Info

Publication number
JP2001295055A
JP2001295055A JP2000110634A JP2000110634A JP2001295055A JP 2001295055 A JP2001295055 A JP 2001295055A JP 2000110634 A JP2000110634 A JP 2000110634A JP 2000110634 A JP2000110634 A JP 2000110634A JP 2001295055 A JP2001295055 A JP 2001295055A
Authority
JP
Japan
Prior art keywords
thin film
substrate
film forming
ultraviolet
substrates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000110634A
Other languages
Japanese (ja)
Inventor
Tsunehiro Unno
恒弘 海野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2000110634A priority Critical patent/JP2001295055A/en
Publication of JP2001295055A publication Critical patent/JP2001295055A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/23Mixtures
    • C03C2217/231In2O3/SnO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemically Coating (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thin film deposition method by which a thin film having the excellent quality is deposited at a low temperature and an inexpensive thin film is deposited by a simple device. SOLUTION: A plurality of substrates 2 with a thin film forming material 1 applied thereto are arranged in a stepwise manner keeping a predetermined spacing therebetween, and heat-treated while irradiating a space 3 formed by two substrates 2 adjacent to each other with the ultraviolet ray 5 led via a waveguide means 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、薄膜形成方法に関
する。さらに詳しくは、低温で良質の薄膜を形成するこ
とができ、かつ簡易な装置で、安価な薄膜を形成するこ
とができる薄膜形成方法に関する。
The present invention relates to a method for forming a thin film. More specifically, the present invention relates to a thin film forming method capable of forming a good quality thin film at a low temperature and forming an inexpensive thin film with a simple apparatus.

【0002】[0002]

【従来の技術】薄膜形成方法としては、スパッタ法、蒸
着法、塗布式法等が知られている。この中でもゾル・ゲ
ル法や熱分解法等の塗布式の薄膜形成方法は、簡易な装
置で、安価な薄膜を形成することができるため、絶縁
膜、誘電膜、及び透明導電膜等の形成方法として広く利
用されている。また、利用できる薄膜の種類も広がって
きており、その特性を生かして広い分野での利用が期待
されている。
2. Description of the Related Art As a method of forming a thin film, a sputtering method, a vapor deposition method, a coating method and the like are known. Among these, a coating type thin film forming method such as a sol-gel method or a thermal decomposition method can form an inexpensive thin film with a simple apparatus, and thus a method for forming an insulating film, a dielectric film, a transparent conductive film, and the like. Widely used as. Also, the types of thin films that can be used have been widened, and utilization in a wide range of fields is expected by taking advantage of the characteristics.

【0003】しかし、従来の塗布式の薄膜形成方法で
は、良質な薄膜とするために薄膜形成材料の分解及び薄
膜形成の温度を、スパッタ法や蒸着法等の他の方法に比
べ高温にする必要があったため、薄膜の種類によっては
適用が困難な場合もあり、この方法の利用を制限する原
因となっていた。
However, in the conventional coating type thin film forming method, it is necessary to set the temperature of the decomposition of the thin film forming material and the formation of the thin film to a higher temperature than other methods such as a sputtering method and a vapor deposition method in order to obtain a high quality thin film. In some cases, this method is difficult to apply depending on the type of thin film, and this has been a cause of limiting the use of this method.

【0004】これに対して、薄膜形成材料を塗布した基
板を、紫外線を照射しながら熱処理を行う薄膜形成方法
が開示されている。
On the other hand, there has been disclosed a thin film forming method in which a substrate coated with a thin film forming material is heat-treated while being irradiated with ultraviolet rays.

【0005】この方法によると、紫外線照射の効果によ
り低温で良質な薄膜を形成することができる(例えば、
SiO2薄膜を紫外線照射しながら熱処理を行って形成
すると、紫外線を照射しなかった場合に比べ、同一屈折
率の薄膜を約200℃低温で形成することができる)。
また透明導電膜であるITO薄膜も、低抵抗の薄膜を形
成することができる。
According to this method, a high-quality thin film can be formed at a low temperature by the effect of ultraviolet irradiation (for example,
When the SiO 2 thin film is formed by heat treatment while irradiating ultraviolet rays, a thin film having the same refractive index can be formed at a low temperature of about 200 ° C. as compared with the case where no ultraviolet rays are irradiated).
Further, an ITO thin film which is a transparent conductive film can also form a low-resistance thin film.

【0006】[0006]

【発明が解決しようとする課題】しかし、従来、この方
法で複数の基板に薄膜を形成する場合には、基板の薄膜
形成材料を塗布した面に紫外線を照射する必要上、複数
の基板を一面に並置してその上部から紫外線を照射して
いた。
However, conventionally, when a thin film is formed on a plurality of substrates by this method, it is necessary to irradiate ultraviolet rays to the surface of the substrate on which the thin film forming material has been applied, so that the plurality of substrates are exposed on one surface. Were irradiated with ultraviolet rays from above.

【0007】このため、装置内の空間を有効に利用でき
ず、紫外線照射しない方法に比べ量産性が低下し、ま
た、量産性を向上させるために装置の大型化が必要にな
るという問題があった。
For this reason, there is a problem in that the space in the apparatus cannot be effectively used, the mass productivity is reduced as compared with the method of not irradiating ultraviolet rays, and the apparatus needs to be enlarged in order to improve the mass productivity. Was.

【0008】また、この方法で大きな基板、又は一面に
並置された複数の基板に均一に薄膜を形成するためには
紫外線を均一に照射する必要があり、従来は、棒状の紫
外線ランプを基板の上部で走査する方法、棒状の紫外線
ランプを多数配列する方法等が行われていた。
Further, in order to uniformly form a thin film on a large substrate or a plurality of substrates juxtaposed on one surface by this method, it is necessary to uniformly irradiate ultraviolet rays. A method of scanning at the top, a method of arranging a large number of rod-shaped ultraviolet lamps, and the like have been used.

【0009】このため、前者の方法では、複雑な装置が
必要となり、後者では多くの紫外線ランプが必要とな
り、結局、塗布式による簡易な装置で、安価な薄膜を形
成できるというメリットを減殺してしまうという問題が
あった。
For this reason, the former method requires a complicated apparatus, and the latter requires many ultraviolet lamps. As a result, the advantage that an inexpensive thin film can be formed by a simple apparatus using a coating method is reduced. There was a problem that it would.

【0010】従って、本発明の目的は、低温で良質の薄
膜を形成することができ、かつ簡易な装置で、安価な薄
膜を形成することができる薄膜形成方法を提供すること
にある。
Accordingly, an object of the present invention is to provide a thin film forming method capable of forming a good quality thin film at a low temperature and forming an inexpensive thin film with a simple apparatus.

【0011】[0011]

【課題を解決するための手段】本発明は、上記目的を達
成するため、以下の薄膜形成方法を提供するものであ
る。
The present invention provides the following method for forming a thin film in order to achieve the above object.

【0012】[1]薄膜形成材料を塗布した複数の基板
を、階層的にかつ一定間隔を保持して配列し、隣接する
2枚の基板によって形成される間隙に、導波手段を経由
して導いた紫外線を照射しながら熱処理することを特徴
とする薄膜形成方法。
[1] A plurality of substrates coated with a thin film-forming material are arranged hierarchically and at a constant interval, and are disposed in a gap formed by two adjacent substrates via a waveguide means. A method for forming a thin film, comprising performing a heat treatment while irradiating the ultraviolet light.

【0013】[2]前記導波手段が、紫外線を出射する
出射端を前記間隙の入口に位置させて配設された前記
[1]に記載の薄膜形成方法。
[2] The method of forming a thin film according to [1], wherein the waveguide means is disposed with an emission end for emitting ultraviolet light positioned at an entrance of the gap.

【0014】[3]前記導波手段が、紫外線照射面を備
えた導波板からなり、その紫外線照射面と前記基板の薄
膜形成面とを対向するように配設し、かつ前記紫外線照
射面の反対面に紫外線を乱反射させる凹凸を形成した前
記[1]又は[2]に記載の薄膜形成方法。
[3] The waveguide means comprises a waveguide plate having an ultraviolet irradiation surface, the ultraviolet irradiation surface is disposed so as to face the thin film forming surface of the substrate, and the ultraviolet irradiation surface is provided. The method for forming a thin film according to the above [1] or [2], wherein irregularities for irregularly reflecting ultraviolet light are formed on the opposite surface.

【0015】[4]前記熱処理を、酸素濃度、窒素濃
度、及び真空度のうち少なくとも1の雰囲気条件を調整
しながら行う前記[1]〜[3]のいずれかに記載の薄
膜形成方法。
[4] The method of forming a thin film according to any one of [1] to [3], wherein the heat treatment is performed while adjusting at least one of an oxygen concentration, a nitrogen concentration, and a degree of vacuum.

【0016】本発明の薄膜形成方法では、上記のよう
に、紫外線照射をしながら熱処理するため、低温で良質
の薄膜を形成することができる。また、複数の基板を階
層的にかつ一定間隔を保持して配列するため、装置の大
型化を要せずに量産性の向上、及び低コスト化を達成す
ることができる。また、隣接する2枚の基板によって形
成される間隙に、導波手段を経由して導いた紫外線を照
射するため、均一な薄膜を効率よく形成することができ
る。また、導波手段を、紫外線照射面を備えた導波板と
し、その紫外線照射面と基板の薄膜形成面とを対向する
ように配設し、かつ紫外線照射面の反対面に紫外線を乱
反射させる凹凸を形成したため、この紫外線の乱反射を
利用し、反対面の凹凸形状を最適に設計することによっ
て、均一な薄膜を効率よく形成することができる。
In the method of forming a thin film of the present invention, as described above, heat treatment is performed while irradiating ultraviolet rays, so that a high-quality thin film can be formed at a low temperature. In addition, since a plurality of substrates are arranged hierarchically and at a constant interval, improvement in mass productivity and cost reduction can be achieved without increasing the size of the apparatus. In addition, since a gap formed between two adjacent substrates is irradiated with ultraviolet light guided through the waveguide means, a uniform thin film can be efficiently formed. Further, the waveguide means is a waveguide plate having an ultraviolet irradiation surface, the ultraviolet irradiation surface is disposed so as to face the thin film forming surface of the substrate, and the ultraviolet light is irregularly reflected on the opposite surface to the ultraviolet irradiation surface. Since the irregularities are formed, a uniform thin film can be efficiently formed by utilizing the irregular reflection of the ultraviolet rays and optimally designing the irregularities on the opposite surface.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態を、図
面を参照しつつ具体的に説明する。
Embodiments of the present invention will be specifically described below with reference to the drawings.

【0018】図1に示すように、本発明の薄膜形成方法
は、薄膜形成材料1を塗布した複数の基板2を、階層的
にかつ一定間隔を保持して配列し、隣接する2枚の基板
2によって形成される間隙3に、導波手段4を経由して
導いた紫外線5を照射しながら熱処理するものである。
以下、さらに具体的に説明する。
As shown in FIG. 1, according to the thin film forming method of the present invention, a plurality of substrates 2 coated with a thin film forming material 1 are arranged hierarchically and at regular intervals, and two adjacent substrates are arranged. The heat treatment is performed while irradiating the gap 3 formed by 2 with the ultraviolet rays 5 guided through the waveguide means 4.
Hereinafter, a more specific description will be given.

【0019】本発明では、まず、薄膜形成材料1を塗布
した複数の基板2を、階層的にかつ一定間隔を保持して
配列する。本発明に用いられる薄膜形成材料1について
特に制限はないが、例えば、SnドープIn、SiO2
を挙げることができる。特に、本発明では、低温で薄膜
を形成することができるため、高温での適用が困難な材
料に好適に適用することができる。
In the present invention, first, a plurality of substrates 2 to which the thin film forming material 1 has been applied are arranged hierarchically and at regular intervals. There is no particular limitation on the thin film forming material 1 used in the present invention, and examples thereof include Sn-doped In and SiO 2 . In particular, in the present invention, since a thin film can be formed at a low temperature, it can be suitably applied to a material that is difficult to apply at a high temperature.

【0020】各基板2間の間隔については特に制限はな
く、隣接する2枚の基板2によって形成される間隙3に
紫外線が導入できる程度であればばよい。
The distance between the substrates 2 is not particularly limited, and it is sufficient that ultraviolet rays can be introduced into the gap 3 formed by the two adjacent substrates 2.

【0021】また、複数の基板2の配列についても階層
的に配列すること以外特に制限はないが、空間を有効に
利用し、装置の小型化及び量産化を図る観点からは複数
の基板2の末端2aを揃えて略平行に配列するのが好ま
しい。この際、例えば、予め基板ホルダー8を所定の位
置に配設しておき、基板ホルダー8により基板2を固定
すること等を挙げることができる。
The arrangement of the plurality of substrates 2 is not particularly limited except that they are arranged in a hierarchical manner. However, from the viewpoint of effective use of space and miniaturization and mass production of the apparatus, the plurality of substrates 2 are arranged. Preferably, the ends 2a are aligned and arranged substantially in parallel. At this time, for example, the substrate holder 8 may be disposed at a predetermined position in advance, and the substrate 2 may be fixed by the substrate holder 8.

【0022】また、基板2の薄膜形成材料1を塗布した
面とは反対側の面における紫外線の反射を利用して効率
的な照射を行う観点から、隣接する2枚の基板2によっ
て形成される間隙3は、紫外線導入部3a以外は閉鎖し
た空間とすることが好ましい。例えば、基板の末端2a
とは反対側の末端2bにおける間隙3を、基板2に対し
垂直方向に配設した紫外線反射板6によって閉鎖するこ
と等を挙げることができる。また、基板ホルダー8によ
り基板を固定する場合には、基板2を固定した面とは反
対側の面8aにおける紫外線の反射を利用して効率的な
照射を行う観点から、基板ホルダーの反対面8aを紫外
線の反射率が高い材質とすることが好ましい。
The substrate 2 is formed by two adjacent substrates 2 from the viewpoint of efficient irradiation utilizing reflection of ultraviolet rays on the surface of the substrate 2 opposite to the surface on which the thin film forming material 1 is applied. The gap 3 is preferably a closed space except for the ultraviolet ray introducing portion 3a. For example, the end 2a of the substrate
The gap 3 at the end 2 b on the opposite side from the above may be closed by an ultraviolet reflecting plate 6 arranged perpendicularly to the substrate 2. When the substrate is fixed by the substrate holder 8, the surface 8 a on the opposite side to the surface to which the substrate 2 is fixed is reflected from the viewpoint of performing efficient irradiation using the reflection of ultraviolet rays on the surface 8 a opposite to the surface 8 a. Is preferably made of a material having a high ultraviolet reflectance.

【0023】本発明では、次に、隣接する2枚の基板2
によって形成される間隙3に、導波手段4を経由して導
いた紫外線5を照射しながら熱処理する。
In the present invention, next, two adjacent substrates 2
Is heat-treated while irradiating the gap 3 formed by the ultraviolet rays 5 guided via the waveguide means 4.

【0024】導波手段4としては特に制限はないが、例
えば、石英板、メタクリル酸メチル板等を挙げることが
できる。
The waveguide means 4 is not particularly limited, and examples thereof include a quartz plate and a methyl methacrylate plate.

【0025】導波手段4は、紫外線を出射する出射端4
aを、隣接する2枚の基板2によって形成される間隙3
の入口に位置させて配置することが好ましい。また、図
2に示すように、導波手段4を、紫外線照射面を備えた
導波板からなり、その紫外線照射面4cと基板の薄膜形
成面とを対向するように配設し、かつ紫外線照射面4c
の反対面4dに紫外線を乱反射させる凹凸を形成したも
のとしてもよい。この際、反対面4dの凹凸は、基板に
照射される紫外線の強度が均一になるように設計するこ
とが好ましい。
The wave guide means 4 has an emission end 4 for emitting ultraviolet rays.
a is a gap 3 formed by two adjacent substrates 2
It is preferable to arrange it at the entrance of the device. As shown in FIG. 2, the waveguide means 4 is formed of a waveguide plate having an ultraviolet irradiation surface, and the ultraviolet irradiation surface 4c is disposed so as to face the thin film forming surface of the substrate. Irradiation surface 4c
May be formed on the opposite surface 4d. At this time, it is preferable to design the unevenness of the opposite surface 4d so that the intensity of the ultraviolet light applied to the substrate becomes uniform.

【0026】一方、導波手段4の他方の末端4bは、光
源部7に対向するように位置させて配置することが好ま
しい。
On the other hand, it is preferable that the other end 4b of the waveguide means 4 is disposed so as to face the light source section 7.

【0027】光源7の配設位置としては特に制限はな
く、基板2に対していずれの位置でもよく、また、装置
を構成する、例えば、真空容器11の内外いずれでもよ
い。
The position of the light source 7 is not particularly limited, and may be any position with respect to the substrate 2, or may be a part of the apparatus, for example, inside or outside the vacuum vessel 11.

【0028】本発明においては、紫外線照射の条件とし
ては特に制限はなく、紫外線照射をしながら熱処理を行
う通常の薄膜形成方法と同様にして行うことができる。
また、熱処理の条件についても特に制限はないが、好ま
しくは、300〜700℃、さらに好ましくは、400
〜600℃で行う。また、酸素濃度、窒素濃度、及び真
空度のうち少なくとも1の雰囲気条件を調整しながら行
うことが好ましい。
In the present invention, the conditions of the ultraviolet irradiation are not particularly limited, and the irradiation can be performed in the same manner as in a normal thin film forming method in which the heat treatment is performed while irradiating the ultraviolet.
The conditions of the heat treatment are not particularly limited, but are preferably 300 to 700 ° C., more preferably 400 to 700 ° C.
Perform at ~ 600 ° C. Further, it is preferable to perform the treatment while adjusting at least one of the oxygen concentration, the nitrogen concentration, and the degree of vacuum.

【0029】[0029]

【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はこれら実施例によって何等制限されるも
のではない。
EXAMPLES Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples.

【0030】実施例1 図3は、本発明の薄膜形成方法の一実施例において用い
られる装置を模式的に示す説明図である。
Embodiment 1 FIG. 3 is an explanatory view schematically showing an apparatus used in one embodiment of the thin film forming method of the present invention.

【0031】図3に示すように、この装置は、ロータリ
ーポンプ12とターボモレキュラーポンプ13により1
-6torrまで脱気可能な真空容器11を備える。ま
た、窒素及び酸素が、ガスタンクから配管を通じて真空
容器に供給されるガス供給部14を備える。このガス供
給部14の配管には、メインバルブとスローリークバノ
レブが設けられており、処理中の窒素、及び酸素の濃度
を制御できるようになっている。
As shown in FIG. 3, this apparatus is constituted by a rotary pump 12 and a turbo molecular pump 13.
A vacuum vessel 11 capable of degassing to 0 -6 torr is provided. In addition, a gas supply unit 14 is provided for supplying nitrogen and oxygen from the gas tank to the vacuum vessel through a pipe. The pipe of the gas supply unit 14 is provided with a main valve and a slow leak vanoleb so that the concentrations of nitrogen and oxygen during processing can be controlled.

【0032】装置の内部には、ステンレス製の基板ホル
ダー15が5mmの間隔を保持して複数、水平に配列さ
れている。各基板ホルダー15は、その長尺方向の一の
末端15bが、厚さ10mmの加熱冷却管19に接続さ
れ、各基板ホルダー15間の間隙23は、他の末端15
a側のみ開口されている。
Inside the apparatus, a plurality of substrate holders 15 made of stainless steel are horizontally arranged at intervals of 5 mm. One end 15b of each substrate holder 15 in the longitudinal direction is connected to a heating / cooling pipe 19 having a thickness of 10 mm, and a gap 23 between the substrate holders 15 is provided at the other end 15b.
Only the a side is opened.

【0033】加熱冷却管19には、ヒーター20と冷却
用の配管21が設けられ、これにより装置内の温度を制
御する。
The heating / cooling pipe 19 is provided with a heater 20 and a cooling pipe 21 to control the temperature inside the apparatus.

【0034】この装置の側壁には、厚さ5mmの石英板
17が水平に複数枚、貫通している。この石英板板17
の一の末端17aは、装置の外部に達し、側棒状の水銀
ランプ16を備える紫外線発光装置に対向するように配
設されている。一方、他の末端17bは、装置の内部に
達し、各基板ホルダー15間の間隙23の紫外線導入部
23aに対向するように配設されている。石英板17
は、紫外線の導波手段として機能するものであり、これ
により外部の水銀ランプ16で発生した紫外線を各基板
ホルダー15間の間隙23の紫外線導入部23aへ導く
ことができる。
A plurality of 5 mm-thick quartz plates 17 penetrate horizontally through the side wall of the apparatus. This quartz plate 17
The one end 17a is arranged so as to reach the outside of the device and to face the ultraviolet light emitting device having the mercury lamp 16 in the form of a side bar. On the other hand, the other end 17b is arranged so as to reach the inside of the apparatus and to face the ultraviolet ray introducing portion 23a in the gap 23 between the substrate holders 15. Quartz plate 17
Functions as a means for guiding ultraviolet rays, whereby the ultraviolet rays generated by the external mercury lamp 16 can be guided to the ultraviolet ray introducing portion 23 a in the gap 23 between the substrate holders 15.

【0035】次に、上記装置を用いてITO薄膜(Sn
ドープIn203薄膜)を形成した例を示す。まず、ノ
ンアルカリガラス基板(30cm×40cm×1mm)
上にITO薄膜用の熱分解性薄膜形成材料をスピンナー
により塗布し、その後、べーク炉で150℃で15分乾
燥させ、アルコール分を蒸発させた。
Next, an ITO thin film (Sn
An example in which a doped In203 thin film is formed is shown. First, a non-alkali glass substrate (30 cm x 40 cm x 1 mm)
A material for forming a thermally decomposable thin film for an ITO thin film was applied thereon by a spinner, and then dried in a bake oven at 150 ° C. for 15 minutes to evaporate an alcohol content.

【0036】この基板を前述の装置内に20枚セット
し、真空脱気後、酸素を導入し、基板温度が300℃に
なるまで加熱した。
Twenty substrates were set in the above-mentioned apparatus, and after deaeration in vacuum, oxygen was introduced and heated until the substrate temperature reached 300 ° C.

【0037】次に、水銀ランプ16を点灯し、紫外線を
石英板17を経由して階層的に配設された各基板ホルダ
ー15間の間隙23の紫外線導入部23aから基板表面
へと導入した。紫外線は、基板18表面と、基板ホルダ
ー15の下部表面との間で反射を繰り返しながら進行し
ていき、加熱冷却板19に達したところで加熱冷却板1
9の外壁表面で反射され、再び反射を繰り返しながら各
基板ホルダー15間の開口された間隙へと進行した。
Next, the mercury lamp 16 was turned on, and ultraviolet rays were introduced via the quartz plate 17 from the ultraviolet ray introduction portion 23a of the gap 23 between the substrate holders 15 arranged in a hierarchy to the substrate surface. The ultraviolet rays travel while repeating reflection between the surface of the substrate 18 and the lower surface of the substrate holder 15, and reach the heating / cooling plate 19 when reaching the heating / cooling plate 19.
The light was reflected by the outer wall surface of No. 9 and proceeded to the gaps opened between the substrate holders 15 while repeating the reflection again.

【0038】この状態で、30分経過後、酸素ガスを真
空脱気し、500℃まで加熱し、30分保持した。その
後、ヒーター20のスイッチを切り、加熱冷却管19に
冷却ガス22aを流して急冷を開始し、基板温度が15
0℃まで下がったら、真空容器内に空気を導入するとと
もに、加熱冷却管19に冷却水22bを流して、基板を
冷却し、ITO薄膜を形成した基板を得た。
In this state, after a lapse of 30 minutes, the oxygen gas was degassed in vacuum, heated to 500 ° C., and held for 30 minutes. Thereafter, the heater 20 is turned off, and the cooling gas 22a is supplied to the heating / cooling pipe 19 to start rapid cooling.
When the temperature dropped to 0 ° C., air was introduced into the vacuum vessel, and cooling water 22 b was allowed to flow through the heating / cooling pipe 19 to cool the substrate, thereby obtaining a substrate on which an ITO thin film was formed.

【0039】以上のようにしてITO薄膜を形成した基
板とを熱処理の際に紫外線照射をせずITO薄膜を形成
した基板とを比較評価した。
The substrate on which the ITO thin film was formed as described above was compared with a substrate on which the ITO thin film was formed without irradiating ultraviolet rays during the heat treatment.

【0040】紫外線照射をせずITO薄膜を形成した基
板の表面抵抗は500Ω/□であり、面内抵抗バラツキ
は約25%であった。これに対して、紫外線照射してI
TO薄膜を形成した基板では、表面抵抗は80Ω/□で
あり、面内抵抗バラツキは約10%であった。
The surface resistance of the substrate on which the ITO thin film was formed without irradiation with ultraviolet rays was 500 Ω / □, and the in-plane resistance variation was about 25%. On the other hand, UV irradiation
In the substrate on which the TO thin film was formed, the surface resistance was 80Ω / □, and the in-plane resistance variation was about 10%.

【0041】このように、本発明の実施例で得られた基
板は、紫外線照射による効果が十分発揮され、良質のI
TO薄膜を形成できることが認められた。
As described above, the substrate obtained in the embodiment of the present invention can sufficiently exhibit the effect of the ultraviolet irradiation, and
It was confirmed that a TO thin film could be formed.

【0042】[0042]

【発明の効果】以上説明した通り、本発明の塗布式の薄
膜形成方法によると、低温で良質の薄膜を形成すること
ができ、かつ簡易な装置で、安価な薄膜を形成すること
ができる薄膜形成方法を提供することができる。
As described above, according to the coating type thin film forming method of the present invention, a thin film of good quality can be formed at a low temperature, and an inexpensive thin film can be formed with a simple apparatus. A forming method can be provided.

【0043】[0043]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の塗布式の薄膜形成方法における一の実
施の形態を模式的に示す断面図である。
FIG. 1 is a cross-sectional view schematically showing one embodiment of a coating type thin film forming method of the present invention.

【図2】本発明の塗布式の薄膜形成方法における他の実
施の形態を模式的に示す断面図である。
FIG. 2 is a cross-sectional view schematically showing another embodiment of the coating type thin film forming method of the present invention.

【図3】本発明の塗布式の薄膜形成方法における一の実
施例を模式的に示す説明図である。
FIG. 3 is an explanatory view schematically showing one embodiment of a coating type thin film forming method of the present invention.

【符号の説明】[Explanation of symbols]

1:薄膜形成材料 2:基板 2a:末端 2b:反対側の末端 3:間隙 3a:紫外線導入部 4:導波手段 4a:末端(出射端) 4b:末端(入光端) 4c:紫外線照射面 4d:反対面 5:紫外線 6:紫外線反射板 7:光源 8:基板ホルダー 8a:反対面 11:真空容器 12:ロータリーポンプ 13:ターボモレキュラーポンプ 14:ガス供給部 15:基板ホルダー 15a:末端(加熱冷却管側) 15b:末端(紫外線導入部側) 16:水銀ランプ 17:石英板(導波手段) 17a:末端(水銀ランプ側) 17b:末端(紫外線導入部側) 18:基板 19:加熱冷却管 20:ヒーター 21:冷却用の配管 22a:冷却ガス 22b:冷却水 23:間隙 23a:紫外線導入部 1: Thin film forming material 2: Substrate 2a: Terminal 2b: Terminal on the opposite side 3: Gap 3a: Ultraviolet light introduction part 4: Wave guide means 4a: Terminal (emission end) 4b: Terminal (light entrance end) 4c: Ultraviolet irradiation surface 4d: Opposite surface 5: Ultraviolet light 6: Ultraviolet reflector 7: Light source 8: Substrate holder 8a: Opposite surface 11: Vacuum container 12: Rotary pump 13: Turbomolecular pump 14: Gas supply unit 15: Substrate holder 15a: Terminal (heating) 15b: Mercury lamp 17: Quartz plate (wave guiding means) 17a: Terminal (mercury lamp side) 17b: Terminal (ultraviolet ray introduction side) 18: Substrate 19: Heating / cooling Pipe 20: Heater 21: Cooling pipe 22a: Cooling gas 22b: Cooling water 23: Gap 23a: Ultraviolet ray introduction part

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】薄膜形成材料を塗布した複数の基板を、階
層的にかつ一定間隔を保持して配列し、隣接する2枚の
基板によって形成される間隙に、導波手段を経由して導
いた紫外線を照射しながら熱処理することを特徴とする
薄膜形成方法。
A plurality of substrates coated with a thin film forming material are arranged hierarchically and at a constant interval, and guided through a waveguide means to a gap formed by two adjacent substrates. A method of forming a thin film, wherein the heat treatment is performed while irradiating the ultraviolet light.
【請求項2】前記導波手段が、紫外線を出射する出射端
を前記間隙の入口に位置させて配設された請求項1に記
載の薄膜形成方法。
2. The thin film forming method according to claim 1, wherein said waveguide means is disposed with an emission end for emitting ultraviolet light positioned at an entrance of said gap.
【請求項3】前記導波手段が、紫外線照射面を備えた導
波板からなり、その紫外線照射面と前記基板の薄膜形成
面とを対向するように配設し、かつ前記紫外線照射面の
反対面に紫外線を乱反射させる凹凸を形成した請求項1
又は2に記載の薄膜形成方法。
3. The waveguide means comprises a waveguide plate having an ultraviolet irradiation surface, the ultraviolet irradiation surface is disposed so as to face the thin film forming surface of the substrate, and the ultraviolet irradiation surface is 2. An irregular surface for irregularly reflecting ultraviolet light is formed on the opposite surface.
Or the thin film forming method according to 2.
【請求項4】前記熱処理を、酸素濃度、窒素濃度、及び
真空度のうち少なくとも1の雰囲気条件を調整しながら
行う請求項1〜3のいずれかに記載の薄膜形成方法。
4. The thin film forming method according to claim 1, wherein the heat treatment is performed while adjusting at least one of an oxygen concentration, a nitrogen concentration, and a degree of vacuum.
JP2000110634A 2000-04-12 2000-04-12 Thin film deposition method Pending JP2001295055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000110634A JP2001295055A (en) 2000-04-12 2000-04-12 Thin film deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000110634A JP2001295055A (en) 2000-04-12 2000-04-12 Thin film deposition method

Publications (1)

Publication Number Publication Date
JP2001295055A true JP2001295055A (en) 2001-10-26

Family

ID=18623114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000110634A Pending JP2001295055A (en) 2000-04-12 2000-04-12 Thin film deposition method

Country Status (1)

Country Link
JP (1) JP2001295055A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014111843A (en) * 2014-01-29 2014-06-19 Nitto Denko Corp Production method of transparent conductive thin film
JP2019054267A (en) * 2009-06-30 2019-04-04 株式会社半導体エネルギー研究所 Manufacturing method for semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019054267A (en) * 2009-06-30 2019-04-04 株式会社半導体エネルギー研究所 Manufacturing method for semiconductor device
JP2014111843A (en) * 2014-01-29 2014-06-19 Nitto Denko Corp Production method of transparent conductive thin film

Similar Documents

Publication Publication Date Title
US4094763A (en) Sputter coating of glass with an oxide of a metal having an atomic number between 48 and 51 and mixtures thereof
JP2019176147A (en) Base material processing device and method
JPH04280975A (en) Production of zno transparent conductive film
KR100832273B1 (en) Device for fast and uniform heating of a substrate with infrared radiation
JPS5939031A (en) Method of reflowing phosphosilicate glass
CN102119437B (en) Plasma processing apparatus, plasma processing method, and electronic device manufacturing method
US20070206151A1 (en) Manufacturing method of liquid crystal panel and surface treatment method of alignment film
JP2001295055A (en) Thin film deposition method
JP2001023916A (en) Method for treating material with electromagnetic wave and apparatus
CN103149617A (en) Optical thin-film-forming methods, optical substrate and film forming device of optical thin-film
JP2007303805A (en) Heat treatment furnace for manufacturing planar display element, planar display element manufacturing apparatus including the same, manufacturing method for it, and planar display element using it
JPH058527B2 (en)
JPH10199346A (en) Method and device for forming translucent electrode
US4856458A (en) Photo CVD apparatus having no ultraviolet light window
JP2825756B2 (en) Method and apparatus for manufacturing thin film EL element
KR101456239B1 (en) Method for manufacturing metal-oxide thin film using low temperature process, thin film, and electric device thereof
JPS6010022Y2 (en) Oxide semiconductor film manufacturing equipment
JP2008123893A (en) Forming method for transparent conductive film
JP3903720B2 (en) Dehydroxylation treatment method for polymer film for polymer optical waveguide and polymer optical waveguide using the same
KR20080006812A (en) Bi-layer ito film deposition method and bi-layer ito film prepared by the same
JP2000068265A (en) Method for annealing oxide insulating film
KR100756227B1 (en) Atmospheric pressure plasma etching apparatus used in manufacturing flat panel display devices
JP2001188357A (en) Method and device for forming resin film to substrate for display element as well as method for manufacturing liquid crystal display device using the method
JPH03184216A (en) Formation of transparent conductive film
JPS59149605A (en) Method of producing transparent conductor