JP2001294918A - Method for measuring thickness of refractories in furnace - Google Patents

Method for measuring thickness of refractories in furnace

Info

Publication number
JP2001294918A
JP2001294918A JP2000112328A JP2000112328A JP2001294918A JP 2001294918 A JP2001294918 A JP 2001294918A JP 2000112328 A JP2000112328 A JP 2000112328A JP 2000112328 A JP2000112328 A JP 2000112328A JP 2001294918 A JP2001294918 A JP 2001294918A
Authority
JP
Japan
Prior art keywords
refractory
thickness
time
furnace
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000112328A
Other languages
Japanese (ja)
Inventor
Shigetoshi Morita
茂利 森田
Hidetaka Kominami
秀隆 小南
Hiroyuki Tanaka
宏幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000112328A priority Critical patent/JP2001294918A/en
Publication of JP2001294918A publication Critical patent/JP2001294918A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Abstract

PROBLEM TO BE SOLVED: To provide a method for precisely measuring the thickness of refrac tory bricks in a furnace from the outside of the furnace using ultrasonic wave. SOLUTION: A ultrasonic wave is transmitted from on the outside of the furnace toward the refractories in the inner part, and the detecting time of refractory signal from the inside surface of the refractory, is calculated with the variation with time of a specific frequency component decided with a material constituting the furnace surface to measure the thickness of the refractory.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、産業用炉特に高
炉、転炉等の炉壁が複層構造である炉内の耐火物の厚み
を炉外側より測定する炉内耐火物厚測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of measuring the thickness of a refractory in a furnace having a multi-layered furnace wall of an industrial furnace, particularly a blast furnace, a converter, etc., from the outside of the furnace. .

【0002】[0002]

【従来の技術】高炉炉壁は通常外側より鉄皮、不定形耐
火物、耐火レンガにより構成されている。高炉炉底部の
耐火レンガは常に溶銑にさらされているため、高炉の操
業に伴い徐々に損耗する。例えば、火入れ時には200
0mm以上あった耐火レンガの厚みが十数年後の吹きとめ
時には300mm程度にまで減少することがある。耐火レ
ンガの残存厚みの推移を高炉操業中に精度よく測定する
ことは、溶銑による鉄皮の溶損、溶銑の流出等の重大事
故防止及び高炉の寿命の把握による長寿命化などの高炉
資産の有効活用のために非常に重要である。このため、
耐火レンガの残存厚みを測定する数多くの手法が従来提
案されている。例えば、特開昭58−27002号公報
には、鉄皮の一部に開孔を形成し、金属棒を耐火レンガ
または鉄皮、耐火レンガ間に埋められた不定型耐火物で
あるスタンプ材に直結させ、金属棒の一端を打撃するこ
とにより、効率よく耐火レンガ中に弾性波を発生させ、
弾性波が耐火レンガ中の往復に要する時間を測定し、往
復時間と耐火レンガ中の弾性波の伝播速度から耐火物の
厚みを測定する方法が提案されている。さらに特開昭6
2−297710号公報には、高炉の鉄皮表面をハンマ
ーにて打撃し、この打撃によって発生した弾性波が耐火
レンガ中を伝播し、耐火レンガ内側端面で反射を起こ
し、再び鉄皮表面まで戻ってくる往復時間を測定し、予
め求めてある耐火レンガ中の弾性波の伝播速度と往復時
間とから耐火レンガの厚みを測定する方法が開示されて
いる。
2. Description of the Related Art A blast furnace wall is usually made of steel, irregular refractory, and refractory brick from the outside. Since the refractory bricks at the bottom of the blast furnace are constantly exposed to the hot metal, the bricks gradually wear out during the operation of the blast furnace. For example, 200 when burning
The thickness of the refractory brick, which was 0 mm or more, may be reduced to about 300 mm at the time of stopping after about ten years. Accurately measuring the transition of the remaining thickness of refractory bricks during blast furnace operation is important to prevent blast furnace damage, such as the loss of iron shell due to hot metal and the outflow of hot metal, and to increase the life of blast furnace assets by grasping the life of the blast furnace. It is very important for effective use. For this reason,
Many techniques have been proposed for measuring the residual thickness of refractory bricks. For example, Japanese Patent Application Laid-Open No. 58-27002 discloses that an opening is formed in a part of a steel shell, and a metal rod is formed on a refractory brick or a stamp material which is an irregular type refractory embedded between the steel shell and the refractory brick. By directly connecting and hitting one end of the metal rod, efficiently generate elastic waves in the refractory brick,
A method has been proposed in which the time required for an elastic wave to reciprocate in a refractory brick is measured, and the thickness of the refractory is measured from the reciprocation time and the propagation speed of the elastic wave in the refractory brick. Furthermore, Japanese Unexamined Patent Publication No.
According to Japanese Patent Application Laid-Open No. 2-297710, the surface of the steel shell of a blast furnace is hit with a hammer, and the elastic wave generated by the hit propagates through the refractory brick, reflects on the inner end face of the refractory brick, and returns to the surface of the steel shell again. A method of measuring the thickness of the refractory brick from the reciprocating time and the propagation speed of the elastic wave in the refractory brick obtained in advance and the reciprocation time is disclosed.

【0003】また、近年もっとも普及している方法は、
レンガ内部に温度計を埋設し、炉心側から鉄皮側へ伝わ
る熱流束を測定する方法である。この方法では、高炉側
壁部の全周に、100個前後の温度計を耐火レンガ内に
埋設し、熱流束を測定した後に、熱伝導方程式から銑鉄
凝固温度である1150℃の熱源が存在する位置を算出
し、耐火レンガの残存厚みを推定する方法である。
[0003] The most popular method in recent years is
In this method, a thermometer is buried inside the brick to measure the heat flux transmitted from the core side to the steel shell side. In this method, around 100 thermometers are buried in the refractory brick around the entire circumference of the blast furnace side wall, and after measuring the heat flux, the position where the heat source of 1150 ° C., which is the pig iron solidification temperature, exists from the heat conduction equation. Is calculated and the remaining thickness of the refractory brick is estimated.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、特開昭
58−27002号公報に開示された方法は、測定箇所
の鉄皮を開孔し、耐火レンガに接触させた金属棒を打撃
するため、高炉の特定箇所の耐火レンガの厚みしか測定
できないという問題がある。また、特開昭62−297
710号公報に開示された方法は、鉄皮、スタンプ材、
耐火レンガの複層構造になっている高炉の場合、鉄皮外
側から送信した弾性波の反射信号は複雑で、耐火レンガ
最内側端面からの反射信号のみを抜き出すのは困難であ
る。とくに、耐火レンガ間の隙間や耐火レンガ内の割れ
等があった場合には、そこで反射信号が発生するため、
そのうちのどれが測定したい耐火レンガ最内側端面から
の反射信号なのかを特定するのは熟練を要する。
However, the method disclosed in Japanese Patent Application Laid-Open No. 58-27002 discloses a method of opening a steel shell at a measuring point and hitting a metal rod brought into contact with a refractory brick by a blast furnace. There is a problem that only the thickness of the refractory brick at a specific location can be measured. Also, JP-A-62-297
The method disclosed in Japanese Patent Publication No.
In the case of a blast furnace having a multi-layered structure of refractory bricks, the reflection signal of the elastic wave transmitted from the outside of the steel shell is complicated, and it is difficult to extract only the reflection signal from the innermost end face of the refractory brick. In particular, if there are gaps between the refractory bricks or cracks in the refractory bricks, reflected signals will be generated there,
It takes skill to specify which of them is the reflected signal from the innermost end face of the refractory brick to be measured.

【0005】さらに、埋設された温度計にて熱流束を測
定する方法には以下のような問題点が存在する。すなわ
ち、熱流束から耐火レンガ残存厚みを算出する際に、耐
火レンガ、スタンプ材等の熱伝導率を用いるが、この熱
伝導率は耐火レンガ、スタンプ材の劣化に伴い経時的に
変化するため、厚み算出時に用いた熱伝導率と実際の熱
伝導率との差が厚み算出誤差を招来する。また、断熱層
(亀裂部)が耐火レンガ内に存在する場合、この断熱層
によって熱流束の一部が遮断され、耐火レンガの厚みの
値が実際より大きく算出される。このような温度計を用
いた耐火レンガ管理は多数の温度計を使用して耐火レン
ガ侵食傾向を常時監視するには有効であるが、炉壁に埋
設して設置するため、測定箇所を変えるには新しく熱電
対を設置する必要がある。
Further, the method for measuring the heat flux with the embedded thermometer has the following problems. That is, when calculating the refractory brick residual thickness from the heat flux, the refractory brick, the thermal conductivity of the stamp material, etc., is used, but since this thermal conductivity changes over time with the deterioration of the refractory brick, the stamp material, The difference between the thermal conductivity used when calculating the thickness and the actual thermal conductivity causes a thickness calculation error. When a heat insulating layer (crack portion) is present in the refractory brick, part of the heat flux is blocked by the heat insulating layer, and the thickness of the refractory brick is calculated to be larger than the actual value. Refractory brick management using such a thermometer is effective to constantly monitor the refractory brick erosion tendency using a large number of thermometers, but since it is embedded in the furnace wall and installed, it is necessary to change the measurement point Needs to install a new thermocouple.

【0006】本発明は、上記従来技術の問題点を解決
し、炉外側から炉内の耐火物厚を正確に測定することが
できる方法を提供することを目的とする。
An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a method capable of accurately measuring the thickness of a refractory inside a furnace from outside the furnace.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するため
本発明は、以下の(1)から(4)の方法を要旨とす
る。 (1)耐火物が最内面にあり、その外側に他の材質から
なる複層構造の壁面をもつ加熱炉における耐火物の炉半
径方向の厚みを計測する方法において、最外側の壁面の
表面から内側の耐火物に向けて弾性波を送信し、耐火物
最内面からの反射信号を最外側の壁面の表面にて受信
し、該反射信号のうち特定の周波数成分の時系列変化よ
り反射波検出時刻を算出し、弾性波送信開始時刻から前
記反射波検出時刻までの反射時間の内、耐火物以外の前
記材質の往復伝播に要する時間を差し引いた残りの伝播
時間より耐火物の厚みを計測することを特徴とする炉内
耐火物厚測定方法。 (2)上記(1)記載の炉内耐火物厚測定方法におい
て、特定の周波数成分として、加熱炉の最外側表面を構
成する材質の炉半径方向の厚みと前記材質中の弾性波伝
播速度によって決定される前記材質中での弾性波の多重
反射による反復周波数値の周波数成分とすることを特徴
とする炉内耐火物厚測定方法。 (3)上記(2)記載の炉内耐火物厚測定方法におい
て、前記反射信号のうち特定の周波数成分の時系列変化
を求める信号処理方法としてウェーブレット変換を用い
ることを特徴とする炉内耐火物厚測定方法。 (4)上記(3)記載の炉内耐火物厚測定方法におい
て、耐火物最内側端面からの反射信号の判別手段とし
て、ウェーブレット変換処理後の反射信号に対して出力
0を境界として波形の山と谷に分割し、前記分割波形の
うち、谷波形を起点として該谷波形の極値の絶対値が該
谷波形の前2つ及び後4つの山波形及び谷波形の極値の
絶対値よりも大きな前記谷波形であり、さらに前記炉壁
の構成材質のうち耐火物よりも外側に位置する材質中を
弾性波が往復伝播に要する時間を超えて最初に現れる前
記谷波形を耐火物内側端面からの反射波形とすることを
特徴とする炉内耐火物厚測定方法。
To achieve the above object, the present invention provides the following methods (1) to (4). (1) In a method of measuring the thickness of a refractory in a furnace radial direction in a heating furnace having a refractory on an innermost surface and a multi-layered wall made of another material outside the refractory, a method for measuring the thickness of the outermost wall An elastic wave is transmitted toward the inner refractory, a reflected signal from the innermost surface of the refractory is received on the outermost wall surface, and a reflected wave is detected from a time-series change of a specific frequency component of the reflected signal. The time is calculated, and the thickness of the refractory is measured from the propagation time remaining after subtracting the time required for the reciprocal propagation of the material other than the refractory from the reflection time from the elastic wave transmission start time to the reflected wave detection time. A method for measuring the thickness of a refractory in a furnace. (2) In the furnace refractory thickness measuring method according to the above (1), the specific frequency component is determined by a thickness in a furnace radial direction of a material constituting an outermost surface of the heating furnace and an elastic wave propagation velocity in the material. A method for measuring the thickness of a refractory in a furnace, wherein the determined frequency component is a repetition frequency value due to multiple reflection of an elastic wave in the material. (3) In the furnace refractory thickness measuring method according to the above (2), a wavelet transform is used as a signal processing method for obtaining a time series change of a specific frequency component of the reflected signal. Thickness measurement method. (4) In the furnace refractory thickness measuring method according to the above (3), as a means for judging a reflected signal from the innermost end face of the refractory, a peak of a waveform having an output of 0 as a boundary with respect to the reflected signal after the wavelet transform processing. And the valleys, the absolute value of the extreme value of the valley waveform starting from the valley waveform is calculated from the absolute values of the two peak waveforms before and after the valley waveform and the extreme values of the valley waveform. The trough waveform is also large, and furthermore, among the constituent materials of the furnace wall, the trough waveform which first appears beyond the time required for the reciprocating propagation of the elastic wave in the material located outside the refractory is called the refractory inner end face. A method for measuring the thickness of a refractory in a furnace, characterized in that the waveform is a reflection waveform from a furnace.

【0008】[0008]

【発明の実施の形態】以下、図面に基づき本発明の一実
施の形態を具体的に説明する。図1は本発明に係る耐火
物の厚み測定を行うための方法を示す構成図である。複
層構造の炉壁からなる高炉において、最外側の鉄皮1の
内側に不定形耐火物であるスタンプ材2があり、さらに
内側に耐火レンガ3が積み上げられている構造となって
いる。最外側の鉄皮表面1aに弾性波の送信器4及び受
信器5を設置する。送信器4には超音波発生用の電気信
号を出力するパルサー6が接続されており、受信器5に
は該受信器5にて検出された反射信号を増幅するアンプ
7が接続されており、アンプ7によって増幅された反射
信号はA/D変換部9を介してメモリ10に記録される
ようになっている。このとき制御部8によりパルサー6
の発生電気信号をトリガタイミング信号として用い、そ
のタイミングにてメモリ10の記録を開始するようにし
てある。図2にこの方式により採取された反射信号の例
を示す。図2に示すグラフは横軸に時間、縦軸に出力を
とり、測定された反射信号Sを示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be specifically described below with reference to the drawings. FIG. 1 is a block diagram showing a method for measuring the thickness of a refractory according to the present invention. In a blast furnace having a multi-layered furnace wall, a stamp material 2 which is an amorphous refractory is provided inside an outermost steel shell 1, and a refractory brick 3 is further stacked inside. An elastic wave transmitter 4 and a receiver 5 are installed on the outermost steel surface 1a. A pulsar 6 for outputting an electric signal for generating an ultrasonic wave is connected to the transmitter 4, an amplifier 7 for amplifying a reflected signal detected by the receiver 5 is connected to the receiver 5, The reflected signal amplified by the amplifier 7 is recorded in the memory 10 via the A / D converter 9. At this time, the pulsar 6 is controlled by the control unit 8.
Is used as a trigger timing signal, and recording in the memory 10 is started at that timing. FIG. 2 shows an example of a reflected signal sampled by this method. In the graph shown in FIG. 2, the horizontal axis represents time and the vertical axis represents output, and the measured reflected signal S is shown.

【0009】図4に示すように、超音波入射時には送信
器4が接触している最外側の炉壁である鉄皮1におい
て、その内部にて弾性波の多重反射波R1 が発生する。
この多重反射波R1 が鉄皮1の内側端面1bにて反射す
るとき、炉内側に向けて次々と弾性波が透過していく
(図4中P)。また、図5に示すように、耐火レンガ3
まで透過した弾性波R3 が耐火レンガ最内側端面3bに
て反射し、最外側炉壁の鉄皮1まで反射してきた反射信
号により再び鉄皮1の内部にて多重反射波R1 を形成す
る。これは超音波入射時に発生する多重反射波と同一の
現象である。
[0009] As shown in FIG. 4, in steel shell 1 during the ultrasonic incident is outermost of the furnace wall transmitter 4 is in contact, multiple reflection wave R 1 of the elastic wave is generated in its interior.
When the multiple reflection wave R 1 is reflected by the steel shell 1 of the inner end face 1b, it continues to sequentially transmitted acoustic wave toward the furnace inside (in FIG. 4 P). In addition, as shown in FIG.
The elastic wave R 3 transmitted to the inside of the refractory brick is reflected at the innermost end face 3 b of the refractory brick, and a multiple reflected wave R 1 is again formed inside the steel shell 1 by the reflected signal reflected to the steel shell 1 of the outermost furnace wall. . This is the same phenomenon as a multiple reflection wave generated when an ultrasonic wave is incident.

【0010】このとき最外側の炉壁内にて発生する多重
反射波の反復周波数f(kHz)は最外側の材質(鉄皮1)
の炉半径方向の厚みd1 (mm)及び該材質内部の弾性波
伝播速度v1 (m/sec)により次式にて算出する。
At this time, the repetition frequency f (kHz) of the multiple reflection wave generated in the outermost furnace wall is the outermost material (steel 1).
Is calculated by the following equation from the thickness d 1 (mm) in the furnace radial direction and the elastic wave propagation velocity v 1 (m / sec) inside the material.

【数1】 (Equation 1)

【0011】受信器5にて測定された反射信号に対して
式(1)にて算出される反復周波数f(kHz)を中心周波
数とした周波数成分の時系列変化を抽出する。この周波
数成分の時系列変化の抽出手段としてウェーブレット変
換を用いる。ウェーブレット変換の具体的な演算方法に
ついては、文献 ウェーブレット 理解と応用(Benide
tto,J.J.,Frazier,M.W./編 山口昌哉,山田道夫/訳
シュプリンガー・フェアラーク東京 出版)等で公知
である。
With respect to the reflection signal measured by the receiver 5, a time-series change of a frequency component having a repetition frequency f (kHz) calculated as a formula (1) as a center frequency is extracted. Wavelet transform is used as a means for extracting the time series change of the frequency component. For the specific calculation method of the wavelet transform, refer to the document Wavelet Understanding and Application (Benide
tto, JJ, Frazier, MW / Ed. Masaya Yamaguchi, Michio Yamada / Translated by Springer Verlag Tokyo).

【0012】図2で示す反射信号Sに対して前記反復周
波数f(kHz)を中心周波数として周波数成分を抽出した
結果を図3に示す。図3のグラフは横軸に時間、縦軸に
出力をとりウェーブレット変換処理を施した後の反射信
号Aを示す。ウェーブレット変換による信号処理はバン
ドパスフィルタ等による処理結果と比較すると処理後の
時間誤差が小さい、反射信号の位相を変化させないとい
う利点がある。
FIG. 3 shows the result of frequency components extracted from the reflection signal S shown in FIG. 2 with the repetition frequency f (kHz) as the center frequency. In the graph of FIG. 3, the horizontal axis represents time, and the vertical axis represents output, and the reflected signal A after wavelet transform processing is performed. The signal processing by the wavelet transform has advantages that the time error after the processing is small and the phase of the reflected signal is not changed as compared with the processing result by the band pass filter or the like.

【0013】前記の周波数成分抽出処理によって抽出さ
れた周波数成分の時系列変化信号に対して、反射信号中
より耐火レンガ最内側からの反射波を判別する方法とし
て以下の方法を用いる。反射信号の判別方法を図7、図
8を用いてその手順を説明する。図3の信号処理後の反
射信号の一部分を拡大して図7に示す。図7に示す波形
信号を0を閾値として零を含む正の出力である山波形と
負の出力である谷波形とに分割する(図7中の (1)〜(1
7)、奇数番が谷波形、偶数番が山波形)。判別対象とし
た谷波形の極値の絶対値が該谷波形の前2波形及び後4
波形の谷波形及び山波形の各々の極値の絶対値よりも大
きければそれを反射波と判別する。具体例として図7中
の谷波形(7) について判別方法を適用すると、該谷波形
(7) の極値の絶対値は前2波形の (5)、(6) 及び後4波
形の (8)、 (9)、(10)、(11)の極値の絶対値よりも大き
いことより反射波であると判別される。同様に谷波形(1
3)も極値の絶対値の比較により反射波であると判別され
る。これにより図8中実線で示す谷波形の (7)、(13)が
判別される。この判別された谷波形の立下り開始点の時
刻を測定波形の反射波検出時刻とする。
The following method is used as a method for determining the reflected wave from the innermost part of the refractory brick from the reflected signal with respect to the time-series change signal of the frequency component extracted by the frequency component extracting process. The procedure for determining the reflected signal will be described with reference to FIGS. FIG. 7 is an enlarged view of a part of the reflected signal after the signal processing of FIG. The waveform signal shown in FIG. 7 is divided into a peak waveform which is a positive output including zero with 0 as a threshold and a valley waveform which is a negative output ((1) to (1) in FIG. 7).
7), odd numbers are trough waveforms, even numbers are peak waveforms). The absolute value of the extreme value of the valley waveform to be determined is two waveforms before the valley waveform and four absolute values after the valley waveform.
If it is larger than the absolute value of each extreme value of the valley waveform and the peak waveform of the waveform, it is determined as a reflected wave. As a specific example, when the determination method is applied to the valley waveform (7) in FIG.
The absolute value of the extreme value of (7) is larger than the absolute value of the extreme values of (5) and (6) of the previous two waveforms and (8), (9), (10) and (11) of the last four waveforms Thus, the reflected wave is determined. Similarly, the valley waveform (1
3) is also determined to be a reflected wave by comparing the absolute values of the extreme values. Thus, (7) and (13) of the valley waveform shown by the solid line in FIG. 8 are determined. The time of the fall start point of the determined valley waveform is set as the reflected wave detection time of the measured waveform.

【0014】前記方法によって判別された反射波検出時
刻のうち、該反射波検出時刻は測定対象である耐火レン
ガ3に至るまでに透過する鉄皮1及びスタンプ材2を弾
性波が往復伝播するのに要する時間t(msec)を超えて
最初に出現するものを、耐火レンガ内側端面3bからの
反射波検出時刻とする。通常の高炉操業においてスタン
プ材2まで侵食されることはないので、鉄皮1の厚みd
1 (mm)及びスタンプ材2の厚みd2 (mm)は図面寸法
より既知であり、予め求めておいた鉄皮1内での弾性波
伝播速度v1 (m/sec)及びスタンプ材2内での弾性波伝
播速度v2 (m/sec)を用いて次式にて時間t(msec)を
算出できる。
[0014] Of the reflected wave detection times determined by the above method, the reflected wave detection time is determined by the time when the elastic wave reciprocates through the steel shell 1 and the stamp material 2 that pass through to the refractory brick 3 to be measured. The time that first appears after the time t (msec) required is determined as the detection time of the reflected wave from the inner end face 3b of the refractory brick. Since the stamp material 2 is not eroded in the normal blast furnace operation, the thickness d of the steel
1 (mm) and the thickness d 2 (mm) of the stamp material 2 are known from the drawing dimensions, and the elastic wave propagation velocity v 1 (m / sec) in the steel shell 1 and the stamp material 2 The time t (msec) can be calculated by the following equation using the elastic wave propagation velocity v 2 (m / sec) at

【数2】 (Equation 2)

【0015】この判別方法を用いて図3の波形信号を判
別すると、図3中縦線の箇所が判別される。これより、
弾性波入射開始時刻から耐火レンガ最内側端面3bから
の反射信号の検出時刻T(msec)が求められ、次式にて
耐火レンガ残存厚L(mm)が算出できる。
When the waveform signal of FIG. 3 is determined by using this determination method, the vertical line in FIG. 3 is determined. Than this,
The detection time T (msec) of the reflection signal from the innermost end face 3b of the refractory brick is obtained from the start time of the elastic wave incidence, and the remaining thickness L (mm) of the refractory brick can be calculated by the following equation.

【数3】 (Equation 3)

【0016】すなわち、最外側表面より弾性波を送信し
てから耐火レンガ内側端面3bからの反射信号を最外側
表面にて受信するまでに要した時間T(msec)から、測
定対象である耐火レンガ3に至るまでに透過する鉄皮1
及びスタンプ材2を弾性波が往復伝播するのに要する時
間t(msec)を差し引いた後、予め求めておいた耐火レ
ンガ3内での弾性波伝播速度V(m/sec)を用いて耐火レ
ンガ残存厚L(mm)を算出することができる。
That is, from the time T (msec) required for transmitting the elastic wave from the outermost surface to receiving the reflected signal from the inner surface 3b of the refractory brick at the outermost surface, the refractory brick to be measured is obtained. Iron skin that penetrates up to 3
After subtracting the time t (msec) required for the elastic wave to reciprocate propagate through the stamp material 2, the refractory brick is obtained by using the elastic wave propagation velocity V (m / sec) in the refractory brick 3 determined in advance. The remaining thickness L (mm) can be calculated.

【0017】[0017]

【実施例】図1に本発明の一実施例を示す。この実施例
の炉内耐火物厚み測定装置は、表面を鉄皮で覆われてい
る高炉内部にライニングされた耐火レンガの厚みを測定
するものである。今回測定を行なった炉において、表面
より第一層は鉄皮であり厚み60mm、音速5980m/se
c 、第二層はスタンプ材であり厚み100mm、音速16
50m/sec 、第三層は測定対象である耐火レンガであり
音速3000m/sec である。
FIG. 1 shows an embodiment of the present invention. The in-furnace refractory thickness measuring apparatus of this embodiment measures the thickness of a refractory brick lined inside a blast furnace whose surface is covered with an iron shell. In the furnace which we measured this time, the first layer from the surface was steel skin, thickness 60mm, sound speed 5980m / se
c, the second layer is a stamp material having a thickness of 100 mm and a sound speed of 16
The third layer is a refractory brick to be measured and has a sound speed of 3000 m / sec.

【0018】鉄皮表面1aに接触媒質を介して送信器4
と受信器5を設置している。弾性波には超音波を用い、
パルサー6より500Vの電圧ステップパルスを送信器
4に入力して発生させる。受信周波数特性が20kHz 〜
500kHz である受信器5にて反射信号を測定した。サ
ンプリング周波数5MHz 、メモリデータ点数8000
点、測定レンジ1.6msecとした。図2にこの方式によ
り採取された反射信号の例を示す。図2に示すグラフは
横軸に時間、縦軸に出力をとり、測定された反射信号S
を示す。
A transmitter 4 is provided on the steel surface 1a via a couplant.
And the receiver 5 are installed. Using ultrasonic waves for elastic waves,
A voltage step pulse of 500 V is input from the pulsar 6 to the transmitter 4 and generated. Receiving frequency characteristic is 20kHz ~
The reflected signal was measured at the receiver 5 at 500 kHz. 5MHz sampling frequency, 8000 memory data points
The measurement range was 1.6 msec. FIG. 2 shows an example of a reflected signal sampled by this method. In the graph shown in FIG. 2, the horizontal axis represents time, and the vertical axis represents output, and the measured reflected signal S
Is shown.

【0019】反射信号に対し、ウェーブレット変換を応
用した周波数抽出処理を行うが、ウェーブレット変換に
使用するアナライジングウェーブレットψ(t)には一
般的なメキシカンハット(Mexican hat )関数を用い
た。メキシカンハット(Mexican hat )関数ψ(t)を
次式に、その形状を図6に示す。
The reflection signal is subjected to a frequency extraction process using a wavelet transform. The analyzing wavelet ψ (t) used for the wavelet transform uses a general Mexican hat function. The Mexican hat function ψ (t) is represented by the following equation, and the shape is shown in FIG.

【数4】 (Equation 4)

【0020】対象となる鉄皮は厚み60mm、音速598
0m/sec より式(1)から反復周波数f≒49.8kHz
となる。この周波数fを中心周波数として周波数成分を
抽出した結果を図3に示す。図3は横軸に時間、縦軸に
出力をとり、ウェーブレット変換処理を施した後の反射
信号Aを示す。
The target steel skin is 60 mm thick and has a sound speed of 598.
From equation (1), the repetition frequency f ≒ 49.8 kHz from 0 m / sec
Becomes FIG. 3 shows the result of extracting frequency components with this frequency f as the center frequency. FIG. 3 shows the reflected signal A after performing the wavelet transform processing with the horizontal axis representing time and the vertical axis representing output.

【0021】次に判別方法について説明する。高炉の一
般的な構造から鉄皮端面1b及び耐火レンガ端面3bか
らの反射信号は入射信号に対して位相が反転する。ま
た、通常の受信波形は減衰波を形成する。この2つの特
性を利用して反射信号の判別を行う。具体的には反射信
号に対して出力値と出力方向のパラメータを元にして判
別を行う。
Next, the determination method will be described. Due to the general structure of the blast furnace, the phase of the reflected signal from the steel shell end face 1b and the refractory brick end face 3b is inverted with respect to the incident signal. In addition, a normal reception waveform forms an attenuation wave. The reflected signal is determined using these two characteristics. Specifically, the determination is performed on the reflection signal based on the output value and the output direction parameter.

【0022】抽出された周波数成分に対して前記記載し
た判別手法を適用し、反射時間Tを判別する。判別され
た反射波検出時刻より反射時間T=0.56msecが得ら
れる。この反射時間T=0.56msecとあらかじめ測定
しておいた耐火レンガの音速値3000m/sec 及び鉄
皮、スタンプ材の往復伝播時間t=0.0201+0.
1212=0.1413msecを用いて式3より耐火レン
ガの厚みを算出すると耐火レンガ残厚値L≒628.1
mmが得られる。
The reflection time T is determined by applying the above-described determination method to the extracted frequency components. A reflection time T = 0.56 msec is obtained from the determined reflected wave detection time. The reflection time T = 0.56 msec and the sound speed value of the refractory brick previously measured as 3000 m / sec, and the round trip time t of the steel shell and stamp material t = 0.0201 + 0.
When the thickness of the refractory brick is calculated from Equation 3 using 1212 = 0.1413 msec, the residual thickness of the refractory brick L ≒ 628.1
mm is obtained.

【0023】[0023]

【発明の効果】本発明の炉内耐火物厚測定方法を用いる
ことで、高炉の炉寿命を決定する最内側の耐火物の厚み
を炉最外側の表面より測定できる。前記効果により不特
定の箇所を測定可能であり、また、本発明の反射波判別
方法により反射信号の特定に熟練を必要としないため手
軽に取扱うことができる。本発明は耐火物の残厚管理に
有効であり、炉寿命を正確に推定し、その結果炉の改修
時期を予測することができる。
By using the method for measuring the thickness of a refractory in a furnace according to the present invention, the thickness of the innermost refractory for determining the life of the blast furnace can be measured from the outermost surface of the furnace. An unspecified portion can be measured by the above-described effect, and the reflected wave determination method of the present invention does not require any skill to specify a reflected signal, so that the reflected signal can be easily handled. INDUSTRIAL APPLICABILITY The present invention is effective in refractory residual thickness management, and can accurately estimate the life of a furnace, and as a result, can predict the time of furnace repair.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る測定装置の構成を示すブロック
図。
FIG. 1 is a block diagram showing a configuration of a measuring device according to the present invention.

【図2】本装置を用いて高炉炉壁を測定した測定波形グ
ラフ。
FIG. 2 is a measurement waveform graph obtained by measuring a blast furnace wall using the present apparatus.

【図3】測定波形にウェーブレット変換処理を施した後
の処理波形グラフ。
FIG. 3 is a processed waveform graph after performing a wavelet transform process on a measured waveform.

【図4】鉄皮内での多重反射波の説明図。FIG. 4 is an explanatory diagram of multiple reflected waves in a steel shell.

【図5】レンガ反射波による鉄皮多重波の発生の説明
図。
FIG. 5 is an explanatory diagram of generation of an iron skin multiple wave by a brick reflected wave.

【図6】ウェーブレット変換に用いたメキシカンハット
(Mexican hat) 関数の形状を示すグラフ。
FIG. 6: Mexican hat used for wavelet transform
(Mexican hat) A graph showing the shape of the function.

【図7】反射波判別の方法を説明したグラフ。FIG. 7 is a graph illustrating a method of determining a reflected wave.

【図8】反射波判別の方法を説明したグラフ。FIG. 8 is a graph illustrating a method of determining a reflected wave.

【符号の説明】[Explanation of symbols]

1 鉄皮 2 スタンプ材 3 耐火レンガ 4 送信器 5 受信器 6 パルサー 7 アンプ 8 測定装置制御部 9 A/D変換部 10 メモリ 11 周波数分離処理部 12 厚み演算部 13 表示器 S 反射信号 A 信号処理後の反射信号 T 耐火物端面3bからの弾性波反射時間 REFERENCE SIGNS LIST 1 steel 2 stamp material 3 refractory brick 4 transmitter 5 receiver 6 pulsar 7 amplifier 8 measuring device control unit 9 A / D conversion unit 10 memory 11 frequency separation processing unit 12 thickness calculation unit 13 display S reflection signal A signal processing Reflection signal after T Reflection time of elastic wave from refractory end face 3b

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 宏幸 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 Fターム(参考) 2F068 AA28 BB14 BB29 CC00 FF13 FF25 KK14 QQ00 2G047 AA08 BA03 BC02 BC18 EA10 4K002 CA01 4K015 KA07  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Hiroyuki Tanaka 20-1 Shintomi, Futtsu-shi, Chiba F-term in the Technology Development Division of Nippon Steel Corporation (reference) 2F068 AA28 BB14 BB29 CC00 FF13 FF25 KK14 QQ00 2G047 AA08 BA03 BC02 BC18 EA10 4K002 CA01 4K015 KA07

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 耐火物が最内面にあり、その外側に他の
材質からなる複層構造の壁面をもつ加熱炉における耐火
物の厚みを計測する方法において、最外側の壁面の表面
から内側の耐火物に向けて弾性波を送信し、耐火物最内
面からの反射信号を最外側の壁面の表面にて受信し、該
反射信号のうち特定の周波数成分の時系列変化より反射
波検出時刻を算出し、弾性波送信開始時刻から前記反射
波検出時刻までの反射時間の内、耐火物以外の前記材質
の往復伝播に要する時間を差し引いた残りの伝播時間よ
り耐火物の厚みを計測することを特徴とする炉内耐火物
厚測定方法。
1. A method for measuring the thickness of a refractory in a heating furnace having a refractory on an innermost surface and a multi-layered wall made of another material on the outer side, the method comprising: The elastic wave is transmitted toward the refractory, the reflected signal from the innermost surface of the refractory is received on the outermost wall surface, and the reflected wave detection time is determined from the time-series change of a specific frequency component of the reflected signal. Calculate and measure the thickness of the refractory from the propagation time remaining after subtracting the time required for the reciprocal propagation of the material other than the refractory from the reflection time from the elastic wave transmission start time to the reflected wave detection time. Characteristic method for measuring refractory thickness in furnace.
【請求項2】 特定の周波数成分として、加熱炉の最外
側表面を構成する材質の厚みと前記材質中の弾性波伝播
速度によって決定される前記材質中での弾性波の多重反
射による反復周波数値の周波数成分とすることを特徴と
する請求項1記載の炉内耐火物厚測定方法。
2. As a specific frequency component, a repetition frequency value by multiple reflection of an elastic wave in the material, which is determined by a thickness of a material constituting an outermost surface of the heating furnace and a propagation speed of the elastic wave in the material. 2. The method for measuring the thickness of a refractory in a furnace according to claim 1, wherein the frequency component is the following.
【請求項3】 前記反射信号のうち特定の周波数成分の
時系列変化を求める信号処理方法としてウェーブレット
変換を用いることを特徴とする請求項2記載の炉内耐火
物厚測定方法。
3. The method according to claim 2, wherein a wavelet transform is used as a signal processing method for obtaining a time-series change of a specific frequency component in the reflected signal.
【請求項4】 耐火物最内側端面からの反射信号の判別
手段として、ウェーブレット変換処理後の反射信号に対
して出力0を境界として波形の山と谷に分割し、前記分
割波形のうち、谷波形を起点として該谷波形の極値の絶
対値が該谷波形の前2つ及び後4つの山波形及び谷波形
の極値の絶対値よりも大きな前記谷波形であり、さらに
前記炉壁の構成材質のうち耐火物よりも外側に位置する
材質中を弾性波が往復伝播に要する時間を超えて最初に
現れる前記谷波形を耐火物内側端面からの反射波形とす
ることを特徴とする請求項3記載の炉内耐火物厚測定方
法。
4. As a means for determining a reflected signal from the innermost end face of the refractory, the reflected signal after the wavelet transform processing is divided into peaks and valleys with an output of 0 as a boundary. The valley waveform whose absolute value of the extreme value of the valley waveform is larger than the absolute values of the extreme values of the two peaks and the four valley waveforms before and after the valley waveform starting from the waveform, is a valley waveform. The valley waveform which first appears in the material located outside the refractory material out of the refractory material beyond the time required for the reciprocating propagation of the elastic wave is a reflection waveform from the refractory inner end face. 3. The method for measuring refractory thickness in a furnace according to 3.
JP2000112328A 2000-04-13 2000-04-13 Method for measuring thickness of refractories in furnace Withdrawn JP2001294918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000112328A JP2001294918A (en) 2000-04-13 2000-04-13 Method for measuring thickness of refractories in furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000112328A JP2001294918A (en) 2000-04-13 2000-04-13 Method for measuring thickness of refractories in furnace

Publications (1)

Publication Number Publication Date
JP2001294918A true JP2001294918A (en) 2001-10-26

Family

ID=18624518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000112328A Withdrawn JP2001294918A (en) 2000-04-13 2000-04-13 Method for measuring thickness of refractories in furnace

Country Status (1)

Country Link
JP (1) JP2001294918A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006070056A (en) * 2004-08-31 2006-03-16 Central Res Inst Of Electric Power Ind Monitoring device of molten slag discharge situation
KR100825614B1 (en) * 2001-12-21 2008-04-25 주식회사 포스코 An apparatus for measuring the deep depth of the dome brick
JP2009139075A (en) * 2007-01-29 2009-06-25 Mhi Environment Engineering Co Ltd Furnace bottom refractory erosion detection method and its device for melting furnace, and furnace bottom refractory erosion monitoring method using the detection method
JP2009150670A (en) * 2007-12-19 2009-07-09 Nippon Steel Corp Terminal for measuring thickness of refractory
JP2010038710A (en) * 2008-08-05 2010-02-18 Ihi Inspection & Instrumentation Co Ltd Method and device for calculating thickness with ultrasonic
JP2011141236A (en) * 2010-01-08 2011-07-21 Ihi Inspection & Instrumentation Co Ltd Thickness calculation method of attenuation material, and device therefor
JP2011158387A (en) * 2010-02-02 2011-08-18 Ihi Inspection & Instrumentation Co Ltd Ultrasonic inspection method and apparatus of the same
JP2012207270A (en) * 2011-03-30 2012-10-25 Nippon Steel Corp Method of measuring residual thickness of blast furnace stave
JP2019095244A (en) * 2017-11-20 2019-06-20 三菱日立パワーシステムズ株式会社 Inspection method for fireproof part, repair method for the fireproof part, and inspection device for the fireproof part
CN112226561A (en) * 2020-10-10 2021-01-15 鞍钢股份有限公司 Blast furnace lining monitoring method based on impact echo method
CN114514406A (en) * 2019-11-29 2022-05-17 安赛乐米塔尔公司 System and method for estimating both the thickness and the state of wear of refractory material in a metallurgical furnace
CN114806626A (en) * 2022-03-22 2022-07-29 江苏博颂能源科技有限公司 Large-angle detection module for pilot plant of catalytic cracking furnace
CN115323092A (en) * 2022-08-04 2022-11-11 华北理工大学 Blast furnace lining ablation monitoring device and monitoring method thereof
JP7371823B1 (en) 2022-06-24 2023-10-31 Jfeスチール株式会社 Refractory condition visualization method, refractory repair method, and refractory condition visualization device
WO2023249031A1 (en) * 2022-06-24 2023-12-28 Jfeスチール株式会社 Refractory material state visualization method, refractory material repair method, and refractory material state visualization device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100825614B1 (en) * 2001-12-21 2008-04-25 주식회사 포스코 An apparatus for measuring the deep depth of the dome brick
JP2006070056A (en) * 2004-08-31 2006-03-16 Central Res Inst Of Electric Power Ind Monitoring device of molten slag discharge situation
JP2009139075A (en) * 2007-01-29 2009-06-25 Mhi Environment Engineering Co Ltd Furnace bottom refractory erosion detection method and its device for melting furnace, and furnace bottom refractory erosion monitoring method using the detection method
JP2009150670A (en) * 2007-12-19 2009-07-09 Nippon Steel Corp Terminal for measuring thickness of refractory
JP2010038710A (en) * 2008-08-05 2010-02-18 Ihi Inspection & Instrumentation Co Ltd Method and device for calculating thickness with ultrasonic
JP2011141236A (en) * 2010-01-08 2011-07-21 Ihi Inspection & Instrumentation Co Ltd Thickness calculation method of attenuation material, and device therefor
JP2011158387A (en) * 2010-02-02 2011-08-18 Ihi Inspection & Instrumentation Co Ltd Ultrasonic inspection method and apparatus of the same
JP2012207270A (en) * 2011-03-30 2012-10-25 Nippon Steel Corp Method of measuring residual thickness of blast furnace stave
JP2019095244A (en) * 2017-11-20 2019-06-20 三菱日立パワーシステムズ株式会社 Inspection method for fireproof part, repair method for the fireproof part, and inspection device for the fireproof part
JP7040924B2 (en) 2017-11-20 2022-03-23 三菱重工業株式会社 Fireproof part inspection method, fireproof part repair method and fireproof part inspection device
CN114514406A (en) * 2019-11-29 2022-05-17 安赛乐米塔尔公司 System and method for estimating both the thickness and the state of wear of refractory material in a metallurgical furnace
CN112226561A (en) * 2020-10-10 2021-01-15 鞍钢股份有限公司 Blast furnace lining monitoring method based on impact echo method
CN114806626A (en) * 2022-03-22 2022-07-29 江苏博颂能源科技有限公司 Large-angle detection module for pilot plant of catalytic cracking furnace
CN114806626B (en) * 2022-03-22 2023-09-22 江苏博颂能源科技有限公司 Large-angle detection module for pilot plant of catalytic cracking furnace
JP7371823B1 (en) 2022-06-24 2023-10-31 Jfeスチール株式会社 Refractory condition visualization method, refractory repair method, and refractory condition visualization device
WO2023249031A1 (en) * 2022-06-24 2023-12-28 Jfeスチール株式会社 Refractory material state visualization method, refractory material repair method, and refractory material state visualization device
CN115323092A (en) * 2022-08-04 2022-11-11 华北理工大学 Blast furnace lining ablation monitoring device and monitoring method thereof
CN115323092B (en) * 2022-08-04 2023-09-12 华北理工大学 Blast furnace lining ablation monitoring device and monitoring method thereof

Similar Documents

Publication Publication Date Title
JP2001294918A (en) Method for measuring thickness of refractories in furnace
CA2515477C (en) Systems, methods and apparatus for non-disruptive and non-destructive inspection of metallurgical furnaces and similar vessels
NO335149B1 (en) Method of internal examination of pipes
JP2015535338A (en) Ultrasonic measuring apparatus and method
US20210018469A1 (en) Method of detecting crack propagation in wall of a metallurgical furnace and a detection unit
JP2009525471A (en) Method and apparatus for detecting the location of impulsive mechanical action on equipment parts
JP4553458B2 (en) Tunnel diagnostic apparatus and method
JP3039308B2 (en) Refractory thickness measurement method using elastic waves
JP5313117B2 (en) Corrosion inspection system, corrosion inspection apparatus, and corrosion inspection method
JP3379386B2 (en) Refractory wear evaluation method and apparatus, and refractory management method and apparatus
WO2006089414A1 (en) Systems, methods and apparatus for non-disruptive and non-destructive inspection of metallurgical furnaces and similar vessels
JP2011047763A (en) Ultrasonic diagnostic device
JP5600980B2 (en) Ultrasonic measurement method and ultrasonic measurement apparatus
JP3252724B2 (en) Refractory thickness measurement method and apparatus
JP2009014345A (en) Non-destructive diagnosing method of structure
JP2000337849A (en) Method and apparatus for measurement of thickness of refractories in furnace
JPH0346070B2 (en)
JP3070475B2 (en) Ultrasonic probe
JPS5827002A (en) Method for measuring thickness of refractory material
JP2006250595A (en) Ultrasonic measuring method and device
JP2023503558A (en) System and method for estimating both thickness and wear state of refractory materials in metallurgical furnaces
Sadri et al. Non-destructive testing (NDT) and inspection of the blast furnace refractory lining by stress wave propagation technique
JP3000863B2 (en) Refractory thickness measurement method
JP3707473B2 (en) Method and apparatus for ultrasonic inspection of steel pipes
JP2005010139A (en) Residual thickness measuring method and device for furnace refractory using elastic wave

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070703