JP2001294492A - Aluminum nitride sintered compact and method of producing the same - Google Patents

Aluminum nitride sintered compact and method of producing the same

Info

Publication number
JP2001294492A
JP2001294492A JP2000104490A JP2000104490A JP2001294492A JP 2001294492 A JP2001294492 A JP 2001294492A JP 2000104490 A JP2000104490 A JP 2000104490A JP 2000104490 A JP2000104490 A JP 2000104490A JP 2001294492 A JP2001294492 A JP 2001294492A
Authority
JP
Japan
Prior art keywords
sintered body
aluminum nitride
alumina
nitride sintered
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000104490A
Other languages
Japanese (ja)
Inventor
Shigeaki Tanaka
茂明 多中
Shinji Oda
晋司 小田
Tetsuo Wakamatsu
哲夫 若松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2000104490A priority Critical patent/JP2001294492A/en
Publication of JP2001294492A publication Critical patent/JP2001294492A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5031Alumina

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum nitride sintered compact excellent in mass- producibility, high in mechanical strength and reliability and further excellent in anti-plasma properties and to provide a method of producing the same. SOLUTION: The aluminum nitride sintered compact has alumina on its surface and the preferable aluminum nitride has θalumina layer having a thickness of 0.01 to 2.0 μm on its surface. The aluminum nitride sintered compact is obtained by heat-treating an aluminum nitride sintered compact having a relative density of >=97% at 800 to 1,000 deg.C under an oxygen atmosphere having a partial pressure of water vapor of <=1.0 kPa for 0.5 to 30 h.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高い機械的強度と
優れた耐プラズマ特性とを併せ有する窒化アルミニウム
焼結体に関する。
TECHNICAL FIELD The present invention relates to an aluminum nitride sintered body having both high mechanical strength and excellent plasma resistance.

【0002】[0002]

【従来の技術】窒化アルミニウムは、GTO(Gate Tur
n Off Thyristor)サイリスタやIGBT(Insulated G
ate Bipolar Transistor)等の半導体素子の高出力化に
よる発熱量の増大に伴なって、高い熱伝導率を有する性
質を利用した半導体実装用基板をはじめとした各種放熱
材料や絶縁材料として利用範囲が益々広がっている。
2. Description of the Related Art Aluminum nitride is known as GTO (Gate Turbo).
n Off Thyristor) Thyristor and IGBT (Insulated G)
ate Bipolar Transistor) and other semiconductor devices have increased the amount of heat generated, and the range of use as a variety of heat-radiating and insulating materials, including semiconductor mounting substrates that utilize the property of high thermal conductivity, has increased. It is spreading more and more.

【0003】このうち、特に高出力の半導体実装用基板
の用途では、半導体を実装するために窒化アルミニウム
焼結体に銅等の薄板を接合したり、実装基板を更に別の
ヒートシンク材(放熱フィンなどの金属部材)に接着す
るなど、窒化アルミニウム自身に種々の大きな応力が掛
かる中で使用されることが多い。また、最近では、プラ
ズマエッチング装置、プラズマアッシング装置、プラズ
マCVD装置等の半導体製造装置に用いられる部品材料
として、CF4、ClF3、NF3、Cl2、HBr等の各
種ハロゲンガスやハロゲン化合物ガス条件下でも使用さ
れるようになった。
[0003] Of these, particularly in the application of a high-output semiconductor mounting substrate, a thin plate of copper or the like is bonded to an aluminum nitride sintered body to mount a semiconductor, or a further heat sink material (radiation fins) is used. Aluminum nitride itself is often used while various large stresses are applied to the aluminum nitride itself, for example, by bonding to a metal member. Recently, various halogen gases and halogen compound gases such as CF 4 , ClF 3 , NF 3 , Cl 2 , and HBr have been used as component materials used in semiconductor manufacturing apparatuses such as a plasma etching apparatus, a plasma ashing apparatus, and a plasma CVD apparatus. It came to be used under conditions.

【0004】そのため、かかる用途においては、これま
での高熱伝導性に加えて、従来よりさらに高い機械的強
度や優れた耐プラズマ特性を有する窒化アルミニウム焼
結体が必要とされるようになった。
[0004] Therefore, in such applications, in addition to the conventional high thermal conductivity, an aluminum nitride sintered body having higher mechanical strength and superior plasma resistance has been required.

【0005】そこで、窒化アルミニウム焼結体の耐プラ
ズマ特性を向上させるため、例えば、特開平9−232
409号公報や特開平11−214359号公報には、
焼結体の表面に所定の厚みのアルミナ層よりなる保護層
を設ける方法が、特開平11−209182号公報に
は、焼結体の表面粗さを制御する方法が開示されてい
る。
In order to improve the plasma resistance of the aluminum nitride sintered body, for example, Japanese Patent Application Laid-Open No.
No. 409 and JP-A-11-214359,
As a method of providing a protective layer made of an alumina layer having a predetermined thickness on the surface of a sintered body, Japanese Patent Application Laid-Open No. H11-209182 discloses a method of controlling the surface roughness of the sintered body.

【0006】しかしながら、上記した特開平9−232
409号公報や特開平11−214359号公報の方法
では、昇降温の繰り返しで焼結体表面のアルミナ層と窒
化アルミニウム焼結体との熱膨張差により、該アルミナ
層にクラックが入りやすくなったり、或いはアルミナ層
が剥離しやすくなってしまうという傾向があり、該アル
ミナ層の密着性について改善の余地があった。また、特
開平11−209182号公報の方法では、焼結体の表
面研磨等が必要であり、加工コストがかかるという問題
を有していた。
However, the above-mentioned Japanese Patent Application Laid-Open No. 9-232
In the method disclosed in Japanese Patent Application Laid-Open No. 409/409 and Japanese Patent Application Laid-Open No. H11-214359, cracks are likely to occur in the alumina layer due to the difference in thermal expansion between the alumina layer on the surface of the sintered body and the aluminum nitride sintered body due to repeated temperature rise and fall. Alternatively, the alumina layer tends to peel off easily, and there is room for improvement in the adhesion of the alumina layer. In addition, the method disclosed in Japanese Patent Application Laid-Open No. 11-209182 requires a polishing of the surface of the sintered body, and has a problem that the processing cost is high.

【0007】また、上記問題を改善する方法として、例
えば、特開平3−228874号公報には、窒化アルミ
ニウム焼結体を水蒸気分圧1.0×10-2atm以下の
雰囲気において1050〜1150℃で0.1〜5時間
加熱処理する方法が開示されている。
As a method for solving the above problem, for example, Japanese Patent Application Laid-Open No. 3-228874 discloses a method in which an aluminum nitride sintered body is heated at a temperature of 1050 to 1150 ° C. in an atmosphere having a water vapor partial pressure of 1.0 × 10 −2 atm or less. For 0.1 to 5 hours.

【0008】しかしながら、特開平3−228874号
公報の方法では、アルミナ層と下地窒化アルミニウム結
晶粒子との密着性が不十分で、ハロゲンプラズマ処理の
温度変化によってアルミナ層が剥離するため耐プラズマ
性について改善する余地があり、さらに、機械的強度に
ついても曲げ強度が低く改善する余地があった。
However, according to the method disclosed in JP-A-3-228874, the adhesion between the alumina layer and the underlying aluminum nitride crystal grains is insufficient, and the alumina layer peels off due to a temperature change in the halogen plasma treatment. There is room for improvement, and there is also room for improvement in mechanical strength with low bending strength.

【0009】一方、窒化アルミニウム焼結体の機械的強
度を向上させるため、例えば、特開平4−50171号
公報には、焼成の昇温時の線収縮速度を制御する方法
が、特開平7−33531号公報には、焼結体の表面近
傍にアルミニウム酸窒化物層を形成させ粒界強化する方
法が、また、特開平7−172921号公報には、Si
成分、Al23等の添加により焼結体の粒度分布を制御
する方法が開示されている。
On the other hand, in order to improve the mechanical strength of an aluminum nitride sintered body, for example, Japanese Patent Application Laid-Open No. 4-50171 discloses a method for controlling the linear shrinkage rate at the time of raising the firing temperature. JP-A-33531 discloses a method of forming an aluminum oxynitride layer near the surface of a sintered body to strengthen grain boundaries, and JP-A-7-172921 discloses a method of forming a silicon nitride layer.
A method of controlling the particle size distribution of a sintered body by adding a component such as Al 2 O 3 is disclosed.

【0010】しかしながら、上記した特開平4−501
71号公報に記載されている昇温時の線収縮速度で制御
する方法では、熱膨張計を内装した焼成炉が必要である
等、特殊な装置が必要であり、実際の製造装置に適用す
るには困難が伴う。また、特開平7−33531号公報
に記載されている粒界強化方法では、アルミニウム酸窒
化物層を得る工程が複雑であり、特開平7−17292
1号公報に記載されている方法では、焼結体組織の1μ
mごとの粒子存在割合を厳密に制御しなければならず、
大きな焼結体や量産スケールでは制御するのが困難であ
るという問題点を有していた。
However, the above-mentioned Japanese Patent Application Laid-Open No. 4-501 is disclosed.
The method of controlling the linear shrinkage rate at the time of temperature increase described in Japanese Patent Publication No. 71 requires a special apparatus such as a baking furnace equipped with a thermal dilatometer and is applicable to an actual manufacturing apparatus. Comes with difficulties. In the grain boundary strengthening method described in JP-A-7-33531, the process of obtaining an aluminum oxynitride layer is complicated, and
In the method described in Japanese Patent Publication No.
strict control of the particle abundance per m
There was a problem that it was difficult to control it with a large sintered body or a mass production scale.

【0011】[0011]

【発明が解決しようとする課題】したがって、量産性に
優れ、機械的強度とその信頼性が高く、さらに耐プラズ
マ特性に優れた窒化アルミニウム焼結体が望まれてい
た。
Accordingly, there has been a demand for an aluminum nitride sintered body which is excellent in mass productivity, has high mechanical strength and high reliability, and has excellent plasma resistance.

【0012】[0012]

【課題を解決するための手段】本発明者らが検討を重ね
た結果、上記した方法で焼結体表層に形成されるアルミ
ナはα−アルミナであり、そのため、耐プラズマ性や曲
げ強度が不十分であったことが判明した。
As a result of repeated studies by the present inventors, the alumina formed on the surface layer of the sintered body by the above-described method is α-alumina, and therefore, has poor plasma resistance and bending strength. It turned out to be enough.

【0013】そして、上記課題を解決すべく鋭意研究を
行なってきた結果、窒化アルミニウム焼結体の表層に存
在するアルミナを、θ−アルミナとすることにより、窒
化アルミニウム焼結体の機械的強度が著しく向上し、し
かも耐プラズマ特性に優れることを見出し、本発明を提
案するに至った。
As a result of intensive studies to solve the above-mentioned problems, the mechanical strength of the aluminum nitride sintered body is reduced by changing the alumina existing in the surface layer of the aluminum nitride sintered body to θ-alumina. The present inventors have found that they have remarkably improved and have excellent plasma resistance, and have proposed the present invention.

【0014】即ち、本発明は、焼結体の表層にアルミナ
が存在しており、該アルミナが実質的にθ−アルミナで
構成されていることを特徴とする窒化アルミニウム焼結
体である。
That is, the present invention is an aluminum nitride sintered body characterized in that alumina is present on the surface layer of the sintered body, and the alumina is substantially composed of θ-alumina.

【0015】[0015]

【発明の実施の形態】本発明の窒化アルミニウム焼結体
は、該焼結体の表層にアルミナが存在しており、かつ、
該アルミナが実質的にθ−アルミナで構成されているこ
とが必要である。
BEST MODE FOR CARRYING OUT THE INVENTION The aluminum nitride sintered body of the present invention has alumina in the surface layer of the sintered body, and
It is necessary that the alumina is substantially composed of θ-alumina.

【0016】上記とは逆に、表層に存在しているアルミ
ナが、θ−アルミナと異なるα−アルミナ等のアルミナ
で構成されている場合、本発明の効果を得ることができ
ないので好ましくない。
On the contrary, when the alumina present in the surface layer is composed of alumina such as α-alumina different from θ-alumina, the effects of the present invention cannot be obtained, which is not preferable.

【0017】なお、本発明において、実質的にθ−アル
ミナで構成されている状態とは、表層に存在しているア
ルミナの99%以上、好ましくは99.9%以上がθ−
アルミナで構成されている状態をいう。
In the present invention, the state substantially composed of θ-alumina means that 99% or more, preferably 99.9% or more of the alumina present in the surface layer is θ-alumina.
A state composed of alumina.

【0018】本発明において、θ−アルミナは、どのよ
うな形態で該焼結体の表層に存在してもよいが、該焼結
体の機械的強度、耐プラズマ特性を勘案すると、該焼結
体の一部として存在していることが好ましく、また、該
焼結体の表面を被覆している状態が好ましい。
In the present invention, θ-alumina may be present on the surface layer of the sintered body in any form. However, considering the mechanical strength and plasma resistance of the sintered body, It is preferably present as a part of the sintered body, and is preferably in a state of covering the surface of the sintered body.

【0019】上記焼結体の表層に存在しているθ−アル
ミナの量は、特に限定されないが、機械的強度や耐プラ
ズマ特性を勘案すると、該焼結体の表層の90%以上、
より好ましくは95%以上であることが好適である。
The amount of the θ-alumina present in the surface layer of the sintered body is not particularly limited, but considering mechanical strength and plasma resistance, it is 90% or more of the surface layer of the sintered body.
More preferably, it is 95% or more.

【0020】また、本発明において、上記θ−アルミナ
が存在している層の厚さは、該焼結体の機械的強度や耐
プラズマ特性を勘案すると、0.01〜2.0μmであ
ることが好ましい。0.01μm未満の場合は、曲げ強
度が向上せず、しかも耐プラズマ層としての機能に乏し
く各種プラズマによる窒化アルミニウム結晶粒子との反
応や腐食が進行するため好ましくない。また、2.0μ
mを超える場合は、曲げ強度が低下してθ−アルミナ層
が剥離しやすくなるため、結果的に耐プラズマ特性を低
下させることになるため好ましくない。上記範囲の中で
も、上記θ−アルミナが存在している層の厚さが、0.
01〜1.5μmの場合、曲げ強度が著しく向上するた
め好適である。
In the present invention, the thickness of the layer in which the above-mentioned θ-alumina exists is 0.01 to 2.0 μm in consideration of the mechanical strength and plasma resistance of the sintered body. Is preferred. If the thickness is less than 0.01 μm, the bending strength is not improved, and furthermore, the function as a plasma-resistant layer is poor, and the reaction with various types of plasma with aluminum nitride crystal particles and corrosion progress, which is not preferable. Also, 2.0μ
If it exceeds m, the flexural strength is reduced and the θ-alumina layer is easily peeled off, and as a result, the plasma resistance is undesirably reduced. Within the above range, the thickness of the layer in which the above-mentioned θ-alumina exists is 0.1 mm.
When the thickness is from 0.01 to 1.5 μm, the bending strength is significantly improved, which is preferable.

【0021】なお、本発明におけるθ−アルミナは、該
焼結体表面の薄膜X線回析により同定した。また、上記
θ−アルミナが存在している層の厚さは、該焼結体破断
面の表面近傍の任意の5点をSEM観察し、それぞれの
SEM写真で該層の厚さを求め、その平均値を測定値と
した。
Incidentally, the θ-alumina in the present invention was identified by thin-film X-ray diffraction on the surface of the sintered body. Further, the thickness of the layer in which the above-mentioned θ-alumina is present is obtained by observing SEM at any five points in the vicinity of the surface of the fractured surface of the sintered body and obtaining the thickness of the layer from each SEM photograph. The average value was taken as the measured value.

【0022】本発明の窒化アルミニウム焼結体は、表面
に存在しているアルミナがθ−アルミナで構成されてい
れば特に制限されないが、以下の性質を有していること
が、優れた機械的強度と耐プラズマ特性を勘案すると好
ましい。
The aluminum nitride sintered body of the present invention is not particularly limited as long as the alumina present on the surface is composed of θ-alumina. It is preferable to consider the strength and the plasma resistance.

【0023】すなわち、本発明の窒化アルミニウム焼結
体の相対密度は、機械的特性を勘案すると97%以上で
あることが好ましい。なお、ここで相対密度とは、焼結
体を構成する窒化アルミニウムおよび各種添加物のそれ
ぞれの理論密度から算出される焼結体の理論密度に対す
る該焼結体の実測密度の比をいう。
That is, the relative density of the aluminum nitride sintered body of the present invention is preferably 97% or more in consideration of mechanical properties. Here, the relative density means the ratio of the measured density of the sintered body to the theoretical density of the sintered body calculated from the respective theoretical densities of aluminum nitride and various additives constituting the sintered body.

【0024】また、本発明の窒化アルミニウム焼結体の
窒化アルミニウム結晶粒子の平均粒径は、焼結体の曲げ
強度を勘案すると、15μm以下、さらに10μm以下
が好ましい。
The average particle size of the aluminum nitride crystal particles of the aluminum nitride sintered body of the present invention is preferably 15 μm or less, more preferably 10 μm or less, in consideration of the bending strength of the sintered body.

【0025】さらに、本発明の窒化アルミニウム焼結体
の曲げ強度は、耐プラズマ特性を勘案すると400MP
a以上であることが好ましい。
Further, the bending strength of the aluminum nitride sintered body of the present invention is 400 MPa in consideration of the plasma resistance.
It is preferably at least a.

【0026】本発明の窒化アルミニウム焼結体の製造方
法は、本発明で規定する性質を有するように適宜条件を
選択して製造すればよく、その中でも以下に示す方法を
採用することにより、容易に本発明で規定する性質を有
する窒化アルミニウム焼結体を得ることができる。
The method for producing the aluminum nitride sintered body of the present invention may be carried out by selecting appropriate conditions so as to have the properties specified in the present invention, and among them, the following method is employed to facilitate the production. Thus, an aluminum nitride sintered body having the properties defined in the present invention can be obtained.

【0027】すなわち、酸化処理がされていない相対密
度が97%以上の窒化アルミニウム焼結体(以下、未処
理窒化アルミニウム焼結体という)を、特定の条件下で
処理し、表層に存在する窒化アルミニウムを酸化してθ
−アルミナにする方法である。
That is, a non-oxidized aluminum nitride sintered body having a relative density of 97% or more (hereinafter, referred to as an untreated aluminum nitride sintered body) is treated under a specific condition to obtain a nitride layer existing on the surface layer. Oxidize aluminum to θ
-A method of forming alumina.

【0028】本発明に使用する未処理窒化アルミニウム
焼結体は、相対密度が97%以上であれば、特に制限さ
れるものではなく、公知の未処理窒化アルミニウム焼結
体を採用することができる。上記未処理窒化アルミニウ
ム焼結体を用いることにより、十分に緻密化されて焼結
体組織にマイクロポアが残っていないため機械的強度が
高く、かつθ−アルミナの形成が容易となる。
The untreated aluminum nitride sintered body used in the present invention is not particularly limited as long as the relative density is 97% or more, and a known untreated aluminum nitride sintered body can be employed. . By using the untreated aluminum nitride sintered body, it is sufficiently densified and no micropores remain in the sintered body structure, so that the mechanical strength is high and the formation of θ-alumina is facilitated.

【0029】上記未処理窒化アルミニウム焼結体は、窒
化アルミニウム単独又は窒化アルミニウムを主成分と
し、各種添加物、例えば、CaOやMgO、SrOなど
のアルカリ土類化合物やY23、LaO3、CeO3、H
oO3、Yb23、Gd23、Nb23、Sm23、D
23等の希土類化合物の焼結助剤やSiC、Zr
2、TiO2、Si34等を含有するものであってもよ
い。
The untreated aluminum nitride sintered body contains aluminum nitride alone or aluminum nitride as a main component, and various additives such as alkaline earth compounds such as CaO, MgO, and SrO, Y 2 O 3 , LaO 3 , CeO 3 , H
oO 3 , Yb 2 O 3 , Gd 2 O 3 , Nb 2 O 3 , Sm 2 O 3 , D
sintering aids for rare earth compounds such as y 2 O 3 , SiC, Zr
It may contain O 2 , TiO 2 , Si 3 N 4 and the like.

【0030】上記相対密度が97%以上である未処理窒
化アルミニウム焼結体においては、焼結助剤等により生
成する粒界相の濃度が9.0重量%以下であることが望
ましい。粒界相濃度が9.0重量%以下とすることによ
り、該焼結体の粒界相結晶粒子の集合体の生成などがな
いため、曲げ強度が低下せず、該焼結体の粒界相結晶粒
子がθ−アルミナの形成を阻害することがなくなる。
In the untreated aluminum nitride sintered body having a relative density of 97% or more, the concentration of a grain boundary phase generated by a sintering aid or the like is desirably 9.0% by weight or less. When the concentration of the grain boundary phase is 9.0% by weight or less, there is no generation of aggregates of the grain boundary phase crystal particles of the sintered body, and therefore, the bending strength is not reduced, and the grain boundary of the sintered body is not reduced. The phase crystal particles do not hinder the formation of θ-alumina.

【0031】また、上記相対密度が97%以上である未
処理窒化アルミニウム焼結体の窒化アルミニウム結晶粒
子の平均粒径は、特に制限されないが、焼結体の曲げ強
度を勘案すると、15μm以下、さらに10μm以下が
好ましい。
The average particle size of the aluminum nitride crystal particles of the untreated aluminum nitride sintered body having the relative density of 97% or more is not particularly limited. However, taking the bending strength of the sintered body into consideration, the average particle diameter is 15 μm or less. Further, the thickness is preferably 10 μm or less.

【0032】また、未処理窒化アルミニウム焼結体を製
造する方法として、窒化アルミニウム粉末を顆粒に造粒
した後、乾式プレスにより成形してプレス成形体を得、
焼成する方法やホットプレス法、或いは窒化アルミニウ
ム粉末を湿式成形してグリーンシートを得、その後、所
定の形状に打ち抜き加工した後、これを焼成する方法等
の公知の方法が広く採用される。また、上記焼成後、表
面研削等をおこなってもよい。
Further, as a method for producing an untreated aluminum nitride sintered body, an aluminum nitride powder is granulated into granules and then molded by a dry press to obtain a pressed molded body.
Known methods such as a firing method, a hot press method, or a method of wet molding an aluminum nitride powder to obtain a green sheet, punching the green sheet into a predetermined shape, and firing the green sheet are widely adopted. After the firing, surface grinding or the like may be performed.

【0033】本発明の窒化アルミニウム焼結体を好適に
得るためには、上記未処理窒化アルミニウム焼結体を水
蒸気分圧が1.0kPa以下の酸素雰囲気下、800〜
1000℃の温度で、0.5〜30時間処理することが
重要である。
In order to suitably obtain the aluminum nitride sintered body of the present invention, the above-mentioned untreated aluminum nitride sintered body is placed in an oxygen atmosphere having a steam partial pressure of 1.0 kPa or less for 800 to 800 kPa.
It is important to treat at a temperature of 1000 ° C. for 0.5 to 30 hours.

【0034】上記酸素雰囲気は、酸素が含まれている状
態であれば特に限定されず、空気でもかまわない。上記
酸素雰囲気の水蒸気分圧は1.0kPa以下であれば特
に限定されず、その範囲内で適宜設定すればよく、通常
は、0.1〜0.6kPaの範囲が好適に採用される。
上記酸素雰囲気の水蒸気分圧が1.0kPaより高い場
合は、緻密で密着性の良いθ−アルミナが得られないた
め好ましくない。
The oxygen atmosphere is not particularly limited as long as it contains oxygen, and may be air. The water vapor partial pressure of the oxygen atmosphere is not particularly limited as long as it is 1.0 kPa or less, and may be appropriately set within the range. Usually, a range of 0.1 to 0.6 kPa is suitably adopted.
When the partial pressure of water vapor in the oxygen atmosphere is higher than 1.0 kPa, it is not preferable because it is impossible to obtain dense and highly adherent θ-alumina.

【0035】また、上記処理温度が800℃より低い場
合は、θ−アルミナが形成されず、曲げ強度や耐プラズ
マ特性が改善されず好ましくない。1000℃より高い
場合は、形成したθ−アルミナがさらにα−アルミナに
変態してしまうことにより、周囲の窒化アルミニウム結
晶粒子による拘束力が低下して、曲げ強度の向上が小さ
くなり、さらに、窒化アルミニウム結晶粒子との密着性
が悪くなるため好ましくない。
On the other hand, if the treatment temperature is lower than 800 ° C., θ-alumina is not formed, and the bending strength and plasma resistance are not improved, which is not preferable. If the temperature is higher than 1000 ° C., the formed θ-alumina is further transformed into α-alumina, so that the binding force of the surrounding aluminum nitride crystal particles is reduced, and the improvement in bending strength is reduced. It is not preferable because adhesion to aluminum crystal particles is deteriorated.

【0036】さらに、上記処理時間が0.5時間より短
い場合は、θ−アルミナの形成が不十分で、曲げ強度や
耐プラズマ特性が改善されず好ましくない。一方、30
時間より長くすると、θ−アルミナが存在する層が厚く
なりすぎて、逆に窒化アルミニウム結晶粒子による拘束
力が低下するため、曲げ強度の向上が小さくなり、さら
に、窒化アルミニウム結晶粒子との密着性が悪くなるた
め好ましくない。
If the above treatment time is shorter than 0.5 hour, the formation of θ-alumina is insufficient, and the bending strength and the plasma resistance are not improved, which is not preferable. On the other hand, 30
If the time is longer than this, the layer in which the θ-alumina is present becomes too thick, and conversely, the binding force of the aluminum nitride crystal particles is reduced, so that the improvement in bending strength is reduced. Is not preferred because it becomes worse.

【0037】上記した条件の中でも、酸素雰囲気の水蒸
気分圧が0.1〜0.6kPa、処理温度が830〜9
70℃、処理時間が1〜20時間であることが、機械的
強度と耐プラズマ特性の信頼性を勘案すると、さらに好
適である。また、上記処理の雰囲気は、空気が好適に採
用される。
Among the above conditions, the partial pressure of water vapor in the oxygen atmosphere is 0.1 to 0.6 kPa, and the processing temperature is 830 to 9
It is more preferable that the treatment time is 70 ° C. and the treatment time is 1 to 20 hours in consideration of the mechanical strength and the reliability of the plasma resistance. The atmosphere of the above treatment is preferably air.

【0038】さらに、上記処理による窒化アルミニウム
焼結体の重量増加が、0.005〜0.080mg/c
2の範囲にあることが、該焼結体の熱伝導率の低下を
ほとんど生じさせず、かつ、曲げ強度が向上し、しかも
効果的な耐プラズマ特性を付与できるため好適である。
Further, the weight increase of the aluminum nitride sintered body due to the above treatment is 0.005 to 0.080 mg / c.
The range of m 2 is preferable because the thermal conductivity of the sintered body hardly decreases, the bending strength is improved, and effective plasma resistance can be imparted.

【0039】上記した処理雰囲気や温度、時間は、所定
の厚みのθ−アルミナが得られればよく、処理する未処
理窒化アルミニウム焼結体の表面粗さ等の表面状態に応
じて、上記範囲内で適宜調節すればよい。
The above-mentioned treatment atmosphere, temperature and time may be within the above ranges depending on the surface condition such as the surface roughness of the untreated aluminum nitride sintered body to be treated as long as θ-alumina having a predetermined thickness is obtained. May be adjusted appropriately.

【0040】[0040]

【実施例】本発明をさらに具体的に説明するために、以
下に実施例及び比較例を挙げるが、本発明はこれらの実
施例に限定されるものではない。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

【0041】尚、以下の実施例及び比較例における各種
の物性の測定は次の方法により行なった。
In the following Examples and Comparative Examples, various physical properties were measured by the following methods.

【0042】1)焼結体相対密度 東洋精機製「高精度比重計D−H」を使用して、アルキ
メデス法により求めた焼結体密度と理論焼結体密度の相
対値を相対密度とした。
1) Relative Density of Sintered Body Using a “high-precision hydrometer DH” manufactured by Toyo Seiki, the relative density between the sintered body density and the theoretical sintered body density obtained by the Archimedes method was defined as the relative density. .

【0043】2)曲げ強度 JIS R1601に準じて、クロスヘッド速度0.5
mm/分、スパン30mmで3点曲げ強度測定を行なっ
た。試験片は、あらかじめ焼結体を30×4×3mmに
切断、平面研削したものをそれぞれの熱処理条件で処理
して作製した。曲げ強度は、5サンプルの平均値を測定
値とした。
2) Bending strength According to JIS R1601, a crosshead speed of 0.5
The three-point bending strength was measured at a mm / min and a span of 30 mm. The test piece was prepared by cutting a sintered body in advance to 30 × 4 × 3 mm and grinding the surface under the respective heat treatment conditions. The bending strength was determined as an average value of five samples.

【0044】3)熱伝導率 理学電気(株)製の熱定数測定装置PS−7を使用し
て、レーザーフラッシュ法により測定した。厚み補正は
検量線により行なった。
3) Thermal conductivity The thermal conductivity was measured by a laser flash method using a thermal constant measuring apparatus PS-7 manufactured by Rigaku Corporation. Thickness correction was performed using a calibration curve.

【0045】4)焼結体の表層中のアルミナの同定 理学電気(株)製「RINT−1200」を用い、薄膜
X線回析により、以下の条件で表層中のアルミナの同定
を行なった。 X線源:Cu−Kα 40kV−50mA 2θ走査範囲:30°〜140° 2θ走査速度:1°/分 2θ走査ステップ幅:0.05° θ固定角度:1° 発散スリット:0.2mm 高さ制限スリット:5mm 受光スリット:5mm モノクロメータ:Graphaite(002) モノクロメータ受光スリット:0.8mm 測定回数:2回/試料。
4) Identification of Alumina in Surface Layer of Sintered Body Using "RINT-1200" manufactured by Rigaku Corporation, the alumina in the surface layer was identified under the following conditions by thin-film X-ray diffraction. X-ray source: Cu-Kα 40 kV-50 mA 2θ scanning range: 30 ° to 140 ° 2θ scanning speed: 1 ° / min 2θ scanning step width: 0.05 ° θ fixed angle: 1 ° divergence slit: 0.2 mm height Limiting slit: 5 mm Light receiving slit: 5 mm Monochromator: Graphite (002) Monochromator light receiving slit: 0.8 mm Number of measurements: 2 times / sample.

【0046】5)焼結体の表層の厚み測定 日本電子(株)製「JSM−5400」を用いて、焼結
体破断面の任意の5ヶ所を倍率10000倍でSEM観
察し、SEM写真から、アルミナが存在している層の厚
みを測定し、その平均値を厚み測定値とした。
5) Measurement of Surface Layer Thickness of Sintered Body Using “JSM-5400” manufactured by JEOL Co., Ltd., SEM observation was performed on any five locations of the fractured surface of the sintered body at a magnification of 10,000 times from SEM photograph. The thickness of the layer in which alumina was present was measured, and the average was taken as the measured thickness.

【0047】6)焼結体中の窒化アルミニウム結晶粒子
の測定 上記方法により得られたSEM写真から、窒化アルミニ
ウム結晶粒子を測定し、その平均値を平均粒子径とし
た。
6) Measurement of Aluminum Nitride Crystal Particles in Sintered Body Aluminum nitride crystal particles were measured from the SEM photograph obtained by the above method, and the average value was defined as the average particle diameter.

【0048】7)焼結体重量変化 熱処理前後の焼結体重量を電子天秤で測定した。熱処理
後の焼結体重量から熱処理前の焼結体重量を減し、その
重量差を焼結体表面積で徐して単位面積あたりの焼結体
重量変化を求めた。
7) Change in Weight of Sintered Body The weight of the sintered body before and after the heat treatment was measured with an electronic balance. The weight of the sintered body before the heat treatment was reduced from the weight of the sintered body after the heat treatment, and the difference in weight was gradually reduced by the surface area of the sintered body to determine the change in the weight of the sintered body per unit area.

【0049】8)プラズマ処理後の焼結体表面の元素分
析 日本電子(株)製「JXA−8800M」X線マイクロ
アナリシス(EPMA)によって焼結体表面を元素分析
し、F相対強度(FとAlのX線強度比)を求めた。
8) Elemental analysis of sintered body surface after plasma treatment Elemental analysis of sintered body surface by X-ray microanalysis (EPMA) "JXA-8800M" manufactured by JEOL Ltd. X-ray intensity ratio of Al) was obtained.

【0050】実施例1 内容積が10Lのナイロン製ポットにアルミナ製ボール
を入れ、次いで、平均粒径1.5μm、比表面積2.6
2/g、酸素濃度0.80重量%の窒化アルミニウム
粉末100重量部、表面活性剤としてヘキサグリセリン
モノオレート0.5重量部、n−ブチルメタクリレート
3重量部、トルエン溶媒100重量部を投入して、24
時間ボールミル混合した後、白色の泥しょうを得た。得
られた泥しょうをスプレードライヤー法により造粒し、
φ70〜100μmの大きさの窒化アルミニウム顆粒を
作製した。
Example 1 A ball made of alumina was placed in a nylon pot having an internal volume of 10 L, and then an average particle size of 1.5 μm and a specific surface area of 2.6.
100 parts by weight of aluminum nitride powder having m 2 / g and an oxygen concentration of 0.80% by weight, 0.5 parts by weight of hexaglycerin monooleate as a surfactant, 3 parts by weight of n-butyl methacrylate, and 100 parts by weight of a toluene solvent were added. And 24
After ball milling for hours, a white slurry was obtained. Granulate the obtained slurry by spray dryer method,
Aluminum nitride granules having a size of φ70 to 100 μm were produced.

【0051】この顆粒を1.0t/cm2の成形圧力で
プレス成形し、□40mm、厚さ4mmのプレス体を得
た。その後、空気中600℃で5時間脱脂し、次いで、
内面に窒化ホウ素を塗布したカーボン製るつぼに入れ、
窒素雰囲気中1850℃で8時間焼成し、未処理焼結体
を得た。その後、未処理焼結体は、□20mm、厚さ3
mmに切断、平面研削した。未処理焼結体の相対密度は
99.0%、曲げ強度は380MPa、熱伝導率は10
0W/m・Kで、表面粗さRaは0.40μmであっ
た。また未処理焼結体中の窒化アルミニウム粒子の平均
粒径は8.8μmであった。
The granules were press-molded at a molding pressure of 1.0 t / cm 2 to obtain a pressed body having a width of 40 mm and a thickness of 4 mm. Then, degreasing in air at 600 ° C. for 5 hours,
Put in a carbon crucible coated with boron nitride on the inner surface,
It was baked at 1850 ° C. for 8 hours in a nitrogen atmosphere to obtain an untreated sintered body. Thereafter, the unprocessed sintered body is □ 20 mm, thickness 3
mm, and ground. The relative density of the untreated sintered body is 99.0%, the bending strength is 380 MPa, and the thermal conductivity is 10
At 0 W / m · K, the surface roughness Ra was 0.40 μm. The average particle size of the aluminum nitride particles in the untreated sintered body was 8.8 μm.

【0052】更に、上記の未処理焼結体を、水蒸気分圧
0.61kPa(露点0℃)の大気中、950℃で15
時間熱処理した。得られた処理後の焼結体の、曲げ強
度、熱伝導率を測定した。また、処理後の焼結体の相対
密度は99.0%であり、焼結体中の窒化アルミニウム
粒子の平均粒子径は8.8μmであった。
Further, the above-mentioned untreated sintered body was heated at 950 ° C. for 15 minutes in air at a steam partial pressure of 0.61 kPa (dew point: 0 ° C.).
Heat treated for hours. The bending strength and thermal conductivity of the obtained sintered body were measured. The relative density of the sintered body after the treatment was 99.0%, and the average particle size of the aluminum nitride particles in the sintered body was 8.8 μm.

【0053】処理後の焼結体表層を、薄膜X線回折で同
定し、さらに破断面のSEM観察により、その厚みを測
定した。表層の99.9%以上がアルミナであり、該ア
ルミナの全てがθ−アルミナで構成されていた。また、
得られた焼結体を、サセプター上に並べ、W熱CVD装
置を用い475℃でWを成膜し、次いでClF3ガスを
250℃、圧力20Torrの条件下で12分間W除去
処理を行なった。このCVD成膜と除去処理を40回繰
り返し、焼結体表層や反応生成物であるフッ化膜(Al
3)の剥がれの有無及びEPMAによるF相対強度
(FとAlのX線強度比)を調べた。測定結果を表1に
示した。
The surface layer of the sintered body after the treatment was identified by thin-film X-ray diffraction, and the thickness was measured by SEM observation of the fractured surface. 99.9% or more of the surface layer was alumina, and all of the alumina was composed of θ-alumina. Also,
The obtained sintered bodies were arranged on a susceptor, W was deposited at 475 ° C. using a W thermal CVD apparatus, and then W was removed for 12 minutes at 250 ° C. and a pressure of 20 Torr with ClF 3 gas. . This CVD film formation and removal treatment was repeated 40 times, and the surface layer of the sintered body and the fluoride film (Al
The presence or absence of peeling of F 3 ) and the relative intensity of F by EPMA (X-ray intensity ratio of F and Al) were examined. Table 1 shows the measurement results.

【0054】実施例2 内容積が10Lのナイロン製ポットにアルミナ製ボール
を入れ、次いで、平均粒径1.5μm、比表面積2.6
2/g、酸素濃度0.80重量%の窒化アルミニウム
粉末100重量部、焼結助剤として酸化イットリム4重
量部、表面活性剤としてヘキサグリセリンモノオレート
0.5重量部、n−ブチルメタクリレート3重量部、ト
ルエン溶媒100重量部を投入して、24時間ボールミ
ル混合した後、白色の泥しょうを得た。得られた泥しょ
うをスプレードライヤー法により造粒し、φ70〜10
0μmの大きさの窒化アルミニウム顆粒を作製した。
Example 2 An alumina ball was placed in a nylon pot having an internal volume of 10 L, and then an average particle size of 1.5 μm and a specific surface area of 2.6.
m 2 / g, 100 parts by weight of aluminum nitride powder having an oxygen concentration of 0.80% by weight, 4 parts by weight of yttrium oxide as a sintering aid, 0.5 parts by weight of hexaglycerin monooleate as a surfactant, n-butyl methacrylate 3 After adding 100 parts by weight of a toluene solvent and 100 parts by weight of a toluene solvent and mixing with a ball mill for 24 hours, a white slurry was obtained. The obtained slurry is granulated by a spray dryer method,
Aluminum nitride granules having a size of 0 μm were prepared.

【0055】この顆粒を1.0t/cm2の成形圧力で
プレス成形し、□40mm、厚さ4mmのプレス体を得
た。その後、空気中600℃で5時間脱脂し、次いで、
内面に窒化ホウ素を塗布したカーボン製るつぼに入れ、
窒素雰囲気中1820℃で5時間焼成し、未処理焼結体
を得た。その後、未処理焼結体は、□20mm、厚さ3
mmに切断、平面研削した。未処理焼結体の相対密度が
99.5%、曲げ強度が440MPa、熱伝導率が18
0W/m・Kで、表面粗さRaが0.40μmであっ
た。また未処理焼結体中の窒化アルミニウム粒子の平均
粒径は3.4μmであった。
The granules were press-molded at a molding pressure of 1.0 t / cm 2 to obtain a pressed body having a width of 40 mm and a thickness of 4 mm. Then, degreasing in air at 600 ° C. for 5 hours,
Put in a carbon crucible coated with boron nitride on the inner surface,
It was baked at 1820 ° C. for 5 hours in a nitrogen atmosphere to obtain an untreated sintered body. Thereafter, the unprocessed sintered body is □ 20 mm, thickness 3
mm, and ground. The relative density of the untreated sintered body is 99.5%, the bending strength is 440 MPa, and the thermal conductivity is 18
At 0 W / m · K, the surface roughness Ra was 0.40 μm. The average particle size of the aluminum nitride particles in the untreated sintered body was 3.4 μm.

【0056】更に、上記の未処理焼結体を、水蒸気分圧
0.61kPa(露点0℃)の大気中、950℃で15
時間熱処理した。得られた処理後の焼結体の、曲げ強
度、熱伝導率を測定した。また、処理後の焼結体の相対
密度は99.5%であり、焼結体中の窒化アルミニウム
粒子の平均粒子径は3.4μmであった。
Further, the above-mentioned untreated sintered body was heated at 950 ° C. for 15 minutes in an atmosphere of a steam partial pressure of 0.61 kPa (dew point: 0 ° C.).
Heat treated for hours. The bending strength and thermal conductivity of the obtained sintered body were measured. The relative density of the sintered body after the treatment was 99.5%, and the average particle size of the aluminum nitride particles in the sintered body was 3.4 μm.

【0057】処理後の焼結体表層を、薄膜X線回折で同
定し、さらに破断面のSEM観察により、その厚みを測
定した。表層の96%がアルミナであり、該アルミナの
全てがθ−アルミナで構成されていた。また、得られた
焼結体を、サセプター上に並べ、W熱CVD装置を用い
475℃でWを成膜し、次いでClF3ガスを250
℃、圧力20Torrの条件下で12分間W除去処理を
行なった。このCVD成膜と除去処理を40回繰り返
し、焼結体表層や反応生成物であるフッ化膜(Al
3)の剥がれの有無及びEPMAによるF相対強度
(FとAlのX線強度比)を調べた。表層の96%がア
ルミナであり、該アルミナの全てがθ−アルミナで構成
されていた。測定結果を表1に示した。
The surface layer of the sintered body after the treatment was identified by thin film X-ray diffraction, and its thickness was measured by SEM observation of the fractured surface. 96% of the surface layer was alumina, and all of the alumina was composed of θ-alumina. Further, the obtained sintered body, arranged on the susceptor, thereby forming a W at 475 ° C. using a W thermal CVD device, then the ClF 3 gas 250
A W removal treatment was performed for 12 minutes at a temperature of 20 ° C. and a pressure of 20 Torr. This CVD film formation and removal treatment was repeated 40 times, and the surface layer of the sintered body and the fluoride film (Al
The presence or absence of peeling of F 3 ) and the relative intensity of F by EPMA (X-ray intensity ratio of F and Al) were examined. 96% of the surface layer was alumina, and all of the alumina was composed of θ-alumina. Table 1 shows the measurement results.

【0058】実施例3〜5 熱処理温度及び時間を変更したこと以外は、実施例1と
同様にして焼結体を得、評価を行なった。処理後の焼結
体の相対密度はいずれも99.0%であり、焼結体中の
窒化アルミニウム粒子の平均粒子径はいずれも8.8μ
mであった。また、実施例3、4では処理後の焼結体表
層の99%が、実施例5では処理後の焼結体表層の9
9.9%以上がアルミナであり、該アルミナの全てがθ
−アルミナで構成されていた。測定結果を表1に示し
た。
Examples 3 to 5 A sintered body was obtained and evaluated in the same manner as in Example 1 except that the heat treatment temperature and time were changed. The relative density of each of the sintered bodies after the treatment was 99.0%, and the average particle diameter of the aluminum nitride particles in each of the sintered bodies was 8.8 μm.
m. In Examples 3 and 4, 99% of the surface layer of the sintered body after the treatment was used. In Example 5, 9% of the surface layer of the sintered body after the treatment was used.
9.9% or more is alumina, and all of the alumina is θ
-Consisted of alumina. Table 1 shows the measurement results.

【0059】実施例6 焼成温度を1830℃に変更して作製した、相対密度9
7.5%の未処理焼結体(曲げ強度350MPa、熱伝
導率90W/m・K、焼結体中の窒化アルミニウム結晶
平均粒子径7.6μm)を用いたこと以外は、実施例1
と同様にして熱処理し焼結体を得、評価を行なった。処
理後の焼結体の相対密度は97.599.0%であり、
焼結体中の窒化アルミニウム粒子の平均粒子径は7.6
μmであった。また、処理後の焼結体表層の99.9%
以上がアルミナであり、該アルミナの全てがθ−アルミ
ナで構成されていた。測定結果を表1に示した。
Example 6 A relative density of 9 was prepared by changing the firing temperature to 1830 ° C.
Example 1 except that a 7.5% untreated sintered body (bending strength: 350 MPa, thermal conductivity: 90 W / m · K, average particle diameter of aluminum nitride crystal in the sintered body: 7.6 μm) was used.
Heat treatment was performed in the same manner as described above to obtain a sintered body, which was evaluated. The relative density of the sintered body after the treatment is 97.599.0%,
The average particle size of the aluminum nitride particles in the sintered body is 7.6
μm. 99.9% of the surface layer of the sintered body after the treatment
The above was alumina, and all of the alumina was composed of θ-alumina. Table 1 shows the measurement results.

【0060】比較例1 焼結体の熱処理温度と時間を1150℃、1時間に変更
したこと以外は、実施例1と同様にして焼結体を得、評
価を行なった。表層がα−アルミナで構成されているた
め密着性が十分でなく、成膜−除去処理を5回繰り返し
た時点で焼結体表面の酸化膜が剥がれた。測定結果を表
1に示した。
Comparative Example 1 A sintered body was obtained and evaluated in the same manner as in Example 1, except that the heat treatment temperature and time of the sintered body were changed to 1150 ° C. and 1 hour. Since the surface layer was composed of α-alumina, the adhesion was not sufficient, and the oxide film on the surface of the sintered body was peeled off when the film formation / removal treatment was repeated five times. Table 1 shows the measurement results.

【0061】比較例2 焼結体の熱処理時間を90時間に変更したこと以外は、
実施例1と同様にして焼結体を得、評価を行なった。表
層がα−アルミナ、θ−アルミナの混在した層で、θ−
アルミナ量は10%しかないため、密着性が十分でなか
った。測定結果を表1に示した。
Comparative Example 2 Except that the heat treatment time of the sintered body was changed to 90 hours,
A sintered body was obtained and evaluated in the same manner as in Example 1. The surface layer is a layer in which α-alumina and θ-alumina are mixed,
Since the alumina content was only 10%, the adhesion was not sufficient. Table 1 shows the measurement results.

【0062】比較例3 焼結体の熱処理を行なわなかったこと以外は、実施例1
と同様にして焼結体を得(未処理焼結体)、評価を行な
った。測定結果を表1に示した。
Comparative Example 3 Example 1 was performed except that the heat treatment of the sintered body was not performed.
A sintered body was obtained in the same manner as described above (untreated sintered body) and evaluated. Table 1 shows the measurement results.

【0063】[0063]

【表1】 [Table 1]

【0064】[0064]

【発明の効果】本発明の焼結体表層に存在するアルミナ
をθ−アルミナで構成した窒化アルミニウム焼結体は、
機械的特性と耐プラズマ特性に優れたものであり、しか
も、緻密化した窒化アルミニウム焼結体を、特定の水蒸
気分圧の酸素雰囲気下、熱処理するという極めて簡単な
手段により、機械的強度と耐プラズマ特性に優れた窒化
アルミニウム焼結体を容易に製造することが可能であ
る。
The aluminum nitride sintered body according to the present invention in which the alumina present in the surface layer of the sintered body is composed of θ-alumina,
It has excellent mechanical properties and plasma-resistant properties, and has a very simple means of heat-treating a densified aluminum nitride sintered body in an oxygen atmosphere with a specific partial pressure of water vapor. It is possible to easily produce an aluminum nitride sintered body having excellent plasma characteristics.

【0065】本発明の効果は、どのように発現している
のか定かではないが、本発明者等は、以下のように推定
している。通常、θ−アルミナは、結晶性の高い中間ア
ルミナで、より高温で処理するとα−アルミナに変態す
る。本発明の方法では、窒化アルミニウム結晶の(10
0)面が選択的に酸化されて、θ−アルミナが形成され
ているものと考えている。すなわち、本発明の方法で処
理することにより、焼結体表層の窒化アルミニウム結晶
の(100)面から侵入した酸素原子がAl−N結合を
切断して、θ−アルミナ核を形成し、このときの体積膨
張が周囲の窒化アルミニウム結晶粒子により拘束される
ため、冷却時に圧縮応力として残留し、機械的強度が向
上すると考えている。しかも、本発明の方法では、水や
種々の酸、アルカリ溶液及び各種プラズマガス等に対し
て腐食される可能性の高い窒化アルミニウム結晶の(1
00)面に選択的に酸素が取り込まれて、θ−アルミナ
が形成されるため、耐食性と密着性を兼ね備えるものと
考えている。
Although it is not clear how the effects of the present invention are exhibited, the present inventors presume as follows. Usually, θ-alumina is an intermediate alumina having high crystallinity, and is transformed into α-alumina when treated at a higher temperature. In the method of the present invention, (10)
It is considered that the 0) plane is selectively oxidized to form θ-alumina. That is, by the treatment according to the method of the present invention, oxygen atoms penetrating from the (100) plane of the aluminum nitride crystal on the surface layer of the sintered body cut the Al—N bond to form a θ-alumina nucleus. It is believed that the volume expansion of the aluminum nitride is constrained by the surrounding aluminum nitride crystal particles, so that it remains as a compressive stress during cooling, and the mechanical strength is improved. In addition, according to the method of the present invention, the aluminum nitride crystal (1) having a high possibility of being corroded by water, various acids, alkali solutions, various plasma gases, and the like.
Since oxygen is selectively taken into the (00) plane to form [theta] -alumina, it is considered to have both corrosion resistance and adhesion.

【0066】したがって、本発明によれば、高熱伝導性
に加え、高い機械的強度と優れた耐プラズマ特性が付与
されるので、窒化アルミニウムの工業材料としての用途
がますます広げられ、その工業的価値は大である。
Therefore, according to the present invention, in addition to high thermal conductivity, high mechanical strength and excellent plasma resistance are imparted, so that the use of aluminum nitride as an industrial material is further expanded, The value is great.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5F004 AA16 BB29 BD04 BD05 5F045 BB10 BB14 EB03 EB05 EC05 EM09  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5F004 AA16 BB29 BD04 BD05 5F045 BB10 BB14 EB03 EB05 EC05 EM09

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】焼結体の表層にアルミナが存在しており、
かつ、該アルミナが実質的にθ−アルミナで構成されて
いることを特徴とする窒化アルミニウム焼結体。
(1) alumina is present on a surface layer of a sintered body,
In addition, the aluminum nitride sintered body, wherein the alumina is substantially composed of θ-alumina.
【請求項2】アルミナが存在している層の厚さが0.0
1〜2.0μmである請求項1記載の窒化アルミニウム
焼結体。
2. A method according to claim 1, wherein the thickness of the layer in which alumina is present is 0.0
The aluminum nitride sintered body according to claim 1, which has a thickness of 1 to 2.0 m.
【請求項3】相対密度が97%以上である窒化アルミニ
ウム焼結体を、水蒸気分圧が1.0kPa以下の酸素雰
囲気下、800〜1000℃の温度で0.5〜30時間
処理することを特徴とする請求項1または2記載の窒化
アルミニウム焼結体の製造方法。
3. A method for treating an aluminum nitride sintered body having a relative density of 97% or more at a temperature of 800 to 1000 ° C. for 0.5 to 30 hours in an oxygen atmosphere having a water vapor partial pressure of 1.0 kPa or less. The method for producing an aluminum nitride sintered body according to claim 1 or 2, wherein:
JP2000104490A 2000-04-06 2000-04-06 Aluminum nitride sintered compact and method of producing the same Pending JP2001294492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000104490A JP2001294492A (en) 2000-04-06 2000-04-06 Aluminum nitride sintered compact and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000104490A JP2001294492A (en) 2000-04-06 2000-04-06 Aluminum nitride sintered compact and method of producing the same

Publications (1)

Publication Number Publication Date
JP2001294492A true JP2001294492A (en) 2001-10-23

Family

ID=18618023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000104490A Pending JP2001294492A (en) 2000-04-06 2000-04-06 Aluminum nitride sintered compact and method of producing the same

Country Status (1)

Country Link
JP (1) JP2001294492A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005200287A (en) * 2003-12-16 2005-07-28 Tokuyama Corp Aluminum nitride sintered body and its manufacturing method
JPWO2017200021A1 (en) * 2016-05-17 2019-04-11 国立大学法人北海道大学 Latent heat storage microcapsule and method for producing latent heat storage microcapsule
CN113788466A (en) * 2021-08-24 2021-12-14 大连海事大学 Theta/alpha complex phase nano Al2O3Method for preparing pure-phase gamma-AlON powder by carbothermal reduction nitridation

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005200287A (en) * 2003-12-16 2005-07-28 Tokuyama Corp Aluminum nitride sintered body and its manufacturing method
JP4615873B2 (en) * 2003-12-16 2011-01-19 株式会社トクヤマ Aluminum nitride sintered body and manufacturing method thereof
JPWO2017200021A1 (en) * 2016-05-17 2019-04-11 国立大学法人北海道大学 Latent heat storage microcapsule and method for producing latent heat storage microcapsule
US10894907B2 (en) 2016-05-17 2021-01-19 National University Corporation Hokkaido University Latent-heat storage body microcapsules and process for producing latent-heat storage body microcapsules
JP7149474B2 (en) 2016-05-17 2022-10-07 国立大学法人北海道大学 Latent heat storage microcapsules and method for producing latent heat storage microcapsules
CN113788466A (en) * 2021-08-24 2021-12-14 大连海事大学 Theta/alpha complex phase nano Al2O3Method for preparing pure-phase gamma-AlON powder by carbothermal reduction nitridation
CN113788466B (en) * 2021-08-24 2023-08-11 大连海事大学 θ/α complex phase nano Al 2 O 3 Method for preparing pure-phase gamma-AlON powder by carbothermal reduction nitridation

Similar Documents

Publication Publication Date Title
JP5466831B2 (en) Yttria sintered body and member for plasma process equipment
JP2003146751A (en) Plasma-resistant member and method of producing the same
KR101751531B1 (en) Method for producing silicon nitride substrate
JPWO2007026739A1 (en) Corrosion-resistant member, processing apparatus and sample processing method using the same, and method for manufacturing corrosion-resistant member
KR20120134128A (en) Corrosion-resistant member for a semiconductor manufacturing device, and manufacturing method therefor
JP7062229B2 (en) Plate-shaped silicon nitride sintered body and its manufacturing method
JP2006273584A (en) Aluminum nitride sintered compact, member for manufacturing semiconductor, and method for manufacturing aluminum nitride sintered compact
JP6496092B1 (en) Aluminum nitride sintered body and semiconductor holding device
JP3967093B2 (en) Ceramic member and manufacturing method thereof
JP2023532002A (en) Ceramic sintered body containing magnesium aluminate spinel
WO2019235594A1 (en) Plate-like silicon nitride sintered body and production method thereof
KR20020050710A (en) Aluminum nitride sintered bodies and members for semiconductor producing apparatus
KR100500495B1 (en) Aluminium nitride ceramics, members for use in a system for producing semiconductors, and corrosion resistant members
JP2002249379A (en) Aluminum nitride sintered compact and member for device for manufacturing of semiconductor
JP2001294492A (en) Aluminum nitride sintered compact and method of producing the same
JP4615873B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JP3716386B2 (en) Plasma-resistant alumina ceramics and method for producing the same
JP4480951B2 (en) Corrosion resistant material
JP3769416B2 (en) Components for plasma processing equipment
JP2003226580A (en) Aluminum nitride-based ceramic and member for producing semiconductor
JP4065589B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JP2000327424A (en) Aluminum nitride base sintered compact, its production and susceptor using the same
JP2000327430A (en) Aluminum nitride sintered compact and its production
JP2002284589A (en) Silicon nitride member, its manufacturing method and cutting tool
JPH11278944A (en) Silicon nitride corrosion resistant member and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040730

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070110

A131 Notification of reasons for refusal

Effective date: 20070402

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070531

A02 Decision of refusal

Effective date: 20070702

Free format text: JAPANESE INTERMEDIATE CODE: A02