JP2001293642A - Tool cutting-edge projection-amount measuring method, tool abrasion-amount measuring method, and numerical control machine tool using them - Google Patents

Tool cutting-edge projection-amount measuring method, tool abrasion-amount measuring method, and numerical control machine tool using them

Info

Publication number
JP2001293642A
JP2001293642A JP2000113404A JP2000113404A JP2001293642A JP 2001293642 A JP2001293642 A JP 2001293642A JP 2000113404 A JP2000113404 A JP 2000113404A JP 2000113404 A JP2000113404 A JP 2000113404A JP 2001293642 A JP2001293642 A JP 2001293642A
Authority
JP
Japan
Prior art keywords
tool
light
amount
edge
protrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000113404A
Other languages
Japanese (ja)
Inventor
Hiromitsu Ota
浩充 太田
Yoichi Yamakawa
陽一 山川
Kazuhiro Oonishi
主洋 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP2000113404A priority Critical patent/JP2001293642A/en
Publication of JP2001293642A publication Critical patent/JP2001293642A/en
Pending legal-status Critical Current

Links

Landscapes

  • Machine Tool Sensing Apparatuses (AREA)
  • Drilling And Boring (AREA)
  • Automatic Control Of Machine Tools (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure only abrasion of a tool by removing thermal displacement of a machine and an effect of vibration of the tool from variation of a cutting-edge position of the rotating tool. SOLUTION: The cutting-edge 102 of the tool shields a laser beam 35 to vary a light receiving amount, and a projection amount of the cutting-edge is measured using the tool cutting- edge position detector for detecting a tool's cutting-edge position based on the variation of the light receiving amount. The tool is moved from a state I where the tool does not cross the laser beam 35 to a state II where the cutting-edge 102 intermittently shields the laser beam 35, and a tool position when the light receiving amount varies, namely a first detection coordinate Zc, is detected. Next, the tool is moved from a state I' where the tool core 103 perfectly shields the laser beam 35 to a state II' where the cutting-edge 102 intermittently shields the laser beam 35, and a tool position when the light receiving amount varies, namely a second detection coordinate Zb, is detected. The projection amount of the cutting- edge is calculated based on a difference between the first detection coordinate Zc and the second detection coordinate Zb. The projection amounts of the cutting-edge are measured before and after machining by the tool, and a tool abrasion amount is calculated based on a difference between them.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主軸に取付けられ
た回転工具の刃先部突出量測定方法及び工具摩耗量測定
方法とその測定方法を用いた数値制御工作機械に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the amount of protrusion of a cutting edge of a rotary tool mounted on a spindle, a method for measuring a tool wear amount, and a numerically controlled machine tool using the method.

【0002】[0002]

【従来の技術】加工能率を上げるために現在の工作機械
では、主軸回転速度が非常に高められている。ここで主
軸を高速(数万回転)で回転させると遠心力による遠心
膨張が発生すると共に、発熱による熱膨張によって主軸
の先端に設けられた工具の刃先の位置が変位したり、更
には高速加工による工具刃先部の摩耗によって刃先位置
が変位する。このため回転工具の刃先位置を把握する事
が望まれている。この回転中の工具の刃先位置を求める
方法の1つとして、特開平8-310135号が提案されてい
る。
2. Description of the Related Art In order to improve machining efficiency, the spindle speed of a current machine tool is greatly increased. When the spindle is rotated at high speed (tens of thousands of revolutions), centrifugal expansion occurs due to centrifugal force, and the position of the blade edge of the tool provided at the tip of the spindle is displaced due to thermal expansion due to heat generation, and further, high-speed machining The position of the cutting edge is displaced by the wear of the tool cutting edge due to the above. For this reason, it is desired to grasp the position of the cutting edge of the rotary tool. JP-A-8-310135 has been proposed as one of the methods for obtaining the position of the cutting edge of a rotating tool.

【0003】[0003]

【発明が解決しようとする課題】特開平8-310135号の刃
先位置検出方法では、回転中の工具の刃先位置を知るこ
とは出来るが工具刃先部の摩耗量は測定できない。すな
わち、この刃先位置検出方法により刃先位置の変化を得
たとしても、その変化量には工具刃先部の摩耗量のみな
らず、機械の熱変位量による影響を含んでいるので、熱
変化量を分離して摩耗量のみを検出することは出来な
い。さらに工具をホルダから外したり、工具ホルダを主
軸から外す等して振れの状態が変化してしまった場合に
は、刃先位置の変化量にはその振れの影響を含んでいる
ので、この振れの変化を分離して摩耗量のみを検出する
ことは出来ない。
According to the method for detecting the position of a cutting edge disclosed in Japanese Patent Application Laid-Open No. 8-310135, the position of the cutting edge of a rotating tool can be known, but the amount of wear of the tool edge cannot be measured. That is, even if a change in the cutting edge position is obtained by this cutting edge position detection method, the amount of change includes not only the wear amount of the tool cutting edge but also the effect of the thermal displacement amount of the machine. It is not possible to detect only the wear amount separately. Furthermore, if the run-out state changes by removing the tool from the holder or removing the tool holder from the spindle, the amount of change in the cutting edge position includes the effect of the run-out, so It is not possible to detect only the wear amount by separating the change.

【0004】本発明は、上述した課題を解決するために
なされたものであり、その目的とするところは、回転中
の工具の刃先位置を検出できる工具刃先位置検出装置を
用いて工具刃先部突出量を測定することである。また他
の目的は工具刃先部突出量の変化量から工具摩耗量を検
出することであり、更にはこの工具摩耗量測定方法を用
いた数値制御工作機械を提供する事にある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problem, and an object of the present invention is to use a tool edge position detecting device capable of detecting the edge position of a rotating tool. Is to measure the amount. Another object of the present invention is to detect the amount of tool wear from the amount of change in the amount of protrusion of the tool edge, and further to provide a numerically controlled machine tool using this tool wear amount measuring method.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
め、請求項1に記載の工具刃先部突出量測定方法は以下
の手段を用いる。光源となる投光器とその光を受ける受
光器の間に回転中の工具を移動させると、工具の刃先部
が光を遮ることで受光器の受光量が変化する。この受光
量の変化により工具刃先位置を測定する工具刃先位置検
出装置を用いて、まず、工具と光が交差しない状態から
工具を光にアプローチさせ、工具刃先部が光を断続的に
遮り受光量が変化した時の刃先位置検出装置に対する工
具の相対位置である第一検出座標を検出する。次に工具
の芯部によって光が連続的に遮られる状態から、工具刃
先部によって光が断続的に遮られる状態に回転工具を移
動させ、受光量が変化した時の刃先位置検出装置に対す
る工具の相対位置である第二検出座標を検出する。第一
検出座標と第二検出座標の差から工具刃先部の突出量を
算出する。
In order to achieve the above object, a method for measuring the amount of protrusion of a tool edge according to the first aspect uses the following means. When a rotating tool is moved between a light emitter serving as a light source and a light receiver that receives the light, the light reception amount of the light receiver changes because the cutting edge of the tool blocks light. Using a tool edge position detection device that measures the position of the tool edge based on this change in the amount of received light, the tool first approaches the light from a state where the tool and the light do not intersect, and the tool edge intermittently blocks the light and The first detection coordinate which is the relative position of the tool with respect to the cutting edge position detecting device when is changed. Next, the rotary tool is moved from a state in which light is continuously interrupted by the tool core to a state in which light is intermittently interrupted by the tool edge, and the tool is moved relative to the edge position detecting device when the amount of received light changes. A second detection coordinate, which is a relative position, is detected. The amount of protrusion of the tool edge is calculated from the difference between the first detected coordinates and the second detected coordinates.

【0006】工具の回転軸方向の刃先部突出量を測定す
るときは、回転工具と刃先位置検出装置の光とのZ軸方
向(前後方向)への相対移動により、両者を接近する方向
へ移動させることで第一検出座標を測定し、両者を離間
する方向へ移動させることで第二検出座標を測定する。
一方、工具の径方向の刃先部突出量を測定するときは、
回転工具と刃先位置検出装置の光とのY軸方向(上下方
向)への相対移動により、両者を接近する方向へ移動さ
せることで第一検出座標を測定し、両者を離間する方向
へ移動させることで第二検出座標を測定する。
When measuring the amount of protrusion of the cutting edge in the direction of the rotation axis of the tool, the tool is moved in the direction in which the rotating tool and the light of the cutting edge position detecting device move closer to each other by relative movement in the Z-axis direction (front-back direction). Then, the first detection coordinates are measured, and the second detection coordinates are measured by moving them in the direction in which they are separated from each other.
On the other hand, when measuring the tool tip protrusion amount in the radial direction of the tool,
The first detection coordinate is measured by moving the rotating tool and the light of the blade position detecting device in the Y-axis direction (vertical direction) in a direction in which they approach each other, and the two are moved in a direction away from each other. Thus, the second detection coordinates are measured.

【0007】また請求項2に記載の工具摩耗量測定方法
は、請求項1の工具刃先部突出量測定方法を用いて、工
具による加工の前後に工具刃先部突出量を測定し、その
差から工具摩耗量を算出することを技術的特徴とする。
According to a second aspect of the present invention, there is provided a method for measuring a tool wear amount, wherein the first and second tool edge protrusion amounts are measured before and after machining by a tool, and the difference between the measured values is used. A technical feature is to calculate a tool wear amount.

【0008】請求項2の方法を達成するための請求項3
に記載の数値制御工作機械は、回転工具を備えた主軸と
工作物を取り付け固定するワークテーブルと前記主軸と
前記ワークテーブルを相対移動させる駆動手段とを備え
ており、前記ワークテーブルに工具刃先位置を測定する
工具刃先位置検出装置を設けている。そして、突出量測
定手段により第一検出座標と第二検出座標の差から工具
刃先部の突出量を算出し、摩耗量演算手段により記憶手
段に記憶された使用前の突出量と今回測定時の突出量か
ら刃先部の摩耗量を算出することを技術的特徴とする。
[0008] Claim 3 for achieving the method of claim 2
The numerical control machine tool described in the above, comprises a spindle provided with a rotary tool, a work table for mounting and fixing a workpiece, and a drive means for relatively moving the spindle and the work table, the work table has a tool edge position Is provided with a tool edge position detecting device for measuring the tool edge position. Then, the protrusion amount of the tool blade tip is calculated from the difference between the first detection coordinates and the second detection coordinates by the protrusion amount measurement means, and the protrusion amount before use stored in the storage means by the wear amount calculation means and the current measurement time. A technical feature is to calculate the wear amount of the blade tip from the protrusion amount.

【0009】また、上記刃先部突出量の測定方法におい
て、工具の形状によっては第二検出座標が上手く検出で
きないことが考えられる。そのような場合は請求項4に
記載の手段を採ることができる。
In the above-described method of measuring the protrusion of the blade edge, the second detection coordinates may not be detected properly depending on the shape of the tool. In such a case, the means described in claim 4 can be adopted.

【0010】請求項4に記載の数値制御工作機械では、
予め工具の芯部又はシャンクの工具刃先部から所定の距
離の箇所に、光が通過出来るように貫通した通過穴を設
けておく。そして突出量測定手段は工具の芯部によって
光が連続的に遮られる状態から、光が通過穴によって断
続的に遮られる状態に回転中の工具を移動させる。通過
穴によって受光量が変化した時の刃先位置検出装置に対
する工具の相対位置である第三検出座標を検出し、第一
検出座標と第三検出座標の差から工具突出量を算出す
る。
[0010] In the numerical control machine tool according to claim 4,
A through hole is formed in advance at a predetermined distance from the tool core or the tool edge of the shank so that light can pass therethrough. Then, the protrusion amount measuring means moves the rotating tool from a state where light is continuously blocked by the core of the tool to a state where light is intermittently blocked by the passage hole. A third detection coordinate, which is a relative position of the tool with respect to the cutting edge position detection device when the amount of received light changes due to the passage hole, is detected, and a tool protrusion amount is calculated from a difference between the first detection coordinate and the third detection coordinate.

【0011】請求項5に記載の実施態様は、摩耗量演算
手段により算出された摩耗量が工具毎に予め入力された
工具の限界摩耗量を超えたとき、作業者に警報を与える
アラーム手段等を備えていることを技術的特徴とする。
According to a fifth aspect of the present invention, there is provided an alarming means for giving an alarm to an operator when a wear amount calculated by the wear amount calculating means exceeds a limit wear amount of a tool previously input for each tool. Is a technical feature.

【0012】請求項6に記載の実施態様は、摩耗量演算
手段により算出された摩耗量が工具毎に予め入力された
工具の限界摩耗量を超えたとき該工具を自動的に交換す
る工具交換手段を備えていることを技術的特徴とする。
According to a sixth aspect of the present invention, there is provided a tool changer for automatically changing a tool when a wear amount calculated by the wear amount calculating means exceeds a limit wear amount of a tool previously input for each tool. It is a technical feature to have means.

【0013】[0013]

【発明の実施の形態】以下本発明を具体化した実施態様
について図を参照して説明する。図1は、本発明を具体
化した実施態様に係る工具刃先位置検出装置を備えた数
値制御工作機械10の構成を示している。数値制御工作
機械10は、ベッド14上でX方向(左右方向)に移動可
能なワークテーブル12及びZ方向(前後方向)に移動可
能なコラム16を備えている。ワークテーブル12には
ワークWが載置されると共に、ワークテーブル12上の
ワークWと干渉しない既知の位置には検出器30が配置
されている。一方、コラム16はY方向(上下方向)に移
動可能なサドル18を備えており、サドル18には工具
20を把持し回転するスピンドル22が設けられてい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments embodying the present invention will be described below with reference to the drawings. FIG. 1 shows the configuration of a numerically controlled machine tool 10 including a tool edge position detecting device according to an embodiment of the present invention. The numerically controlled machine tool 10 includes a work table 12 movable on the bed 14 in the X direction (lateral direction) and a column 16 movable on the bed 14 in the Z direction (front and rear direction). A work W is placed on the work table 12, and a detector 30 is arranged at a known position on the work table 12 that does not interfere with the work W. On the other hand, the column 16 includes a saddle 18 that can move in the Y direction (up and down direction). The saddle 18 is provided with a spindle 22 that grips and rotates a tool 20.

【0014】検出器30は図1中に示すように凹字状に
形成され、該凹字状の内壁にレーザ発振器32と該レー
ザ発振器32からの光35を受けるフォトダイオード3
4とが配設されている。この検出器30の構成につい
て、図2を参照にしてさらに詳細に説明する。図2
(a)、(b)はそれぞれ図1に示す検出器30のA矢視図
即ち上側から見た平面図、B矢視図即ち正面から見た平
面図である。図2(a)は工具20の軸方向の刃先位置2
0aを検出する時、図2(b)は工具20の径方向の刃先
位置20bを検出する状態を示している。レーザ発振器
32からのレーザ光35がフォトダイオード34にて受
光され、レーザ光35が工具20にて遮られることで工
具20の刃先が後述するように検出される。
The detector 30 is formed in a concave shape as shown in FIG. 1, and a laser oscillator 32 and a photodiode 3 receiving light 35 from the laser oscillator 32 are provided on the inner wall of the concave shape.
4 are provided. The configuration of the detector 30 will be described in more detail with reference to FIG. FIG.
(a), (b) is a plan view of the detector 30 shown in FIG. 1 as viewed from the arrow A, that is, a plan view as viewed from above, and a view as viewed from the arrow B, that is, as viewed from the front. FIG. 2A shows an axial edge position 2 of the tool 20.
When detecting 0a, FIG. 2B shows a state in which the cutting edge position 20b in the radial direction of the tool 20 is detected. The laser light 35 from the laser oscillator 32 is received by the photodiode 34, and the laser light 35 is blocked by the tool 20, whereby the cutting edge of the tool 20 is detected as described later.

【0015】図3は、該数値制御工作機械10を制御す
る制御装置50及び上記レーザ発振器32からの光を受
けて工具の刃先を検出する受光器80の構成を示すブロ
ック図である。制御装置50は、装置全体を管理する中
央制御装置(CPU)56と種々の制御、プログラム及
び工具の刃先位置、刃先部突出量及び工具突出量等に関
するデータ等を保持するメモリ52と、インターフェイ
ス54,58,59とから成る。この制御装置50は入
力装置70を介して種々のデータが入力され、また出力
装置72を介して種々のデータを出力し得るように構成
されている。該入力装置70には、データーの入力を行
うためのキーボードが備えられ、該出力装置72側には
データーの表示を行うCRT等の表示装置が備えられて
いる。
FIG. 3 is a block diagram showing the configuration of a control device 50 for controlling the numerically controlled machine tool 10 and a photodetector 80 for receiving the light from the laser oscillator 32 and detecting the cutting edge of the tool. The control device 50 includes a central control device (CPU) 56 that manages the entire device, a memory 52 that holds various controls, programs, data on the cutting edge position of the tool, the cutting edge protrusion amount, the tool protrusion amount, and the like, and an interface 54. , 58, 59. The control device 50 is configured such that various data is input via an input device 70 and various data is output via an output device 72. The input device 70 is provided with a keyboard for inputting data, and the output device 72 is provided with a display device such as a CRT for displaying data.

【0016】また該制御装置50は上記コラム16を移
動させるボールネジ(図示せず)を駆動する第1サーボモ
ータ68へ、第1モータ駆動回路(DUZ)66を介し
て駆動信号を送る。この第一サーボモータ68に取り付
けられた第1エンコーダ67は、第1サーボモータ68
の回転位置即ち工具20の刃先位置を制御装置50へ送
出するように構成されている。さらに、該制御装置50
はボールネジ(図示せず)によりワークテーブル12を水
平方向(X方向)へ送るための第2サーボモータ62へ、
第2モータ駆動回路(DUX)60を介して駆動信号を送
る。この第2サーボモータ62に取り付けられた第2エ
ンコーダ61は、第2サーボモータ62の回転位置即ち
ワークテーブル12の位置を制御装置50へ送出する。
同様に該制御装置50はボールネジ(図示せず)によりサ
ドル18を垂直方向(Y方向)へ送るための第3サーボモ
ータ65へ、第3モータ駆動回路(DUY)63を介して
駆動信号を送る。この第3サーボモータ65に取り付け
られた第3エンコーダ64は、サドル18の位置を制御
装置50へ送出するように構成されいる。
The controller 50 sends a drive signal to a first servo motor 68 for driving a ball screw (not shown) for moving the column 16 via a first motor drive circuit (DUZ) 66. The first encoder 67 attached to the first servo motor 68
, Ie, the cutting edge position of the tool 20 is sent to the control device 50. Further, the control device 50
To a second servo motor 62 for feeding the work table 12 in the horizontal direction (X direction) by a ball screw (not shown).
A drive signal is sent via a second motor drive circuit (DUX) 60. The second encoder 61 attached to the second servomotor 62 sends the rotation position of the second servomotor 62, that is, the position of the work table 12, to the control device 50.
Similarly, the control device 50 sends a drive signal via a third motor drive circuit (DUY) 63 to a third servomotor 65 for sending the saddle 18 in the vertical direction (Y direction) by a ball screw (not shown). . The third encoder 64 attached to the third servo motor 65 is configured to send the position of the saddle 18 to the control device 50.

【0017】一方、受光器80は、図2を参照して上述
したフォトダイオード34とフォトダイオード34の出
力から刃先部102がレーザ光35を遮ったことを検出
するアンプ90と該アンプ90の出力を制御装置50へ
送出するコンパレータ82とから成る。該アンプ90
は、刃先部102がレーザ光35に達したことをフォト
ダイオード34の出力が変化することに基づき検出す
る。
On the other hand, the photodetector 80 includes an photodiode 90 described above with reference to FIG. 2 and an amplifier 90 for detecting that the cutting edge portion 102 has blocked the laser beam 35 from the output of the photodiode 34, and an output of the amplifier 90. To the control device 50. The amplifier 90
Detects that the cutting edge 102 has reached the laser beam 35 based on a change in the output of the photodiode 34.

【0018】図4(a)は図2(a)中のD矢視図即ち工具
20の側面を水平方向から見た図であり、図4(b)は図
4(a)のA−A断面図を示す。工具20は刃部106と
シャンク104とからなり、前記刃部106は刃先10
5を含む刃先部102と工具芯部103とからなる。刃
先部102は、軸方向即ちシャンク104の反対側に工
具芯部103が無い刃先先端部101を含んでいる。図
4紙面軸方向のレーザ光35を回転する工具20の刃部
106と交差するように照射した時のフォトダイオード
34による受光量の違いを図4(c)に基づいて説明す
る。回転する工具20にレーザ光35を工具芯部103
が存在する網掛け部分108に照射するとレーザ光35
は完全に遮られ、刃部106の中で工具芯部103が存
在しない部分107にレーザ光35を照射すると、レー
ザ光35は刃先105により断続的に遮られるようにな
る。
FIG. 4A is a view taken in the direction of arrow D in FIG. 2A, that is, a view of the side surface of the tool 20 as viewed from the horizontal direction, and FIG. FIG. The tool 20 includes a blade portion 106 and a shank 104, and the blade portion 106
5 and a tool core 103. The cutting edge portion 102 includes a cutting edge tip portion 101 having no tool core portion 103 in the axial direction, that is, on the opposite side of the shank 104. The difference in the amount of light received by the photodiode 34 when the laser beam 35 in the direction of the paper plane of FIG. 4 is irradiated so as to intersect with the blade 106 of the rotating tool 20 will be described with reference to FIG. The laser beam 35 is applied to the rotating tool 20 by the tool core 103.
Irradiates the shaded portion 108 with the laser light 35
When the laser beam 35 is applied to a portion 107 of the blade portion 106 where the tool core portion 103 does not exist, the laser beam 35 is intermittently blocked by the cutting edge 105.

【0019】上述したフォトダイオード35による受光
量の違いに基づく刃先部突出量の測定方法について図5
を参照して説明する。図5(a)、図5(b)は図2(a)中
のD矢視図即ち工具20の側面を水平方向から見た図で
ある。
FIG. 5 shows a method for measuring the amount of protrusion of the blade edge based on the difference in the amount of light received by the photodiode 35 described above.
This will be described with reference to FIG. FIGS. 5A and 5B are views as viewed from an arrow D in FIG. 2A, that is, a view of the side surface of the tool 20 viewed from the horizontal direction.

【0020】図5(a)では回転する工具20とレーザ光
35が交差しない位置Iから前記工具20を前記レーザ
光35にアプローチさせる。交差しない状態ではレーザ
光35が遮られることがないためレーザ光35はフォト
ダイオード34に照射されるが、工具の刃先先端部10
1がレーザ光35に達する位置IIになる時{図4(c)の
107}透過するレーザ光35は断続的に遮られ、フォ
トダイオード34に照射される光量が変化する。その照
射光量が変化した時の基準位置110に対する工具基準
位置111の座標を第一検出座標(Zc)とする。
In FIG. 5A, the tool 20 approaches the laser beam 35 from a position I where the rotating tool 20 and the laser beam 35 do not intersect. In a state where the laser light 35 does not intersect, the laser light 35 is not interrupted, so that the laser light 35 is applied to the photodiode 34.
When 1 reaches the position II where the laser light 35 is reached {107 in FIG. 4 (c)}, the transmitted laser light 35 is intermittently blocked, and the amount of light applied to the photodiode 34 changes. The coordinates of the tool reference position 111 with respect to the reference position 110 when the irradiation light amount changes are defined as first detection coordinates (Zc).

【0021】図5(b)では回転する工具20の工具芯部
103とレーザ光35が交差しレーザ光35が工具芯部
103によって完全に遮られ{図4(c)108}、フォト
ダイオード34にレーザ光35が照射しない位置I’か
ら、交差箇所が工具刃先先端部101へと交差箇所が移
動するように工具を移動させ、レーザ光35が工具刃先
先端部101に達した位置II’になる時{図4(c)の1
07}、フォトダイオード34に照射される光量が変化
する。その照射光量が変化した時の基準位置110に対
する工具基準位置111の座標を第二検出座標(Zb)と
する。
In FIG. 5B, the tool core 103 of the rotating tool 20 and the laser beam 35 intersect and the laser beam 35 is completely blocked by the tool core 103 {FIG. The tool is moved so that the intersection moves from the position I ′ where the laser light 35 does not irradiate to the tool tip end 101 to the position II ′ where the laser light 35 reaches the tool tip end 101. When it comes {1 in Fig. 4 (c)
07}, the amount of light applied to the photodiode 34 changes. The coordinates of the tool reference position 111 with respect to the reference position 110 when the irradiation light amount changes are defined as second detection coordinates (Zb).

【0022】図5(a)及び図5(b)より得られた座標Z
b,Zcから刃先部突出量Z1は、次式1で表わされる。
〔図6参照〕 刃先部突出量Z1=Zb−Zc・・・(1) (1)式で得られた刃先部突出量Z1は、前回測定時の刃
先部突出量Z1’と比較し工具の摩耗量を算出する。ま
た工具刃先位置が検出された際、工具の位置に基づき工
具の位置データが補正される。
The coordinates Z obtained from FIGS. 5A and 5B
b, the cutting edge protruding amount Z 1 from Zc is expressed by the following equation 1.
[Refer to FIG. 6] Blade edge protrusion amount Z 1 = Zb−Zc (1) The blade edge protrusion amount Z 1 obtained by equation (1) is compared with the blade edge protrusion amount Z 1 ′ at the previous measurement. Calculate the amount of tool wear. When the tool edge position is detected, the position data of the tool is corrected based on the position of the tool.

【0023】刃先部102の径方向の摩耗量も上記と同
様な方法で測定出来る。
The amount of wear of the cutting edge portion 102 in the radial direction can be measured in the same manner as described above.

【0024】次に、制御装置50による工具先端位置の
補正処理について、当該処理のフローチャートである図
7、図8を参照して説明する。図7において工具摩耗量
測定処理は、ワークWの加工前にあるいは加工サイクル
中に必要に応じて実行される。CPU56は、工具20
が所定の回転数であるか、即ち所定の測定周期に達した
かを判断する(S101)。測定周期に達すると(S10
1がYes)、ワークテーブル12、コラム16、サド
ル18の移動により工具20を図2(a)、(b)中の破線
で示すような、検出器30近傍の所定の測定開始位置に
位置決めする(S102)。その後工具20をZ軸方向即
ち図2(a)中のZ軸に沿ってレーザ光35側へ前進させ
る、もしくはY軸方向即ち図2(b)中のY軸に沿ってレ
ーザ光35側へ下降させる(S103)。そして、工具の
刃先部102がレーザ光35に到達し、上述したように
アンプ80がレーザ光35の受光量の変化を検出したか
判断する(S104)。S104がYesになった時の当
該工具第一検出座標Yc又はZc(Y座標又はZ座標)を
図3に示すY軸送り用の第3サーボモータ65又はZ軸
送り用の第1サーボモータ68にそれぞれ取り付けられ
た第3エンコーダ64又は第1エンコーダ67からの信
号に基づき検出する(S105)。
Next, the correction processing of the tool tip position by the control device 50 will be described with reference to FIGS. 7 and 8 which are flowcharts of the processing. In FIG. 7, the tool wear amount measurement processing is executed before the work W is processed or during the processing cycle as needed. The CPU 56 controls the tool 20
Is a predetermined rotation number, that is, whether a predetermined measurement period has been reached (S101). When the measurement cycle is reached (S10
1 is Yes), the tool 20 is positioned at a predetermined measurement start position near the detector 30 as shown by a broken line in FIGS. 2A and 2B by moving the work table 12, the column 16, and the saddle 18. (S102). Thereafter, the tool 20 is advanced toward the laser beam 35 along the Z-axis direction, ie, the Z-axis in FIG. 2A, or toward the laser beam 35 side along the Y-axis direction, ie, the Y-axis in FIG. 2B. It is lowered (S103). Then, the blade edge portion 102 of the tool reaches the laser beam 35, and it is determined whether the amplifier 80 has detected a change in the amount of received laser beam 35 as described above (S104). The tool first detection coordinates Yc or Zc (Y coordinate or Z coordinate) when S104 is Yes are represented by a third servomotor 65 for Y-axis feed or a first servomotor 68 for Z-axis feed shown in FIG. (S105) based on a signal from the third encoder 64 or the first encoder 67 attached to each of them.

【0025】その後工具20の工具芯部103がレーザ
光35を完全に遮る{図4(c)の108)位置に工具20
を位置決めする(S106)。その後工具20を図2(a)
中のZ軸、もしくは図2(b)中のY軸に沿って工具を移
動させ(S107)、レーザ光35と交差する箇所が工具
20の工具芯部103から刃先部102に到達し、上述
したようにアンプ80がレーザ光35の受光量の変化を
検出したか判断する(S108)。S108がYesにな
った時、当該工具第二検出座標Yb又はZb(Y座標又
はZ座標)を図3に示すY軸送り用の第3サーボモータ
65又はZ軸送り用の第1サーボモータ68にそれぞれ
取り付けられた第3エンコーダ64又は第1エンコーダ
67からの信号に基づき検出する(S109)。
Then, the tool core 103 of the tool 20 is completely blocked from the laser beam 35 (108 in FIG. 4C).
Is positioned (S106). Then, the tool 20 is moved to the position shown in FIG.
The tool is moved along the middle Z-axis or the Y-axis in FIG. 2B (S107), and a location that intersects with the laser beam 35 reaches the cutting edge 102 from the tool core 103 of the tool 20. As described above, it is determined whether the amplifier 80 has detected a change in the amount of light received by the laser beam 35 (S108). When S108 becomes Yes, the tool second detection coordinate Yb or Zb (Y coordinate or Z coordinate) is converted to the third servo motor 65 for Y axis feed or the first servo motor 68 for Z axis feed shown in FIG. (S109) based on a signal from the third encoder 64 or the first encoder 67 attached to each of them.

【0026】検出した前記第一検出座標と第二検出座標
とから刃先部突出量Z1が得られる(S110)。得られ
た刃先部突出量Z1を図3に示すメモリ52に記憶させ
る(S111)。前記メモリ52に記憶された前回測定時
の刃先部突出量Z1と比較して工具摩耗量を演算し(S1
12)、予め前記メモリ52に入力しておいた工具の限
界摩耗量と比較して(S113)、前記工具摩耗量が限界
値を越えている場合(S113がYes)、作業者に警報
を伝えたり、該工具を自動的に交換する(S114)。前
記工具摩耗量が限界値を越えていない場合(S113が
No)、検出器30の位置即ちレーザ光35のY軸方
向、Z軸方向の位置は既知であるので、このレーザ光3
5の位置と第3エンコーダ64、第1エンコーダ67か
らの信号に基づいて、メモリ52に保持されている刃先
位置データを補正する(S115)。以上の処理を行い、
工具刃先部突出量測定動作が終了し、上記の補正された
刃先位置データに基づき加工が開始あるいは再開され
る。
The cutting edge protruding amount Z 1 is obtained from the detected the first detection coordinate and the second detection coordinate (S110). The resulting blade edge protruding amount Z 1 is stored in the memory 52 shown in FIG. 3 (S111). Compared to the cutting edge portion protruding amount Z 1 of the previous measurement stored in the memory 52 and calculates the tool wear amount (S1
12) In comparison with the limit wear amount of the tool previously input to the memory 52 (S113), when the tool wear amount exceeds the limit value (Yes in S113), a warning is transmitted to the operator. Or the tool is automatically replaced (S114). When the tool wear amount does not exceed the limit value (No in S113), since the position of the detector 30, that is, the position of the laser beam 35 in the Y-axis direction and the Z-axis direction is known, the laser beam 3
Based on the position of No. 5 and signals from the third encoder 64 and the first encoder 67, the cutting edge position data stored in the memory 52 is corrected (S115). Perform the above processing,
The operation of measuring the amount of protrusion of the tool edge is completed, and machining is started or restarted based on the corrected edge position data.

【0027】また上記刃先部突出量の測定方法におい
て、工具の形状によっては前記第二検出座標(Zb)が上
手く検出できないことが考えられる。そのような場合は
他の実施形態として以下のようにすることが出来る。図
9(a)、図9(b)は図5同様図2(a)中のD矢視図即ち
工具20の側面を水平方向から見た図である。使用する
工具には、工具芯部103又はシャンク104の工具刃
先部102から一定の距離に、レーザ光35が通過出来
るように貫通した通過穴112を設ける。
In the above-described method for measuring the amount of protrusion of the blade edge, the second detection coordinate (Zb) may not be detected properly depending on the shape of the tool. In such a case, the following can be performed as another embodiment. FIGS. 9A and 9B are views similar to FIG. 5 as viewed from an arrow D in FIG. 2A, that is, a view of the side surface of the tool 20 viewed from the horizontal direction. The tool to be used is provided with a passage hole 112 penetrating therethrough at a fixed distance from the tool core portion 103 or the tool edge portion 102 of the shank 104 so that the laser light 35 can pass therethrough.

【0028】図9(a)は図5(a)同様に、第1検出座標
(Zc)を求める。図9(b)は回転する工具20の工具芯
部103とレーザ光35が交差しレーザ光35が工具芯
部103によって遮られ{図4(c)の108}、フォトダ
イオード34にレーザ光35が照射しない位置I’から
工具20を移動させ、レーザ光35が前記通過穴112
を通過した位置II’の時フォトダイオード34に照射さ
れる光量が変化する。その照射光量が変化した時の基準
位置110に対して工具基準位置111の座標を第三検
出座標(Zd)とする。
FIG. 9A shows the first detected coordinates similarly to FIG. 5A.
(Zc) is determined. FIG. 9B shows that the tool core 103 of the rotating tool 20 and the laser beam 35 intersect and the laser beam 35 is blocked by the tool core 103 {108 in FIG. Moves the tool 20 from the position I ′ where the laser beam 35 is not irradiated,
At the position II 'that has passed through the photodiode 34, the amount of light applied to the photodiode 34 changes. The coordinates of the tool reference position 111 with respect to the reference position 110 at the time when the irradiation light amount changes are defined as third detection coordinates (Zd).

【0029】図9(a)及び図9(b)より得られた座標Z
c,Zdから工具突出量Z2は、次式2で表わされる。
〔図10参照〕 工具突出量Z2=Zd−Zc・・・(2) (2)式で得られた工具突出量Z2は、前回測定時の工具
突出量Z2’と比較し工具の摩耗量を算出する。また工
具刃先位置が検出された際、工具の位置に基づき工具2
0の位置データが補正される。
The coordinates Z obtained from FIGS. 9A and 9B
From c and Zd, the tool protrusion amount Z 2 is expressed by the following equation 2.
[See FIG. 10] Tool protrusion amount Z 2 = Zd−Zc (2) The tool protrusion amount Z 2 obtained by the equation (2) is compared with the tool protrusion amount Z 2 ′ at the previous measurement, and Calculate the amount of wear. When the position of the tool edge is detected, the position of the tool 2 is determined based on the position of the tool.
The position data of 0 is corrected.

【0030】工具刃先部102の径方向の工具突出量も
上記と同様な方法で測定出来る。
The amount of tool protrusion in the radial direction of the tool edge portion 102 can be measured in the same manner as described above.

【0031】図11、図12の工具摩耗量検出処理の処
理動作は、基本的に図7、図8の処理動作と同じであ
る。図7のS107とS108とS109の第二検出座
標検出の代わりに図11ではS207とS208とS2
09で第三検出座標を検出し、刃先部突出量の代わりに
工具突出量を算出し(S210)、工具突出量を記憶させ
(S211)、後は図7、図8の処理動作と同じである。
The processing operation of the tool wear amount detection processing of FIGS. 11 and 12 is basically the same as the processing operation of FIGS. 7 and 8. Instead of the second detection coordinate detection of S107, S108, and S109 of FIG. 7, in FIG. 11, S207, S208, and S2
At 09, the third detection coordinates are detected, the tool protrusion amount is calculated instead of the blade tip protrusion amount (S210), and the tool protrusion amount is stored.
(S211), and the rest is the same as the processing operation of FIGS.

【0032】[0032]

【発明の効果】請求項1に記載の発明によれば、回転工
具の刃先部突出量を機械の熱変位量や工具の振れの状態
の変化による影響を受けずに測定できる。請求項2に記
載の発明によれば、請求項1による回転工具の刃先部突
出量の変化により工具摩耗量を算出することから、機械
の熱変位量や工具の振れの状態の変化による影響を排除
して、工具摩耗量のみを測定できる。請求項3に記載の
発明によれば、高価なCCDカメラ+画像処理装置とい
った大掛かりな装置を用いることなく比較的安価な装置
を使用して工具摩耗管理が出来るため、コストメリット
に優れる。請求項4に記載の発明によれば、上記の効果
に加えて工具の形状によらず工具摩耗量が測定できる。
請求項5及び請求項6に記載の発明によれば、工具摩耗
量を測定することによって工具の寿命による製品精度の
劣化防止ができ、常に高精度な加工が可能となる。
According to the first aspect of the present invention, it is possible to measure the amount of protrusion of the cutting edge of the rotary tool without being affected by the amount of thermal displacement of the machine or the change in the state of the runout of the tool. According to the second aspect of the present invention, since the tool wear amount is calculated based on the change in the blade tip protrusion amount of the rotary tool according to the first aspect, the influence of the thermal displacement amount of the machine or the change in the state of the tool runout is reduced. Excluded, only the tool wear can be measured. According to the third aspect of the present invention, tool wear can be managed using a relatively inexpensive apparatus without using a large-scale apparatus such as an expensive CCD camera and an image processing apparatus, so that the cost merit is excellent. According to the fourth aspect of the invention, in addition to the above effects, the tool wear amount can be measured regardless of the shape of the tool.
According to the fifth and sixth aspects of the present invention, by measuring the amount of tool wear, it is possible to prevent the deterioration of product accuracy due to the life of the tool, and to always perform high-precision machining.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態における工具刃先位置検出
装置を備えた数値制御工作機械の斜視図である。
FIG. 1 is a perspective view of a numerically controlled machine tool provided with a tool edge position detecting device according to an embodiment of the present invention.

【図2】図2(a)は図1に示す検出器のA矢視図、図2
(b)は図1に示す検出器のB矢視図である。
FIG. 2A is a view of the detector shown in FIG.
FIG. 2B is a view of the detector shown in FIG.

【図3】本発明の実施の形態における数値制御装置の構
成を示すブロック図である。
FIG. 3 is a block diagram illustrating a configuration of a numerical control device according to an embodiment of the present invention.

【図4】図4(a)は図2(a)中のD矢視図、図4(b)は
図4(a)のA−A断面図、図4(c)は回転工具の光の透
過範囲を説明するための図である。
4 (a) is a view taken in the direction of arrow D in FIG. 2 (a), FIG. 4 (b) is a sectional view taken along line AA of FIG. 4 (a), and FIG. FIG. 3 is a diagram for explaining a transmission range of FIG.

【図5】工具刃先位置検出動作を示す平面図である。FIG. 5 is a plan view showing a tool edge position detecting operation.

【図6】工具刃先部突出量を説明するための平面図であ
る。
FIG. 6 is a plan view for explaining a tool blade tip projecting amount.

【図7】本発明の実施の形態に係わるフローチャートの
一部である。
FIG. 7 is a part of a flowchart according to the embodiment of the present invention.

【図8】本発明の実施の形態に係わるフローチャートの
一部である。
FIG. 8 is a part of a flowchart according to the embodiment of the present invention.

【図9】工具突出位置検出動作を示す平面図である。FIG. 9 is a plan view showing an operation of detecting a tool protrusion position.

【図10】工具突出量を説明するための平面図である。FIG. 10 is a plan view for explaining a tool protrusion amount.

【図11】本発明の他の実施の形態に係わるフローチャ
ートの一部である。
FIG. 11 is a part of a flowchart according to another embodiment of the present invention.

【図12】本発明の他の実施の形態に係わるフローチャ
ートの一部である。
FIG. 12 is a part of a flowchart according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 数値制御工作機械、 20 工具、 20a
軸方向刃先、20b 径方向刃先、 30 検出
器、 32 レーザ発振器(光源)、34 フォトダイ
オード(受光器)、 35 レーザ光、 50 数値
制御装置、 102 刃先部、 103 工具芯
部、 112 通過穴
10 Numerically controlled machine tools, 20 tools, 20a
Axial cutting edge, 20b Radial cutting edge, 30 detector, 32 laser oscillator (light source), 34 photodiode (light receiver), 35 laser beam, 50 numerical controller, 102 cutting edge, 103 tool core, 112 through hole

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3C001 KA02 KB09 TA02 TB02 3C029 DD08 DD20 3C036 BB02 LL09  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 3C001 KA02 KB09 TA02 TB02 3C029 DD08 DD20 3C036 BB02 LL09

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】光源となる投光器とその光を受ける受光器
の間に回転中の工具を移動させて、前記工具の刃先部が
前記光を遮ったことによる前記受光器の受光量の変化に
よって工具刃先位置を測定する工具刃先位置検出装置を
用いた測定方法であって、 前記工具と前記光が交差しない状態から前記工具を前記
光にアプローチさせ、工具刃先部が前記光を断続的に遮
り受光器の受光量が変化した時の前記刃先位置検出装置
に対する前記工具の相対位置である第一検出座標を検出
し、 前記工具の芯部と前記光が交差し前記光が連続的に遮ら
れる状態から工具刃先部へと前記光の交差箇所が移動す
るように工具を移動させ、前記光が断続的に遮られる状
態に変化し受光量が変化した時の前記刃先位置検出装置
に対する前記工具の相対位置である第二検出座標を検出
し、 前記第一検出座標と前記第二検出座標の差から工具刃先
部の突出量を測定することを特徴とする工具刃先部突出
量測定方法。
1. A rotating tool is moved between a light emitter serving as a light source and a light receiver receiving the light, and a change in the amount of light received by the light receiver due to the cutting edge of the tool blocking the light. A measurement method using a tool edge position detection device that measures a tool edge position, wherein the tool approaches the light from a state where the tool and the light do not intersect, and the tool edge portion intermittently blocks the light. Detecting first detection coordinates that are relative positions of the tool with respect to the blade edge position detection device when the amount of light received by the light receiver changes, and the light intersects the core of the tool and the light is continuously blocked. Move the tool so that the intersection of the light moves from the state to the tool blade edge portion, the tool changes with respect to the blade edge position detection device when the received light changes when the light changes intermittently and the received light amount changes. Second relative position Out to detect coordinates, the tool cutting edge projecting amount measuring method characterized in that the difference between the first detection coordinate and the second detection coordinate measuring the amount of protrusion of the tool cutting edge.
【請求項2】請求項1に記載の工具刃先部突出量測定方
法を用いて、前記工具による加工の前後における工具刃
先部突出量を測定し、その差から工具摩耗量を算出する
ことを特徴とする工具摩耗量測定方法。
2. The method according to claim 1, wherein the amount of protrusion of the tool edge before and after machining by the tool is measured, and the amount of tool wear is calculated from the difference. Tool wear measurement method.
【請求項3】回転工具を備えた主軸と工作物を取り付け
固定するワークテーブルと前記主軸と前記ワークテーブ
ルを相対移動させる駆動手段とを備えた工作機械におい
て、 前記ワークテーブルに設けられ、光源となる投光器とそ
の光を受ける受光器の間に回転中の工具を移動させ、前
記工具の刃先部が前記光を遮ることによる前記受光器の
受光量の変化によって工具刃先位置を測定する工具刃先
位置検出装置と、 前記工具と前記光が交差しない状態から前記工具を前記
光にアプローチさせ、工具刃先部が前記光を断続的に遮
り受光器の受光量が変化した時の前記刃先位置検出装置
に対する前記工具の相対位置である第一検出座標を検出
し、前記工具の芯部と前記光が交差し前記光が連続的に
遮られる状態から工具刃先部へと交差箇所が移動するよ
うに工具を移動させ、前記光が断続的に遮られる状態に
変化し受光量が変化した時の前記刃先位置検出装置に対
する前記工具の相対位置である第二検出座標を検出し、
前記第一検出座標と前記第二検出座標の差から工具刃先
部の突出量を算出する突出量測定手段と、 前記突出量測定手段により前記工具の使用前に測定され
た突出量を前記工具毎に記憶する記憶手段と、 前記記憶手段に記憶された使用前の突出量と今回測定時
の突出量と比較して工具刃先部の摩耗量を算出する摩耗
量演算手段と、を備えたことを特徴とする数値制御工作
機械。
3. A machine tool comprising: a spindle provided with a rotary tool; a work table for mounting and fixing a workpiece; and driving means for relatively moving the spindle and the work table. A tool edge position for measuring a tool edge position by changing a light receiving amount of the light receiver by moving a rotating tool between a light emitter and a light receiver for receiving the light, and a cutting edge of the tool intercepting the light. For the detection device, the tool is approached to the light from a state where the tool and the light do not intersect, the tool edge portion intermittently intercepts the light, and the light reception amount of the light receiver changes with respect to the edge position detection device. A first detection coordinate which is a relative position of the tool is detected, and the intersection moves from a state where the core of the tool and the light intersect and the light is continuously interrupted to the tool edge. Moving the tool so that, the light detects the second detection coordinate the relative position of the tool relative to the blade position detecting apparatus when the amount received changes to a state which is blocked intermittently changes,
A protrusion amount measuring means for calculating a protrusion amount of the tool blade tip from a difference between the first detection coordinates and the second detection coordinates, and a protrusion amount measured by the protrusion amount measurement means before use of the tool, for each of the tools. And a wear amount calculating means for calculating the wear amount of the tool edge by comparing the protrusion amount before use stored in the storage means with the protrusion amount at the time of the current measurement. Numerically controlled machine tool.
【請求項4】回転工具を備えた主軸と工作物を取り付け
固定するワークテーブルと前記主軸と前記ワークテーブ
ルを相対移動させる駆動手段とを備えた工作機械におい
て、 前記ワークテーブルに設けられ、光源となる投光器とそ
の光を受ける受光器の間に回転中の工具を移動させ、前
記工具の刃先部が前記光を遮ることによる前記受光器の
受光量の変化によって工具刃先位置を測定する工具刃先
位置検出装置と、 前記工具と前記光が交差しない状態から前記工具を前記
光にアプローチさせ、工具刃先部が前記光を断続的に遮
り受光器の受光量が変化した時の前記刃先位置検出装置
に対する前記工具の相対位置である第一検出座標を検出
し、前記工具の芯部と前記光が交差し前記光が連続的に
遮られる状態から前記工具に設けられ前記光が貫通する
通過穴に向かって工具を移動させ、前記光が断続的に遮
られる状態に変化し受光量が変化した時の前記刃先位置
検出装置に対する前記工具の相対位置である第三検出座
標を検出し、前記第一検出座標と前記第三出座標の差か
ら工具突出量を算出する工具突出量測定手段と、 前記工具突出量測定手段により前記工具の使用前に測定
された工具突出量を前記工具毎に記憶する記憶手段と、 前記記憶手段に記憶された使用前の工具突出量と今回測
定時の工具突出量と比較して工具刃先部の摩耗量を算出
する摩耗量演算手段と、を備えたことを特徴とする数値
制御工作機械。
4. A machine tool comprising: a spindle provided with a rotary tool; a work table for mounting and fixing a workpiece; and drive means for relatively moving the spindle and the work table; and a light source provided on the work table. A tool edge position for measuring a tool edge position by changing a light receiving amount of the light receiver by moving a rotating tool between a light emitter and a light receiver for receiving the light, and a cutting edge of the tool intercepting the light. For the detection device, the tool is approached to the light from a state where the tool and the light do not intersect, the tool edge portion intermittently intercepts the light, and the light reception amount of the light receiver changes with respect to the edge position detection device. A first detection coordinate, which is a relative position of the tool, is detected, and the light is provided on the tool from a state where the core of the tool intersects with the light and the light is continuously blocked. Move the tool toward the passing hole to detect the third detection coordinates that is the relative position of the tool with respect to the blade edge position detection device when the light changes intermittently and the amount of received light changes A tool protrusion amount measuring means for calculating a tool protrusion amount from a difference between the first detection coordinates and the third outgoing coordinates; and a tool protrusion amount measured by the tool protrusion amount measuring means before use of the tool. Storage means for storing the tool protrusion amount before use stored in the storage means and wear amount calculation means for calculating the wear amount of the tool blade tip portion by comparing the tool protrusion amount at the time of the current measurement. Numerically controlled machine tool characterized in that:
【請求項5】前記摩耗量演算手段により算出された摩耗
量が工具毎に予め記憶された工具の限界摩耗量を超えた
とき警報を出力するアラーム手段を備えたことを特徴と
する請求項3又は4に記載の数値制御工作機械。
5. An apparatus according to claim 3, further comprising alarm means for outputting an alarm when a wear amount calculated by said wear amount calculation means exceeds a limit wear amount of a tool stored in advance for each tool. Or the numerically controlled machine tool according to 4.
【請求項6】前記摩耗量演算手段により算出された摩耗
量が工具毎に予め記憶された工具の限界摩耗量を超えた
とき該工具を自動的に交換する工具交換手段を備えたこ
とを特徴とする請求項3又は4に記載の数値制御工作機
械。
6. A tool changing means for automatically changing a tool when a wear amount calculated by said wear amount calculating means exceeds a limit wear amount of a tool stored in advance for each tool. The numerically controlled machine tool according to claim 3 or 4, wherein
JP2000113404A 2000-04-14 2000-04-14 Tool cutting-edge projection-amount measuring method, tool abrasion-amount measuring method, and numerical control machine tool using them Pending JP2001293642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000113404A JP2001293642A (en) 2000-04-14 2000-04-14 Tool cutting-edge projection-amount measuring method, tool abrasion-amount measuring method, and numerical control machine tool using them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000113404A JP2001293642A (en) 2000-04-14 2000-04-14 Tool cutting-edge projection-amount measuring method, tool abrasion-amount measuring method, and numerical control machine tool using them

Publications (1)

Publication Number Publication Date
JP2001293642A true JP2001293642A (en) 2001-10-23

Family

ID=18625376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000113404A Pending JP2001293642A (en) 2000-04-14 2000-04-14 Tool cutting-edge projection-amount measuring method, tool abrasion-amount measuring method, and numerical control machine tool using them

Country Status (1)

Country Link
JP (1) JP2001293642A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008058316A (en) * 2006-09-02 2008-03-13 Leica Biosystems Nussloch Gmbh Vibrating knife microtome for automatically measuring vertical vibration
JP2009061565A (en) * 2007-09-07 2009-03-26 Honda Motor Co Ltd Machining method
JP2011098417A (en) * 2009-11-06 2011-05-19 Hitachi Via Mechanics Ltd Printed circuit board punching machine
KR20180047495A (en) * 2016-10-31 2018-05-10 현대위아 주식회사 Method and apparatus for compensating spindle protrusion of machine tool
KR101878630B1 (en) * 2018-01-24 2018-07-13 주식회사 푸름인더스트리 Automation System of Vision Based Machine Tool Presetter
CN108581635A (en) * 2018-05-03 2018-09-28 哈尔滨理工大学 A kind of milling cutter side edge cutting edge abrasion three-dimensional detection device and method
CN110788668A (en) * 2018-08-01 2020-02-14 中村留精密工业株式会社 Machine tool
CN112297257A (en) * 2019-07-26 2021-02-02 株式会社迪思科 Position detection method for cutting unit and cutting device
JP6900561B1 (en) * 2020-07-07 2021-07-07 Dmg森精機株式会社 Machine tools, information processing methods, and information processing programs

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008058316A (en) * 2006-09-02 2008-03-13 Leica Biosystems Nussloch Gmbh Vibrating knife microtome for automatically measuring vertical vibration
JP2009061565A (en) * 2007-09-07 2009-03-26 Honda Motor Co Ltd Machining method
JP2011098417A (en) * 2009-11-06 2011-05-19 Hitachi Via Mechanics Ltd Printed circuit board punching machine
KR20180047495A (en) * 2016-10-31 2018-05-10 현대위아 주식회사 Method and apparatus for compensating spindle protrusion of machine tool
KR101878630B1 (en) * 2018-01-24 2018-07-13 주식회사 푸름인더스트리 Automation System of Vision Based Machine Tool Presetter
CN108581635A (en) * 2018-05-03 2018-09-28 哈尔滨理工大学 A kind of milling cutter side edge cutting edge abrasion three-dimensional detection device and method
CN108581635B (en) * 2018-05-03 2023-10-13 哈尔滨理工大学 Three-dimensional detection device and method for abrasion of side edge of milling cutter
CN110788668A (en) * 2018-08-01 2020-02-14 中村留精密工业株式会社 Machine tool
CN112297257A (en) * 2019-07-26 2021-02-02 株式会社迪思科 Position detection method for cutting unit and cutting device
CN112297257B (en) * 2019-07-26 2024-03-12 株式会社迪思科 Cutting unit position detection method and cutting device
JP6900561B1 (en) * 2020-07-07 2021-07-07 Dmg森精機株式会社 Machine tools, information processing methods, and information processing programs
JP2022014559A (en) * 2020-07-07 2022-01-20 Dmg森精機株式会社 Machine tool, information processing method, and information processing program

Similar Documents

Publication Publication Date Title
JP6445070B2 (en) Machine tool control system
JP6189191B2 (en) Surface shape measuring device and machine tool
JP2009233785A (en) Position measuring method of machine tool and its device
EP1203632B1 (en) Machine tool with tool position control
JP2006310396A (en) Blade breakage detector
JP2001293642A (en) Tool cutting-edge projection-amount measuring method, tool abrasion-amount measuring method, and numerical control machine tool using them
JP3547564B2 (en) Numerical control device and tool length correction method in numerical control device
JPH11138392A (en) Nc machine tool furnished with tool size measuring function
JP2008093787A (en) Grinder
JPH1199450A (en) Tool length measuring method and device for machine tool
JP2003251546A (en) Method and device for measuring blade tip of cutting tool
JP5008498B2 (en) Blade height measuring device
JP5008504B2 (en) Blade height measuring device
JP4634253B2 (en) Interference detection system for machine tools
JP2010058238A (en) Machining method
JPH11138391A (en) Surface roughness testing method and its device
JP2022034241A (en) Machine tool
JPH08174320A (en) Device and method for machining up to fixed depth
JP6959279B2 (en) Machine tools and machining change methods
JP3792209B2 (en) Workpiece center position detection method and numerical control device in numerical control device
JPH0895625A (en) Backlash measurement/correction device for machining of spherical or circular arc surface
JPH05337787A (en) Boring diameter correcting device of machine tool
WO2020110573A1 (en) Lathe
JP2001208513A (en) Method and apparatus for detecting displacement quantity in drive apparatus, high quality processing method in plate material processing machine and high quality processing system
JP3077263B2 (en) Cutting tool edge position detection device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060228