JP2001293348A - Vibration flowing device for granule - Google Patents

Vibration flowing device for granule

Info

Publication number
JP2001293348A
JP2001293348A JP2000109878A JP2000109878A JP2001293348A JP 2001293348 A JP2001293348 A JP 2001293348A JP 2000109878 A JP2000109878 A JP 2000109878A JP 2000109878 A JP2000109878 A JP 2000109878A JP 2001293348 A JP2001293348 A JP 2001293348A
Authority
JP
Japan
Prior art keywords
vibration
container
granular material
granule
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000109878A
Other languages
Japanese (ja)
Other versions
JP3648625B2 (en
Inventor
Shiyoubon Yanagi
捷凡 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nara Machinery Co Ltd
Original Assignee
Nara Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000109878A priority Critical patent/JP3648625B2/en
Application filed by Nara Machinery Co Ltd filed Critical Nara Machinery Co Ltd
Priority to EP00961104A priority patent/EP1219354B1/en
Priority to PCT/JP2000/006405 priority patent/WO2001021314A1/en
Priority to US10/088,781 priority patent/US7264192B1/en
Priority to AT00961104T priority patent/ATE506121T1/en
Priority to DE60045866T priority patent/DE60045866D1/en
Priority to AU73171/00A priority patent/AU7317100A/en
Publication of JP2001293348A publication Critical patent/JP2001293348A/en
Application granted granted Critical
Publication of JP3648625B2 publication Critical patent/JP3648625B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a vibration flowing device for a granule controlling the circulation behavior generated by the vibration flows of granule without using a fluid such as air, gas or the like or a solid medium or the like such as impact balls or the like in a manner of being rich in variation in the range from the slight swelling to the diffusion in the atomized state, demonstrating high speed circulating flows all over the surface while the granule is dispersed uniformly by the circulating flows, not requiring a complicated mechanism constitution and carrying out at a high speed the composite treatments including the crushing and pulverizing for cohesive powder and the dispersing, mixing, drying and the like for the granule. SOLUTION: A granule treatment means is characterized by a constitution of a container 2 linked to a vibrating means 1 and an amplifying means amplifying the vibration of the container 2 to vibrate and treat the granule 3 in the container by the vibration generated by the amplifying means.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、凝集粉体の解砕、
粉粒体の分散、混合、乾燥、噴霧ガス等との反応、ある
いは粉粒体表面への薄膜の形成などに用いられる粉粒体
の振動流動装置に関する。
[0001] The present invention relates to the disintegration of agglomerated powder,
The present invention relates to a vibrating fluidizer for a granular material used for dispersing, mixing, drying, reacting with a spray gas or the like, or forming a thin film on the surface of the granular material.

【0002】[0002]

【従来技術】一般的に、粉粒体(粉粒体層)が充填され
た容器内に対して垂直振動を与えると、粉粒体層は容器
内で流動する。この流動の様子は、作用させる振動の振
動数(周波数)と振幅に応じて多様に変化することが知
られている。そして、粉粒体層と容器との相対運動に起
因して生じる振動流動の挙動については、図4の流動パ
ターンに示す如く、振動による遠心効果の大きさに伴っ
て、まずパターンBのように粉粒体の移動が生じて粉粒
体層表面が傾斜し、次いでパターンC1のような粉体層
中心から容器壁に向かう循環流(対流)が発生する。こ
のとき、循環流の速度が遅ければ振動粉粒体表面は平坦
であるが、活発になると粉粒体表面に若干の盛り上がり
を生じる。さらに遠心効果を増大させると、パターンC
2のように循環流の向きが逆転し、続いて粉体層内には
パターンDのように局所的な循環流が発生し、粉粒体表
面に特有の波が現れるとされている。
2. Description of the Related Art Generally, when a vertical vibration is applied to a container filled with a granular material (a granular material layer), the granular material layer flows in the container. It is known that the state of the flow changes variously according to the frequency (frequency) and amplitude of the vibration to be applied. The behavior of the oscillating flow caused by the relative motion between the powder layer and the container is, as shown in the flow pattern of FIG. The movement of the granular material causes the surface of the granular material layer to incline, and then a circulating flow (convection) from the center of the granular material layer toward the container wall occurs as in pattern C1. At this time, if the velocity of the circulation flow is slow, the surface of the vibrating granular material is flat, but if it becomes active, the surface of the granular material slightly rises. When the centrifugal effect is further increased, the pattern C
It is said that the direction of the circulating flow is reversed as shown in FIG. 2, and then a local circulating flow is generated in the powder layer as shown in pattern D, and a unique wave appears on the surface of the granular material.

【0003】しかしながら、容器に振動を与えるのみで
は、粉粒体層における振動流動の挙動は、上記した様な
若干の盛り上がりを生じながら所定の循環流を生じる程
度の範疇に止まり、それらは容器内の場所により異なる
現象として現れ不安定な流動要因ともなっている。一
方、振動振幅、周波数に対する粉粒体層の応答はいまだ
充分に解析されておらず、振動流動は予想の難しい現象
でもあることから、容器内の全ての粉粒体が、循環流に
よって均一に分散されながら粉粒体層の表面に繰り返し
隈無く現れる確約も存せず、その循環流も混合、反応、
表面処理等の各種粉粒体処理に適した高速なものとは言
い得ない。また、粉粒体の振動流動を直接利用した処理
装置としては、排出装置、篩い分け装置、輸送装置など
があるのみで、その利用範囲が限られているのが実情で
あり、粉粒体処理技術の高速化、処理の均一化が要望さ
れている昨今において、凝集粉体の解砕、粉粒体の分
散、混合、噴霧ガス等との反応や、粉粒体表面への薄膜
の形成などの処理が行えると共に、これらの処理を短時
間に行え、さらには当該振動流動が真空の環境下におい
ても利用できる粉粒体の振動流動装置の出現が望まれて
いた。なお、特異な円振動により粉粒体を粉砕するよう
にした振動ミルなるものが知られているが、このものは
筒状容器内で球状等の媒体に円形となる振動軌跡を与え
て、容器内壁にこの球状媒体(衝撃球)を衝突させ、容
器内壁と衝撃球との間で粉粒体を粉砕するようにしたも
のであり、かかる観点からすれば、粉粒体そのものの循
環流を利用したものでなく、採用することはできない。
[0003] However, if only the vibration is applied to the container, the behavior of the oscillating flow in the granular material layer is limited to a range in which a predetermined circulating flow is generated with the above-mentioned slight swelling. It appears as a different phenomenon depending on the location, and is an unstable flow factor. On the other hand, the response of the granular material layer to the vibration amplitude and frequency has not yet been sufficiently analyzed, and the oscillating flow is also an unpredictable phenomenon. There is no affirmation that appears repeatedly on the surface of the granular material layer while being dispersed, and the circulating flow also mixes, reacts,
It cannot be said that it is a high-speed one suitable for various kinds of granular material treatment such as surface treatment. In addition, as the processing apparatus directly utilizing the vibration flow of the granular material, there are only a discharging device, a sieving device, a transport device, and the like, and the actual use range is limited. In recent years, where high-speed technology and uniform processing are demanded, the disintegration of agglomerated powder, the dispersion and mixing of powders, the reaction with spray gas, the formation of a thin film on the powder surface, etc. It has been desired to develop a vibrating and flowing device for granular materials in which the above processes can be performed and these processes can be performed in a short time, and the vibrating flow can be used even in a vacuum environment. It is to be noted that a vibration mill that pulverizes the granular material by peculiar circular vibration is known, but this is a method in which a medium such as a sphere is provided with a circular vibration trajectory in a cylindrical container, and the container is provided with a container. This spherical medium (shock sphere) collides with the inner wall to pulverize the granular material between the inner wall of the container and the shock sphere. From this viewpoint, the circulating flow of the granular material itself is used. It is not done and cannot be adopted.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記の如き
問題点を一掃すべく創案されたものであって、空気やガ
ス等の流動化媒体、あるいは衝撃球等の固体媒体などを
用いることなく、粉粒体の振動流動による循環挙動を、
容器内の場所によって異なる循環流が生じたとしても、
全ての粉粒体が循環流によって均一に分散されながら粉
粒体層の表面に隈無く、しかも瞬時に繰り返し現れるよ
うにすることができ、循環する粉粒体に対して直接的
に、凝集粉体の解砕、粉粒体の分散、混合、乾燥、噴霧
ガス等との反応、あるいは粉粒体表面への薄膜の形成な
どの複合的な処理を短時間に行うことができるものであ
る。さらに、その循環挙動は、僅かな盛り上がり程度の
循環流から、噴霧状に拡散させる循環流へと、変化に富
んだ制御が可能となり、目的に応じた循環流によって前
記反応や加工等の処理を行うことができるばかりか、真
空状態等の特殊環境下であっても良好な循環挙動を得る
ことも可能となり、もって全体の機械構成が殊更複雑な
ものとならず、小型化を容易ならしめる粉粒体の振動流
動装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in order to eliminate the above-mentioned problems, and uses a fluidizing medium such as air or gas, or a solid medium such as an impact ball. Circulatory behavior due to vibrational flow of powder
Even if different circulation flows occur depending on the location in the container,
All the particles are uniformly dispersed by the circulating flow, and can be repeated all over the surface of the particles layer instantaneously and instantaneously and repeatedly. It is capable of performing complex processing such as crushing of a body, dispersion, mixing, drying of a granular material, reaction with a spray gas or the like, or formation of a thin film on the surface of a granular material in a short time. Further, the circulation behavior can be varied and controlled from a circulating flow with a slight bulge to a circulating flow that is diffused in a spray form. Not only can it be carried out, but it is also possible to obtain good circulation behavior even under a special environment such as a vacuum state, so that the overall mechanical configuration is not particularly complicated, and the powder that facilitates miniaturization can be obtained. It is an object of the present invention to provide a vibrating fluidizing device for granules.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に本発明が採用した技術手段は、粉粒体の処理手段を、
振動手段に連携してなる容器と、該容器の振動を増幅せ
しめる増幅手段とで構成し、該増幅手段により生ずる振
動作用により前記容器内の粉粒体を振動処理すべく構成
したことを特徴とするものである。
Means for Solving the Problems Technical means adopted by the present invention for solving the above-mentioned problems are as follows.
A container formed in cooperation with the vibrating means, and an amplifying means for amplifying the vibration of the container, wherein the vibrating action generated by the amplifying means is configured to vibrate the particles in the container. Is what you do.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施の形態を好適
な実施の形態として例示する粉粒体の振動流動装置に基
づいて詳細に説明する。図1〜図3において、図1は、
振動流動装置の一部破断全体図である。1は振動手段と
しての振動装置であり、該振動装置1は、特開平08−
193911号公報に開示された如きの電動型振動装置
で、振動台101の下面に一体的に設けられた円柱状の
中央磁極と、該中央磁極の外周面に駆動コイルを存して
対向配設された円環状磁極とによって構成される一方を
N極とし、他方をS極とする固定磁石機構を備え、前記
駆動コイルへ交流電流を供給することにより、前記固定
磁石における両磁極の相互間の磁界中で駆動コイルが上
下に振動し、加振力を振動台101に与える機構を備え
ている。なお、振動の発生方法(原理)としては、上記
の電磁振動に限定されることなく、超音波振動、磁歪振
動、電動機のアンバランスによる振動や、これら振動発
生方法を適宜組み合わせても良く、また、上下振動、左
右振動およびこれらの複合振動等種々のものであっても
良い。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of the present invention will be described in detail based on a vibrating fluidizing apparatus for a granular material exemplified as a preferred embodiment. 1 to 3, FIG.
It is a partially broken whole view of an oscillating flow device. Reference numeral 1 denotes a vibration device as a vibration means.
In an electric vibration device as disclosed in Japanese Patent No. 193911, a cylindrical central magnetic pole integrally provided on a lower surface of a shaking table 101 and a driving coil are provided on an outer peripheral surface of the central magnetic pole so as to face each other. A fixed magnet mechanism having one of the N-pole and the other as the S-pole, and supplying an alternating current to the drive coil, thereby forming a gap between the two magnetic poles in the fixed magnet. A mechanism is provided in which the drive coil vibrates up and down in a magnetic field and applies an exciting force to the vibration table 101. The method (principle) of generating the vibration is not limited to the above-described electromagnetic vibration, but may be an ultrasonic vibration, a magnetostrictive vibration, a vibration caused by imbalance of an electric motor, or any combination of these vibration generating methods. , Vertical vibration, left and right vibration and a composite vibration thereof.

【0007】2は樹脂製の透明筒状ケース2aと共に振
動台101上に装着された容器であって、該容器2は、
前記振動装置1の稼動に連携して発生する前記振動台1
01の振動が直接的に伝播されるよう構成されている。
また、容器2内には、粉粒体3が充填されており、この
粉粒体3を振動処理すべき手段として、容器底部に、ゴ
ム質シート材よりなる板状体4が設けられていると共
に、該板状体4と容器2との間に介在させた複数の金属
製球状遊動体4aが集合体として敷設状に投入されてい
て、前記容器2の振動を増幅せしめる増幅手段を構成し
ている。すなわち、容器2と遊動体4aとは、夫々異な
る振動を板状体4に与える一組の異種振動体となってお
り、この異種振動体の一方を構成する容器2からの振動
を、他方を構成する遊動体4aが享受する連携関係によ
って、容器2が前記振動装置1からの直接的な振動を受
けると、その加振力が容器2を介して間接的に前記遊動
体4aに与えられ、遊動体4aが上下に振動して前記板
状体4に衝突する。その際、板状体4には、容器2の振
動と遊動体4aの衝撃による振動との複合的な異種振動
作用が加わり、容器2の振動が増幅され、この増幅振動
作用により粉粒体3を流動処理する構成となっている。
なお、本実施例では、振動装置1と容器2との連携関係
において、容器の全体が振動するよう構成したが、容器
底部のみが振動するようにしても良く、要は容器の何れ
かの面に与えられた振動が増幅されて、容器2内の粉粒
体3に付与されるようにしたものであれば、その構成は
任意である。また、遊動体4aの形状は、球状のものに
替えて棒状、筒状、板状でも良く、その材質も、金属、
ゴム、樹脂等であってもよく、これらの組み合わせも任
意である。さらに、板状体4の材質は、ゴム質状のもの
に限定されず、金属、樹脂等任意であり、形状も平面状
のものに限定されるものではない。また、板状体4の上
面に遊動体4aを敷設して粉粒体3を処理するようにし
ても良い。
Reference numeral 2 denotes a container mounted on the shaking table 101 together with a transparent cylindrical case 2a made of resin.
The vibration table 1 generated in cooperation with the operation of the vibration device 1
01 is directly transmitted.
The container 2 is filled with the granular material 3, and a plate-like body 4 made of a rubber sheet material is provided at the bottom of the container as a means for subjecting the granular material 3 to vibration treatment. In addition, a plurality of metallic spherical floating bodies 4a interposed between the plate-like body 4 and the container 2 are laid in a laid state as an aggregate, and constitute amplification means for amplifying the vibration of the container 2. ing. That is, the container 2 and the floating body 4a are a set of different types of vibrators that give different vibrations to the plate-like body 4, and the vibration from the container 2 that constitutes one of the different types of vibrators and the other When the container 2 receives the direct vibration from the vibration device 1 due to the cooperative relationship enjoyed by the constituent floating bodies 4a, the exciting force is applied indirectly to the floating bodies 4a via the container 2, The floating body 4a vibrates up and down and collides with the plate-like body 4. At this time, a complex different vibration action of vibration of the container 2 and vibration due to the impact of the floating body 4a is applied to the plate-like body 4, and the vibration of the container 2 is amplified. Is fluidized.
In the present embodiment, the entire container vibrates in the cooperative relationship between the vibration device 1 and the container 2, but only the container bottom may be vibrated. The configuration is arbitrary as long as the vibration applied to the container 2 is amplified and applied to the granular material 3 in the container 2. In addition, the shape of the floating body 4a may be a bar, a tube, or a plate instead of a spherical one, and the material may be metal,
It may be rubber, resin or the like, and a combination of these is also optional. Further, the material of the plate-like body 4 is not limited to a rubber-like material, but may be any metal or resin, and the shape is not limited to a planar shape. In addition, the floating body 4 a may be laid on the upper surface of the plate-like body 4 to process the granular material 3.

【0008】次に上記のように構成した振動流動装置を
用いた粉粒体の振動流動の挙動に対する実験例について
説明する。振動装置1としては、株式会社アカシ製の電
動型マイクロ加振機(MES451)を用いた。板状体
4には、厚さ約2mmの硬質ゴムシートを、遊動体4a
には平均粒径5mmの鉄球をそれぞれ用いた。そして、
処理される粉粒体3には、平均粒径5μmのポリエチレ
ン粒子(白色)を用いて、容器2に約1cmの高さまで
充填させることで粉粒体層を形成し、振動数1〜10k
Hz、振幅0.1〜10mmの振動を与えてみた。而し
て、その振動流動の挙動状態を図2(A)、図3(A)
に図面代用写真として示すと共に、その状態説明図をそ
れぞれ図2(B)、図3(B)に示す。夫々の図(B)
は、図(A)のものにそれぞれコントラストおよび明暗
調の色調処理と縁取り線図を加えて、その流動状態を明
確にしたものである。
Next, a description will be given of an experimental example on the behavior of the oscillating flow of the granular material using the oscillating flow device configured as described above. As the vibration device 1, an electric micro-vibrator (MES451) manufactured by Akasi Corporation was used. On the plate-like body 4, a hard rubber sheet having a thickness of about 2 mm
, Iron balls having an average particle size of 5 mm were used. And
For the granular material 3 to be treated, polyethylene particles (white) having an average particle diameter of 5 μm are used, and the granular material layer is formed by filling the container 2 to a height of about 1 cm.
A vibration with a frequency of 0.1 to 10 mm was applied to the sample. FIGS. 2 (A) and 3 (A) show the behavior of the oscillating flow.
2A and 2B, and FIGS. 2B and 3B are explanatory diagrams of the state, respectively. Each figure (B)
FIG. 9A is a diagram in which the flow state is clarified by adding a color tone process for contrast and light / dark tone and a border diagram to those shown in FIG.

【0009】まず、容器2内の粉粒体3に振動装置1の
上下振動による小さな加振力を与えると、図2に示す如
く、均一な粉粒体層が若干の盛り上がりを生じながら、
容器2の外周側と中心側に移動すると共に、粉粒体層の
表面に存在していた粉粒体3が瞬時に容器2底部に移動
し、2〜3秒後には再び表面に現れる挙動を示した。こ
の挙動の様子は、粉粒体層の表面中央部分に平均粒径約
100μmの着色粒子(赤色)を少量乗せた状態から混
合、分散に対する流動挙動を観察したものであるが、こ
れらの流動挙動は、比較的小さな加振力である初期の振
動段階においても、前記着色粒子が容器2内全域で瞬時
に、かつ均一に分散されながら、再び粉粒体層の表面に
隈無く現れる良好な循環流が生成されていることで確認
された。このように、物性(粒径、密度等)が異なる粉
粒体であっても、短時間で均一に混合、分散されること
が分かった。
First, when a small vibrating force due to the vertical vibration of the vibrating device 1 is applied to the granular material 3 in the container 2, as shown in FIG.
While moving to the outer peripheral side and the center side of the container 2, the granular material 3 existing on the surface of the granular material layer instantaneously moves to the bottom of the container 2, and appears again on the surface after 2-3 seconds. Indicated. This behavior is obtained by observing the flow behavior with respect to mixing and dispersion from a state in which a small amount of colored particles (red) having an average particle size of about 100 μm are placed on the central portion of the surface of the granular material layer. In the initial vibration stage, which is a comparatively small excitation force, a good circulation of the colored particles appearing all over the surface of the granular material layer again while being instantaneously and uniformly dispersed throughout the container 2. It was confirmed that a stream was being generated. Thus, it was found that even powders having different physical properties (particle diameter, density, etc.) were uniformly mixed and dispersed in a short time.

【0010】次に、加振力を徐々に大きくして流動挙動
を観察したところ、図3に示す如きに、粉粒体3が上方
に激しく霧状に拡散する流動挙動が確認された。その状
態を図3(B)に基づいて説明すると、加振力を増加し
た初期状態では、粉粒体3は、板状体4の振動により上
方へ跳ね上げられるような柱状に拡散する挙動を示し
た。その際、柱状の拡散流の頂部には粉粒体3の集まり
が確認されたが、その後さらに加振力を増大させると、
これらの集まりは徐々に消失し、図3(A)のような全
体が霧状に拡散されるという流動挙動を示した。この拡
散流動状態においては、従来の空気やガス等を流動媒体
に用いた方法と同様に粉粒体を処理することができる
が、その特徴は、粉粒体を処理するにあたり、前記流動
媒体を必要としない点にあり、それにより、コンプレッ
サー、エアフィルター及び固気分離装置を必要とせず、
装置コスト、ランニングコストを節減することができ
る。また、容器2自体も小さくすることができるという
利点がある。
Next, the flow behavior was observed by gradually increasing the excitation force. As shown in FIG. 3, the flow behavior in which the powder 3 was violently diffused upward in a mist state was confirmed. This state will be described with reference to FIG. 3 (B). In the initial state in which the excitation force is increased, the behavior of the granular material 3 diffusing into a column shape that can be flipped up by the vibration of the plate-like body 4 is shown. Indicated. At that time, the aggregation of the granular material 3 was confirmed at the top of the columnar diffusion flow, but when the excitation force was further increased,
These aggregates gradually disappeared and exhibited a flow behavior in which the whole was diffused in a mist state as shown in FIG. In this diffusion flow state, the granular material can be treated in the same manner as in the conventional method using air, gas, or the like as the fluid medium. It does not require a compressor, an air filter and a solid-gas separation device,
Equipment costs and running costs can be reduced. Further, there is an advantage that the container 2 itself can be reduced in size.

【0011】また、上記実験例において、流動環境を徐
々に減圧し、1×10−8Torr(1.33μPa)
の超高真空状態で振動流動の挙動を確認したところ、粉
粒体3を拡散流動するにあたり常圧の状態よりも加振力
を必要とするが、本発明の振動流動は、減圧された特殊
環境下(減圧された容器内)であってもその挙動が確認
された。したがって、真空蒸着、スパッタ蒸着、レーザ
ーアブレージョンに代表される物理的気相成長方法(P
VD法)、すなわち、目的とする薄膜の構成原子を含む
固体のターゲットを物理的な作用により原子、分子、ク
ラスタ状にして、基板表面へ輸送し、薄膜を形成する技
術を粉粒体に応用した場合に、真空チャンバー内に置か
れた粉粒体であっても良好な循環流が生成されるので、
粉粒体を構成する個々の粒子の表面に均一に薄膜を連続
または不連続状に形成(コーティング)することができ
る利点がある。
In the above experimental example, the flow environment was gradually decompressed to 1 × 10 −8 Torr (1.33 μPa).
When the behavior of the oscillating flow was confirmed in an ultra-high vacuum state, the vibrating flow of the present invention required a more vibrating force than the state of normal pressure in diffusing and flowing the granular material 3. Even under the environment (in a depressurized container), the behavior was confirmed. Therefore, a physical vapor deposition method (such as vacuum deposition, sputter deposition, or laser abrasion) (P
(VD method), that is, a technique in which a solid target containing constituent atoms of a target thin film is formed into atoms, molecules, and clusters by physical action, transported to the substrate surface, and a thin film is formed, applied to a powder or a granular material. In this case, a good circulating flow is generated even with the granular material placed in the vacuum chamber,
There is an advantage that a thin film can be uniformly (continuously) formed continuously or discontinuously on the surface of each particle constituting the powder.

【0012】また、従来の容器2のみに振動を与た場合
の流動挙動について、前記と同様に着色粒子を用いて比
較観察した結果、着色粒子に対してその周縁の粉粒体3
が徐々に被さり、全ての着色粒子を覆って表面から視認
できなくなるまでに約1分ほどの時間を要した。更に加
振力を増大した振動を与えても再び着色粒子が粉粒体層
の表面に現れることが無く、分散、混合に良好な循環流
が生成されず、従来の振動方法では殆ど流動しないこと
が確認された。
The flow behavior when only the conventional container 2 is vibrated is compared and observed using colored particles in the same manner as described above.
It took about 1 minute to cover all the colored particles and not to be visible from the surface. Furthermore, even if the vibration with the increased excitation force is applied, the colored particles do not appear again on the surface of the granular material layer, a good circulating flow for dispersion and mixing is not generated, and the conventional vibration method hardly flows. Was confirmed.

【0013】上記技術手段によれば、空気やガス等の流
動化媒体、あるいは衝撃球等の固体媒体などを用いるこ
となく、粉粒体の振動流動による循環挙動を、容器内の
場所によって異なる循環流が生じたとしても、全ての粉
粒体が循環流によって均一に分散されながら粉粒体層の
表面に隈無く、しかも瞬時に繰り返し現れるようにする
ことができ、循環する粉粒体に対して直接的に、凝集粉
体の解砕、粉粒体の分散、混合、乾燥、噴霧ガス等との
反応、あるいは粉粒体表面への薄膜の形成などの複合的
な処理を短時間に行うことができるものである。さら
に、その循環挙動は、僅かな盛り上がり程度の循環流か
ら、噴霧状に拡散させる循環流へと、変化に富んだ制御
が可能となり、目的に応じた循環流によって前記反応や
加工等の処理を行うことができるばかりか、高真空状態
等の特殊環境下であっても良好な循環挙動を得ることも
可能となり、もって全体の機械構成が殊更複雑なものと
ならず、小型化を容易ならしめるこができる。
According to the above technical means, the circulating behavior of the granular material due to the oscillating flow can be varied depending on the location in the container without using a fluidizing medium such as air or gas, or a solid medium such as impact balls. Even if a flow occurs, all the particles are uniformly dispersed by the circulating flow and can appear all over the surface of the particle layer and instantaneously and repeatedly. Direct and complex processing such as disintegration of agglomerated powder, dispersion and mixing of powders, mixing, drying, reaction with spray gas, etc., or formation of a thin film on the surface of powders and granules in a short time Is what you can do. Further, the circulation behavior can be varied and controlled from a circulating flow with a slight bulge to a circulating flow that is diffused in a spray form. Not only can it be performed, but it is also possible to obtain good circulation behavior even in a special environment such as a high vacuum state, so that the overall mechanical configuration does not become particularly complicated and downsizing is facilitated. I can do this.

【0014】上記振動流動の挙動メカニズムについて
は、力学的に充分に解析あるいは解明されておらず、予
測の難しい現象であるが、次のような作用を有するもの
と思われる。 振動装置1の上下振動エネルギーは、振動装置1に
直接的に連携された容器2を介して、粉粒体3、板状体
4、遊動体4aに間接的に伝播される。板状体4、遊動
体4aは、それが有する質量や大きさ、形状、材質等の
物性による上下運動や、遊動体4aが球体、柱状体等の
独立集合体である場合には回転運動も加わり、それぞれ
独自の振動エネルギーを誘発する。
The behavior mechanism of the above-mentioned oscillating flow has not been sufficiently analyzed or elucidated mechanically, and is a phenomenon that is difficult to predict, but seems to have the following effects. The vertical vibration energy of the vibration device 1 is indirectly transmitted to the granular material 3, the plate-like body 4, and the floating body 4a via the container 2 directly linked to the vibration device 1. The plate-like body 4 and the floating body 4a also move up and down due to physical properties such as mass, size, shape, and material of the plate-like body 4 and the rotational movement when the floating body 4a is an independent assembly such as a sphere and a columnar body. In addition, each induces its own vibration energy.

【0015】 容器2、板状体4、遊動体4aは、そ
れぞれ異なる振動(異種振動)体を構成し、これらの共
同振動作用により複合的なエネルギーが粉粒体3に伝播
される。その際、加振力が小さければ、遊動体4aによ
る衝撃振動による増幅振動作用の影響は小さいが、粉粒
体3に容器2、板状体4および遊動体4aの各振動によ
る複合的な異種振動作用が付与され、平滑な流動層では
あるが、容器2のみの振動作用の場合に比し、良好な振
動流動層(循環流)が形成される。また、加振力が大き
ければ、遊動体4aによる衝撃振動による増幅振動作用
の影響が大きくなって、その衝撃振動エネルギーを中心
とする複合的な異種振動作用が粉粒体3に付与さられる
ことで、柱状または霧状の良好な流動層が形成される。
The container 2, the plate-shaped body 4, and the floating body 4 a form different vibration (different vibration) bodies, respectively, and a composite energy is transmitted to the powder 3 by a joint vibration action. At this time, if the excitation force is small, the effect of the amplified vibration action due to the impact vibration by the floating body 4a is small. Although a vibrating action is given and the fluidized bed is smooth, a better vibrating fluidized bed (circulating flow) is formed as compared to the case of the vibrating action of the container 2 alone. In addition, if the exciting force is large, the influence of the amplified vibration action due to the impact vibration by the floating body 4a becomes large, and a complex heterogeneous vibration action centered on the impact vibration energy is applied to the granular material 3. Thus, a good fluidized bed in the form of a column or a mist is formed.

【0016】 加振力を大きくする過程において、粉
粒体3の上下動に板状体4の上下振動と同期したような
柱状の拡散流動がみられたが、一定以上の加振力を付与
すると、粉粒体3の昇降運動がそれぞれ粒子単位でバラ
バラとなり、霧状の拡散へと変化する循環流となって現
れた。これにより拡散された良好な流動層が形成され
て、粉粒体3は、高速かつ均一に分散されながら、粉粒
体層の表面に繰り返し隈無く確実に出現する挙動を示す
ようになる。以上の異種振動による増幅振動作用によっ
て、振動流動挙動に対する改善がなされるものと推認さ
れる。
In the process of increasing the excitation force, a vertical diffusion movement of the granular material 3 was observed in a columnar diffusion flow synchronized with the vertical vibration of the plate member 4. Then, the ascending and descending movements of the granular material 3 were dispersed in units of particles, and appeared as a circulating flow that changed to mist-like diffusion. As a result, a diffused good fluidized bed is formed, and the granular material 3 exhibits such a behavior that the granular material 3 appears uniformly and repeatedly on the surface of the granular material layer while being uniformly dispersed at high speed. It is presumed that the above-described amplified vibration action by the heterogeneous vibration improves the vibration flow behavior.

【図面の簡単な説明】[Brief description of the drawings]

【図1】粉粒体の振動流動装置の全体構成図FIG. 1 is an overall configuration diagram of an apparatus for vibrating and flowing a granular material.

【図2】実験例1の挙動状態を例示した図面代用写真
(A)とその説明図(B)
FIG. 2 is a drawing-substituting photograph (A) illustrating the behavior state of Experimental Example 1 and an explanatory diagram thereof (B).

【図3】実験例2の挙動状態を例示した図面代用写真
(A)とその説明図(B)
FIG. 3 is a drawing-substituting photograph (A) illustrating the behavior state of Experimental Example 2 and its explanatory diagram (B).

【図4】一般的な粉粒体の振動流動の挙動パターンを示
す説明図
FIG. 4 is an explanatory diagram showing a behavior pattern of vibration flow of a general granular material.

【符号の説明】[Explanation of symbols]

1 振動装置 101 振動台 2 容器 3 粉粒体 301 粉粒体の噴出流 302 粉粒体の噴出流 4 振動媒体 401 球状体 402 多孔板体 DESCRIPTION OF SYMBOLS 1 Vibration apparatus 101 Shaking table 2 Container 3 Granular material 301 Ejection flow of granular material 302 Ejection flow of granular material 4 Vibration medium 401 Spherical body 402 Perforated plate

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 粉粒体の処理手段を、振動手段に連携し
てなる容器と、該容器の振動を増幅せしめる増幅手段と
で構成し、該増幅手段により生ずる振動作用により前記
容器内の粉粒体を振動処理すべく構成したことを特徴と
する粉粒体の振動処理装置。
1. A method for treating a granular material, comprising: a container cooperating with a vibrating means; and an amplifying means for amplifying the vibration of the container. A vibration processing apparatus for a granular material, wherein the vibration processing is performed on the granular material.
【請求項2】 請求項1において、前記振動手段は、前
記容器の底部に対して上下振動を与えるよう連携されて
いることを特徴とする粉粒体の振動処理装置。
2. A vibration processing apparatus for a granular material according to claim 1, wherein said vibrating means cooperates to apply a vertical vibration to a bottom portion of said container.
【請求項3】 請求項1乃至2において、前記振動作用
は、増幅手段による振動と、容器の振動との共同振動作
用であることを特徴とする粉粒体の振動処理装置。
3. A vibration processing apparatus for a granular material according to claim 1, wherein the vibration action is a joint vibration action of the vibration by the amplification means and the vibration of the container.
【請求項4】 請求項1乃至3において、前記増幅手段
は、前記容器内にその底部から離間させて設けられた板
状体に、該板状体と容器との間に介在させた遊動体を衝
撃すべく構成されていることを特徴とする粉粒体の振動
処理装置。
4. The floating body according to claim 1, wherein said amplifying means is provided on a plate-shaped member provided in said container so as to be separated from a bottom thereof, between said plate-shaped member and said container. A vibration processing apparatus for a granular material, characterized in that the vibration processing apparatus is configured to impact the powder.
【請求項5】 請求項4において、前記板状体は、ゴム
シート材、金属材または樹脂材よりなることを特徴とす
る粉粒体の振動処理装置。
5. A vibration processing apparatus for a granular material according to claim 4, wherein said plate-like body is made of a rubber sheet material, a metal material or a resin material.
【請求項6】 請求項2乃至3において、前記遊動体
は、金属、樹脂またはゴムよりなる複数の球状体である
ことを特徴とする粉粒体の振動処理装置。
6. An apparatus according to claim 2, wherein said floating body is a plurality of spherical bodies made of metal, resin or rubber.
【請求項7】請求項1乃至6において、前記粉粒体の処
理手段は、真空中で用いられることを特徴とする粉粒体
の振動処理装置。
7. A vibration processing apparatus for a granular material according to claim 1, wherein said processing means for the granular material is used in a vacuum.
JP2000109878A 1999-09-22 2000-04-11 Vibrating flow device for powder Expired - Fee Related JP3648625B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2000109878A JP3648625B2 (en) 2000-04-11 2000-04-11 Vibrating flow device for powder
PCT/JP2000/006405 WO2001021314A1 (en) 1999-09-22 2000-09-20 Vibro-fluidizing device for powder particles
US10/088,781 US7264192B1 (en) 1999-09-22 2000-09-20 Particulate matter vibro-fluidizing apparatus
AT00961104T ATE506121T1 (en) 1999-09-22 2000-09-20 DEVICE FOR VIBRO-FLUIDIZATION OF POWDER PARTICLES
EP00961104A EP1219354B1 (en) 1999-09-22 2000-09-20 Vibro-fluidizing device for powder particles
DE60045866T DE60045866D1 (en) 1999-09-22 2000-09-20 DEVICE FOR VIBRO FLUIDIZATION OF POWDER PARTS
AU73171/00A AU7317100A (en) 1999-09-22 2000-09-20 Vibro-fluidizing device for powder particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000109878A JP3648625B2 (en) 2000-04-11 2000-04-11 Vibrating flow device for powder

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002228274A Division JP4032865B2 (en) 2002-08-06 2002-08-06 Vibrating flow device for powder

Publications (2)

Publication Number Publication Date
JP2001293348A true JP2001293348A (en) 2001-10-23
JP3648625B2 JP3648625B2 (en) 2005-05-18

Family

ID=18622490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000109878A Expired - Fee Related JP3648625B2 (en) 1999-09-22 2000-04-11 Vibrating flow device for powder

Country Status (1)

Country Link
JP (1) JP3648625B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010008339A (en) * 2008-06-30 2010-01-14 Decsys:Kk Method and device for inspecting foreign matter in powder in transparent vessel
CN108515022A (en) * 2018-05-09 2018-09-11 辽宁科技大学 Combination vibration hybrid particles decker

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010008339A (en) * 2008-06-30 2010-01-14 Decsys:Kk Method and device for inspecting foreign matter in powder in transparent vessel
CN108515022A (en) * 2018-05-09 2018-09-11 辽宁科技大学 Combination vibration hybrid particles decker
CN108515022B (en) * 2018-05-09 2023-09-19 辽宁科技大学 Combined vibration mixed particle layering device

Also Published As

Publication number Publication date
JP3648625B2 (en) 2005-05-18

Similar Documents

Publication Publication Date Title
JP5313924B2 (en) Resonant vibration mixing method
US20100254212A1 (en) Method for resonant-vibratory mixing
ATE116161T1 (en) ULTRASONIC DEVICE FOR CONTINUOUSLY PRODUCING PARTICLES.
JP5731570B2 (en) Stirrer and method of mixing with stirrer
WO2001021314A1 (en) Vibro-fluidizing device for powder particles
KR101061918B1 (en) Adhesive layer formation method
JP2001293348A (en) Vibration flowing device for granule
JP3809860B2 (en) Composite structure manufacturing method and composite structure manufacturing apparatus
JP3455814B2 (en) Vibration fluidizer for powder
Steinacher et al. Spray-assisted formation of micrometer-sized emulsions
JP4032865B2 (en) Vibrating flow device for powder
JP2008308716A (en) Aerosol generator and film deposition apparatus
US3712593A (en) Method of and device for continuous preparation of granular material, such as foundry sand
CA1267886A (en) Tumbling apparatus
JP2007057201A (en) Vibration treating device and powder and grain treating method using this device
JPH0719728A (en) Method and apparatus for granulating and drying powder particles by operating air vibration wave
JPS62277133A (en) Apparatus for feeding gas into liquid or mixing liquids
CN113613684B (en) Dirt removing device and conveying box provided with same
CA1208199A (en) Method and apparatus for mixing particulate material
JP2001334165A (en) Pulverizing method for powder
JPH0634916B2 (en) Powder processing equipment
JP3903207B2 (en) Powder processing method using vibration processing apparatus
JPH0639787Y2 (en) Vibrating granulator
SU803959A1 (en) Vibration mixer
JPH02149327A (en) Mixing device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees