JP2001293082A - Medical catheter containing inorganic crystal - Google Patents

Medical catheter containing inorganic crystal

Info

Publication number
JP2001293082A
JP2001293082A JP2000110493A JP2000110493A JP2001293082A JP 2001293082 A JP2001293082 A JP 2001293082A JP 2000110493 A JP2000110493 A JP 2000110493A JP 2000110493 A JP2000110493 A JP 2000110493A JP 2001293082 A JP2001293082 A JP 2001293082A
Authority
JP
Japan
Prior art keywords
inorganic crystal
inorganic
shaft
crystal
medical catheter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000110493A
Other languages
Japanese (ja)
Inventor
Minoru Shimokawa
下川稔
Kohei Fukaya
深谷浩平
Takuji Nishide
西出拓司
Shogo Miki
三木章伍
Noriyuki Suzuki
鈴木紀之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP2000110493A priority Critical patent/JP2001293082A/en
Publication of JP2001293082A publication Critical patent/JP2001293082A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a catheter shaft made of a polyimide in which elongation is improved without impairing the modulus of elasticity. SOLUTION: A medical catheter is made of an inorganic crystalline composite material in which an inorganic crystal is contained in the polyimide. The catheter is excellent in pushability and trachability.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、カテーテルやバル
ーンを有するバルーンカテーテルなどの医用カテーテル
に関するものである。
The present invention relates to a medical catheter such as a catheter or a balloon catheter having a balloon.

【0002】[0002]

【従来の技術】バルーンを備えたバルーンカテーテルは
医療に於いて有用性が増すと共に機能向上のための改良
が盛んに行われている。バルーンカテーテルを用いる治
療法としては、冠動脈などの血管の狭窄部を拡張する経
皮的冠動脈血管形成術(PTCA)や末梢血管などの狭
窄部を拡張する経皮的血管形成術(PTA)また、大動
脈バルーンポンピング(IABP)などがある。
2. Description of the Related Art Balloon catheters equipped with balloons are becoming more and more useful in medical treatment and are being actively improved to improve their functions. As a treatment method using a balloon catheter, percutaneous coronary angioplasty (PTCA) for expanding a stenotic part of a blood vessel such as a coronary artery, percutaneous angioplasty (PTA) for expanding a stenotic part such as a peripheral blood vessel, Aortic balloon pumping (IABP).

【0003】PTCAやPTAに於けるバルーンカテー
テルは、末梢血管の狭窄部へバルーン部分を挿入する目
的から追従性(トラッカビリティー)及び力伝達性(プ
ッシャビリティー)の機能が求められる。特にカテーテ
ルの主要構成部材であるシャフト部はトラッカビリティ
ーやプッシャビリティーを向上させる目的から耐圧性や
耐キンク性、寸法安定性を確保しながらシャフトの太さ
を細く(薄肉化)し、且つ、柔軟性を有する機能が求め
られる。
[0003] Balloon catheters in PTCA and PTA are required to have a function of tracking (trackability) and force transmission (pushability) for the purpose of inserting a balloon portion into a stenosis of a peripheral blood vessel. In particular, the shaft part, which is a main component of the catheter, is made thinner (thinner) while ensuring pressure resistance, kink resistance, and dimensional stability for the purpose of improving trackability and pushability, and A function having flexibility is required.

【0004】ポリイミドは弾性率が高くプッシャビリテ
ィーに優れたシャフトを作ることができることから、最
近、カテーテルのシャフト部にポリイミドを用いたもの
が販売されている。しかし、弾性率が高い反面、柔軟性
に乏しくトラッカビリティーに劣る素材でもある。
[0004] Since polyimide has a high elasticity and can produce a shaft having excellent pushability, a catheter using polyimide for the shaft portion of a catheter has recently been sold. However, while having a high modulus of elasticity, it is a material having poor flexibility and poor trackability.

【0005】[0005]

【発明が解決しようとする課題】従来の技術のポリイミ
ドから構成されるシャフトは、その弾性率の高さからプ
ッシャビリティーに優れ、また、耐圧性や寸法安定性に
優れていることから薄肉化による細径も可能な素材であ
るものの、柔軟性、特に伸びが小さいことからトラッカ
ビリティーに於いて劣る。
The shaft made of polyimide of the prior art is excellent in pushability due to its high modulus of elasticity, and is thin because of its excellent pressure resistance and dimensional stability. Although it is a material that can also be made smaller in diameter, it is inferior in trackability due to its low flexibility and especially low elongation.

【0006】反応方法や、出発原料、更には硬化条件に
よりポリイミドの伸びを改善することはできるものの、
伸びと弾性率は反比例関係にあり伸びを向上させると耐
圧性や寸法安定性が低下する潜在的な問題点を有してお
り、ポリイミドを用いたシャフトに於いて弾性率と伸び
を両立したシャフトを得るには至っていない。
Although the elongation of polyimide can be improved by the reaction method, starting materials, and curing conditions,
Elongation and elastic modulus are in inverse proportion, and there is a potential problem that pressure resistance and dimensional stability are reduced when elongation is improved. Has not yet gotten.

【0007】[0007]

【課題を解決するための手段】このようなシャフト部に
関わる問題点は、本発明による、ポリイミド中に無機結
晶を含有させた無機結晶複合材料からなる医用カテーテ
ルにより解決される。
The problems associated with such a shaft portion are solved by the medical catheter according to the present invention, which is made of an inorganic crystal composite material containing inorganic crystals in polyimide.

【0008】さらに詳述すると無機結晶は層状結晶であ
るほうが本発明の効果を発現しやすい。
More specifically, the effect of the present invention is more easily exhibited when the inorganic crystal is a layered crystal.

【0009】[0009]

【発明の実施の形態】まず、本発明に用いられる無機結
晶を表1に組成別に分類して例示する。また、無機結晶
の内、層状構造を有する層状結晶を表2に、さらに層間
にイオンを含むイオン交換性層状結晶を表3に、その他
で層間化合物を形成する層状結晶を表4に、それぞれの
代表的な無機結晶を一例として示す。
BEST MODE FOR CARRYING OUT THE INVENTION First, inorganic crystals used in the present invention are shown in Table 1 by classifying them by composition. Of the inorganic crystals, Table 2 shows layered crystals having a layered structure, Table 3 shows ion-exchangeable layered crystals containing ions between layers, and Table 4 shows other layered crystals forming interlayer compounds. A representative inorganic crystal is shown as an example.

【0010】[0010]

【表1】 [Table 1]

【0011】[0011]

【表2】 [Table 2]

【0012】[0012]

【表3】 [Table 3]

【0013】[0013]

【表4】 無機結晶にはさまざまな形状、サイズのものが存在する
が、シャフト部分には表2、表3、表4に示す無機結晶
を含有させた無機結晶複合材料を用いるのが本発明の効
果を発現しやすく好ましい。
[Table 4] Although there are various shapes and sizes of inorganic crystals, the effect of the present invention is exhibited by using an inorganic crystal composite material containing an inorganic crystal shown in Tables 2, 3 and 4 for a shaft portion. It is easy to do and is preferable.

【0014】特に、層状結晶をインターカレーションに
よりイオン交換(有機化)し得た無機結晶複合材料、例
えば、有機化したモンモリロナイトを用いた場合の無機
結晶複合材料は、その無機結晶が0.5ナノメートルか
ら100ナノメートルのナノオーダーで単分散させる事
が出来、同じ含有量に対しナノ分散では無機結晶の全表
面積の増大と粒子間距離の減少により無機結晶とポリマ
ー分子、さらには無機結晶どうしのイオン結合等による
相互作用がより増大され、機械強度が向上する。よっ
て、インターカレーションが容易に行え、無機結晶が単
分散しうるイオン交換性層状結晶が本発明に用いられる
無機結晶としては好ましく、ケイ酸塩は比較的有機化し
やすく単分散させやすいため本発明に於いてより好まし
い材料である。
In particular, an inorganic crystal composite material obtained by ion-exchange (organization) of a layered crystal by intercalation, for example, an inorganic crystal composite material using organic montmorillonite, has an inorganic crystal of 0.5%. It can be monodispersed in the nano order from nanometers to 100 nanometers. For the same content, the nanodispersion increases the total surface area of the inorganic crystal and reduces the distance between the particles. Interaction due to ionic bonding or the like is further increased, and mechanical strength is improved. Therefore, an ion-exchange layered crystal in which the intercalation can be easily performed and the inorganic crystal can be monodispersed is preferable as the inorganic crystal used in the present invention. Is a more preferable material.

【0015】無機結晶複合材料の無機結晶含有率の上限
は、出発原料や反応条件および含有させる無機結晶の組
み合わせにより異なるが、概ね30%が上限で、それ以
上の含有率では伸び率を10%以上にすることが出来な
くなる。
The upper limit of the inorganic crystal content of the inorganic crystal composite material varies depending on the starting materials, the reaction conditions, and the combination of the inorganic crystals to be contained. However, the upper limit is generally 30%. You can't do more than that.

【0016】無機結晶複合材料の無機結晶の含有率にお
ける下限域についても同様に、出発原料や反応条件およ
び含有させる無機結晶の組み合わせにより変わり限定は
難しいが、概ね5%以上含有させないと本発明の機械強
度の向上、及び指向性は得られにくい。
Similarly, the lower limit of the content of the inorganic crystal in the inorganic crystal composite material varies depending on the starting materials, the reaction conditions, and the combination of the inorganic crystal to be contained, and is difficult to limit. It is difficult to improve mechanical strength and obtain directivity.

【0017】ポリイミド無機結晶複合材料の合成方法し
ては、テトラカルボン酸二無水物とジアミンからのポリ
アミド酸を経由するポリイミド合成方法において、その
前駆体であるポリアミド酸に無機結晶を混合させる方
法、例えば、ビス(4−アミノフェニル)エーテル(O
DA)と無水ピロメリット酸(PMDA)の反応で、ポ
リアミド酸を形成させた後、無機結晶を混合し無水酢酸
とピリジンを加え脱水環化反応を行う方法がある。
The method for synthesizing the polyimide-inorganic crystal composite material includes a method for synthesizing a polyimide via a polyamic acid from tetracarboxylic dianhydride and a diamine, wherein a polyamic acid as a precursor thereof is mixed with an inorganic crystal. For example, bis (4-aminophenyl) ether (O
DA) and pyromellitic anhydride (PMDA) to form a polyamic acid, followed by mixing inorganic crystals, adding acetic anhydride and pyridine, and performing a dehydration cyclization reaction.

【0018】その他、ポリイミドの合成方法として、N
−シリル化ジアミンを用いる合成方法、ポリアミド酸エ
ステルを経由する合成方法やテトラカルボン酸またはテ
トラカルボン酸ジエステルとジアミンからの合成方法、
ポリイソイミドを経由する合成方法やテトラカルボン酸
二無水物とジイソシアナートからの合成方法、テトラカ
ルボン酸ジチオ無水物とゾアミンからの合成方法や芳香
族求核置換重合によるポリエーテルイミドの合成方法が
あり、これらの合成過程で無機結晶を混合させる方法が
ある。
In addition, as a method for synthesizing polyimide, N
-A synthesis method using a silylated diamine, a synthesis method via a polyamic acid ester and a synthesis method from a tetracarboxylic acid or a tetracarboxylic diester and a diamine,
There is a synthesis method via polyisoimide, a synthesis method from tetracarboxylic dianhydride and diisocyanate, a synthesis method from tetracarboxylic dithioanhydride and zoamine, and a synthesis method for polyetherimide by aromatic nucleophilic substitution polymerization. There is a method of mixing inorganic crystals in the course of these synthesis.

【0019】また、ポリイミドの前駆体のポリアミド酸
に無機結晶を混合させる方法以外に、例えば、ODAに
無機結晶を分散させ合成する方法でも無機結晶複合材料
を得ることが出来る。
In addition to the method of mixing the inorganic crystal with the polyamic acid as the polyimide precursor, the inorganic crystal composite material can be obtained by, for example, dispersing the inorganic crystal in ODA and synthesizing the same.

【0020】無機結晶の分散性を容易にする方法として
は、無機結晶の界面をシランカップリング剤で表面処理
を行う方法、さらに、層間挿入法(インターカレーショ
ン)や層間より原子や分子を取り出す方法(デインター
カレーション)による方法、例えば、モノマー挿入後重
合法やポリマー挿入法など、また、電極酸化反応を選択
し用いれば良い。特に、イオン交換性層状結晶の場合、
インターカレーションを用いると無機結晶が単分散しナ
ノオーダの分散が得られ良好な無機結晶複合材料が得ら
れる。
As a method for facilitating the dispersibility of the inorganic crystal, a method of subjecting the interface of the inorganic crystal to a surface treatment with a silane coupling agent, an interlayer insertion method (intercalation), and taking out atoms and molecules from the interlayer are provided. A method (deintercalation), for example, a polymerization method or a polymer insertion method after monomer insertion, or an electrode oxidation reaction may be selected and used. In particular, in the case of an ion-exchange layered crystal,
When the intercalation is used, the inorganic crystal is monodispersed and a dispersion of the order of nanometers is obtained, and a favorable inorganic crystal composite material is obtained.

【0021】そのインターカレーションに於いてイオン
交換性層状結晶のイオン交換容量は、20ミリ当量/1
00g以上のものが好ましい。それ以下では層間に有機
分子を取り込ませるのが困難となる。例えば、スメクタ
イトは60〜120ミリ当量/100gであり、バーミ
キュライトは100〜165ミリ当量/100gであ
る。これらは、n−アルキルアミン塩酸塩の水溶液と接
触させるだけでイオン化したアンモニウムイオンとイオ
ン交換(有機化)し有機分子の取り込みを容易とする。
In the intercalation, the ion exchange capacity of the ion exchangeable layered crystal is 20 meq / l.
A thing of 00 g or more is preferable. Below this, it becomes difficult to incorporate organic molecules between layers. For example, smectite is 60-120 meq / 100 g and vermiculite is 100-165 meq / 100 g. These are ion-exchanged (organized) with ionized ammonium ions only by contact with an aqueous solution of n-alkylamine hydrochloride to facilitate the incorporation of organic molecules.

【0022】その他、電荷密度が高く層間の結合力が強
い無機結晶に対しては、例えば、電荷密度が1.0価で
ある白雲母は塩化バリウム溶液と120℃で反応させる
ことでイオンの交換が容易になるなど、各層状結晶の特
徴、性質に合わせた前処理を選択し有機化を行えば良
い。
In addition, for inorganic crystals having a high charge density and a strong bonding force between layers, for example, muscovite having a charge density of 1.0 is reacted with a barium chloride solution at 120 ° C. to exchange ions. For example, the pretreatment may be selected according to the characteristics and properties of each layered crystal, and organic treatment may be performed.

【0023】イオン交換性でない層状結晶の場合でも、
例えば、ヘキサン溶液中でn−ブチルリチウムを反応さ
せる方法、あるいは、強い還元剤を用いて結晶層内の還
元とアルカリイオンのインターカレーションを同時に行
う方法など、各層状結晶に適した方法を選択し有機化す
れば良い。
Even in the case of a layered crystal which is not ion-exchangeable,
For example, a method suitable for each layered crystal is selected, such as a method of reacting n-butyllithium in a hexane solution or a method of simultaneously performing reduction in a crystal layer and intercalation of alkali ions using a strong reducing agent. And then make it organic.

【0024】本発明では、種々の無機結晶と種々の出発
原料をそれらに適した混合方法で合成した無機結晶複合
材料を用いてシャフトを作成することで、従来の技術の
延長上では達成し得なかった弾性率の低下を抑えながら
伸び特性を向上させたシャフトを得ることを見出した。
In the present invention, it is possible to achieve an extension of the conventional technique by forming a shaft using an inorganic crystal composite material obtained by synthesizing various inorganic crystals and various starting materials by a mixing method suitable for them. It has been found that a shaft having improved elongation characteristics while suppressing a decrease in elastic modulus that has not been obtained can be obtained.

【0025】さらには、無機結晶に層状結晶を用いた無
機結晶複合材料では、ポリアミド酸からシャフトをディ
ッピング法で成形すると、図3に示すように層状結晶の
平面部が一様に揃う現象を利用して、シャフト内の層状
結晶を配列させることで、特定方向に対する強度に指向
性を持たせたシャフトを成形することができる。
Further, in the case of an inorganic crystal composite material using a layered crystal as an inorganic crystal, when a shaft is formed from polyamic acid by a dipping method, a phenomenon that the plane portions of the layered crystal are uniformly arranged as shown in FIG. 3 is used. By arranging the layered crystals in the shaft, it is possible to form a shaft having directivity in strength in a specific direction.

【0026】[0026]

【実施例】(実施例1)N−シリル化ジアミン1.73
gを12.5mlのN,N−ジメチルアセアミド(DM
Ac)に溶解し、5℃でPMDA1.09gを加え、窒
素気流下20℃で1時間、50℃で12時間攪拌し、ポ
リアミド酸を合成する。この重合溶液にアルキルアンモ
ニウムイオンをインターカレーションしたモンモリロナ
イト0.14gを加え十分に分散させた。
EXAMPLES (Example 1) N-silylated diamine 1.73
g of 12.5 ml of N, N-dimethylaceamide (DM
Ac) was dissolved in Ac), and 1.09 g of PMDA was added at 5 ° C., followed by stirring at 20 ° C. for 1 hour and at 50 ° C. for 12 hours under a nitrogen stream to synthesize a polyamic acid. To this polymerization solution, 0.14 g of montmorillonite intercalated with alkylammonium ions was added and sufficiently dispersed.

【0027】有機化モンモリナイトを分散させたポリア
ミド酸(ワニス)をガラス板上にキャストし、フィルム
を作成した。キャストフィルムは室温で1日、60℃で
12時間、100℃で12時間、150℃で6時間、2
00℃で6時間減圧乾燥し、ついで窒素気流下300℃
で2時間加熱し、ポリイミド系無機結晶複合材料からな
るフィルムを得た。
A polyamic acid (varnish) in which the organized montmorillonite was dispersed was cast on a glass plate to form a film. The cast film was left at room temperature for 1 day, 60 ° C. for 12 hours, 100 ° C. for 12 hours, 150 ° C. for 6 hours,
Dry under reduced pressure at 00 ° C for 6 hours and then at 300 ° C under a nitrogen stream.
For 2 hours to obtain a film composed of a polyimide-based inorganic crystal composite material.

【0028】同様にポリアミド酸に有機化モンモリナイ
トを分散させた弾性率の異なるポリイミド系無機結晶複
合材料からなるフィルムを作成した。また、比較例とし
て同様の配合、原料を用い有機化モンモリナイトを添加
しないフィルムも作成した。それらのフィルムの引張強
度および伸びをプラスッチックフィルム及びシートの引
張試験方法(JISK7127)に準じ機械物性を測定
した。その結果を図1に示すが、有機化モンモリナイト
を加えたポリイミドは弾性率も伸びも高いことがわかっ
た。
Similarly, films made of a polyimide-based inorganic crystal composite material having different elastic moduli in which organic montmorillonite was dispersed in polyamic acid were prepared. Further, as a comparative example, a film was prepared by using the same composition and raw materials, but without adding the organized montmorillonite. The mechanical properties of the films were measured for tensile strength and elongation according to the tensile test method for plastic films and sheets (JIS K7127). The results are shown in FIG. 1, and it was found that the polyimide to which the organized montmorillonite was added had high elastic modulus and high elongation.

【0029】(実施例2)実施例1で調整したワニスに
外径0.6mmの銅管を漬けた後、ゆっくりと引き上げ
ながら銅管の外周にワニスをコーティングする(ディッ
ピング)。ディッピングした銅管をドーナツ状の金具
(サイジング)に通し外径を0.7mmに整えた(以上
の成形方法をディッピング法と称す)。なお、サイジン
グにより外径を成形する際、軸方向に対し45°の右螺
旋状を有するようにサイジングの回転数を1rpm、シ
ャフトの引き上げ速度を7mm/分に制御し成形した。
その後、室温で1日、60℃で12時間、100℃で1
2時間、150℃で6時間、200℃で6時間減圧乾燥
し、ついで窒素気流下300℃で2時間加熱した。
(Example 2) After immersing a copper tube having an outer diameter of 0.6 mm in the varnish prepared in Example 1, the outer periphery of the copper tube is coated with varnish while slowly lifting (dipping). The dipped copper tube was passed through a donut-shaped metal fitting (sizing) to adjust the outer diameter to 0.7 mm (the above forming method is called a dipping method). When the outer diameter was formed by sizing, the sizing was performed at a rotation speed of 1 rpm and a shaft pulling speed was controlled at 7 mm / min so as to have a right spiral of 45 ° with respect to the axial direction.
Then at room temperature for 1 day, 60 ° C for 12 hours, 100 ° C for 1 hour.
The resultant was dried under reduced pressure at 150 ° C. for 6 hours and at 200 ° C. for 6 hours, and then heated at 300 ° C. for 2 hours under a nitrogen stream.

【0030】芯材の銅管を90wt%以上の硫酸で銅管
を完全に溶かした後、水で十分洗浄し乾燥させ、内径
0.6mm、外径0.7mmのポリイミド無機結晶複合
材料からなるシャフトを得た。また、比較例として、無
機結晶を含まないシャフトも作成した。各々のシャフト
を図2に示す擬似血管モデル1の擬似血管2(内径1m
m)に、シャフトを押し込んだ際、擬似血管モデルとの
接触部の摩擦による抵抗に対し、手元側の押し込み力が
シャフト先端側に十分に伝わっているか(プッシャビリ
ティー性)、また、屈曲部(R0.5mm、90°屈曲)
に対し、シャフトが追従して曲がっているか(トラッカ
ビリティー性)を、シャフトの出し入れを繰り返し、目
視で観察した。その結果、有機化モンモリナイトを含ま
ないシャフトの場合、S字ループ部3で完全に折れ曲が
り挿入が不可能な状態となったが、ポリイミド無機結晶
複合材料からなるシャフトはS字ループ部3も問題なく
通過しプッシャビリティー性及びトラッカビリティー性
に優れていることがわかった。
After the copper tube as a core material is completely dissolved with sulfuric acid of 90 wt% or more, the tube is thoroughly washed with water and dried, and is made of a polyimide inorganic crystal composite material having an inner diameter of 0.6 mm and an outer diameter of 0.7 mm. Got the shaft. Further, as a comparative example, a shaft containing no inorganic crystal was prepared. Each shaft is connected to a simulated blood vessel 2 (inner diameter 1 m) of a simulated blood vessel model 1 shown in FIG.
m), when the shaft is pushed in, whether the pushing force on the hand side is sufficiently transmitted to the shaft tip side against the resistance due to the friction of the contact part with the simulated blood vessel model (pushability), (R0.5mm, 90 ° bending)
On the other hand, whether or not the shaft followed and bent (trackability) was visually observed by repeatedly inserting and removing the shaft. As a result, in the case of a shaft containing no organized montmorillonite, the shaft was completely bent at the S-shaped loop portion 3 so that insertion was impossible, but the shaft made of the polyimide-inorganic crystal composite material had no problem with the S-shaped loop portion 3. It was found that the material had excellent pushability and trackability after passing.

【0031】実施例2のシャフトの先端側にねじれ方向
の応力を検出するセンサー(トルクゲージ)を取り付
け、更に、手元側に回転台を取り付けた。回転台を18
0度まわし、シャフトにねじりの力を与え、先端側のト
ルクゲージのねじれ応力を測定した結果、有機化モンモ
リナイトを含まないシャフトの場合、右回転、左回転と
もに先端に伝わるトルクは30gfで同じであったが、
ポリイミド無機結晶複合材料からなるシャフトは、先端
に伝わるトルクに於いて右回転が40gfに対し左回転
80gfとねじれ応力が高く、手元側から先端側へのト
ルクの伝達量に差がある(特定方向に対する強度に指向
性がある)を有することがわかった。
A sensor (torque gauge) for detecting a stress in the torsion direction was attached to the tip end side of the shaft in Example 2, and a turntable was attached to the hand side. Turntable 18
By rotating the shaft by 0 degrees and applying a torsional force to the shaft and measuring the torsional stress of the torque gauge on the tip side, the torque transmitted to the tip for both clockwise and counterclockwise rotations is the same at 30 gf for a shaft that does not contain organized montmorillonite. There was,
The shaft made of the polyimide-inorganic crystal composite material has a high torsional stress in the torque transmitted to the tip of 40 gf in the clockwise rotation and 80 gf in the counterclockwise rotation with respect to the torque, and there is a difference in the amount of torque transmitted from the hand side to the tip side (specific direction). Has a directivity in intensity with respect to).

【0032】[0032]

【発明の効果】本発明では、ポリアミド系無機結晶複合
材料を用いてシャフトを作成することで、従来の技術の
延長上では達成し得なかった弾性率の低下を抑えながら
伸び特性を向上させたシャフトを得ることが出来る。す
なわち、プッシャビリティーとトラッカビリティーに優
れたシャフトを得ることが出来る。
According to the present invention, the elongation characteristic is improved by suppressing the decrease in the elastic modulus which cannot be achieved by extending the conventional technology by forming the shaft using the polyamide-based inorganic crystal composite material. You can get a shaft. That is, a shaft having excellent pushability and trackability can be obtained.

【0033】さらには、無機結晶に層状結晶を用いた無
機結晶複合材料では、ポリイミド酸からシャフトを成形
する過程で、層状結晶を配行させることでシャフトに指
向性を持たせることが出来る。
Further, in the case of an inorganic crystal composite material using a layered crystal as the inorganic crystal, the shaft can have directivity by arranging the layered crystal in the process of forming the shaft from polyimide acid.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の各種ポリイミドの伸びと弾性率の関
係を示すグラフである。
FIG. 1 is a graph showing a relationship between elongation and elastic modulus of various polyimides of Example 1.

【図2】擬似血管モデルを示す図である。FIG. 2 is a diagram showing a pseudo blood vessel model.

【図3】層状結晶の平面部が配向した状態を説明する図
である。
FIG. 3 is a diagram illustrating a state in which plane portions of a layered crystal are oriented.

【符号の説明】[Explanation of symbols]

1 擬似血管モデル 2 擬似血管 3 S字ループ部 Reference Signs List 1 simulated blood vessel model 2 simulated blood vessel 3 S-shaped loop

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08L 79/08 C08L 79/08 Z (72)発明者 鈴木紀之 大阪府摂津市鳥飼西5丁目5−32−504 Fターム(参考) 4C081 AC08 BB07 BC02 CA231 CF132 CF142 CF152 CF162 CF21 CF22 CF24 CF26 DA03 DC13 EA06 4J002 CM041 DJ006 FD016 GB01──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C08L 79/08 C08L 79/08 Z (72) Inventor Noriyuki Suzuki 5-5-32 Torikai Nishi, Settsu-shi, Osaka −504 F term (reference) 4C081 AC08 BB07 BC02 CA231 CF132 CF142 CF152 CF162 CF21 CF22 CF24 CF26 DA03 DC13 EA06 4J002 CM041 DJ006 FD016 GB01

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 ポリイミド中に無機結晶を含有させた無
機結晶複合材料からなる医用カテーテル。
1. A medical catheter comprising an inorganic crystal composite material containing an inorganic crystal in polyimide.
【請求項2】 前記無機結晶含有率が5%以上30%以
下である請求項1に記載の医用カテーテル。
2. The medical catheter according to claim 1, wherein the content of the inorganic crystal is 5% or more and 30% or less.
【請求項3】 前記無機結晶が層状結晶であることを特
徴とする請求項1に記載の医用カテーテル。
3. The medical catheter according to claim 1, wherein the inorganic crystal is a layered crystal.
【請求項4】 前記無機結晶がイオン交換性層状結晶で
あることを特徴とする請求項1に記載の医用カテーテ
ル。
4. The medical catheter according to claim 1, wherein the inorganic crystal is an ion-exchange layered crystal.
【請求項5】 前記層状結晶がスメクタイトまたはバー
ミキュライトである請求項3に記載の医用カテーテル。
5. The medical catheter according to claim 3, wherein the layered crystal is smectite or vermiculite.
【請求項6】 前記イオン交換性層状結晶が珪酸塩であ
る請求項4に記載の医用カテーテル。
6. The medical catheter according to claim 4, wherein the ion-exchange layered crystal is a silicate.
【請求項7】 前記イオン交換性層状結晶がモンモリロ
ナイトである請求項4記載の医用カテーテル。
7. The medical catheter according to claim 4, wherein the ion-exchange layered crystal is montmorillonite.
【請求項8】 前記医用カテーテルがバルーンを有する
バルーンカテーテルであることを特徴とする請求項1〜
7記載の医用カテーテル。
8. The medical catheter according to claim 1, wherein the medical catheter is a balloon catheter having a balloon.
8. The medical catheter according to claim 7.
JP2000110493A 2000-04-12 2000-04-12 Medical catheter containing inorganic crystal Withdrawn JP2001293082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000110493A JP2001293082A (en) 2000-04-12 2000-04-12 Medical catheter containing inorganic crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000110493A JP2001293082A (en) 2000-04-12 2000-04-12 Medical catheter containing inorganic crystal

Publications (1)

Publication Number Publication Date
JP2001293082A true JP2001293082A (en) 2001-10-23

Family

ID=18622990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000110493A Withdrawn JP2001293082A (en) 2000-04-12 2000-04-12 Medical catheter containing inorganic crystal

Country Status (1)

Country Link
JP (1) JP2001293082A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249581A (en) * 2001-02-23 2002-09-06 Nitto Denko Corp Process for producing polyimide composite
JP2003292787A (en) * 2002-02-01 2003-10-15 Sekisui Chem Co Ltd Method for producing resin composition and resin composition
JP2010005293A (en) * 2008-06-30 2010-01-14 Olympus Corp Composite material and medical tube
WO2019082521A1 (en) * 2017-10-26 2019-05-02 オリンパス株式会社 Resin composition, flexible tube, acoustic lens, and skin for medical equipment subjected to gas low-temperature sterilization, and medical equipment subjected to gas low-temperature sterilization
JP7561506B2 (en) 2020-03-16 2024-10-04 Dic株式会社 Catheter shaft and manufacturing method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249581A (en) * 2001-02-23 2002-09-06 Nitto Denko Corp Process for producing polyimide composite
JP2003292787A (en) * 2002-02-01 2003-10-15 Sekisui Chem Co Ltd Method for producing resin composition and resin composition
JP2010005293A (en) * 2008-06-30 2010-01-14 Olympus Corp Composite material and medical tube
WO2019082521A1 (en) * 2017-10-26 2019-05-02 オリンパス株式会社 Resin composition, flexible tube, acoustic lens, and skin for medical equipment subjected to gas low-temperature sterilization, and medical equipment subjected to gas low-temperature sterilization
JP2019077824A (en) * 2017-10-26 2019-05-23 オリンパス株式会社 Resin composition for medical equipment subject to gas low-temperature sterilization, flexible tube, acoustic lens, outer coat, and medical equipment subject to gas low-temperature sterilization
US11883563B2 (en) 2017-10-26 2024-01-30 Olympus Corporation Resin composition, flexible tube, acoustic lens, and sheath for medical device to be subjected to gas low-temperature sterilization and medical device to be subjected to gas low-temperature sterilization
JP7561506B2 (en) 2020-03-16 2024-10-04 Dic株式会社 Catheter shaft and manufacturing method thereof

Similar Documents

Publication Publication Date Title
Sankaraiah et al. Preparation and characterization of surface-functionalized polysilsesquioxane hard spheres in aqueous medium
JP4807630B2 (en) Polyimide film with improved surface activity
Li et al. Electrospraying micro-nano structures on chitosan composite coatings for enhanced antibacterial effect
Zhang Selective modification of inner surface of halloysite nanotubes: A review
Zhang et al. Multilayered gold-nanoparticle/polyimide composite thin film through layer-by-layer assembly
Heng et al. Preparation of silica nanoparticles based multifunctional therapeutic systems via one-step mussel inspired modification
JPS62172032A (en) Improved heat-resistant polyimide film
JP2001293082A (en) Medical catheter containing inorganic crystal
CN104145311A (en) Transparent electrode
Yuen et al. Morphology and Properties of Aminosilane Grafted MWCNT/Polyimide Nanocomposites.
JP2015061901A (en) Nanosheet dispersion liquid comprising polymer having phosphorylcholine group
Hu et al. Effect of octa (aminopropyl) polyhedral oligomeric silsesquioxane (OapPOSS) functionalized graphene oxide on the mechanical, thermal, and hydrophobic properties of waterborne polyurethane composites
TW200940628A (en) Conductive material and manufacturing method thereof
JP4392578B2 (en) Sliding polyimide film and method for producing the same
JPH0665708B2 (en) Novel polyimide film and its manufacturing method
JP5380662B2 (en) Functional polyamic acid composite particles and method for producing functional polyimide composite particles
KR102609429B1 (en) Method for producing nanoparticles surface-substituted with zwitterion
JPH06100714A (en) Readily slippery polyimide film and its production
JP2004010653A (en) Composite fine particle and method for producing the same
JPH07331070A (en) Heat-resistant resin composition
Painuli et al. Synthesis and application of silica nanoparticles-based biohybrid sorbents
JPH0555276B2 (en)
Zhang et al. Communication—Propagation of Dendritic Poly (amidoamine) on the Surface of Carbon Nanotubes by In Situ Polymerization
JPH06287327A (en) Production of polyimide film
JP4817165B2 (en) Method for producing porous polyimide membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060803

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090316