JP2001289186A - Cooling device in screw fluid machinery - Google Patents

Cooling device in screw fluid machinery

Info

Publication number
JP2001289186A
JP2001289186A JP2000147089A JP2000147089A JP2001289186A JP 2001289186 A JP2001289186 A JP 2001289186A JP 2000147089 A JP2000147089 A JP 2000147089A JP 2000147089 A JP2000147089 A JP 2000147089A JP 2001289186 A JP2001289186 A JP 2001289186A
Authority
JP
Japan
Prior art keywords
fluid
screw
rotor
spiral
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000147089A
Other languages
Japanese (ja)
Inventor
Shigeo Nakamura
重雄 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASUKA JAPAN KK
Aska Japan Inc
Original Assignee
ASUKA JAPAN KK
Aska Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASUKA JAPAN KK, Aska Japan Inc filed Critical ASUKA JAPAN KK
Priority to JP2000147089A priority Critical patent/JP2001289186A/en
Publication of JP2001289186A publication Critical patent/JP2001289186A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide spiral axial screw fluid machinery capable of efficiently cooling force-fed fluid in a casing by providing a means for cooling those parts other than a cooling water jacket thereon. SOLUTION: A cooling device is installed on spiral axial screw fluid machinery. The cooling device injects adiabatically expanded jet fluid to a casing, a delivery side cover, and a rotor shaft part thereof to directly and indirectly cool hot force-fed fluid.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はスパイラキシャル、
スクリュー流体機械にあって、ケーシング本体内に装着
するロータの圧縮作用によって発生する圧送流体の高温
化を防止する冷却装置に関する。
The present invention relates to a spiral,
The present invention relates to a screw fluid machine, and more particularly, to a cooling device for preventing a pumping fluid generated by a compression action of a rotor mounted in a casing main body from becoming high in temperature.

【0002】[0002]

【従来の技術】従来の一条ねじで、左右同形、一体のロ
ータによる、スパイラキシャル、スクリュー流体機械に
あって、コンプレッサとしては吸入側ねじ噛合せ部の一
回転を押しのけ量となり、終端ねじ噛合せ部で圧縮、加
圧される構成であるが圧縮比は3が限界で、ゲージ圧力
で2kgf/cm以下であり、圧縮に伴なう内部流体
温度も、ケーシングの冷却水ジャケットによる冷却を加
味して、120〜130℃程度にとどまり何等問題はな
い。然るにこのスパイラキシャル、スクリュー流体機械
を真空ポンプとして構成すれば、吸入側ねじ噛合せ部の
一回転が排気速度となり、更にねじリード部の回転長さ
を立方体容器とした分子間の気体分子運動と、終端ねじ
噛合せ部で流体を圧縮し気体分子の密度を大とする高圧
縮比の真空ポンプを構成している。しかしこの高圧縮比
という流体圧縮構造は内部流体温度も200℃近辺にな
り、これ等を構成するロータやケーシングも高温となっ
て、冷却水ジャケットのみでは冷却できない悩みをもっ
ていた。又近年ではロータの回転に伴ない吐出側へリー
ド容積を無段階に縮少する内部圧縮型のスクリュー流体
機械も考案されているが、全圧縮比が前述構造と同一と
すれば、内部流体温度も200℃位と大差なく、この構
成においても流体温度を適確に冷却する方法が見出せな
いのが現状である。
2. Description of the Related Art A conventional single screw, left and right same-shape, one-piece rotor, a spiral and screw fluid machine has a compressor. The compression ratio is limited to 3 and the gauge pressure is 2 kgf / cm 2 or less. The internal fluid temperature accompanying the compression takes into account the cooling by the cooling water jacket of the casing. Thus, the temperature remains at about 120 to 130 ° C., and there is no problem. However, if this spiral or screw fluid machine is configured as a vacuum pump, one revolution of the screw meshing part on the suction side becomes the evacuation speed, and furthermore, the gas molecule motion between molecules using the rotating length of the screw lead part as a cubic container. Thus, a vacuum pump having a high compression ratio is configured to compress the fluid at the end screw engagement portion and increase the density of gas molecules. However, in the fluid compression structure having a high compression ratio, the temperature of the internal fluid is also around 200 ° C., and the rotor and the casing constituting these components also have a high temperature. In recent years, an internal compression type screw fluid machine that continuously reduces the lead volume toward the discharge side with the rotation of the rotor has been devised. However, if the total compression ratio is the same as the above-described structure, the internal fluid temperature can be reduced. At present, there is not much difference from about 200 ° C., and even in this configuration, a method for properly cooling the fluid temperature cannot be found at present.

【0003】[0003]

【発明が解決しようとする課題】従来の技術に示したよ
うに、一条ねじで左、右同形の一対ロータによるスパイ
ラキシャル、スクリュー流体機械の真空ポンプの構成
は、始端ねじ噛合せ部から終端ねじ噛合せ部まで、単段
連続で高圧縮比を構成する構造であるから、ルーツ型真
空ポンプのように1段、2段、3段とステップを設け、
各段ステップを中間冷却する構成は採用できない。更に
ルーツ型真空ポンプはロータの回転による内部流体は遠
心力によってケーシング内周方向に動くので、必然的に
ケーシング内壁に内部流体温度が伝播しやすく、ケーシ
ングの冷却水ジャケットの冷却効果も良好に作用する。
然るにスパイラキシャル、スクリュー流体機械における
内部流体は、ロータ溝内を軸方向に圧縮、移動し、終端
ねじ噛合せ部を通じ、サイドカバー側面より吐出される
ので内部流体温度の伝播は、ロータ軸部、ロータに集中
し、ケーシング内壁には温度が伝播しにくい宿命の構成
をもっている。
As shown in the prior art, the structure of a vacuum pump for a spiral or screw fluid machine using a pair of rotors having the same shape on the left and right sides with a single thread is different from that of a start end screw engagement portion to an end screw. Up to the meshing part, since it is a structure that constitutes a high compression ratio in a single stage continuous, one step, two steps, three steps are provided like a roots type vacuum pump,
A configuration in which each stage step is intercooled cannot be adopted. Furthermore, in the roots type vacuum pump, the internal fluid due to the rotation of the rotor moves in the inner circumferential direction of the casing due to centrifugal force, so that the internal fluid temperature is inevitably easily propagated to the inner wall of the casing, and the cooling effect of the casing cooling water jacket also works well. I do.
However, the internal fluid in the spiral or screw fluid machine is compressed and moved in the axial direction in the rotor groove, and is discharged from the side cover side surface through the terminal screw engagement portion. It is concentrated on the rotor, and has a fate configuration in which the temperature does not easily propagate to the inner wall of the casing.

【0004】以上に示した如く、従来の一条ねじ左、右
同形の一対ロータで構成するスパイラキシャル、スクリ
ュー流体機械で、特に真空ポンプは単段連続の高圧縮比
の構成で、中間冷却器を設置できない上、内部流体の軸
方向圧縮によってロータ溝内に内部流体温度が蓄積さ
れ、ケーシング内壁には温度が伝播しにくい欠点をもっ
ていた。本発明はこの欠点を補なうため、このロータ構
成を損なわず内部流体温度を低下させることを課題とし
た。
[0004] As described above, a conventional spiral or screw fluid machine comprising a pair of rotors having the same shape on the left and right sides of a single-start thread, particularly a vacuum pump having a single-stage continuous high-compression ratio and an intercooler. In addition, it cannot be installed, and the internal fluid temperature is accumulated in the rotor groove due to the axial compression of the internal fluid, so that the temperature does not easily propagate to the inner wall of the casing. An object of the present invention is to reduce the internal fluid temperature without impairing the structure of the rotor in order to compensate for this disadvantage.

【0005】[0005]

【課題を解決するための手段】本発明は上記した課題に
鑑みなされたもので、一条の左、右同形、一対ロータを
有するスパイラキシャル、スクリュー流体機械にあっ
て、内部流体温度を冷却する方法として、少量のオーバ
ープレッシャーで成る不活性気体をスパイラキシャル、
スクリュー流体機械の内部流体圧送部、流体吐出チャン
バー、ロータ軸部の三つの必要流体空間に断熱膨張させ
て流体温度を冷却させる構成を採用した。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and is directed to a spiral, screw fluid machine having a left and right same shape, a pair of rotors, and a method for cooling an internal fluid temperature. Spiral, inert gas consisting of a small amount of overpressure,
A configuration is adopted in which the fluid temperature is cooled by adiabatically expanding the three necessary fluid spaces of the internal fluid pumping section, the fluid discharge chamber, and the rotor shaft section of the screw fluid machine.

【0006】[0006]

【作用】課題を解決するための手段に示したように、一
条の左、右同形、一対ロータでなるスパイラキシャル、
スクリュー流体機械の真空ポンプでは、ケーシングの内
壁のロータを嵌入する流体圧送部ケーシングの定点より
常温で、大気圧以上で成る不活性気体を減圧することな
く供給し、その不活性気体を小径で構成する噴気ノズル
で内部、流体圧送部へ断熱膨張させて、低温気体を誘発
させる作用を構成し、この構成は前述の外、吐出側サイ
ドカバー流体吐出チャンバー及びロータ軸部の側端にも
構成し、断熱膨張にて低温気体を誘発し冷却を促進でき
る作用を行なうものである。
As described in the means for solving the problems, a single left and right same shape, a spiral composed of a pair of rotors,
In a vacuum pump of a screw fluid machine, an inert gas consisting of a gas with a diameter smaller than the atmospheric pressure is supplied at a normal temperature from a fixed point of a fluid pumping section casing into which a rotor on the inner wall of the casing is fitted without decompression, and the inert gas is formed in a small diameter. The aerosol expansion inside the fluid pumping section is performed by the aerosol nozzle, and the action of inducing a low-temperature gas is configured. This configuration is also provided at the side end of the discharge side cover fluid discharge chamber and the rotor shaft in addition to the above. In addition, a low-temperature gas is induced by adiabatic expansion to promote cooling.

【0007】[0007]

【実施例】図1〜図4の実施例で上記作用を説明する。
参照例はアルキメデス曲線と、クインビー曲線より成る
スパイラキシャル、スクリュー流体機械を構成したもの
で、図1〜図3は真空ポンプ、図4は真空ポンプ、コン
プレッサ両用である。例図において、1、ケーシング、
2、左ロータ、3、右ロータ、を示し、4、は吸入側サ
イドカバー、5、はロータねじリードにおける流体圧送
部、7、は吐出側サイドカバー、で又図2は図1のA−
A′矢視を示し、6、は吐出側に近いケーシング定点に
おける不活性気体供給のボスを表わし、1A、ケーシン
グ冷却水ジャケットを貫通して 1B、ケーシング内壁
に構成する。9は内径Sの不活性気体供給パイプを示
し、17、の供給気体は常時供給した設定圧力を保持す
る。8、は小径dの噴気ノズルで、20、は断熱膨張し
た不活性気体である。尚本構成は角ねじ形状のスパイラ
キシャル、スクリュー流体機械にも適用できるものであ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The above operation will be described with reference to FIGS.
The reference example constitutes a spiral or screw fluid machine composed of an Archimedes curve and a Quimby curve. FIGS. 1 to 3 show a vacuum pump, and FIG. 4 shows both a vacuum pump and a compressor. In the example diagram, 1, casing,
2, a left rotor, 3, a right rotor, 4, a suction side cover, 5, a fluid pumping portion of a rotor screw lead, 7, a discharge side cover, and FIG.
A 'shows the view in the direction of the arrow A, and 6 denotes a boss for supplying an inert gas at a fixed point of the casing near the discharge side, 1A, penetrating through the casing cooling water jacket, 1B, and is formed on the inner wall of the casing. Reference numeral 9 denotes an inert gas supply pipe having an inner diameter S. The supply gas at 17 keeps the set pressure constantly supplied. Numeral 8 denotes a small-diameter fume nozzle, and numeral 20 denotes an adiabatic expanded inert gas. This configuration can also be applied to a spiral or screw fluid machine having a square screw shape.

【0008】次に図1、及び図2により冷却作動を説明
する。モータ(図示せず)により、3、右ロータが右回
転すれば、2、左ロータは同期逆回転で左回転する。こ
の回転によって、10、流体吸入口より吸入した流体は
2、3、ロータのスパイラル面のねじリードによって、
5、流体圧送部を左方、10A、流体吐出口へ圧送さ
れ、10、流体吸入口につながる真空領域は従来の技術
に示したように高真空が達成される。然し乍ら、この過
程における真空の圧縮比は真空側の到達真空度は2リー
ドの時、1Torr程度となり、圧縮比r=Pd/Ps
=760Torr/1Torr=760となって、コン
プレッサと異なり真空ポンプは流体エネルギーが少ない
利点を含めても、5、流体圧送部の左端では200℃を
超える内部温度になる。このような高温はケミカル仕様
では化学反応や起爆原因を誘発し、このままでは使用で
きず温度を冷却せねばならない。今、9、不活性気体供
給パイプへの供給気体と、8、噴気ノズルとの関係にお
いて、ノズルの噴出気体量は次の如くになる。供給気体
は30℃、到達真空度1Torrのとき流体圧送部、真
空度を−0.5kgf/cm(380Torr)とす
れば、 となる。この構成は供給気体の圧力から流体圧送部へ断
熱膨張させることになり、 気体温度が解明できる。今、Ts=供給気体温度、30
℃、Ps=17の供給気体5kgf/cm、Pd=流
体圧送部真空度=−0.5kgf/cm、m=断熱指
数1.4、ノズル径=1mm、として8、噴気ノズルの
噴出温度Tdを計算すれば−124.5℃となり、今
該、真空ポンプの排気速度800l/mの前事例にて左
端の1ケーシング内の流体内部温度200℃はこの噴気
ノズルよりの噴出気体と混合されて、175℃に冷却さ
れ、従来のスパイラキシャル、スクリュー流体機械が発
生する内部流体温度より格段に冷却された高真空の内部
流体が得られる。
Next, the cooling operation will be described with reference to FIGS. If the motor (not shown) rotates 3 and the right rotor rotates clockwise, the 2 and the left rotor rotate counterclockwise synchronously to the left. Due to this rotation, the fluid sucked from the fluid inlet is 10, and the screw lead on the spiral surface of the rotor
5. The fluid pumping section is pumped to the left, 10A, to the fluid discharge port, and the vacuum region connected to the fluid suction port achieves a high vacuum as shown in the prior art. However, the vacuum compression ratio in this process is about 1 Torr when the ultimate vacuum degree on the vacuum side is 2 leads, and the compression ratio r = Pd / Ps
= 760 Torr / 1 Torr = 760, and the vacuum pump has an internal temperature exceeding 200 ° C. at the left end of the fluid pumping section, even if the vacuum pump has the advantage of low fluid energy, unlike the compressor. Such high temperatures can cause chemical reactions and detonation in chemical specifications, which cannot be used as such and must be cooled. Now, in relation to 9, the supply gas to the inert gas supply pipe, and 8, the blast nozzle, the amount of gas blast from the nozzle is as follows. Assuming that the supply gas is 30 ° C. and the ultimate pressure degree is 1 Torr, the fluid pumping unit and the vacuum degree are −0.5 kgf / cm 2 (380 Torr). Becomes This configuration will cause adiabatic expansion from the pressure of the supply gas to the fluid pumping section, The gas temperature can be determined. Now, Ts = supply gas temperature, 30
° C, Ps = 17, supply gas 5 kgf / cm 2 , Pd = vacuum degree of fluid pumping section = −0.5 kgf / cm 2 , m = adiabatic index 1.4, nozzle diameter = 1 mm, 8; When Td is calculated, it becomes -124.5 ° C., and in this case, in the previous case where the pumping speed of the vacuum pump was 800 l / m, the fluid internal temperature of 200 ° C. in one casing at the left end was mixed with the gas ejected from the blast nozzle. Thus, a high vacuum internal fluid is obtained, which is cooled to 175 ° C. and is significantly cooled from the internal fluid temperature generated by a conventional spiral or screw fluid machine.

【0009】次に図3の構成は、1、ケーシングに6、
気体供給ボスを設定せず7、吐出側サイドカバーの7
C、内部チャンバー内に前述した構成と同一の8B、噴
気ノズルと9B、不活性気体供給パイプにて17、供給
気体を断熱膨張させ、該7C、内部チャンバー内温度を
冷却し、低下させると共に、7、吐出側サイドカバーを
も冷却する効果を有する構成を示す。断熱膨張の計算は
前述と同様なので省略する。
Next, the configuration of FIG.
No gas supply boss is set 7;
C, the same 8B as the above-described configuration in the internal chamber, the blast nozzle 9B, the inert gas supply pipe 17, the supply gas is adiabatically expanded, and the 7C, the temperature in the internal chamber is cooled and reduced, 7, a configuration having an effect of cooling the ejection side cover is also shown. The calculation of the adiabatic expansion is the same as that described above, and will not be described.

【0010】更に図4は5、ロータねじリードにおける
流体圧送部の圧送流体には直接に、ノズル噴出せずに
2、3、のロータを冷却する構成で、11ロータ内空
洞、12、支持アダブタ、15、気体供給パイプ、1
4、噴出管、16、ノズルを示し、17、は供給気体を
表わす。17、の供給気体は常に供給圧力を保持しなが
ら、14、噴出管の16、のノズルから供給気体を断熱
膨張させることで、その16からの噴出気体は11、ロ
ータ内空洞を18、矢印の如くUターンした膨張気体で
12、支持アダブタとの間隙から外部に放出する。この
噴出気体は、前述したように極低温を発生できるので、
2、3、ロータを効率よく冷却できる。又、スパイラキ
シャル、スクリュー流体機械は流体を軸流に圧送するた
め、2、3、ロータには圧縮熱が伝播しやすいが、この
冷却方法は、2、3、ロータの冷却が好効率であると共
に、5、ロータねじリードの圧送流体にも冷却が波及す
る構成である。
Further, FIG. 4 shows a configuration 5 in which the rotors 2 and 3 are cooled without directly ejecting nozzles to the pumping fluid of the fluid pumping section in the rotor screw lead. , 15, gas supply pipe, 1
Reference numeral 4 denotes an ejection pipe, 16 and a nozzle, and 17 denotes a supply gas. 17, the supply gas is constantly maintained at the supply pressure, and the supply gas is adiabatically expanded from the nozzle of 14, the ejection pipe 16, so that the ejection gas from the 16 is 11, the cavity in the rotor is 18, and the inside of the rotor is indicated by an arrow. The U-turned inflated gas is released to the outside through the gap with the supporting adapter. Since this blast gas can generate extremely low temperatures as described above,
2, 3, the rotor can be cooled efficiently. Spiral and screw fluid machines pump fluid to the axial flow, so that compression heat is easily transmitted to the rotor. However, this cooling method is effective for cooling the rotor. At the same time, the cooling is applied to the pumping fluid of the rotor screw lead.

【0011】[0011]

【発明の効果】以上の如く本発明によれば、請求項1及
び2は圧送流体に直接低温気体を混入させ圧送流体温度
を冷却させる方法であるため間接冷却ではなく極めて高
効率の冷却ができる。又請求項1は噴出気体を混入させ
ることでケーシングとロータスパイラル面との間隙を、
該気体でシールすることができ高真空度の真空ポンプを
構成することが容易である。請求項3では供給気体は不
活性を必要とせず普通の大気を使用できる特徴をもって
いる。請求項すべてに於いて装置自体が簡略で低コスト
で装着できる。
As described above, according to the present invention, since the first and second aspects are a method of directly mixing a low-temperature gas into a pumping fluid to cool the temperature of the pumping fluid, extremely high-efficiency cooling can be performed instead of indirect cooling. . In addition, the gap between the casing and the rotor spiral surface is formed by mixing the jetted gas.
It is easy to construct a vacuum pump with a high degree of vacuum that can be sealed with the gas. According to the third aspect of the present invention, the supply gas does not require inertness and can use ordinary air. In all of the claims, the device itself is simple and can be mounted at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のアルキメデス、クインビー曲線でな
るスパイラキシャル、スクリュー流体機械の冷却気体供
給口を示した縦断面図。
FIG. 1 is a longitudinal sectional view showing a cooling gas supply port of a spiral and screw fluid machine having an Archimedes-Quinby curve according to the present invention.

【図2】 図1のA−A′矢視、スパイラキシャル、ス
クリュー流体機械の横断面図。
FIG. 2 is a cross-sectional view of the spiral, screw fluid machine as viewed in the direction of arrows AA 'in FIG.

【図3】 本発明のスパイラキシャル、スクリュー流体
機械の吐出側ギヤーケース部の冷却気体供給を示した縦
断面図。
FIG. 3 is a longitudinal sectional view showing supply of cooling gas to a discharge-side gear case portion of the spiral and screw fluid machine according to the present invention.

【図4】 本発明のアルキメデス、クインビー曲線でな
るスパイラキシャル、スクリュー流体機械のロータを冷
却する構成を示した縦断面図。
FIG. 4 is a longitudinal sectional view showing a configuration for cooling a rotor of an Archimedean spiral spiral screw machine according to the present invention.

【符号の説明】[Explanation of symbols]

1…………ケーシング 1A………ケーシング
冷却ジャケット 1B………ケーシング内壁 2…………左ロータ 3…………右ロータ 4…………吸入側サイ
ドカバー 5…………ロータねじリードにおける流体圧送部 6…………不活性気体供給ボス 7…………吐出側サイ
ドカバー 8、8B…噴気ノズル 9、9B…不活性気体
供給パイプ 10…………流体吸入口 11…………ロータ内
空洞 12…………支持アダブタ 14…………噴出管 15…………気体供給パイプ 16…………噴出管に
おけるノズル径 17…………供給気体 18…………矢印Uタ
ーンの膨張気体 20…………断熱膨張した不活性気体 7C………吐出側サイドカバーの内部チャンバー d…………噴気ノズル径 S…………不活性気体
供給パイプ内径
DESCRIPTION OF SYMBOLS 1 ... Casing 1A ... Casing cooling jacket 1B ... Casing inner wall 2 ... Left rotor 3 ... Right rotor 4 ... Suction side side cover 5 ... Rotor screw lead ... Inert gas supply boss 7 ... Discharge side cover 8, 8B ... Fume nozzle 9, 9B ... Inert gas supply pipe 10 ... Fluid suction port 11 ... ... cavity in rotor 12 ... support adapter 14 ... ... ejection pipe 15 ... gas supply pipe 16 ... nozzle diameter in ejection pipe 17 ... supply gas 18 ... arrow U Turn inflation gas 20 ... adiabatic expanded inert gas 7C ... internal chamber of discharge side cover d ... fume nozzle diameter S ... inert gas supply pipe inner diameter

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】一条の左・右同形ねじ、一対のロータを有
するスパイラキシャル、スクリュー流体機械において、
ケーシング外胴の吐出側に近い定点に不活性気体供給ボ
スを、冷却水ジャケットを貫通してケーシング内壁まで
構築し、該、ボスに不活性気体供給パイプと噴気ノズル
を構成すると共に、不活性気体供給パイプに常時、設定
圧力を保持する不活性気体を供給し、噴気ノズルより断
熱膨張させ、ロータねじリードの流体圧送部における圧
送流体に膨張した冷気体を噴射、混合して冷却する構成
を特徴としたスパイラキシャル、スクリュー流体機械に
おける冷却装置。
A spiral fluid or screw fluid machine having a single left and right identical screw, a pair of rotors,
At the fixed point near the discharge side of the casing outer body, an inert gas supply boss is constructed through the cooling water jacket to the inner wall of the casing, and the inert gas supply pipe and the blast nozzle are formed on the boss, and the inert gas is formed. An inert gas that constantly maintains a set pressure is supplied to the supply pipe, adiabatic expansion is performed from the blast nozzle, and the expanded cold gas is injected into the pumping fluid in the fluid pumping section of the rotor screw lead, mixed, and cooled. Cooling device for spiral and screw fluid machines.
【請求項2】一条の左・右同形ねじ、一対のロータを有
するスパイラキシャル、スクリュー流体機械において、
吐出側サイドカバーに不活性気体供給パイプと噴気ノズ
ルを構成すると共に、該、不活性供給パイプに常時、設
定圧力を保持する不活性気体を供給し、噴気ノズルより
断熱膨張させ、吐出側サイドカバーの内部チャンバーの
吐出流体に膨張した冷気体を噴射混合させて冷却する構
成を特徴としたスパイラキシャル、スクリュー流体機械
における冷却装置。
2. A screw fluid machine, comprising: a single left and right same-shaped screw; a spiral having a pair of rotors;
An inert gas supply pipe and a blast nozzle are formed on the discharge side cover, and an inert gas having a predetermined pressure is always supplied to the inert supply pipe, and the inert gas is adiabatically expanded from the blast nozzle. A cooling device for a spiral or screw fluid machine, characterized in that a cooled gas expanded and jetted and mixed with a discharge fluid in an internal chamber is cooled.
【請求項3】一条の左・右同形ねじ、一対のロータを有
するスパイラキシャル、スクリュー流体機械において、
ロータ軸端よりロータ内部にロータ内空洞を構成し、
該、ロータ内空洞に供給パイプと連なる噴気管ノズルを
構成すると共に、該、供給パイプに常時、設定圧力を保
持する気体を供給し、噴気管ノズルより断熱膨張させ
て、ロータ内空洞壁に膨張した冷気体を噴射させ、冷却
する構成を特徴としたスパイラキシャル、スクリュー流
体機械における冷却装置。
3. A screw fluid machine comprising: a single left and right identical screw; a spiral having a pair of rotors;
A rotor inner cavity is formed inside the rotor from the rotor shaft end,
A fumarole nozzle connected to the supply pipe is formed in the cavity inside the rotor, and a gas maintaining a set pressure is always supplied to the supply pipe, and the gas is adiabatically expanded from the blast tube nozzle to expand the cavity wall of the rotor. A cooling device for a spiral or screw fluid machine, characterized in that a cooled gas is injected and cooled.
JP2000147089A 2000-04-10 2000-04-10 Cooling device in screw fluid machinery Pending JP2001289186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000147089A JP2001289186A (en) 2000-04-10 2000-04-10 Cooling device in screw fluid machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000147089A JP2001289186A (en) 2000-04-10 2000-04-10 Cooling device in screw fluid machinery

Publications (1)

Publication Number Publication Date
JP2001289186A true JP2001289186A (en) 2001-10-19

Family

ID=18653322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000147089A Pending JP2001289186A (en) 2000-04-10 2000-04-10 Cooling device in screw fluid machinery

Country Status (1)

Country Link
JP (1) JP2001289186A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100438496B1 (en) * 2002-02-26 2004-07-03 대한민국 (창원대학 공작기계기술연구센터) Device For Cooling The Rotor For The Air-conditioner
KR101173168B1 (en) 2010-11-17 2012-08-16 데이비드 김 multistage dry vacuum pump
CN102878083A (en) * 2012-08-04 2013-01-16 百事德机械(江苏)有限公司 Cooling structure of roots vacuum pump
CN114382696A (en) * 2022-01-18 2022-04-22 江苏新凯晟机械设备有限公司 Air compressor with filtering structure
CN114941623A (en) * 2022-05-28 2022-08-26 江苏大学 Roots vacuum pump

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100438496B1 (en) * 2002-02-26 2004-07-03 대한민국 (창원대학 공작기계기술연구센터) Device For Cooling The Rotor For The Air-conditioner
KR101173168B1 (en) 2010-11-17 2012-08-16 데이비드 김 multistage dry vacuum pump
CN102878083A (en) * 2012-08-04 2013-01-16 百事德机械(江苏)有限公司 Cooling structure of roots vacuum pump
CN114382696A (en) * 2022-01-18 2022-04-22 江苏新凯晟机械设备有限公司 Air compressor with filtering structure
CN114382696B (en) * 2022-01-18 2024-04-12 江苏新凯晟机械设备有限公司 Air compressor with filtering structure
CN114941623A (en) * 2022-05-28 2022-08-26 江苏大学 Roots vacuum pump

Similar Documents

Publication Publication Date Title
EP0777053B1 (en) Scroll fluid machine
JPH0874765A (en) Stepless compression type screw type vacuum pump
TWI438342B (en) Complex dry vacuum pump having root and screw rotors
WO2003031821A1 (en) Screw type vacuum pump
WO2003023229A1 (en) Vacuum pumping system and method of operating vacuum pumping system
US6312240B1 (en) Reflux gas compressor
JP2010501766A (en) Method for reacting dust self-igniting with a vacuum pump device
JP2001289186A (en) Cooling device in screw fluid machinery
JP2009074554A (en) Multi-stage helical screw rotor
JP4388167B2 (en) Improvement of vacuum pump
JPS60252197A (en) Vacuum pump
RU2343317C2 (en) Spiral machine
JP2001193677A (en) Screw fluid machine
US7223083B2 (en) Scroll compressor
SU1566085A1 (en) Liquid-ring machine
JPH05993U (en) High pressure dome compressor
US7144233B2 (en) Scroll fluid machine with a silencer
JP4040832B2 (en) Scroll fluid machine with multistage fluid compression section
JPS5891390A (en) Vacuum machine
CN214464971U (en) Gas ring type vacuum pump
JP2002061589A (en) Screw type fluid machine
CN215566644U (en) Roots blower with heat dissipation function
KR20020044993A (en) Power transfer equipment by compressor air pressure
RU2193114C2 (en) Air-cooled compression unit
JP2002174174A (en) Evacuator