JP2001289116A - Cooling water passage structure for cylinder head and method for manufacture thereof - Google Patents

Cooling water passage structure for cylinder head and method for manufacture thereof

Info

Publication number
JP2001289116A
JP2001289116A JP2000105248A JP2000105248A JP2001289116A JP 2001289116 A JP2001289116 A JP 2001289116A JP 2000105248 A JP2000105248 A JP 2000105248A JP 2000105248 A JP2000105248 A JP 2000105248A JP 2001289116 A JP2001289116 A JP 2001289116A
Authority
JP
Japan
Prior art keywords
passage
exhaust
cooling water
cylinder head
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000105248A
Other languages
Japanese (ja)
Other versions
JP4250723B2 (en
Inventor
Tetsuo Asano
哲夫 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP2000105248A priority Critical patent/JP4250723B2/en
Priority to DE2001631487 priority patent/DE60131487T2/en
Priority to EP20010107296 priority patent/EP1143135B1/en
Publication of JP2001289116A publication Critical patent/JP2001289116A/en
Application granted granted Critical
Publication of JP4250723B2 publication Critical patent/JP4250723B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4285Shape or arrangement of intake or exhaust channels in cylinder heads of both intake and exhaust channel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/26Cylinder heads having cooling means
    • F02F1/36Cylinder heads having cooling means for liquid cooling
    • F02F1/40Cylinder heads having cooling means for liquid cooling cylinder heads with means for directing, guiding, or distributing liquid stream 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4214Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F2001/244Arrangement of valve stems in cylinder heads
    • F02F2001/245Arrangement of valve stems in cylinder heads the valve stems being orientated at an angle with the cylinder axis

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cooling water passage structure for a cylinder head, capable of improving the cooling efficiency of an on-vehicle engine with a plurality of cylinders arranged in series at a wall portion between a suction port and an exhaust port. SOLUTION: The cooling water passage for the cylinder head 1 has two parallel passages, a suction side passage 2 extending through the periphery of the suction port 5 to the longitudinal direction and an exhaust side passage 3 extending through the periphery of the exhaust port 6 to the longitudinal direction. A center passage 4 set between the suction port 5 and the exhaust port 6 is separated into upper and lower stages, an upper center passage 4a being communicated with the exhaust side passage 3 and a lower center passage 4b being communicated with the suction side passage 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複数の気筒が直列
に配置される車載用エンジンに用いられるシリンダヘッ
ドの冷却水通路構造及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling water passage structure of a cylinder head used in a vehicle-mounted engine in which a plurality of cylinders are arranged in series, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】従来、例えば実開平7−35741号公
報に開示されているように、シリンダヘッドに設けられ
る冷却水通路を、吸気側通路と排気側通路とに分離して
形成したものが知られている。このように、冷却水通路
を吸気側通路と排気側通路に分離し、冷却水を並行に流
す構成としたときは、冷却水通路が連続して設けられて
いる直列通路の場合に比べて、通路毎の距離が短縮され
ることから、圧損が低減されることになり、使用する冷
却水ポンプを小型化できるという有利さがある。このよ
うな構造の冷却水通路を有するシリンダヘッドは、例え
ば特開平9−203346号公報や実開平7−3574
1号公報に記載されている。
2. Description of the Related Art Conventionally, as disclosed, for example, in Japanese Utility Model Laid-Open Publication No. 7-35741, a cooling water passage provided in a cylinder head is separately formed into an intake passage and an exhaust passage. Have been. As described above, when the cooling water passage is separated into the intake side passage and the exhaust side passage, and the cooling water is configured to flow in parallel, compared with the case of the series passage in which the cooling water passage is provided continuously, Since the distance for each passage is shortened, the pressure loss is reduced, and there is an advantage that the cooling water pump to be used can be downsized. A cylinder head having a cooling water passage having such a structure is disclosed in, for example, Japanese Patent Application Laid-Open No. 9-203346 and Japanese Utility Model Application Laid-Open No. 7-3574.
No. 1 publication.

【0003】ところで、シリンダヘッドに形成される冷
却水通路は、特にポート周辺を冷却するように設定され
る。図15は一般的なポート周辺の冷却水通路構造を示
す断面図である。図示のように、多くの場合、シリンダ
ヘッド50の冷却水通路は、吸気ポート51周りを通る
吸気側通路53、排気ポート52周りを通る排気側通路
54、そして吸気ポート51と排気ポート52との中間
部(燃焼室の中央上方)を通る中央通路55との3つの
通路を有する。ポート間を通る中央通路55は、一般に
は図15に示す如く、略逆三角形状に形成されており、
そして、吸気側通路53と排気側通路54とに分離して
冷却水を並行に流す通路構造を採用した場合、吸気側通
路53又は排気側通路54のいずれか一方に従属(連
通)される。
[0003] The cooling water passage formed in the cylinder head is set so as to cool particularly around the port. FIG. 15 is a sectional view showing a cooling water passage structure around a general port. As shown in the figure, in many cases, the cooling water passage of the cylinder head 50 includes an intake side passage 53 passing around the intake port 51, an exhaust side passage 54 passing around the exhaust port 52, and a connection between the intake port 51 and the exhaust port 52. It has three passages with a central passage 55 passing through an intermediate portion (above the center of the combustion chamber). The central passage 55 passing between the ports is generally formed in a substantially inverted triangular shape as shown in FIG.
Then, when a passage structure in which the cooling water flows in parallel with being separated into the intake side passage 53 and the exhaust side passage 54 is adopted, it is dependent (communicated) on one of the intake side passage 53 and the exhaust side passage 54.

【0004】[0004]

【発明が解決しようとする課題】ところで、シリンダヘ
ッド50を冷却する場合において、吸気ポート51と排
気ポート52が最も接近するポート間の下端部付近56
は、熱的影響を受ける上に壁厚が薄いことから、熱疲労
亀裂を生じ易い箇所であり、従って、最も冷却が必要な
箇所である。ところが、上記のような冷却水通路構造の
場合、中央通路55の断面形状を略逆三角形に設定して
あるため、冷却水流れとしては、流量によらず上側Uと
下側Lでは流れる量に不均衡が生ずる。すなわち、上側
Uが流れ易い反面、下側Lが流れ難い。このため、最も
冷却が必要とされる吸気ポート51と排気ポート52間
の下端部付近56を通る通路の冷却水流れが淀み、又は
遅く、十分な冷却効率が得難いという問題がある。
By the way, when cooling the cylinder head 50, the vicinity 56 of the lower end between the ports where the intake port 51 and the exhaust port 52 are closest to each other.
Is a place that is easily affected by thermal fatigue and cracks due to thermal fatigue because of its thin wall thickness, and is therefore a place that needs the most cooling. However, in the case of the above-described cooling water passage structure, since the cross-sectional shape of the central passage 55 is set to a substantially inverted triangle, the cooling water flow does not depend on the flow rate but on the upper U side and the lower L side. Imbalance occurs. That is, while the upper side U flows easily, the lower side L does not easily flow. For this reason, there is a problem in that the flow of the cooling water in the passage passing through the vicinity 56 at the lower end between the intake port 51 and the exhaust port 52 that requires the most cooling is stagnant or slow, and it is difficult to obtain sufficient cooling efficiency.

【0005】本発明は、上述した従来の問題点に鑑みて
なされたものであり、その目的とするところは、複数の
気筒が直列に配置される車載用エンジンにおいて、特に
吸気ポートと排気ポートとの間の壁部に関する冷却効率
を高める上で有効なシリンダヘッドの冷却水通路構造及
び製造方法を提供することにある。
The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to provide an in-vehicle engine in which a plurality of cylinders are arranged in series. It is an object of the present invention to provide a cylinder head cooling water passage structure and a manufacturing method which are effective in increasing the cooling efficiency of the wall between the cylinder heads.

【0006】上記課題を達成するため、本発明は特許請
求の範囲に記載の通りの構成を備えた。従って、請求項
1及び2に記載の発明によれば、吸気ポートと排気ポー
トとの間を通る中央通路を上下2段に分けて形成したの
で、上側の中央通路と下側の中央通路とに関して流量に
よらず流れる量に不均衡が生じ難い。このため、上下の
中央通路に前述した従来の1つの通路によって構成され
ている中央通路と同じ量の冷却水を流すとすれば、下側
の中央通路を流れる冷却水の流量を、従来の中央通路の
下部側を流れる量に比べて増やすことが可能になる。そ
の結果、シリンダヘッドにおけるポート間下端部の冷却
効率を高めることができる。また、中央通路を上下2段
に分けたことにより、その仕切壁がシリンダヘッドの剛
性向上に役立つ。
[0006] In order to achieve the above object, the present invention has a configuration as described in the claims. Therefore, according to the first and second aspects of the invention, the central passage passing between the intake port and the exhaust port is formed in two stages, upper and lower, so that the upper central passage and the lower central passage are formed. Imbalance is unlikely to occur in the flow amount regardless of the flow amount. For this reason, if the same amount of cooling water as that of the central passage constituted by the above-described conventional single passage is made to flow through the upper and lower central passages, the flow rate of the cooling water flowing through the lower central passage is reduced by the conventional central passage. It is possible to increase the amount compared to the amount flowing on the lower side of the passage. As a result, the cooling efficiency of the lower end between the ports in the cylinder head can be improved. In addition, since the central passage is divided into upper and lower stages, the partition wall helps to improve the rigidity of the cylinder head.

【0007】また、請求項2に記載した発明のように、
一方の中央通路を吸気側通路に、他方の中央通路を排気
側通路に連通する構成としたときは、シリンダヘッドを
鋳造によって製造する場合において、冷却水通路を形成
するために用いられる中子が2本で済むことになり、そ
の取り扱いが容易になる。さらには、請求項3に記載し
た発明のように、上下の中央通路を、それぞれ吸気側通
路及び排気側通路に対して独立的に設ける構成としたと
きは、冷却水が各通路に適量に分配されるように断面積
を設定する場合の選択肢を広げることができる。
Also, as in the invention described in claim 2,
When one of the central passages is configured to communicate with the intake-side passage and the other central passage is communicated with the exhaust-side passage, the core used to form the cooling water passage when the cylinder head is manufactured by casting. Only two tubes are required, and the handling becomes easy. Further, when the upper and lower central passages are provided independently of each other on the intake side passage and the exhaust side passage as in the invention described in claim 3, the cooling water is appropriately distributed to each passage. The options for setting the cross-sectional area so as to satisfy the requirements can be expanded.

【0008】また、請求項4に記載した発明によれば、
ポート間下端部の冷却効率を高めることが可能な冷却水
通路を備えたシリンダヘッドの製造方法を提供すること
ができる。そして、この製造方法によれば、吸気側通路
形成用中子と排気側通路形成用中子との対向面間、すな
わち、吸気側通路と排気側通路との間に階段状の壁を設
定できる。この階段状の壁は、換言すれば、吸気ポート
と排気ポートとの間に、所定間隔を持って離間した縦リ
ブを2本配置した構造ということができ、このリブ構造
によって冷却水通路断面積を特に縮小することなくシリ
ンダヘッドの縦方向の剛性を向上することが可能とな
る。
Further, according to the invention described in claim 4,
A method for manufacturing a cylinder head having a cooling water passage capable of increasing the cooling efficiency of the lower end portion between the ports can be provided. According to this manufacturing method, a stepped wall can be set between the opposed surfaces of the intake-side passage forming core and the exhaust-side passage forming core, that is, between the intake-side passage and the exhaust-side passage. . In other words, the stepped wall has a structure in which two vertical ribs spaced apart from each other at a predetermined interval are arranged between the intake port and the exhaust port. It is possible to improve the rigidity of the cylinder head in the vertical direction without particularly reducing the size.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。本実施の形態は複数の気筒が直列
に配列され、かつ1つの気筒に吸気弁と排気弁がそれぞ
れ2個ずつ備えられたシリンダ直列配置のディーゼル4
弁DI(直接噴射)エンジンを適用対象としたものであ
り、図1に示す模式図に基づいて本実施の形態に係る冷
却水通路構造の概略を説明する。ただし、模式図は1つ
の気筒(燃焼室)に関して示してある。
Embodiments of the present invention will be described below with reference to the drawings. In the present embodiment, a plurality of cylinders are arranged in series, and one cylinder is provided with two intake valves and two exhaust valves.
The present invention is applied to a valve DI (direct injection) engine, and an outline of a cooling water passage structure according to the present embodiment will be described based on a schematic diagram shown in FIG. However, the schematic diagram shows one cylinder (combustion chamber).

【0010】シリンダヘッド1に形成される冷却水通路
は、吸気ポート5に沿って長手方向に延びる吸気側通路
2と、排気ポート6に沿って長手方向に延びる排気側通
路3と、吸気ポート5と排気ポート6との間、すなわ
ち、気筒7(以下、燃焼室ともいう)の中央上方を通る
中央通路4とから構成されている。そして、中央通路4
は上下2つの通路に分けられ、一方(下側)の中央通路
4bが吸気側通路2に連通され、他方(上側)の中央通
路4aが排気側通路3に連通されている。かくして、シ
リンダヘッド1の冷却水通路は、下側の中央通路4bを
有する吸気側通路2と、上側の中央通路4aを有する排
気側通路3との並行する2つの独立した通路に分離され
ている。また、吸気側通路2と排気側通路3に流す冷却
水量がそれぞれ適量に分配されるように、それぞれの通
路入口面積が設定されている。
A cooling water passage formed in the cylinder head 1 includes an intake passage 2 extending longitudinally along the intake port 5, an exhaust passage 3 extending longitudinally along the exhaust port 6, and an intake port 5. And an exhaust port 6, that is, a central passage 4 passing above a center of a cylinder 7 (hereinafter also referred to as a combustion chamber). And the central passage 4
Is divided into two upper and lower passages. One (lower) central passage 4 b is communicated with the intake passage 2, and the other (upper) central passage 4 a is communicated with the exhaust passage 3. Thus, the cooling water passage of the cylinder head 1 is separated into two independent passages in parallel with the intake passage 2 having the lower central passage 4b and the exhaust passage 3 having the upper central passage 4a. . Further, the respective passage entrance areas are set such that the amounts of cooling water flowing through the intake side passage 2 and the exhaust side passage 3 are respectively distributed appropriately.

【0011】なお、図示省略のウォーターポンプから送
られる冷却水は、シリンダブロックの冷却水通路を経て
シリンダヘッド1の吸気側通路2と排気側通路3とへ分
流され、吸気側通路2と排気側通路3から流出後は合流
してラジエータへ送られる。上記のように構成すること
によって、ある箇所の断面積を小さくしても、そのこと
に伴う圧力損失の増加分は、吸気側通路と排気側通路が
連続している直列通路のときに比べて大きくならず、冷
却水給送用として小型のウォーターポンプを使用するこ
とが可能となる。
The cooling water sent from a water pump (not shown) is divided into the intake side passage 2 and the exhaust side passage 3 of the cylinder head 1 through the cooling water passage of the cylinder block. After flowing out of the passage 3, they are merged and sent to the radiator. By configuring as described above, even if the cross-sectional area at a certain location is reduced, the increase in pressure loss accompanying the cross-sectional area is smaller than in the case of a series passage in which the intake passage and the exhaust passage are continuous. It does not become large, and it becomes possible to use a small water pump for cooling water supply.

【0012】ところで、シリンダ直列配置のディーゼル
4弁DIエンジンでは、図3に示すすように、吸気バル
ブ11と排気バルブ12を配置したとき、両バルブ1
1,12によって挟まれるバルブ挾間部13の壁厚は、
厚肉に設定することが難しい。そして、バルブ挾間部1
3は最も熱的影響を受ける箇所でもあることから、この
バルブ挾間部13で熱疲労亀裂が生じ易い。従って、こ
のバルブ挾間部13は冷却水によって強く冷却すること
が望ましい。
By the way, in a diesel 4-valve DI engine in which cylinders are arranged in series, when an intake valve 11 and an exhaust valve 12 are arranged as shown in FIG.
The wall thickness of the valve sandwiching portion 13 sandwiched between 1 and 12 is as follows.
It is difficult to set thick. And the valve gap 1
Since No. 3 is also the most thermally affected portion, thermal fatigue cracks are liable to occur in the valve sandwiching portion 13. Therefore, it is desirable that the valve sandwiching portion 13 be strongly cooled by cooling water.

【0013】そこで、本実施の形態では、このような要
求に応えるべく、上記のように、シリンダヘッド1の冷
却水通路を、中央通路4aを有する吸気側通路2と、中
央通路4bを有する排気側通路3との並行する2つの独
立した通路に分離し、かつ中央通路4を上下に分けて形
成したものである。以下、上記の冷却水通路の具体的構
造を図2〜図7に基づいて説明する。図2はシリンダヘ
ッドを上面側から見た平面図、図3は同じくシリンダヘ
ッドを下面側から見た平面図である。図4〜図6は冷却
水通路を示す断面図であり、図4は図1及び図2のA−
A線断面図、図5は図1及び図2のB−B線断面図、図
6は図1及び図2のC−C線断面図である。図7はシリ
ンダヘッドガスケットの平面図である。
Therefore, in this embodiment, in order to meet such a demand, as described above, the cooling water passage of the cylinder head 1 is provided with the intake passage 2 having the central passage 4a and the exhaust passage having the central passage 4b. It is divided into two independent passages parallel to the side passage 3 and the central passage 4 is formed vertically. Hereinafter, a specific structure of the cooling water passage will be described with reference to FIGS. FIG. 2 is a plan view of the cylinder head as viewed from above, and FIG. 3 is a plan view of the same cylinder head as viewed from below. 4 to 6 are sectional views showing the cooling water passage, and FIG.
5 is a sectional view taken along line BB of FIGS. 1 and 2, and FIG. 6 is a sectional view taken along line CC of FIGS. 1 and 2. FIG. 7 is a plan view of the cylinder head gasket.

【0014】冷却水はシリンダブロック(図示省略)側
の通路から図7に示したガスケット8の流通孔21,2
2を経てシリンダヘッド1の吸気側通路2と排気側通路
3に並行して流入される。吸気側と排気側の流通孔2
1,22は、冷却水が吸気側通路2と排気側通路3に適
量に分配されるように設定される。
The cooling water flows from the passage on the side of the cylinder block (not shown) through the flow holes 21 and 22 of the gasket 8 shown in FIG.
2 and flows into the intake side passage 2 and the exhaust side passage 3 of the cylinder head 1 in parallel. Flow holes 2 on intake side and exhaust side
1 and 22 are set so that the cooling water is distributed to the intake passage 2 and the exhaust passage 3 in an appropriate amount.

【0015】吸気ポート5の外側を通って長手方向に吸
気側通路2と、吸気側(下側)の中央通路4bとは、1
つの気筒7に関して、吸気ポート5に対応する部位及び
隣接する吸気ポート5相互間では、図4及び図5に示す
如く分離されているが、隣接する気筒7の吸気ポート5
との間では、図6に示す如く合流されている。
The intake side passage 2 passing through the outside of the intake port 5 in the longitudinal direction and the intake side (lower side) central passage 4b
As shown in FIGS. 4 and 5, a portion corresponding to the intake port 5 and the adjacent intake ports 5 are separated from each other as shown in FIGS.
Are joined as shown in FIG.

【0016】一方、排気ポート6の外側を通って延びる
排気側通路3は、1つの気筒7に関して、排気ポート6
に対応する部位及び隣接する排気ポート6相互間では、
図4及び図5に示す如く排気ポート6を挟んで上下2つ
の通路に分けられている。また、排気側(上側)の中央
通路4aは、排気ポート6に対応する部位では、図4に
示す如く排気ポート6と吸気ポート5との間に設定さ
れ、隣接する排気ポート6相互間では、図6に示す如く
排気側通路3の上側通路に合流されている。また、排気
側通路3及び中央通路4aは、隣接する気筒7の排気ポ
ート6との間では、図6に示す如く合流(1つの通路)
されている。
On the other hand, the exhaust-side passage 3 extending outside the exhaust port 6 is connected to the exhaust port 6 with respect to one cylinder 7.
And between the adjacent exhaust ports 6
As shown in FIGS. 4 and 5, it is divided into two upper and lower passages with the exhaust port 6 interposed therebetween. In addition, the central passage 4a on the exhaust side (upper side) is set between the exhaust port 6 and the intake port 5 at a portion corresponding to the exhaust port 6, as shown in FIG. As shown in FIG. 6, it is joined to the upper passage of the exhaust passage 3. Further, the exhaust-side passage 3 and the central passage 4a merge with the exhaust port 6 of the adjacent cylinder 7 as shown in FIG. 6 (one passage).
Have been.

【0017】そして、吸気側の中央通路4bと排気側の
中央通路4aとは、図4に示すように、相互に上下に重
なり合うように設定され、このことにより、吸気側の中
央通路4bと排気側の中央通路4aとを区画する仕切壁
9が、結果として吸気ポート5側と排気ポート6側の壁
を繋いでいる。また、吸気側の中央通路4bと排気側の
中央通路4aとは、その断面積が略等しく設定されてい
る。
The central passage 4b on the intake side and the central passage 4a on the exhaust side are set so as to overlap each other as shown in FIG. 4, so that the central passage 4b on the intake side and the exhaust passage As a result, a partition wall 9 that defines the central passage 4a on the side connects the walls on the intake port 5 side and the exhaust port 6 side. The intake-side central passage 4b and the exhaust-side central passage 4a have substantially the same sectional area.

【0018】このように、本実施の形態においては、吸
気ポート5と排気ポート6との間に設定される中央通路
4を、上下に分けたことによって、上側の中央通路4a
と下側の中央通路4bとについて冷却水の流量に不均衡
が生じ難い。このため、上下の中央通路4a,4bに前
述した従来の1つの通路によって構成されている中央通
路55と同量の冷却水を流すとすれば、下側の中央通路
4bを流れる冷却水の量を、従来の中央通路55の下部
側を流れる量に比べて増やすことが可能になる。このよ
うなことから、シリンダヘッド1におけるポート間下端
部、すなわち、図3に示す吸気バルブ11と排気バルブ
12によって挟まれるバルブ挾間部13の冷却効率を高
めることが可能となり、バルブ挾間部13の熱疲労破壊
を防止する上で有効となる。
As described above, in the present embodiment, the central passage 4 set between the intake port 5 and the exhaust port 6 is divided into upper and lower parts, so that the upper central passage 4a
It is difficult for the flow rate of the cooling water to be unbalanced between the cooling water flow and the lower central passage 4b. Therefore, if it is assumed that the same amount of cooling water as that of the above-described conventional single passage 55 is formed in the upper and lower central passages 4a and 4b, the amount of cooling water flowing through the lower central passage 4b Can be increased as compared with the conventional amount flowing on the lower side of the central passage 55. For this reason, it is possible to increase the cooling efficiency of the lower end portion between the ports in the cylinder head 1, that is, the valve interposition portion 13 interposed between the intake valve 11 and the exhaust valve 12 shown in FIG. This is effective in preventing thermal fatigue failure.

【0019】この場合において、中央通路4a,4bを
流れる冷却水の流量を多くしたいときは、ポート外側を
流れる吸気側通路2及び排気側通路3の断面積をそれぞ
れ中央通路4a,4bの断面積よりも小さく設定するこ
とで可能となる。このような設定としたときは圧力損失
が増加することになるが、その増加分は、本実施の形態
のように冷却水通路を吸気側通路2と排気側通路3とに
分けて形成し、冷却水を並行して流す構成とすれば、吸
気側と排気側の通路が連続している直列の通路構造に比
べてそれほど大きくならずに済む。
In this case, when it is desired to increase the flow rate of the cooling water flowing through the central passages 4a and 4b, the sectional areas of the intake side passage 2 and the exhaust side passage 3 flowing outside the port are respectively determined by the sectional areas of the central passages 4a and 4b. It becomes possible by setting it smaller. With such a setting, the pressure loss increases, but the increase is formed by dividing the cooling water passage into the intake passage 2 and the exhaust passage 3 as in the present embodiment. With the configuration in which the cooling water flows in parallel, it is not necessary to be so large as compared with a serial passage structure in which the passages on the intake side and the exhaust side are continuous.

【0020】また、本実施の形態では、中央通路4を上
下に分けることによって、上下の両通路4a,4b間の
板状の仕切壁9でポート壁が連結される結果、ポート間
の剛性を高めることが可能となる。
Further, in the present embodiment, by dividing the central passage 4 into upper and lower portions, the port walls are connected by the plate-shaped partition wall 9 between the upper and lower passages 4a and 4b, so that the rigidity between the ports is reduced. It is possible to increase.

【0021】上記のように構成される冷却水通路構造を
備えたシリンダヘッド1は、所定形状に形成された鋳型
内に中子をセット後、該鋳型に溶湯を注入することによ
って製作される。すなわち、シリンダヘッド1は鋳造に
よって製造されるが、その製造に際して冷却水通路は、
図8〜図14に示すような中子を用いて製作される。
The cylinder head 1 having the cooling water passage structure configured as described above is manufactured by setting a core in a mold formed in a predetermined shape and then pouring a molten metal into the mold. That is, the cylinder head 1 is manufactured by casting.
It is manufactured using a core as shown in FIGS.

【0022】図8は吸気側通路形成用中子を示す斜視
図、図9は排気側通路形成用中子を示す斜視図、図10
は吸気側通路形成用中子と排気側通路形成用中子を組み
合わせた状態の斜視図、図11は同じく概略正面図であ
る。また、図12は図3の断面図に相当する部位から切
断した状態の斜視図、図13は図4の断面図に相当する
部位から切断した状態を示す斜視図、図14は図5の断
面図に相当する部位から切断した状態を示す斜視図であ
る。
FIG. 8 is a perspective view showing an intake-side passage forming core, FIG. 9 is a perspective view showing an exhaust-side passage forming core, and FIG.
FIG. 11 is a perspective view of a state in which an intake-side passage forming core and an exhaust-side passage forming core are combined, and FIG. 11 is a schematic front view of the same. FIG. 12 is a perspective view of a state cut from a part corresponding to the cross-sectional view of FIG. 3, FIG. 13 is a perspective view showing a state of cut from a part corresponding to the cross-sectional view of FIG. 4, and FIG. It is a perspective view showing the state where it cut | disconnected from the site | part corresponding to a figure.

【0023】図8に示すように、吸気側通路形成用中子
31は吸気側通路形成部31a及び中央通路形成部31
bを備えており、断面略L字形に形成されている。一
方、図9に示すように、排気側通路形成用中子32は排
気側通路形成部32a及び中央通路形成部32bを備え
ており、断面略L字形に形成されている。そして、上記
のように形成される両中子31,32は、図10及び図
14に示す如く、相互の中央通路形成部31b、32b
が所定間隔を置いて上下方向に重なり合うように配置さ
れた状態で鋳型内にセットされる。
As shown in FIG. 8, the intake-side passage forming core 31 includes an intake-side passage forming portion 31a and a central passage forming portion 31.
b, and is formed in a substantially L-shaped cross section. On the other hand, as shown in FIG. 9, the exhaust-side passage forming core 32 includes an exhaust-side passage forming portion 32a and a central passage forming portion 32b, and is formed to have a substantially L-shaped cross section. As shown in FIGS. 10 and 14, the cores 31 and 32 formed as described above are mutually central passage forming portions 31b and 32b.
Are set in a mold in a state where they are arranged at predetermined intervals so as to overlap in the vertical direction.

【0024】従って、上記のように配置された吸気側通
路形成用中子31と排気側通路形成用中子32との対向
面間には、略N型の対向隙間Sが形成される。従って、
鋳造後のシリンダヘッド1には、吸気側通路2と排気側
通路3との間に階段状の壁が設定されることになる。こ
の階段状の壁は、換言すれば、吸気ポート5と排気ポー
ト6との間に、所定間隔を持って離間した縦リブを2本
配置した構造ということができる。従って、このような
リブ構造によって冷却水の通路断面積を特に縮小するこ
となくシリンダヘッド1の縦方向の剛性を向上すること
が可能となる。
Accordingly, a substantially N-shaped facing gap S is formed between the facing surfaces of the intake-side passage forming core 31 and the exhaust-side passage forming core 32 arranged as described above. Therefore,
A stepped wall is set between the intake side passage 2 and the exhaust side passage 3 in the cylinder head 1 after casting. In other words, the stepped wall has a structure in which two vertical ribs spaced apart from each other with a predetermined interval are arranged between the intake port 5 and the exhaust port 6. Therefore, the rigidity of the cylinder head 1 in the vertical direction can be improved without particularly reducing the cross-sectional area of the cooling water passage by such a rib structure.

【0025】なお、本発明は上述した実施の形態に限定
されるものではなく、その要旨を逸脱しない範囲内で適
宜変更することが可能である。例えば、中央通路4a,
4bを、吸気側通路2及び排気側通路3から完全に独立
した形態に設定してもよい。すなわち、冷却水通路を、
吸気側通路2と排気側通路3と上下の中央通路4a,4
bとの並行する4分割構造としてもよい。このような構
成を採用したときは、冷却水が各通路に適量に分配され
るように断面積を設定する場合の選択肢を広げることが
できる。また、吸気側通路2及び排気側通路3への冷却
水の流入は、ガスケット8に設けた流通孔21,22を
通す代わりに、パイプ等を用いてもよい。
It should be noted that the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention. For example, the central passage 4a,
4b may be set in a form completely independent of the intake side passage 2 and the exhaust side passage 3. That is, the cooling water passage
Intake-side passage 2, exhaust-side passage 3, and upper and lower central passages 4a, 4
It may be a four-part structure parallel to b. When such a configuration is adopted, options for setting the cross-sectional area so that the cooling water is distributed to each passage in an appropriate amount can be expanded. Instead of flowing through the cooling holes 21 and 22 provided in the gasket 8, pipes may be used for inflow of the cooling water into the intake side passage 2 and the exhaust side passage 3.

【0026】[0026]

【発明の効果】以上詳述したように、本発明によれば、
複数の気筒が直列に配置される車載用エンジンにおい
て、特に吸気ポートと排気ポートとの間の壁部に関する
冷却を効率良く行うことができる。
As described in detail above, according to the present invention,
In a vehicle-mounted engine in which a plurality of cylinders are arranged in series, it is possible to efficiently perform cooling particularly on the wall between the intake port and the exhaust port.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施の形態に係る冷却水通路構造の概略を説
明する模式図である。
FIG. 1 is a schematic diagram illustrating an outline of a cooling water passage structure according to the present embodiment.

【図2】シリンダヘッドを上面側から見た平面図であ
る。
FIG. 2 is a plan view of the cylinder head as viewed from above.

【図3】シリンダヘッドを下面側から見た平面図であ
る。
FIG. 3 is a plan view of the cylinder head as viewed from a lower surface side.

【図4】図1及び図2のA−A線断面図である。FIG. 4 is a sectional view taken along line AA of FIGS. 1 and 2;

【図5】図1及び図2のB−B線断面図である。FIG. 5 is a sectional view taken along line BB of FIGS. 1 and 2;

【図6】図1及び図2のC−C線断面図である。FIG. 6 is a sectional view taken along line CC of FIGS. 1 and 2;

【図7】シリンダヘッドガスケットの平面図である。FIG. 7 is a plan view of a cylinder head gasket.

【図8】吸気側通路形成用中子を示す斜視図である。FIG. 8 is a perspective view showing an intake-side passage forming core.

【図9】排気側通路形成用中子を示す斜視図である。FIG. 9 is a perspective view showing an exhaust-side passage forming core.

【図10】吸気側通路形成用中子と排気側通路形成用中
子を組み合わせた状態の斜視図である。
FIG. 10 is a perspective view showing a state where an intake-side passage forming core and an exhaust-side passage forming core are combined.

【図11】同じく概略正面図である。FIG. 11 is a schematic front view of the same.

【図12】図3の断面図に相当する部位から切断した状
態の斜視図である。
FIG. 12 is a perspective view of a state cut from a portion corresponding to the cross-sectional view of FIG. 3;

【図13】図4の断面図に相当する部位から切断した状
態を示す斜視図である。
FIG. 13 is a perspective view showing a state cut from a portion corresponding to the cross-sectional view of FIG. 4;

【図14】図5の断面図に相当する部位から切断した状
態を示す斜視図である。
FIG. 14 is a perspective view showing a state cut from a portion corresponding to the cross-sectional view of FIG. 5;

【図15】従来の一般的なポート周辺の冷却水通路構造
を示す断面図である。
FIG. 15 is a cross-sectional view showing a conventional general cooling water passage structure around a port.

【符号の説明】[Explanation of symbols]

1…シリンダヘッド 2…吸気側通路 3…排気側通路 4…中央通路 4a…排気側の中央通路 4b…吸気側の中央通路 5…吸気ポート 6…排気ポート DESCRIPTION OF SYMBOLS 1 ... Cylinder head 2 ... Intake side passage 3 ... Exhaust side passage 4 ... Central passage 4a ... Exhaust side central passage 4b ... Intake side central passage 5 ... Intake port 6 ... Exhaust port

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02F 1/38 F02F 1/38 B Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) F02F 1/38 F02F 1/38 B

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 複数の気筒が直列に配列されているエン
ジンのためのシリンダヘッドの冷却水通路構造であっ
て、 吸気ポート周辺を通って長手方向に延びる吸気側通路
と、排気ポート周辺を通って長手方向に延びる排気側通
路と、前記吸気ポートと前記排気ポートとの間を通る中
央通路とを備え、中央通路が上下2段に分けて形成され
ていることを特徴とするシリンダヘッドの冷却水通路構
造。
1. A cooling water passage structure for a cylinder head for an engine in which a plurality of cylinders are arranged in series, wherein the cooling water passage structure extends longitudinally around an intake port and passes around an exhaust port. And a central passage passing between the intake port and the exhaust port. The central passage is formed in two stages, upper and lower, for cooling the cylinder head. Water passage structure.
【請求項2】 請求項1に記載のシリンダヘッドの冷却
水通路構造であって、前記上下の中央通路のうちの一方
の中央通路が吸気側通路に連通され、他方の中央通路が
排気側通路に連通されていることを特徴とするシリンダ
ヘッドの冷却水通路構造。
2. The cooling water passage structure for a cylinder head according to claim 1, wherein one of the upper and lower central passages is communicated with an intake passage, and the other central passage is an exhaust passage. A cooling water passage structure for a cylinder head.
【請求項3】 請求項1に記載のシリンダヘッドの冷却
水通路構造であって、前記上下の中央通路が、それぞれ
前記吸気側通路及び排気側通路に対して独立的に設けら
れていることを特徴とするシリンダヘッドの冷却水通路
構造。
3. The cooling water passage structure for a cylinder head according to claim 1, wherein the upper and lower central passages are provided independently of the intake-side passage and the exhaust-side passage, respectively. Characteristic cooling water passage structure of cylinder head.
【請求項4】 複数の気筒が直列に配列されているエン
ジンのシリンダヘッドを所定形状の鋳型を用いて鋳造す
る際に、吸気ポート周辺を通って長手方向に延び、かつ
吸気ポートと排気ポートとの間を通る中央通路を持つ吸
気側通路を形成するための断面略L形に形成された吸気
側通路形成用中子と、排気ポート周辺を通って長手方向
に延び、かつ前記吸気ポートと前記排気ポートとの間を
通る中央通路を持つ排気側通路を形成するための断面略
L形に形成された排気側通路形成用中子とを、相互の中
央通路が上下方向に重なり合うように配置後、前記鋳型
内に溶湯を注入することを特徴とするシリンダヘッドの
製造方法。
4. When a cylinder head of an engine in which a plurality of cylinders are arranged in series is cast using a mold having a predetermined shape, the cylinder head extends in a longitudinal direction around an intake port, and is formed between an intake port and an exhaust port. An intake-side passage-forming core formed in a substantially L-shaped cross-section for forming an intake-side passage having a central passage passing therethrough, and a longitudinally extending through an exhaust port periphery; and An exhaust-side passage forming core having a substantially L-shaped cross section for forming an exhaust-side passage having a central passage passing between the exhaust port and the exhaust-side passage forming core; And injecting a molten metal into the mold.
JP2000105248A 2000-04-06 2000-04-06 Cylinder head cooling water passage structure and manufacturing method Expired - Fee Related JP4250723B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000105248A JP4250723B2 (en) 2000-04-06 2000-04-06 Cylinder head cooling water passage structure and manufacturing method
DE2001631487 DE60131487T2 (en) 2000-04-06 2001-03-23 Cylinder head cooling water structure and method of manufacture
EP20010107296 EP1143135B1 (en) 2000-04-06 2001-03-23 Cooling water channel structure of a cylinder head and method of manufacturing a cylinder head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000105248A JP4250723B2 (en) 2000-04-06 2000-04-06 Cylinder head cooling water passage structure and manufacturing method

Publications (2)

Publication Number Publication Date
JP2001289116A true JP2001289116A (en) 2001-10-19
JP4250723B2 JP4250723B2 (en) 2009-04-08

Family

ID=18618652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000105248A Expired - Fee Related JP4250723B2 (en) 2000-04-06 2000-04-06 Cylinder head cooling water passage structure and manufacturing method

Country Status (3)

Country Link
EP (1) EP1143135B1 (en)
JP (1) JP4250723B2 (en)
DE (1) DE60131487T2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127499A (en) * 2009-12-17 2011-06-30 Toyota Motor Corp Cooling structure of cylinder head
WO2011163633A2 (en) * 2010-06-25 2011-12-29 Cummins Intellectual Properties, Inc Cylinder head having plural water jackets and cast-in water rail
JP2016094873A (en) * 2014-11-13 2016-05-26 トヨタ自動車株式会社 Cylinder head
CN105736169A (en) * 2014-12-24 2016-07-06 本田技研工业株式会社 Cooling structure of internal combustion engine
JP2017115738A (en) * 2015-12-25 2017-06-29 ダイハツ工業株式会社 Internal combustion engine cylinder head

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4112391B2 (en) * 2003-02-06 2008-07-02 本田技研工業株式会社 Cylinder head of internal combustion engine
US7051685B2 (en) * 2003-10-27 2006-05-30 General Motors Corporation Cylinder head with integrated exhaust manifold
CN109441656B (en) * 2018-12-12 2020-09-08 中国北方发动机研究所(天津) Multi-loop cooling cylinder cover

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1845521A (en) * 1929-01-02 1932-02-16 Carl A Ross Cooling system for engine cylinders
JPH0635824B2 (en) * 1985-01-29 1994-05-11 マツダ株式会社 Cylinder head cooling structure
JPH0735741A (en) 1993-07-20 1995-02-07 Fuji Electric Co Ltd Bod measuring equipment
JPH09203346A (en) 1996-01-25 1997-08-05 Toyota Motor Corp Cooling water passage structure of cylinder head
FR2774128B1 (en) * 1998-01-23 2000-03-10 Renault LIQUID COOLED INTERNAL COMBUSTION ENGINE CYLINDER HEAD

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127499A (en) * 2009-12-17 2011-06-30 Toyota Motor Corp Cooling structure of cylinder head
WO2011163633A2 (en) * 2010-06-25 2011-12-29 Cummins Intellectual Properties, Inc Cylinder head having plural water jackets and cast-in water rail
WO2011163633A3 (en) * 2010-06-25 2012-04-26 Cummins Intellectual Properties, Inc Cylinder head having plural water jackets and cast-in water rail
CN102822489A (en) * 2010-06-25 2012-12-12 康明斯知识产权有限公司 Cylinder head having plural water jackets and cast-in water rail
JP2016094873A (en) * 2014-11-13 2016-05-26 トヨタ自動車株式会社 Cylinder head
CN105736169A (en) * 2014-12-24 2016-07-06 本田技研工业株式会社 Cooling structure of internal combustion engine
JP2016121541A (en) * 2014-12-24 2016-07-07 本田技研工業株式会社 Cooling structure for internal combustion engine
US10107171B2 (en) 2014-12-24 2018-10-23 Honda Motor Co., Ltd. Cooling structure of internal combustion engine
JP2017115738A (en) * 2015-12-25 2017-06-29 ダイハツ工業株式会社 Internal combustion engine cylinder head

Also Published As

Publication number Publication date
JP4250723B2 (en) 2009-04-08
EP1143135B1 (en) 2007-11-21
DE60131487D1 (en) 2008-01-03
DE60131487T2 (en) 2008-09-25
EP1143135A3 (en) 2002-11-27
EP1143135A2 (en) 2001-10-10

Similar Documents

Publication Publication Date Title
JP3101336U (en) Cylinder head for liquid-cooled multi-cylinder internal combustion engine
JP5631859B2 (en) Cylinder head for an internal combustion engine having an integrated exhaust manifold and a subgroup of exhaust conduits that merge into overlapping and spaced manifold portions
US20120138007A1 (en) Cylinder head with plural cooling jackets having cast-in connecting orifices, method of fabricating the cylinder head, and casting core assembly for fabricating a cylinder head
US20080314339A1 (en) Structure for cooling internal combustion engine
US9140207B2 (en) Cylinder head
US7069885B2 (en) Cylinder head
AU2013391199B2 (en) Water cooling system for a cylinder head of an engine
WO2008026746A2 (en) Cooling water passage structure of cylinder head
US20120132155A1 (en) Cylinder head having plural water jackets and cast-in water rail
WO2017068732A1 (en) Cooling structure for water-cooled engine
US8256114B2 (en) Method of manufacturing a cooling jacket of a cylinder head
US8944018B2 (en) Cooling strategy for engine head with integrated exhaust manifold
JP4250723B2 (en) Cylinder head cooling water passage structure and manufacturing method
WO2017068731A1 (en) Water jacket structure for cylinder head
JPH0517373Y2 (en)
JP2000104624A (en) Engine cylinder head
EP1283345A2 (en) Cylinder head cooling structure for an internal combustion engine
JPS63154851A (en) Manifold for v-type engine and manufacture thereof
JP4640245B2 (en) Engine cooling system
JP2018132009A (en) cylinder head
JPH0783915B2 (en) Disappearance model for casting cylinder heads for internal combustion engines.
JPH07293323A (en) Cooling structure for cylinder head
JP3804105B2 (en) Cylinder head of direct injection diesel engine
JP6238663B2 (en) Cylinder head structure
JP3903953B2 (en) Cylinder head casting mold for direct injection diesel engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140130

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees