JP2001288522A - High strength and high thermal conductivity aluminum alloy material and its producing method - Google Patents

High strength and high thermal conductivity aluminum alloy material and its producing method

Info

Publication number
JP2001288522A
JP2001288522A JP2000098928A JP2000098928A JP2001288522A JP 2001288522 A JP2001288522 A JP 2001288522A JP 2000098928 A JP2000098928 A JP 2000098928A JP 2000098928 A JP2000098928 A JP 2000098928A JP 2001288522 A JP2001288522 A JP 2001288522A
Authority
JP
Japan
Prior art keywords
strength
aluminum alloy
mass
alloy material
brazing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000098928A
Other languages
Japanese (ja)
Other versions
JP3823218B2 (en
Inventor
Akihiro Tsuruno
招弘 鶴野
Osamu Takezoe
修 竹添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000098928A priority Critical patent/JP3823218B2/en
Publication of JP2001288522A publication Critical patent/JP2001288522A/en
Application granted granted Critical
Publication of JP3823218B2 publication Critical patent/JP3823218B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a high strength and high thermal conductivity aluminum alloy material excellent in both strength and thermal conductivity. SOLUTION: This high strength and high thermal conductivity aluminum alloy material has a composition containing, by mass, 2.0 to 3.0% Fe and 0.5 to 1.5% Si, and the balance Al with inevitable impurities. Further, the alloy material may contain 0.5 to 1.0% Ni, <0.3% Cu and <0.2% Zr.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ろう付けにより製
造される自動車用の熱交換器であるラジエータ、ヒー
タ、コンデンサ及びエバポレータ等のフィン材として使
用される高強度高熱伝導アルミニウム合金材及びその製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength, high-thermal-conductivity aluminum alloy material used as a fin material for a radiator, a heater, a condenser, an evaporator, etc., which are heat exchangers for automobiles manufactured by brazing, and to the production thereof. About the method.

【0002】[0002]

【従来の技術】自動車用の熱交換器である、例えばラジ
エータは、アルミニウム合金製の偏平チューブとコルゲ
ート成形されたフィン材とを交互に重ね合わせ、一体ろ
う付けにより製造される。また、近時、地球環境保護の
観点から、熱交換器も軽量化、高性能化及び小型化が要
求される方向にあり、熱交換器に使用される材料も薄肉
化が推進されている。また、フィン材には、高強度高熱
伝導性が要求されている。
2. Description of the Related Art For example, a radiator, which is a heat exchanger for an automobile, is manufactured by alternately superposing a flat tube made of an aluminum alloy and a fin material formed by corrugation, and integrally brazing. In recent years, from the viewpoint of global environmental protection, heat exchangers have also been required to be reduced in weight, higher in performance, and smaller in size, and materials used for the heat exchangers have been reduced in thickness. Further, the fin material is required to have high strength and high thermal conductivity.

【0003】従来、高強度アルミニウム合金製フィン材
としては、Al−Mn系合金材及びAl−Mn−Si系
合金材が提案されている。しかし、これらのアルミニウ
ム合金材はMnの固溶度が高く、Mnは導電率を大きく
低下させるので、アルミニウム合金材の熱伝導性が低く
なる。このため、断面積を多くとって導電性を確保する
必要があり、薄肉化には限界がある。そこで、熱伝導性
を向上させるため、Mnを含まないAl−Fe系合金材
及びAl−Fe−Si−Ni系合金材が提案されてい
る。
Hitherto, as high-strength aluminum alloy fin materials, Al-Mn alloy materials and Al-Mn-Si alloy materials have been proposed. However, these aluminum alloy materials have a high solid solubility of Mn, and Mn greatly reduces the electrical conductivity, so that the thermal conductivity of the aluminum alloy material is low. For this reason, it is necessary to secure conductivity by increasing the cross-sectional area, and there is a limit to thinning. Therefore, in order to improve the thermal conductivity, Al-Fe-based alloy materials and Al-Fe-Si-Ni-based alloy materials that do not contain Mn have been proposed.

【0004】[0004]

【発明が解決しようとする課題】しかし、上述のAl−
Fe系合金材及びAl−Fe−Si−Ni系合金材は強
度が低く、要求される強度を得るためには所定の板厚が
必要であり、薄肉化には限界があるという問題点があ
る。このように、強度及び熱伝導性について要求する性
能を満足するフィン材は作製が困難であるという問題点
がある。
However, the above Al-
Fe-based alloy materials and Al-Fe-Si-Ni-based alloy materials have low strength, and a predetermined plate thickness is required in order to obtain required strength, and there is a problem that there is a limit to thinning. . As described above, there is a problem that it is difficult to manufacture a fin material that satisfies the performance required for strength and thermal conductivity.

【0005】本発明はかかる問題点に鑑みてなされたも
のであって、強度及び熱伝導性が共に優れた高強度高熱
伝導アルミニウム合金材及びその製造方法を提供するこ
とを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a high-strength and high-thermal-conductivity aluminum alloy material having excellent strength and thermal conductivity, and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】本発明に係る高強度高熱
伝導アルミニウム合金材は、Fe:2.0乃至3.0質
量%及びSi:0.5乃至1.5質量%を含有し、残部
がAl及び不可避的不純物であることを特徴とする。
The high-strength and high-thermal-conductivity aluminum alloy material according to the present invention contains 2.0 to 3.0% by mass of Fe and 0.5 to 1.5% by mass of Si, and the balance is rest. Are Al and inevitable impurities.

【0007】この場合、更にNi:0.5乃至1.0質
量%を含有することが好ましい。
In this case, it is preferable to further contain 0.5 to 1.0% by mass of Ni.

【0008】また、更にCu:0.3質量%未満を含有
することが好ましい。更にZr:0.2質量%未満を含
有することが好ましい。更に、母相に対する第2相粒子
が存在し、前記第2相粒子の密度が5×106個/mm2
であることが好ましい。
Further, it is preferable to further contain Cu: less than 0.3% by mass. Further, it is preferable to contain Zr: less than 0.2% by mass. Further, there are second phase particles with respect to the parent phase, and the density of the second phase particles is 5 × 10 6 particles / mm 2
It is preferred that

【0009】本発明に係る高強度高熱伝導アルミニウム
合金材の製造方法は、請求項1乃至4のいずれか1項に
記載の高強度高熱伝導アルミニウム合金材の鋳造時の冷
却速度が1℃/分を超えることを特徴とする。
In the method for producing a high-strength high-thermal-conductivity aluminum alloy according to the present invention, the cooling rate during casting of the high-strength high-thermal-conductivity aluminum alloy according to any one of claims 1 to 4 is 1 ° C./min. It is characterized by exceeding.

【0010】[0010]

【発明の実施の形態】本発明は、上記課題を解決するた
めになされたものであり、本願発明者等がAl−Fe−
Si−Ni系合金の組成、組織及び製造方法について鋭
意実験・研究した結果、Si及びFeの含有量を適切に
規定することにより、強度及び熱伝導性が共に優れるこ
とを見出した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention has been made to solve the above-mentioned problems, and the present inventors have made Al-Fe-
As a result of intensive experiments and studies on the composition, structure and manufacturing method of the Si-Ni-based alloy, it was found that both strength and thermal conductivity were excellent by appropriately defining the contents of Si and Fe.

【0011】また、本発明のアルミニウム合金材を製造
する場合、鋳造時の冷却速度が1℃/秒以上とすること
により、第2相粒子の粒径を小さく、かつその量を多く
できることを知見した。
Further, when manufacturing the aluminum alloy material of the present invention, it has been found that the cooling rate at the time of casting is set to 1 ° C./sec or more, whereby the particle size of the second phase particles can be reduced and the amount thereof can be increased. did.

【0012】本発明のアルミニウム合金材は、自動車熱
交換器用フィン材に適用することができる。これによ
り、強度及び熱伝導性が優れた自動車熱交換器を得るこ
とができる。
The aluminum alloy material of the present invention can be applied to a fin material for an automobile heat exchanger. Thereby, an automobile heat exchanger having excellent strength and thermal conductivity can be obtained.

【0013】以下、本発明の高強度高熱伝導アルミニウ
ム合金材の組成及びその製造方法の数値限定理由につい
て説明する。
Hereinafter, the composition of the high-strength and high-thermal-conductivity aluminum alloy material of the present invention and the reasons for limiting the numerical values of the manufacturing method thereof will be described.

【0014】Si:0.5乃至1.5質量% Siはその添加により、固溶強化し強度を向上させる。
Siの含有量が0.5質量%未満では、十分な強度が得
られない。一方、Siの含有量が1.5質量%を超える
と、ろう付け加熱時に、ろう材による浸食が大きくな
り、ろう付け性が低下する。また、Siの添加により、
導電性が低下するので、強度と熱伝導性との釣り合いを
とってSiの添加量を抑える必要がある。従って、Si
の含有量は0.5乃至1.5質量%とする。
Si: 0.5 to 1.5% by mass Si enhances solid solution and improves strength by its addition.
If the content of Si is less than 0.5% by mass, sufficient strength cannot be obtained. On the other hand, when the content of Si exceeds 1.5% by mass, erosion by the brazing material becomes large at the time of brazing and heating, and the brazing property decreases. Also, by adding Si,
Since the conductivity is reduced, it is necessary to balance the strength with the thermal conductivity to suppress the amount of Si to be added. Therefore, Si
Is 0.5 to 1.5% by mass.

【0015】Fe:2.0乃至3.0質量% Feはその添加により、一部は固溶強化に寄与し、残部
は金属間化合物として存在し分散強化に寄与する。この
とき、Niが母相に含有されていると、FeはNiと共
に金属間化合物を形成し、この金属間化合物が母相に対
する第2相粒子として存在し分散強化に寄与する。この
ようにして、Feを添加することにより強度を向上させ
ることができる。Feの含有量が2.0質量%未満で
は、十分な強度を得ることができない。一方、Feの含
有量が3.0質量%を超えると、鋳造性及び素材の加工
性が低下する。また、Feの添加により熱伝導性が低下
するので、強度と熱伝導性との釣り合いをとってFeの
含有量を抑える必要がある。従って、Feの含有量は
2.0乃至3.0質量%とする。
Fe: 2.0 to 3.0% by mass Fe is added, and part of it contributes to solid solution strengthening, and the other part exists as an intermetallic compound and contributes to dispersion strengthening. At this time, if Ni is contained in the parent phase, Fe forms an intermetallic compound together with Ni, and this intermetallic compound exists as a second phase particle with respect to the parent phase and contributes to dispersion strengthening. Thus, the strength can be improved by adding Fe. If the Fe content is less than 2.0% by mass, sufficient strength cannot be obtained. On the other hand, when the content of Fe exceeds 3.0% by mass, castability and workability of the material are reduced. Also, since the thermal conductivity is reduced by the addition of Fe, it is necessary to balance the strength with the thermal conductivity to suppress the Fe content. Therefore, the content of Fe is set to 2.0 to 3.0% by mass.

【0016】Ni:0.5乃至1.0質量% NiはFeと同様に添加により、一部は固溶強化に寄与
し、残部はFeと共に金属間化合物を形成し、この金属
間化合物が母相に対する第2相粒子として存在し分散強
化に寄与する。このようにして、Niを添加することに
より強度を向上させることができる。Niの含有量が
0.5質量%未満では、十分な強度を得ることができな
い。一方、Niの含有量が1.0質量%を超えると、強
度を向上させる効果が飽和するので、それ以上のNiの
添加はコストが嵩み不経済である。また、Niの添加に
より熱伝導性が低下するので、強度と熱伝導性との釣り
合いをとってNiの含有量を抑える必要がある。従っ
て、Niの含有量は0.5乃至1.0質量%とすること
が好ましい。
Ni: 0.5 to 1.0% by mass Ni, similarly to Fe, partially contributes to solid solution strengthening, and the remainder forms an intermetallic compound with Fe. It exists as a second phase particle for the phase and contributes to dispersion strengthening. Thus, the strength can be improved by adding Ni. If the Ni content is less than 0.5% by mass, sufficient strength cannot be obtained. On the other hand, if the content of Ni exceeds 1.0% by mass, the effect of improving the strength is saturated, so that adding more Ni is costly and uneconomical. In addition, since the thermal conductivity is reduced by the addition of Ni, it is necessary to balance the strength with the thermal conductivity to suppress the Ni content. Therefore, the content of Ni is preferably set to 0.5 to 1.0% by mass.

【0017】Cu:0.3質量%未満 CuはSiと同様にその添加により固溶強化し強度を向
上させる。一方、Cuの添加量が増加すると共に、熱伝
導性が低下する。また、電位も貴となり、素材の犠牲陽
極効果が低下する。従って、Cuの含有量は0.3質量
%未満とすることが好ましい。
Cu: less than 0.3% by mass Cu, like Si, is solid-solution strengthened by its addition to improve the strength. On the other hand, as the added amount of Cu increases, the thermal conductivity decreases. Further, the potential becomes noble, and the sacrificial anode effect of the material is reduced. Therefore, the content of Cu is preferably less than 0.3% by mass.

【0018】Zr:0.2質量%未満 Zrはその添加により、ろう付け時の再結晶粒を粗大化
させる効果を有し、フィン材のろう材による浸食を抑制
し、ろう付け性を向上させる。ろう付け性を向上させる
効果は、Zrの添加量が微量であっても発揮され、Zr
の含有量が0.05質量%以上であれば十分である。一
方、Zrの含有量が0.2質量%を超えると、ろう付け
性を向上させる効果が飽和する。また、Zrの添加によ
り熱伝導性が低下するため、ろう付け性と熱伝導性との
釣り合いをとってZrの添加量を抑える必要がある。従
って、Zrの含有量は0.2質量%未満とすることが好
ましい。更に好ましくは、Zrの含有量は0.05乃至
0.2質量%である。
Zr: less than 0.2% by mass Zr has an effect of coarsening recrystallized grains during brazing by adding Zr, suppresses erosion of the fin material by the brazing material, and improves brazing properties. . The effect of improving the brazing property is exerted even when the added amount of Zr is very small,
Is sufficient if the content is 0.05% by mass or more. On the other hand, when the content of Zr exceeds 0.2% by mass, the effect of improving the brazing property is saturated. Further, since the thermal conductivity is reduced by the addition of Zr, it is necessary to balance the brazing property and the thermal conductivity to suppress the amount of Zr added. Therefore, the content of Zr is preferably less than 0.2% by mass. More preferably, the content of Zr is 0.05 to 0.2% by mass.

【0019】第2相粒子の密度:5×106 個/mm2
主に、Al−Fe系合金からなる第2相粒子のうち、分
散強化の効果を奏するものは、第2相粒子の粒径が比較
的小さいものだけである。本発明においては、粒径が5
μm以下のものが分散強化に寄与する。第2相粒子の密
度が5×106個/mm2未満であると、分散強化の効果
が小さい。従って、第2相粒子の密度は5×106個/
mm2以上であることが好ましい。
Density of second phase particles: 5 × 10 6 particles / mm 2 or less
The upper main, of the second phase particles consisting of Al-Fe-based alloy, is that the effect of dispersion strengthening, the particle size of the second phase particles is only relatively small. In the present invention, the particle size is 5
Those having a size of μm or less contribute to dispersion enhancement. When the density of the second phase particles is less than 5 × 10 6 particles / mm 2 , the effect of dispersion strengthening is small. Therefore, the density of the second phase particles is 5 × 10 6 particles /
mm 2 or more.

【0020】鋳造時の冷却速度:1℃/秒以上 本発明のアルミニウム合金材においては、鋳造時の冷却
速度が速ければ速いほど第2相粒子の粒径を小さくする
ことができ、かつ第2相粒子の密度を高くすることがで
きる。鋳造時の冷却速度が1℃/秒未満では、第2相粒
子は、分散強化に寄与しない5μm以上のものが多くな
りやすい。一方、鋳造時の冷却速度が1℃/秒以上であ
ると、第2相粒子の粒径は大半が5μm以下となり、か
つ粒径が5μm以下の第2相粒子の密度が5×106
/mm2以上となる。従って、鋳造時の冷却速度は1℃
/秒以上とする。
Cooling rate during casting: 1 ° C./sec or more In the aluminum alloy material of the present invention, the faster the cooling rate during casting, the smaller the particle size of the second phase particles, and The density of the phase particles can be increased. If the cooling rate at the time of casting is less than 1 ° C./sec, the number of the second phase particles having a particle size of 5 μm or more which does not contribute to dispersion strengthening tends to increase. On the other hand, when the cooling rate during casting is 1 ° C./second or more, the particle size of the second phase particles is mostly 5 μm or less, and the density of the second phase particles having a particle size of 5 μm or less is 5 × 10 6 particles. / Mm 2 or more. Therefore, the cooling rate during casting is 1 ° C.
/ Sec or more.

【0021】なお、本発明のアルミニウム合金材は単体
の素材として使用することができ、また、ブレージング
シートフィン材の心材として使用することもできる。ブ
レージングシートフィン材の心材として使用する場合、
ろう材は従来より使用されているAl−Si系又はAl
−Si−Mg(Bi)系のろう材をそのまま使用するこ
とができる。更に、ろう付け方法として真空ろう付けを
適用する場合、上述の元素の他に、Mgを添加すること
ができる。Mgの添加は強度を向上させることに有効で
ある。この場合、Mgの添加量は0.5乃至2.0質量
%であることが好ましい。Mgの含有量が0.5質量%
未満では真空ろう付け中に、Mgがフィン材から蒸発
し、強度を向上させる効果が小さくなる。一方、Mgの
含有量が1.5質量%を超えると、真空ろう付け中にM
gの蒸発量が多くなるので、真空炉のメンテナンス回数
が多くなりコストが嵩む。
The aluminum alloy material of the present invention can be used as a single material, and can also be used as a core material of a brazing sheet fin material. When used as the core material of brazing sheet fin material,
The brazing material is a conventionally used Al-Si or Al
-Si-Mg (Bi) -based brazing material can be used as it is. Furthermore, when vacuum brazing is applied as a brazing method, Mg can be added in addition to the above-described elements. The addition of Mg is effective in improving the strength. In this case, the addition amount of Mg is preferably 0.5 to 2.0% by mass. 0.5% by mass of Mg
If it is less than 3, Mg evaporates from the fin material during vacuum brazing, and the effect of improving the strength is reduced. On the other hand, if the Mg content exceeds 1.5% by mass, M
Since the amount of evaporation of g increases, the number of maintenance operations of the vacuum furnace increases and the cost increases.

【0022】また、Mg以外の元素として、フィン材の
犠牲陽極効果を向上させるため、フィン材の電位を卑に
するZn等の元素を添加してもよい。この場合、Znの
添加量は3質量%以下であることが好ましい。Znの添
加量が3質量%を超えると、フィン材の自己腐食性が大
きくなり、消耗速度が速くなる。また、フィン材の加工
性が低下するので好ましくない。
Further, as an element other than Mg, an element such as Zn which makes the potential of the fin material low may be added in order to improve the sacrificial anode effect of the fin material. In this case, the amount of Zn added is preferably 3% by mass or less. When the addition amount of Zn exceeds 3% by mass, the self-corrosion of the fin material increases, and the consumption rate increases. Further, the workability of the fin material is reduced, which is not preferable.

【0023】[0023]

【実施例】以下、アルミニウム合金材を使用してフィン
材を製造し、本発明の範囲に入る実施例について、その
特性を比較例と比較して具体的に説明する。
EXAMPLES Hereinafter, a fin material is manufactured by using an aluminum alloy material, and characteristics of an example falling within the scope of the present invention will be specifically described in comparison with comparative examples.

【0024】第1実施例 下記表1に示す組成の高強度高熱伝導アルミニウム合金
を使用して、通常の方法により、鋳造、均質化熱処理及
び圧延を施し、フィン材を製造した。なお、このフィン
材は板厚が0.07mmであり、H14に調質されてい
る。
First Example Using a high-strength, high-thermal-conductivity aluminum alloy having the composition shown in Table 1 below, casting, homogenizing heat treatment and rolling were performed by a conventional method to produce a fin material. In addition, this fin material has a plate thickness of 0.07 mm and is tempered to H14.

【0025】次に、このフィン材を窒素雰囲気(酸素濃
度が100質量ppm以下)中で、温度が600℃で2
分間保持してろう付け加熱を行なった。その後、強度、
熱伝導性及びろう付け性を評価した。
Next, the fin material is placed in a nitrogen atmosphere (oxygen concentration is 100 mass ppm or less) at a temperature of 600.degree.
The brazing heating was performed by holding for a minute. Then strength,
Thermal conductivity and brazing properties were evaluated.

【0026】強度は、各フィン材からJIS−5号試験
片を採取し、引張試験して引張強度を測定し、これを評
価した。
The strength was evaluated by taking a JIS-5 test piece from each fin material and performing a tensile test to measure the tensile strength.

【0027】熱伝導性は、各フィン材の導電率を4端子
法で電気抵抗を測定し、導電率に換算して求め、これを
評価した。なお、導電率は標準軟銅(IACS:Intern
ational Annealed Copper Standard、比抵抗が1.
7241μΩ・cm・20℃)の導電率を100としたと
きの値である。
The thermal conductivity was evaluated by measuring the electric resistance of each fin material by measuring the electric resistance by a four-terminal method and converting the electric resistance into the electric conductivity. In addition, the electrical conductivity is standard annealed copper (IACS: Intern).
ational Annealed Copper Standard, specific resistance is 1.
7241 μΩ · cm · 20 ° C.) assuming a conductivity of 100.

【0028】図1は熱交換器のコアを示す模式的斜視図
である。コアはフィン材1が1対のプレート2に挟まれ
て接合されてなるものである。なお、フィン材1は板厚
が0.07mm、フィン高さが9mm、山数が10、フ
ィンピッチが3mm、フィンの幅が20mmである。プ
レート材2は4045合金材、3003合金材及び70
72合金材の積層材であり、板厚が0.3mm、幅が3
0mm、長さが40mmである。なお、このプレート材
2のクラッド率は10%である。
FIG. 1 is a schematic perspective view showing the core of the heat exchanger. The core is formed by joining a fin material 1 sandwiched between a pair of plates 2. The fin material 1 has a plate thickness of 0.07 mm, a fin height of 9 mm, a number of peaks of 10, a fin pitch of 3 mm, and a fin width of 20 mm. Plate material 2 is composed of 4045 alloy material, 3003 alloy material and 70
It is a laminated material of 72 alloys, with a thickness of 0.3 mm and a width of 3
0 mm and length is 40 mm. The cladding ratio of the plate material 2 is 10%.

【0029】ろう付け性については、各フィン材1につ
いて、フィン材1及びプレート材2に市販のKF−Al
F系フラックスを3g/m2塗布し乾燥させた。そし
て、フィン材1をプレート材2で挟み窒素雰囲気(酸素
濃度が100質量ppm以下)中で、600℃の温度に
2分間保持してろう付け加熱を行い、図1に示すコアを
作製した。そして、フィン材1とプレート材2との接合
部のフィン材1へのろうの浸食状態及び座屈状況を観察
し、これを評価した。ろう付け性の評価は、浸食及び座
屈がないものを◎、浸食が一部あり、座屈がないものを
○、浸食及び座屈が発生したものを×とした。これらの
結果を表2に示す。
Regarding the brazing properties, for each fin material 1, commercially available KF-Al
F-type flux was applied at 3 g / m 2 and dried. Then, the fin material 1 was sandwiched between the plate materials 2 and brazed and heated in a nitrogen atmosphere (oxygen concentration of 100 mass ppm or less) at a temperature of 600 ° C. for 2 minutes to produce the core shown in FIG. Then, the state of erosion and buckling of the brazing material on the fin material 1 at the joint between the fin material 1 and the plate material 2 was observed and evaluated. The brazing property was evaluated as ◎ when there was no erosion or buckling, as ○ when there was some erosion and no buckling, and x when there was erosion and buckling. Table 2 shows the results.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】上記表2に示すように、本発明の請求項1
を満足する実施例No.1乃至12は強度及び導電率が高
く、ろう付け性が良好であった。また、Zrが添加され
た実施例No.9乃至12はろう付け性が更に良好であっ
た。
As shown in Table 2, claim 1 of the present invention
In Examples Nos. 1 to 12 satisfying the above, the strength and the electrical conductivity were high, and the brazing properties were good. In Examples 9 to 12 to which Zr was added, the brazing properties were even better.

【0033】一方、比較例No.42はSiの含有量が本
発明の下限値未満であるため、強度が低かった。比較例
No.43はSiの含有量が本発明の上限値を超えている
ため、ろう付け後、フィン材が溶損し座屈してしまい、
良好な形状のコアを作製することができなかった。比較
例No.44はFeの含有量が本発明の下限値未満である
ため、強度が低かった。比較例No.45はFeの含有量
が本発明の上限値を超えているため、鋳造不良により、
正常なフィン材を作製することができなかった。
On the other hand, Comparative Example No. 42 was low in strength because the content of Si was less than the lower limit of the present invention. Comparative example
No. 43, since the content of Si exceeds the upper limit of the present invention, after brazing, the fin material is melted and buckled,
A core having a good shape could not be produced. Comparative Example No. 44 had low strength because the Fe content was less than the lower limit of the present invention. In Comparative Example No. 45, since the Fe content exceeded the upper limit of the present invention, due to poor casting,
A normal fin material could not be produced.

【0034】第2実施例 上記表1に示すアルミニウム合金のうち、合金No.1、
4、6及び10について、鋳造速度及び冷却水量等を変
化させて、第2相粒子の存在状態が異なるフィン材を作
製した。そして、第1実施例と同様に強度、導電性及び
ろう付け性の試験を行い、これを評価した。この結果を
表3に示す。なお、表3に示す第2相粒子の密度は粒子
径が5μm以下のものの密度である。
Second Embodiment Of the aluminum alloys shown in Table 1 above, alloy Nos. 1 and 2
For 4, 6, and 10, fin materials having different second-phase particles were produced by changing the casting speed, the amount of cooling water, and the like. Then, in the same manner as in the first example, tests for strength, conductivity, and brazing property were performed, and the results were evaluated. Table 3 shows the results. The density of the second phase particles shown in Table 3 is the density of particles having a particle diameter of 5 μm or less.

【0035】なお、第2相粒子の存在状態は、走査電子
顕微鏡で撮影した写真から粒子径が5μm以下の粒子を
画像処理装置により計測して求めた。
The presence state of the second phase particles was determined by measuring the particles having a particle diameter of 5 μm or less from an image taken with a scanning electron microscope using an image processing apparatus.

【0036】[0036]

【表3】 [Table 3]

【0037】上記表3に示すように、本願請求項5を満
足する実施例No.13乃至16はより一層強度が高く、
導電率が高く、そしてろう付け性が良好であった。ま
た、Zrが添加されている実施例No.16はろう付け性
が更に良好であった。一方、請求項4から外れる比較例
No.46乃至49は実施例と比較して強度が低かった。
As shown in Table 3, Examples 13 to 16 satisfying claim 5 of the present application have higher strength,
The conductivity was high and the brazing properties were good. In addition, Example No. 16 to which Zr was added had even better brazing properties. On the other hand, a comparative example deviating from claim 4
Nos. 46 to 49 were lower in strength than the examples.

【0038】第3実施例 上記表1に示すアルミニウム合金のうち、合金No.1、
4、6及び10について、製造するときに、鋳造時の冷
却速度を種々の条件で変えて、フィン材を作製した。そ
して、第1実施例と同様に強度、導電性及びろう付け性
の試験を行い、これを評価した。この結果を表4に示
す。
Third Embodiment Of the aluminum alloys shown in Table 1 above, Alloy No. 1
Regarding 4, 6, and 10, fin materials were produced by changing the cooling rate during casting under various conditions during production. Then, in the same manner as in the first example, tests for strength, conductivity, and brazing property were performed, and the results were evaluated. Table 4 shows the results.

【0039】[0039]

【表4】 [Table 4]

【0040】上記表4に示すように、実施例No.17乃
至20は強度及び導電率が高く、ろう付け性が良好であ
った。また、Zrが添加されている実施例No.20はろ
う付け性が更に良好であった。
As shown in Table 4 above, Examples Nos. 17 to 20 had high strength and electrical conductivity and good brazing properties. In addition, Example No. 20 to which Zr was added had even better brazing properties.

【0041】一方、比較例No.50乃至53は鋳造時の
冷却速度が本発明の下限値未満であるので、強度が低か
った。
On the other hand, Comparative Examples Nos. 50 to 53 were low in strength because the cooling rate during casting was less than the lower limit of the present invention.

【0042】第4実施例 下記表5に示す組成の高強度高熱伝導アルミニウム合金
を使用して、第1実施例と同様の方法によりフィン材を
製造した。そして、第1実施例と同様に強度、導電性及
びろう付け性の試験を行い、これを評価した。この結果
を表6に示す。
Fourth Example A fin material was manufactured in the same manner as in the first example using a high-strength, high-thermal-conductivity aluminum alloy having the composition shown in Table 5 below. Then, in the same manner as in the first example, tests for strength, conductivity, and brazing property were performed, and the results were evaluated. Table 6 shows the results.

【0043】[0043]

【表5】 [Table 5]

【0044】[0044]

【表6】 [Table 6]

【0045】上記表6に示すように、実施例No.21乃
至31は強度及び導電率が高く、ろう付け性も良好であ
った。実施例No.26、27、30及び31はZrが添
加されているので、ろう付け性がより一層良好であっ
た。
As shown in Table 6 above, Examples Nos. 21 to 31 were high in strength and electrical conductivity and good in brazing properties. In Examples Nos. 26, 27, 30, and 31, since Zr was added, the brazing properties were much better.

【0046】一方、比較例No.54はSiの含有量が本
発明の下限値未満であるため、強度が低かった。比較例
No.55はSiの含有量が本発明の上限値を超えている
ため、ろう付け後、フィン材が溶損し座屈してしまい、
良好な形状のコアを作製することができなかった。比較
例No.56はFeの含有量が本発明の下限値未満である
ため、強度が低かった。比較例No.57はFeの含有量
が本発明の上限値を超えているため、鋳造不良により、
正常なフィン材を作製することができなかった。
On the other hand, Comparative Example No. 54 had low strength because the content of Si was less than the lower limit of the present invention. Comparative example
No. 55, since the content of Si exceeds the upper limit of the present invention, after brazing, the fin material is melted and buckled,
A core having a good shape could not be produced. Comparative Example No. 56 had low strength because the Fe content was less than the lower limit of the present invention. In Comparative Example No. 57, since the Fe content exceeded the upper limit of the present invention, due to poor casting,
A normal fin material could not be produced.

【0047】第5実施例 上記表5に示すアルミニウム合金のうち、合金No.1
6、19、21、24及び25について、第2相粒子の
存在状態が異なるフィン材を作製した。そして、第1実
施例と同様に強度、導電性及びろう付け性の試験を行
い、これを評価した。この結果を表7に示す。なお、表
7に示す第2相粒子の密度は粒子径が5μm以下のもの
の密度である。
Fifth Embodiment Of the aluminum alloys shown in Table 5 above, alloy No. 1
With respect to 6, 19, 21, 24, and 25, fin materials in which the state of existence of the second phase particles were different were produced. Then, in the same manner as in the first example, tests for strength, conductivity, and brazing property were performed, and the results were evaluated. Table 7 shows the results. The density of the second phase particles shown in Table 7 is the density of particles having a particle diameter of 5 μm or less.

【0048】[0048]

【表7】 [Table 7]

【0049】上記表7に示すように、本願請求項5を満
足する実施例No.32乃至36はより一層強度が高く、
導電率が高く、そしてろう付け性が良好であった。ま
た、Zrが添加されている実施例No.34及び36はろ
う付け性が更に良好であった。一方、請求項4から外れ
る比較例No.58乃至62は実施例と比較して強度が低
かった。
As shown in Table 7, Examples Nos. 32 to 36 satisfying claim 5 of the present application have higher strengths,
The conductivity was high and the brazing properties were good. Examples Nos. 34 and 36 to which Zr was added had even better brazing properties. On the other hand, Comparative Examples Nos. 58 to 62 deviating from Claim 4 had lower strength than the Examples.

【0050】第6実施例 上記表6に示すアルミニウム合金のうち、合金No.1
6、19、21、24及び25について、製造するとき
に、鋳造時の冷却速度を種々の条件で変えて、フィン材
を作製した。そして、第1実施例と同様に強度、導電性
及びろう付け性の試験を行い、これを評価した。この結
果を表8に示す。
Sixth Embodiment Of the aluminum alloys shown in Table 6 above, alloy No. 1
6, 19, 21, 24, and 25 were manufactured by changing the cooling rate during casting under various conditions when manufacturing the fin materials. Then, in the same manner as in the first example, tests for strength, conductivity, and brazing property were performed, and the results were evaluated. Table 8 shows the results.

【0051】[0051]

【表8】 [Table 8]

【0052】上記表8示すように、実施例No.37至4
1は強度及び導電率が高く、ろう付け性が良好であっ
た。また、Zrが添加されている実施例No.39及び4
1はろう付け性が更に良好であった。
As shown in Table 8 above, Example Nos. 37 to 4
Sample No. 1 had high strength and electrical conductivity and good brazing properties. Examples Nos. 39 and 4 to which Zr was added
In No. 1, the brazing properties were even better.

【0053】一方、比較例No.63乃至67は鋳造時の
冷却速度が本発明の下限値未満であるので、強度が低か
った。
On the other hand, Comparative Examples Nos. 63 to 67 were low in strength because the cooling rate during casting was less than the lower limit of the present invention.

【0054】[0054]

【発明の効果】以上詳述したように本発明によれば、ア
ルミニウム合金材の組成、組織及び製造方法を適切に規
定しているので、強度が高く熱伝導性が優れ、かつろう
付け性が良好なアルミニウム合金材を得ることができ
る。また、このアルミニウム合金材を自動車熱交換器用
のフィン材に適用することができる。
As described above in detail, according to the present invention, since the composition, structure and manufacturing method of the aluminum alloy material are properly specified, the strength is high, the thermal conductivity is excellent, and the brazing property is excellent. A good aluminum alloy material can be obtained. Further, this aluminum alloy material can be applied to a fin material for an automobile heat exchanger.

【図面の簡単な説明】[Brief description of the drawings]

【図1】熱交換器のコアを示す模式的斜視図である。FIG. 1 is a schematic perspective view showing a core of a heat exchanger.

【符号の説明】[Explanation of symbols]

1;フィン材 2;プレート材 1: fin material 2: plate material

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 Fe:2.0乃至3.0質量%及びS
i:0.5乃至1.5質量%を含有し、残部がAl及び
不可避的不純物であることを特徴とする高強度高熱伝導
アルミニウム合金材。
1. Fe: 2.0 to 3.0 mass% and S
i: A high-strength and high-thermal-conductivity aluminum alloy material containing 0.5 to 1.5% by mass, with the balance being Al and inevitable impurities.
【請求項2】 更にNi:0.5乃至1.0質量%を含
有することを特徴とする請求項1に記載の高強度高熱伝
導アルミニウム合金材。
2. The high-strength high-thermal-conductivity aluminum alloy material according to claim 1, further comprising 0.5 to 1.0% by mass of Ni.
【請求項3】 更にCu:0.3質量%未満を含有する
ことを特徴とする請求項1に記載の高強度高熱伝導アル
ミニウム合金材。
3. The high-strength and high-thermal-conductivity aluminum alloy material according to claim 1, further comprising Cu: less than 0.3% by mass.
【請求項4】 更にZr:0.2質量%未満を含有する
ことを特徴とする請求項1乃至3のいずれか1項に記載
の高強度高熱伝導アルミニウム合金材。
4. The high-strength and high-thermal-conductivity aluminum alloy material according to claim 1, further comprising Zr: less than 0.2% by mass.
【請求項5】 母相に対する第2相粒子が存在し、前記
第2相粒子の密度が5×106個/mm2であることを特
徴とする請求項1乃至4のいずれか1項に記載の高強度
高熱伝導アルミニウム合金材。
5. The method according to claim 1, wherein a second phase particle is present with respect to the mother phase, and the density of the second phase particle is 5 × 10 6 particles / mm 2. The high-strength high-thermal-conductivity aluminum alloy material described in the above.
【請求項6】 請求項1乃至4のいずれか1項に記載の
高強度高熱伝導アルミニウム合金材の鋳造時の冷却速度
が1℃/分を超えることを特徴とする高強度高熱伝導ア
ルミニウム合金材の製造方法。
6. A high-strength high-thermal-conductivity aluminum alloy material, wherein the high-strength high-thermal-conductivity aluminum alloy material according to any one of claims 1 to 4 has a cooling rate at the time of casting exceeding 1 ° C./min. Manufacturing method.
JP2000098928A 2000-03-31 2000-03-31 High strength and high thermal conductivity aluminum alloy material and method for producing the same Expired - Lifetime JP3823218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000098928A JP3823218B2 (en) 2000-03-31 2000-03-31 High strength and high thermal conductivity aluminum alloy material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000098928A JP3823218B2 (en) 2000-03-31 2000-03-31 High strength and high thermal conductivity aluminum alloy material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001288522A true JP2001288522A (en) 2001-10-19
JP3823218B2 JP3823218B2 (en) 2006-09-20

Family

ID=18613350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000098928A Expired - Lifetime JP3823218B2 (en) 2000-03-31 2000-03-31 High strength and high thermal conductivity aluminum alloy material and method for producing the same

Country Status (1)

Country Link
JP (1) JP3823218B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013015525A1 (en) * 2011-07-22 2013-01-31 한국생산기술연구원 Die casting aluminum alloys for heat-dissipating plates

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013015525A1 (en) * 2011-07-22 2013-01-31 한국생산기술연구원 Die casting aluminum alloys for heat-dissipating plates
KR101308963B1 (en) 2011-07-22 2013-09-25 한국생산기술연구원 Diecasting aluminum alloy for radiator grille

Also Published As

Publication number Publication date
JP3823218B2 (en) 2006-09-20

Similar Documents

Publication Publication Date Title
JP4825507B2 (en) Aluminum alloy brazing sheet
JP5925022B2 (en) Aluminum alloy fin material for heat exchanger, method for producing the same, and method for producing heat exchanger
JP2009024221A (en) Aluminum alloy brazing sheet having high-strength
JP2007152422A (en) Method for producing aluminum alloy brazing sheet
JP2019189944A (en) Aluminum alloy for heat exchanger fin
JP2009022981A (en) Aluminum alloy brazing sheet having high-strength and production method therefor
WO2001053553A1 (en) Process of producing aluminum fin alloy
JP2004076057A (en) Aluminum alloy clad plate and method for producing the same
JP2004035966A (en) Aluminum alloy clad material and its manufacturing process
WO2018110320A1 (en) Aluminum alloy brazing sheet and method for manufacturing same
JP5952995B2 (en) Aluminum alloy fin material for heat exchanger
JP2007146264A (en) Aluminum alloy fin material
CN115838885A (en) Ultrathin aluminum alloy composite pipe material and preparation method and application thereof
JPH0525576A (en) High strength al alloy tube material for al heat exchanger excellent in pitting corrosion resistance
JP3850672B2 (en) High strength and high heat conductive aluminum alloy material, fin material for heat exchanger, and method for producing aluminum alloy material
JP2001288522A (en) High strength and high thermal conductivity aluminum alloy material and its producing method
JP2842669B2 (en) High strength and high corrosion resistance A1 alloy clad material for A1 heat exchanger
JP2010270387A (en) Aluminum alloy fin material for heat exchanger and method for producing the same
JP3407965B2 (en) Aluminum alloy fin material
JP2004176091A (en) High strength aluminum alloy fin material for automotive heat exchanger having excellent rollability, and its manufacturing method
JP7231442B2 (en) Aluminum alloy clad fin material with excellent self-corrosion resistance and its manufacturing method
JP7231443B2 (en) Aluminum alloy clad fin material with excellent self-corrosion resistance and its manufacturing method
JP3599126B2 (en) Tubes used for brazing sheets and heat exchangers
JPH0790442A (en) Aluminum alloy brazing sheet for heat exchanger and manufacture of aluminum alloy-made heat exchanger
JP3256909B2 (en) Aluminum alloy fin material

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060613

R150 Certificate of patent or registration of utility model

Ref document number: 3823218

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

EXPY Cancellation because of completion of term