JP2001287918A - Spherical glass material and method for producing the same - Google Patents

Spherical glass material and method for producing the same

Info

Publication number
JP2001287918A
JP2001287918A JP2000101823A JP2000101823A JP2001287918A JP 2001287918 A JP2001287918 A JP 2001287918A JP 2000101823 A JP2000101823 A JP 2000101823A JP 2000101823 A JP2000101823 A JP 2000101823A JP 2001287918 A JP2001287918 A JP 2001287918A
Authority
JP
Japan
Prior art keywords
glass
spherical
glass material
volume
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000101823A
Other languages
Japanese (ja)
Inventor
Tsurumi Shiraishi
鶴美 白石
Kazuya Noguchi
和也 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2000101823A priority Critical patent/JP2001287918A/en
Publication of JP2001287918A publication Critical patent/JP2001287918A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • C03B19/104Forming solid beads by rolling, e.g. using revolving cylinders, rotating discs, rolls

Abstract

PROBLEM TO BE SOLVED: To provide a spherical glass material having high volume accuracy and prescribed optical performance and suitable for the press molding of an optical part at a low cost. SOLUTION: The spherical glass material is composed of an optical glass and has the glass composition almost uniform from the core to the surface, the deviation of diameter falling within the range of 1/50 to 1/5 relative to the diameter of true sphere calculated from the prescribed volume and the volume deviation of within ±1% from the prescribed volume. The spherical material is produced by supplying a molten glass composed of an optical glass in the form of a molten glass droplet 3 having the volume deviation of within ±1% from the prescribed volume, forming the droplet 3 in the form of a sphere and removing the surface layer of the obtained glass sphere 12 having a composition different from the core composition.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光学ガラス部品を
プレス成型するための球状硝材に関する。
The present invention relates to a spherical glass material for press-molding an optical glass part.

【0002】[0002]

【従来の技術】一般に、光学ガラス部品、特に非球面レ
ンズをプレス成型するための球状硝材は、非球面レンズ
の透光部分に汚れが付かないように表面の高い清浄度
と、正確な焦点距離及び所望レベル以内の非点収差を得
るために高い体積精度とが要求される。
2. Description of the Related Art Generally, a spherical glass material for press-molding an optical glass part, particularly an aspherical lens, has a high surface cleanness and an accurate focal length so as not to stain the light-transmitting portion of the aspherical lens. In addition, high volume accuracy is required to obtain astigmatism within a desired level.

【0003】従来、溶融ガラスをシャー切断により形成
したゴブを、金型に供給して成型した球状硝材や、溶融
ガラスの表面張力を利用して型内で丸めた球状硝材が提
案されている。
Heretofore, there have been proposed spherical glass materials in which a gob formed by cutting a molten glass by shearing is supplied to a mold and molded, or a spherical glass material which is rounded in a mold by utilizing the surface tension of the molten glass.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな球状硝材には、非球面レンズ成型用金型へのダメー
ジを軽減するために、プレス成型を可能な限り低温でで
きることが求められ、ガラスの軟化温度を下げるために
ガラス成分中にアルカリ金属酸化物やホウ酸を多く含む
傾向にある。これらのガラス成分は高温下で非常に揮発
しやすく、ゴブを金型に供給する際や型内で球状化の際
にガラス表面から蒸発するので、球状硝材の表面から1
〜3μm程度の表面層のガラス組成は内部と異なってし
まう。そのため表面層の軟化温度や光学特性が変化する
ので、このような球状硝材から成型された非球面レンズ
等の光学ガラス部品には所望の光学特性が得られないと
いう問題がある。
However, such a spherical glass material is required to be able to be press-molded at as low a temperature as possible in order to reduce damage to the aspheric lens molding die. In order to lower the softening temperature, the glass component tends to contain a large amount of an alkali metal oxide or boric acid. These glass components volatilize very easily at high temperatures and evaporate from the glass surface when the gob is supplied to the mold or when the gob is spheroidized in the mold.
The glass composition of the surface layer of about 3 μm differs from that of the inside. As a result, the softening temperature and the optical characteristics of the surface layer change, so that there is a problem that desired optical characteristics cannot be obtained in an optical glass component such as an aspheric lens molded from such a spherical glass material.

【0005】さらに、球状硝材の体積精度は、例えば、
ガラス球の場合、基準体積の±1%以内であることが要
求され、厳しいものでは、±0.3%以内の体積精度を
要求される場合もあるが、上記のような溶融ガラスをシ
ャー切断により形成したゴブから熱成型のみにより作製
された球状硝材は、研削・研磨により得られる球状硝材
と同等の体積精度を維持することが困難である。また、
ガラス球の表面を高い清浄度に維持するために、成型後
の取扱いにより球状硝材の表面にキズや汚れが付かない
よう細心の注意を払う必要があり、装置の清浄度の維持
やクリーンな環境の維持に費用がかかり、コストの低減
は十分でなく問題がある。
Further, the volumetric accuracy of the spherical glass material is, for example,
In the case of glass spheres, it is required to be within ± 1% of the reference volume. In severe cases, volume accuracy within ± 0.3% may be required. It is difficult to maintain the same volumetric accuracy as a spherical glass material obtained by grinding and polishing from a gob formed by the above method only by thermoforming. Also,
In order to maintain the surface of the glass bulb at a high level of cleanliness, it is necessary to pay close attention to the surface of the spherical glass material to prevent scratches and dirt on handling after molding, and to maintain the cleanliness of the equipment and clean environment. Maintenance is costly, and the cost reduction is not sufficient, which is problematic.

【0006】本発明は、上記問題に鑑みてなされたもの
であり、従来の加工品と同等の高い体積精度および所定
の光学性能を有し、かつ低いコストで光学部品のプレス
成型に適する球状硝材の提供を目的とする。
The present invention has been made in view of the above problems, and has a spherical glass material which has the same high volume accuracy and predetermined optical performance as a conventional processed product, and is suitable for press molding of optical parts at low cost. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】本発明に係る球状硝材
は、光学ガラスからなり、ガラス組成が表面まで実質的
に均一であり、直径不同が所定体積から計算される真球
の直径に対して1/50〜1/5の値であり、所定体積
に対して±1%以内の体積を有することを特徴とするも
のであり、表面粗さのRmax値が10nm以下であるこ
とが好ましい。
The spherical glass material according to the present invention is made of optical glass, the glass composition is substantially uniform up to the surface, and the difference in diameter is determined with respect to the diameter of a true sphere calculated from a predetermined volume. It is a value of 1/50 to 1/5, and has a volume within ± 1% with respect to a predetermined volume, and the Rmax value of the surface roughness is preferably 10 nm or less.

【0008】本発明の球状硝材のガラス組成は、内部と
表面とを問わず実質的に均一であることがレンズ等光学
部品をプレス成型するために重要である。また、球状硝
材の表面の清浄度を維持してプレス成型後の光学面を維
持するために、JIS B0601に定義されている表
面粗さの最大高さ、即ちRmaxの値が10nm以下であ
ることが表面に汚れが付着し難いので好ましい。
It is important that the glass composition of the spherical glass material of the present invention is substantially uniform regardless of the inside and the surface in order to press-mold optical parts such as lenses. Further, in order to maintain the cleanliness of the surface of the spherical glass material and maintain the optical surface after press molding, the maximum height of the surface roughness defined in JIS B0601, that is, the value of Rmax is 10 nm or less. Is preferred because dirt is hardly adhered to the surface.

【0009】通常、凸レンズは、中心が最も厚く、光軸
を中心に軸対称形状になっているので、このようなレン
ズを成型する金型は、中心部が最も窪んだ形状になって
いる。球状硝材を凸レンズにプレス成型をする場合、材
料である硝材が金型の中心部に位置していれば、プレス
成型時に金型内で均等に潰れてゆき、歪みのない寸法精
度の高いレンズを成型することができる。本発明の真球
度の高い球状硝材を使用すると、金型表面を自ら転動し
て金型中心部の窪みに自己調芯されるため、特別に硝材
を金型中心に供給する必要がない。
Usually, a convex lens is thickest at the center and has an axially symmetrical shape about the optical axis. Therefore, a mold for molding such a lens has a shape in which the central portion is the most depressed. When press molding a spherical glass material into a convex lens, if the glass material is located in the center of the mold, it will be evenly collapsed in the mold during press molding, and a lens with high dimensional accuracy without distortion Can be molded. When the spherical glass material having a high sphericity of the present invention is used, the mold surface rolls itself and is self-centered in the depression in the center of the mold, so that it is not necessary to supply the glass material to the center of the mold. .

【0010】本発明の球状硝材をプレス成型用の金型に
供給する場合、球状硝材の直径不同が所定体積から計算
される真球の直径の1/5を越えると円滑にころがらな
くなり、金型の中心部に必ずしも自己調芯されず、金型
中心から少し外れた場所に配置されてしまうとプレス成
型時に球状硝材が金型内で均等に潰れず、成型されたレ
ンズに光学的な歪みが発生して所望の光学特性が得られ
ないことが予想される。また、溶融ガラスの液滴から球
状硝材の直径不同を所定体積から計算される直径の1/
50未満に短時間で成型することは困難である。本発明
の球状硝材の直径不同としては、所定体積から計算され
る真球の直径の1/50〜1/5が適している。
When the spherical glass material of the present invention is supplied to a mold for press molding, if the diameter difference of the spherical glass material exceeds 1/5 of the diameter of a true sphere calculated from a predetermined volume, the spherical glass material does not roll smoothly. If it is not necessarily self-centered at the center of the mold, and if it is placed at a position slightly off the center of the mold, the spherical glass material will not evenly collapse in the mold during press molding, causing optical distortion to the molded lens Is expected to occur, and desired optical characteristics cannot be obtained. In addition, the diameter difference of the spherical glass material from the molten glass droplet is calculated as 1/1 of the diameter calculated from the predetermined volume.
It is difficult to mold to less than 50 in a short time. As the diameter difference of the spherical glass material of the present invention, 1/50 to 1/5 of the diameter of a true sphere calculated from a predetermined volume is suitable.

【0011】球状硝材の体積精度としては、光学ガラス
部品、例えば、プレス成型されるレンズの所定体積、即
ち金型の容積に対して+1%を逸脱すると、レンズが厚
くなり過ぎたり、余分なガラスが金型からはみ出すオー
バーパッキング現象が生じる。一方、−1%を逸脱する
と、金型の容積より小さくなりすぎて、レンズが薄くな
り過ぎたり、金型の形状が正確に転写できない通称アン
ダーパッキング現象が生じる。いずれの現象が生じた場
合も所定の焦点距離や開口数等の光学性能が得られなく
なる。球状硝材の体積精度としては、所定体積の±1%
以内であることがレンズ等の成型精度を維持するために
重要である。また、この体積精度は、プレス成型される
非球面レンズにより要求精度が異なり、精度の厳しい製
品では±0.3%以内であることが要求される。
As for the accuracy of the volume of the spherical glass material, if it exceeds + 1% with respect to the predetermined volume of an optical glass component, for example, a lens to be press-molded, that is, the volume of a mold, the lens becomes too thick or extra glass. However, an overpacking phenomenon that sticks out of the mold occurs. On the other hand, if it deviates from -1%, the volume becomes too smaller than the mold, the lens becomes too thin, and a so-called underpacking phenomenon in which the shape of the mold cannot be accurately transferred occurs. In either case, optical performance such as a predetermined focal length and numerical aperture cannot be obtained. The volume accuracy of spherical glass material is ± 1% of the specified volume
It is important that it is within the range in order to maintain the molding accuracy of the lens and the like. The required volume accuracy differs depending on the aspherical lens to be press-molded, and it is required that the volume accuracy is within ± 0.3% for a product with strict accuracy.

【0012】さらに、球状硝材の成型温度を決定する軟
化点は、650℃以下であることが好ましい。
Further, the softening point for determining the molding temperature of the spherical glass material is preferably 650 ° C. or less.

【0013】本発明の球状硝材の製造方法は、光学ガラ
スからなる溶融ガラスを所定体積に対して±1%以内の
体積を有する液滴にして供給し、該液滴を球状化してガ
ラス球を成型し、その後ガラス組成が内部と異なる該ガ
ラス球の表面層を除去することを特徴とするものであ
り、表面層を1μm以上除去することが好ましい。
In the method for producing a spherical glass material according to the present invention, a molten glass made of optical glass is supplied in the form of droplets having a volume within ± 1% of a predetermined volume, and the droplets are spheroidized to form glass spheres. The method is characterized in that after molding, the surface layer of the glass sphere having a different glass composition from that of the inside is removed, and it is preferable to remove the surface layer by 1 μm or more.

【0014】[0014]

【作用】本発明の球状硝材は、光学ガラスからなり、ガ
ラス組成が表面まで実質的に均一であり、直径不同が所
定体積から計算される真球の直径に対して1/50〜1
/5の値であり、所定体積に対して±1%以内の体積を
有するので、光学ガラス部品のプレス成形に要する表面
の清浄度精度及び所定の光学特性を満たし、かつ製造コ
ストを引き上げる要因となる直径不同は必要最小限の値
であり、低いコストで光学ガラス部品を作製することが
できる。
The spherical glass material of the present invention is made of optical glass, the glass composition is substantially uniform up to the surface, and the difference in diameter is 1/50 to 1/50 of the diameter of a true sphere calculated from a predetermined volume.
/ 5, which has a volume within ± 1% of the predetermined volume, and thus satisfies the cleanliness accuracy of the surface required for press-molding the optical glass part and the predetermined optical characteristics, and raises the manufacturing cost. The difference in diameter is a necessary minimum value, and an optical glass part can be manufactured at low cost.

【0015】また、本発明の球状硝材は、表面粗さのR
max値が10nm以下であるので、本球状硝材を使用し
てプレス成型された光学部品の表面品位は高く、光学的
な問題が生じない。
The spherical glass material of the present invention has a surface roughness R
Since the max value is 10 nm or less, the surface quality of the optical component press-formed using the present spherical glass material is high, and no optical problem occurs.

【0016】さらに、本発明の球状硝材は、軟化点が6
50℃以下であるので、非球面レンズ成型用等の金型へ
の高温に起因するダメージを軽減することができる。
Further, the spherical glass material of the present invention has a softening point of 6
Since the temperature is 50 ° C. or lower, it is possible to reduce damage to a mold for molding an aspheric lens due to high temperature.

【0017】また、本発明の球状硝材の製造方法によれ
ば、光学ガラスからなる溶融ガラスを、所定体積に対し
て±1%以内の体積を有する液滴にして供給し、該液滴
を球状化してガラス球を成型し、その後ガラス組成が内
部と異なる該ガラス球の表面層を除去するので、本発明
の球状硝材を高い効率で製造することができる。
Further, according to the method for producing a spherical glass material of the present invention, molten glass made of optical glass is supplied in the form of droplets having a volume within ± 1% with respect to a predetermined volume, and the droplets are formed into spherical particles. Then, the surface layer of the glass sphere having a different glass composition from the inside is removed, so that the spherical glass material of the present invention can be manufactured with high efficiency.

【0018】[0018]

【発明の実施の形態】本発明の球状硝材は、例えば、ア
ルカリ金属酸化物とホウ酸を15質量%含み、軟化点が
600℃、比重が3.0である光学ガラスからなり、直
径が5mmの球状であり、表面のガラス組成が内部のガ
ラス組成に実質的に等しく、表面に変質層は存在しな
い。球状硝材の所定体積は65.45mm3であり、体
積精度は球状硝材として厳しい±0.3%以内を有する
ものであり、表面粗さのRmax値が約8nmの鏡面であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The spherical glass material of the present invention comprises, for example, an optical glass having an alkali metal oxide and boric acid of 15% by mass, a softening point of 600 ° C. and a specific gravity of 3.0, and a diameter of 5 mm. And the glass composition on the surface is substantially equal to the glass composition on the inside, and there is no altered layer on the surface. The predetermined volume of the spherical glass material is 65.45 mm 3 , the volume accuracy is within ± 0.3%, which is severe as a spherical glass material, and the mirror surface has a surface roughness Rmax value of about 8 nm.

【0019】また、球状硝材の直径不同の値は200μ
mであり、所定体積の65.45mm3を真球に換算し
た直径が5mmであるため、直径不同は真球直径の1/
25の値である。ここで、200μmの直径不同を有す
る球状硝材の体積は寸法からは容易に測定できないの
で、しばしば質量で測定され、その場合も所定体積と同
じ±0.3%以内の質量精度で代用される。本発明の球
状硝材は、所定体積が65.45mm3であるので、所
定質量は196.35mgとなり、195.76〜19
6.94mgの質量を有する。
The diameter of the spherical glass material is 200 μm.
m, and the diameter obtained by converting a predetermined volume of 65.45 mm 3 into a true sphere is 5 mm.
25. Here, since the volume of a spherical glass material having a diameter difference of 200 μm cannot be easily measured from the dimensions, it is often measured by mass, and even in this case, the same accuracy as the predetermined volume within ± 0.3% is used. Since the predetermined volume of the spherical glass material of the present invention is 65.45 mm 3 , the predetermined mass is 196.35 mg, which is 195.76 to 195.
It has a mass of 6.94 mg.

【0020】なお、直径不同は、JIS B 1501
に規定されているように、球状硝材のお互いに90度を
なす、4赤道平面の直径を直径を複数回測定し、その最
大値と最小値の差を採用した。
The difference in diameter is determined according to JIS B 1501.
As described in the above, the diameters of four equatorial planes of a spherical glass material forming 90 degrees with each other were measured a plurality of times, and the difference between the maximum value and the minimum value was adopted.

【0021】次に、本発明の球状硝材の製造方法につい
て説明する。
Next, the method for producing the spherical glass material of the present invention will be described.

【0022】本発明の球状硝材を製造する第1の工程と
しては、図1に示すガラス球成型装置で、まず、白金ポ
ット1の先端ノズル2から溶解されたガラス液滴3を滴
下する。滴下されたガラス液滴3は、ロート状受け皿5
で捕集され、傾斜をつけたU字形溝6の上を転がりなが
ら表面に螺旋状の溝を切った一対のローラー7、7のガ
ラス導入部8に導かれる。この時、ガラス液滴3は、U
字形溝6を転がりながら、球状化に適した粘度に調節さ
れる。ローラー7、7は、横向きに傾斜を付けて並列に
設けられており、ローラー7、7が回転することにより
ガラス導入部8に導かれたガラス液滴3は、ローラー
7、7の回転と共に螺旋状の溝の中を転がり、次第に球
状になり、やがて固化して直径約5mmのガラス球12
に成型され、ガラス排出部9から排出される。
In the first step of manufacturing the spherical glass material of the present invention, first, a molten glass droplet 3 is dropped from a tip nozzle 2 of a platinum pot 1 by a glass ball forming apparatus shown in FIG. The dropped glass droplet 3 is placed in a funnel-shaped pan 5
While being rolled over the inclined U-shaped groove 6, it is guided to the glass introduction portion 8 of a pair of rollers 7, 7 having a spiral groove formed on the surface. At this time, the glass droplet 3
While rolling in the V-shaped groove 6, the viscosity is adjusted to be suitable for spheroidization. The rollers 7, 7 are provided side by side with a slant in a horizontal direction, and the glass droplets 3 guided to the glass introduction unit 8 by the rotation of the rollers 7, 7 spirally rotate with the rotation of the rollers 7, 7. The glass sphere with a diameter of about 5 mm rolls in the groove and gradually becomes spherical and solidifies.
And is discharged from the glass discharge unit 9.

【0023】次に、成型されたガラス球12を自動質量
選別機(図示省略)により0.1mg単位で質量選別す
る。本実施の形態の場合、所定質量196.35mgの
0.1mgは、研磨球径換算では約1μm毎に相当す
る。
Next, the molded glass spheres 12 are mass-selected in 0.1 mg units by an automatic mass sorter (not shown). In the case of the present embodiment, 0.1 mg of the predetermined mass of 196.35 mg corresponds to about 1 μm in terms of a polishing ball diameter.

【0024】このように成型されたガラス球12は、表
面粗さのRmax値が約5nmであり、通常、研磨する必
要のない表面粗さである。しかし、成型時に環境やロー
ラーとの接触で生じるガラス球12表面の汚れや、成型
後の搬送、質量選別等での取扱いによるキズ、および球
状化の際に成分の揮発により生じる内部のガラス組成と
異なる変質層は、ガラス球12の表面から1〜3μmま
での範囲にあり、これらの欠陥を除去するために表面の
研磨を行う。
The glass spheres 12 thus formed have a surface roughness Rmax of about 5 nm, and usually have a surface roughness that does not require polishing. However, contamination of the surface of the glass spheres 12 caused by contact with the environment and rollers during molding, flaws caused by handling during transportation, mass sorting, and the like after molding, and internal glass composition caused by volatilization of components during spheroidization and The different deteriorated layers are in the range of 1 to 3 μm from the surface of the glass sphere 12, and the surface is polished to remove these defects.

【0025】次に、図2に示すように、ガラス球の研磨
装置は、円盤状の上定盤10と下定盤11が同軸状に対
向配置され、上定盤10には、例えば、ゴム硬度40の
研磨パット14が貼られており、下定盤11には、円状
にV溝加工を施した研磨砥石15が接合されている。上
定盤10は、軸と垂直方向(水平方向)に往復運動可能
になっており、下定盤11は、軸に対して回転運動可能
になっている。上定盤10、下定盤11の側面からは、
図示しない研磨液供給装置から、研磨液が供給される。
この研磨装置により、研磨を行う場合、研磨中にガラス
球12同士がぶつかってキズの発生を防ぐために、V溝
付き研磨砥石15のV溝16にガラス球12と、緩衝用
球13を交互に配置する。その後、上定盤10をガラス
玉12に研磨パット14が当たるまで下降させ、図示し
ない研磨液供給装置から研磨液を供給しながら、下定盤
11を回転させ、上定盤10を水平方向に往復運動させ
てガラス球12を研磨する。
Next, as shown in FIG. 2, in the glass ball polishing apparatus, a disk-shaped upper platen 10 and a lower platen 11 are coaxially opposed to each other. Forty polishing pads 14 are affixed, and a polishing grindstone 15 having a circular V-shaped groove is joined to the lower surface plate 11. The upper stool 10 is capable of reciprocating in a direction perpendicular to the axis (horizontal direction), and the lower stool 11 is rotatable with respect to the axis. From the side of the upper surface plate 10 and the lower surface plate 11,
A polishing liquid is supplied from a polishing liquid supply device (not shown).
When the polishing is performed by this polishing apparatus, the glass balls 12 and the buffer balls 13 are alternately provided in the V-grooves 16 of the V-grooved polishing grindstone 15 in order to prevent the glass balls 12 from hitting each other during polishing. Deploy. Thereafter, the upper platen 10 is lowered until the polishing pad 14 hits the glass ball 12, and the lower platen 11 is rotated while the polishing liquid is supplied from a polishing liquid supply device (not shown) to reciprocate the upper platen 10 in the horizontal direction. The glass ball 12 is polished by moving.

【0026】このように第2の工程では、質量選別され
たガラス球12の表面をなるべく均一に除去し、質量精
度を維持することが必要である。質量精度としては、直
径5mmのガラス球で、体積精度±0.3%に対応する
質量精度±0.5mg(研磨球径換算で±5μmに相
当)以内とした。
As described above, in the second step, it is necessary to remove the surface of the glass spheres 12 having been subjected to mass selection as uniformly as possible and to maintain the mass accuracy. The mass accuracy was within a range of ± 0.5 mg (corresponding to ± 5 μm in terms of polishing ball diameter) corresponding to a volume accuracy of ± 0.3% for a glass ball having a diameter of 5 mm.

【0027】また、ガラス球12の表面が均一に除去で
きていることを確認するために、第一工程で成型された
ガラス球12の表面に平均粒径10μmのSiC微粉と
水とのスラリーをガーゼに染み込ませて擦ることにより
深さ1μm程度のキズを表面全体に付け、これを通常の
ガラス球12と混ぜて研磨を行い、このキズを付けたガ
ラス球12の球表面を顕微鏡で観察することで行った。
深さ1μm程度のキズを完全に除去するためには、1〜
3μm研磨する必要があり、これは、除去すべき変質層
の厚みに相当する。
In order to confirm that the surface of the glass spheres 12 has been uniformly removed, a slurry of fine SiC powder having an average particle size of 10 μm and water is applied to the surface of the glass spheres 12 molded in the first step. A scratch having a depth of about 1 μm is made on the entire surface by rubbing with a gauze and rubbing the mixture with a normal glass ball 12, and the ball surface of the scratched glass ball 12 is observed with a microscope. I went by that.
In order to completely remove scratches with a depth of about 1 μm,
It is necessary to polish 3 μm, which corresponds to the thickness of the deteriorated layer to be removed.

【0028】その結果、研磨量としては、10〜30μ
mが適当であることが判明した。即ち、球状硝材の質量
精度を±0.5mg以内、球径換算で±5μm以内とす
ると、球径換算で7μmから30μm大きいガラス球が
使用可能で、球状硝材として要求される精度の倍以上許
容できる。研磨前の球径換算直径が5mm+7μmのガ
ラス球12は10μm相当削ると−3μm±2μmにな
り、研磨前の球径換算直径が5mm+30μmのガラス
球12は、約30μm相当削ると5mm±5μmで、球
状硝材として要求されている精度である±5μmを満足
する。
As a result, the polishing amount is 10 to 30 μm.
m has been found to be suitable. That is, if the mass accuracy of the spherical glass material is within ± 0.5 mg and the spherical diameter is within ± 5 μm, glass spheres larger than 7 μm to 30 μm in terms of the spherical diameter can be used, and more than double the accuracy required for the spherical glass material. it can. The glass sphere 12 with a converted diameter of 5 mm + 7 μm before polishing is -3 μm ± 2 μm when polished by 10 μm, and the glass sphere 12 with a converted diameter of 5 mm + 30 μm before polishing is 5 mm ± 5 μm when polished by about 30 μm Satisfies ± 5 μm, which is the accuracy required for spherical glass materials.

【0029】これに対して、球状硝材として、従来技術
によりガラス球を作製する場合も、球状に研削する工程
の後、図2と同様な装置で研磨されるが、球状研削後の
表面粗さのRmax値は約5μmであり、この研削による
表面層を完全に除去するためには、15μm以上研磨す
る必要がある。従って、研磨球の直径は、研磨前に比べ
て約30μm、理想的には約60μm以上削ることが必
要であり、本発明の3〜10倍の長時間を要する。
On the other hand, when a glass ball is produced by a conventional technique as a spherical glass material, the glass ball is polished by the same apparatus as in FIG. 2 after the spherical grinding step, but the surface roughness after the spherical grinding is obtained. Has an Rmax value of about 5 μm, and it is necessary to polish it by 15 μm or more in order to completely remove the surface layer by this grinding. Therefore, the diameter of the polishing ball needs to be reduced by about 30 μm, ideally about 60 μm or more compared to before polishing, and it takes 3 to 10 times as long as the present invention.

【0030】本発明の球状硝材は、従来の球状研削を行
う場合に比べて1/3の体積のガラス原料で作製するこ
とができ、ガラス原料の溶融から球状硝材の製造完了ま
でに要する時間は、1/2に短縮され、こらの時間短
縮、工数減少に伴い、加工に要する総費用を従来の1/
2以下にすることが可能となった。
The spherical glass material of the present invention can be made of a glass material having a volume one third that of conventional spherical grinding, and the time required from the melting of the glass material to the completion of the production of the spherical glass material is short. , And the total cost required for processing has been reduced to 1 /
It became possible to reduce it to 2 or less.

【0031】さらに、本発明の球状硝材を作製する場
合、軟化状態のガラスを球状化した後に製品の表面層を
除去するため、加工中の球状硝材の取扱いは容易であ
る。即ち、球状化時の環境や成型装置の清浄度、また、
その後の質量選別時等の搬送に特別の注意を払う必要は
ない。また、表面層を除去する工程で除去量を制御でき
るので、ガラス球の質量精度は、球状硝材として要求さ
れる高い精度は必要なく、除去量が制御できる範囲の精
度で十分である。その上、球状化の際に表面に発生する
内部と組成の異なる変質層は、後の研磨などの加工によ
り除去してしまうので、その後、プレス成型された光学
ガラス部品の光学性能に問題が生じず、ガラス成分中に
揮発成分を多く含むガラスでも使用可能である。
Further, when producing the spherical glass material of the present invention, the spherical glass material during processing is easy to handle since the surface layer of the product is removed after the softened glass is spherical. That is, the environment at the time of spheroidization and the cleanliness of the molding device,
It is not necessary to pay special attention to the transportation at the time of subsequent mass sorting or the like. In addition, since the removal amount can be controlled in the step of removing the surface layer, the mass accuracy of the glass sphere does not need the high accuracy required for a spherical glass material, and an accuracy within a range in which the removal amount can be controlled is sufficient. In addition, the deteriorated layer having a different composition from the inside generated on the surface during spheroidization is removed by processing such as polishing later, and thereafter, there is a problem in the optical performance of the press-molded optical glass part. Instead, glass containing a large amount of volatile components in the glass component can also be used.

【0032】本実施の形態では、体積精度が±0.3%
以内と精度の厳しい球状硝材を示したが、体積精度が±
1%の球状硝材は、さらに容易に作製することができ
る。
In this embodiment, the volume accuracy is ± 0.3%
Spherical glass material with strict accuracy within
A 1% spherical glass material can be more easily made.

【0033】また、本実施の形態では、表面層の除去を
研磨により除去したが、この方法に限るものではなく、
たとえば、酸等によるエッチングで行っても良い。
Further, in this embodiment, the surface layer is removed by polishing, but the present invention is not limited to this method.
For example, the etching may be performed by an acid or the like.

【0034】なお、JIS B 0601に定義されて
いる表面粗さの最大高さであるRmax値の測定には、ラ
ンクテーラーホブソン社製の触針式表面粗さ測定器、商
品名「タリステップ」を用い、縦倍率1,000,00
0倍で粗さ測定用のフィルター0.33Hzの条件で測
定した。
The Rmax value, which is the maximum height of the surface roughness defined in JIS B 0601, was measured using a stylus type surface roughness measuring device manufactured by Rank Taylor Hobson, trade name "Taristep". And a vertical magnification of 1,000,000
The measurement was performed under the condition of 0 times and a filter for measuring roughness 0.33 Hz.

【0035】[0035]

【発明の効果】本発明によれば、高い体積精度、高い表
面の清浄度精度及び所定の光学特性を有しており、非球
面レンズ等の光学ガラス部品のプレス成型に適した球状
硝材を低コストで提供することが可能な実用上優れた効
果を奏するものである。
According to the present invention, a spherical glass material having high volume accuracy, high surface cleanliness accuracy and predetermined optical characteristics and suitable for press molding of optical glass parts such as aspherical lenses can be obtained. This is a practically excellent effect that can be provided at a cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ガラス球成型装置の説明図。FIG. 1 is an explanatory view of a glass ball forming apparatus.

【図2】ガラス球の研磨装置の説明図であって、(A)
は研磨装置を上から見た部分破断図、(B)は研磨装置
を断面図。
FIG. 2 is an explanatory view of a polishing apparatus for a glass ball, and FIG.
3 is a partial cutaway view of the polishing apparatus as viewed from above, and FIG. 3B is a cross-sectional view of the polishing apparatus.

【符号の説明】[Explanation of symbols]

1 白金ポット 2 ノズル 3 ガラス液滴 4 ヒーター 5 ロート状受け皿 6 U字形溝 7 螺旋溝付きローラー 8 ガラス導入部 9 ガラス搬出部 10 上定盤 11 下定盤 12 ガラス球 13 緩衝用球 14 研磨パット 15 V溝付き研磨砥石 16 V溝 DESCRIPTION OF SYMBOLS 1 Platinum pot 2 Nozzle 3 Glass droplet 4 Heater 5 Funnel-shaped tray 6 U-shaped groove 7 Roller with spiral groove 8 Glass introduction part 9 Glass discharge part 10 Upper platen 11 Lower platen 12 Glass ball 13 Buffering ball 14 Polishing pad 15 Polishing whetstone with V groove 16 V groove

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光学ガラスからなり、ガラス組成が表面
まで実質的に均一であり、直径不同が所定体積から計算
される真球の直径に対して1/50〜1/5の値であ
り、所定体積に対して±1%以内の体積を有することを
特徴とする球状硝材。
Claims: 1. An optical glass, wherein the glass composition is substantially uniform up to the surface, and the diameter difference is 1/50 to 1/5 of the diameter of a true sphere calculated from a predetermined volume; A spherical glass material having a volume within ± 1% of a predetermined volume.
【請求項2】 表面粗さのRmax値が10nm以下であ
ることを特徴とする請求項1に記載の球状硝材。
2. The spherical glass material according to claim 1, wherein the Rmax value of the surface roughness is 10 nm or less.
【請求項3】 光学ガラスからなる溶融ガラスを、所定
体積に対して±1%以内の体積を有する液滴にして供給
し、該液滴を球状化してガラス球を成型し、その後ガラ
ス組成が内部と異なる該ガラス球の表面層を除去するこ
とを特徴とする球状硝材の製造方法。
3. A molten glass made of optical glass is supplied in the form of droplets having a volume within ± 1% of a predetermined volume, and the droplets are spheroidized to form glass spheres. A method for producing a spherical glass material, wherein a surface layer of the glass sphere different from the inside is removed.
JP2000101823A 2000-04-04 2000-04-04 Spherical glass material and method for producing the same Pending JP2001287918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000101823A JP2001287918A (en) 2000-04-04 2000-04-04 Spherical glass material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000101823A JP2001287918A (en) 2000-04-04 2000-04-04 Spherical glass material and method for producing the same

Publications (1)

Publication Number Publication Date
JP2001287918A true JP2001287918A (en) 2001-10-16

Family

ID=18615800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000101823A Pending JP2001287918A (en) 2000-04-04 2000-04-04 Spherical glass material and method for producing the same

Country Status (1)

Country Link
JP (1) JP2001287918A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105753299A (en) * 2015-01-06 2016-07-13 皇家飞利浦有限公司 Printer head for 3D printing
CN107471086A (en) * 2017-09-26 2017-12-15 浙江工业大学 A kind of precise sphere processing unit (plant) based on screwing motion manner
US11130699B2 (en) * 2017-10-10 2021-09-28 William J. Hurley High strength glass spheroids

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61197429A (en) * 1985-02-21 1986-09-01 Ohara Inc Production of molded glass article having high surface quality
JPS62207727A (en) * 1986-03-07 1987-09-12 Matsushita Electric Ind Co Ltd Production of glass article
JPH08277133A (en) * 1996-05-31 1996-10-22 Hoya Corp Formation of glass body
JP2000007360A (en) * 1998-06-25 2000-01-11 Canon Inc Production of glass element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61197429A (en) * 1985-02-21 1986-09-01 Ohara Inc Production of molded glass article having high surface quality
JPS62207727A (en) * 1986-03-07 1987-09-12 Matsushita Electric Ind Co Ltd Production of glass article
JPH08277133A (en) * 1996-05-31 1996-10-22 Hoya Corp Formation of glass body
JP2000007360A (en) * 1998-06-25 2000-01-11 Canon Inc Production of glass element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105753299A (en) * 2015-01-06 2016-07-13 皇家飞利浦有限公司 Printer head for 3D printing
CN105753299B (en) * 2015-01-06 2020-09-11 昕诺飞控股有限公司 Printer head for 3D printing
CN107471086A (en) * 2017-09-26 2017-12-15 浙江工业大学 A kind of precise sphere processing unit (plant) based on screwing motion manner
US11130699B2 (en) * 2017-10-10 2021-09-28 William J. Hurley High strength glass spheroids

Similar Documents

Publication Publication Date Title
JP5635636B2 (en) Precision glass sphere manufacturing method and glass optical element manufacturing method
KR101147589B1 (en) Process for the production of precision press-molding preform and process for the production of optical element
US6595026B1 (en) Method of producing press-molded products
CN106098086B (en) Method and apparatus for manufacturing glass blank for substrate of information recording medium
JP2005247658A (en) Method for producing precision press molding preform and method for producing optical element
JP2005247598A (en) Method for producing precision press molding preform and method for producing optical element
US20230287244A1 (en) Polishing liquid and method for manufacturing glass substrate
JP4166174B2 (en) Precision press molding preform manufacturing method and optical element manufacturing method
JP4140850B2 (en) Precision press molding preform manufacturing method and optical element manufacturing method
JP5248740B2 (en) Precision glass sphere manufacturing method and glass optical element manufacturing method
US7992412B2 (en) Process for producing glass shaped material and process for producing optical element
JP2001287918A (en) Spherical glass material and method for producing the same
JP5016826B2 (en) Manufacturing method of glass material for molding, glass material, and manufacturing method of glass optical element
WO2011083692A1 (en) Glass preform and method of manufacture thereof
JP4318681B2 (en) Preform for precision press molding, manufacturing method thereof, and manufacturing method of optical element
JP4019091B2 (en) Method for quality assurance of glass material for press molding, method for manufacturing glass molded product, and internal quality inspection device for glass lump sample
JP3698424B2 (en) Glass lump inspection method and inspection apparatus, glass lump molding method, optical element manufacturing method, and glass material for press molding
JP2001287919A (en) Spherical glass material nd method for producing the same
JP4458897B2 (en) Molten glass outflow nozzle, glass molded body, press molding preform, and optical element manufacturing method
JP4511221B2 (en) Precision press molding preform manufacturing method and optical element manufacturing method
JP2007126339A (en) Ball for glass lens
KR20090031834A (en) Preform for precision press forming, forming die, glass compact manufacturing method using the die, and optical element manufacturing method
JP2005186232A (en) Glass ball lens
WO2018025844A1 (en) Press-forming glass material and optical element production method using same
JP2017066018A (en) Polishing glass lens blank and method for manufacturing optical lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070302

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20090917

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20091026

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100315