JP2001286938A - Prediction method for dimensional accuracy defect quantity in press-forming metal plate - Google Patents

Prediction method for dimensional accuracy defect quantity in press-forming metal plate

Info

Publication number
JP2001286938A
JP2001286938A JP2001021927A JP2001021927A JP2001286938A JP 2001286938 A JP2001286938 A JP 2001286938A JP 2001021927 A JP2001021927 A JP 2001021927A JP 2001021927 A JP2001021927 A JP 2001021927A JP 2001286938 A JP2001286938 A JP 2001286938A
Authority
JP
Japan
Prior art keywords
mpa
amount
dimensional accuracy
yield strength
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001021927A
Other languages
Japanese (ja)
Other versions
JP3798943B2 (en
Inventor
Takayuki Yamano
隆行 山野
Jiro Iwatani
二郎 岩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001021927A priority Critical patent/JP3798943B2/en
Publication of JP2001286938A publication Critical patent/JP2001286938A/en
Application granted granted Critical
Publication of JP3798943B2 publication Critical patent/JP3798943B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method by which an engineer not having experience/ technical accumulation, before press-forming, easily, precisely predict a dimensional accuracy defect quantity in press-forming a metal plate even if in engineer has no special knowledge in a numerical simulation, mathematics, etc. SOLUTION: A method consists of five processes consisting of (A) stress/strain relation is set for a metal plate based on an elastic perfect plastic body having a fixed stress value after yielding, (B) a prediction formula of a dimensional accuracy defect quantity is derived with using the stress/strain relation based on the elastic perfect plastic body model, (C) concerning the metal plate, a value not larger than the tensile strength and exceeding the yield strength is set as apparent yield strength, (D) by replacing the yield strength in the prediction formula of the dimensional accuracy defect quantity with the apparent yield strength, the prediction formula of the dimensional accuracy defect quantity with work hardening added thereto is derived, (E) with using the prediction formula of the dimensional accuracy defect quantity with work hardening added thereto, the dimensional accuracy defect quantity is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主に自動車車体に
適用される薄鋼板やアルミ板等の金属板をプレス成形し
たときに生じる寸法精度不良量を予測する方法に関し、
殊にプレス成形の離型後の弾性回復に起因する成形品の
寸法精度不良量(主に壁反り量や角度変化量等)を、プ
レス成形前に予め簡単に且つ正確に予測することのでき
る方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for predicting an amount of dimensional accuracy defects generated when press-forming a metal plate such as a thin steel plate or an aluminum plate mainly applied to an automobile body.
In particular, it is possible to easily and accurately predict in advance the amount of defective dimensional accuracy (mainly the amount of wall warpage and the amount of angle change) of a molded product due to elastic recovery after release from press molding before press molding. It is about the method.

【0002】[0002]

【従来の技術】自動車車体の多くの部品は、薄鋼板をプ
レス成形した部品から構成されているのが一般的であ
る。しかしながら、これらの部品をプレス成形によって
成形する際には、離型(成形後に金型から取り出すこ
と)後の弾性回復挙動によって、成形品の形状(寸法)
が設計値から変化し、成形品同士の組み立て時や接合
(多くはスポット溶接による接合)時に不具合が生じる
場合がある。これらの不具合は、総称して寸法精度不良
と呼ばれており、こうした寸法精度不良としては、壁反
りや角度変化等様々なものが知られている(例えば、
「プレス成形難易ハンドブック」第2版(1997)、
第175頁、日刊工業新聞社)。
2. Description of the Related Art Many parts of an automobile body are generally formed of parts formed by pressing a thin steel plate. However, when these parts are formed by press molding, the shape (dimensions) of the molded product depends on the elastic recovery behavior after release (removal from the mold after molding).
May change from the design value, and a problem may occur at the time of assembling and joining of molded products (mostly joining by spot welding). These defects are collectively referred to as dimensional accuracy defects, and various types of such dimensional accuracy defects such as wall warpage and angle change are known (for example,
"Press forming difficulty handbook" 2nd edition (1997),
175 pages, Nikkan Kogyo Shimbun).

【0003】近年、自動車車体の軽量化や安定性の観点
から、自動車車体には強度がより高い薄鋼板や、鋼板と
比べて軽量であるがヤング率の低いアルミ板が使用され
る機会が多くなっており、上記の様な寸法精度不良は顕
著な問題となってきている。
[0003] In recent years, from the viewpoint of reducing the weight and stability of an automobile body, there are many occasions in which an automobile body is made of a thin steel sheet having higher strength or an aluminum sheet which is lighter but has a lower Young's modulus than a steel sheet. Therefore, the dimensional accuracy defect as described above has become a significant problem.

【0004】こうした問題を解決し、寸法精度を更に向
上させる手段としては、(A)新技術の開発、(B)見込み技
術による調整、等が主に行われている。上記(A)の技術
として本発明者らは、プレス末期にしわ押え力を強くし
て壁部に張力を付加することによって、壁反り量を軽減
させる方法を提案している(特願平11−203751
号)。また上記(B)の技術としては、離型後の弾性回復
量を予測し、金型寸法を目標製品寸法から弾性回復量の
予測値を差し引いた値で作製し、離型後に正規寸法に調
整する方法が知られている。
As means for solving these problems and further improving the dimensional accuracy, (A) development of a new technology, (B) adjustment by a prospective technology, and the like are mainly performed. As the technique (A), the present inventors have proposed a method of reducing the amount of wall warpage by increasing the wrinkle holding force at the end of the press to apply tension to the wall portion (Japanese Patent Application No. Hei 11 (1999)). -203751
issue). Also, as the technology of (B) above, the amount of elastic recovery after demolding is predicted, the mold dimensions are prepared by subtracting the predicted value of the amount of elastic recovery from the target product dimensions, and adjusted to the normal dimensions after demolding. There are known ways to do this.

【0005】上記いずれの手段を採用するにしても、予
め成形する金属板や成形条件等の情報に基づいて、成形
後の寸法精度不良量をより正確に予測することは極めて
重要である。
Regardless of which of the above means is employed, it is extremely important to more accurately predict the dimensional accuracy defect after molding based on information such as the metal plate to be molded and molding conditions in advance.

【0006】[0006]

【発明が解決しようとする課題】これまで、金属板のプ
レス成形後の寸法精度不良量を予測に当たっては、
(1)熟練作業者の経験や、過去の結果の蓄積等によっ
て予測する方法、(2)数値シミュレーションによって
予測する方法、等が知られている。しかしながら、いず
れの方法においても下記する様な問題があることが指摘
されている。
Until now, in estimating the amount of dimensional accuracy defect after press forming of a metal plate,
There are known (1) a method of making predictions based on the experience of a skilled worker and accumulation of past results, and (2) a method of making predictions by numerical simulation. However, it is pointed out that any of the methods has the following problems.

【0007】上記(1)の方法では、経験・技術蓄積の
少ない技術者では、正確な予測をすることは困難であ
り、実操業に適した方法とは言えない。一方、上記
(2)の方法は、これまで「塑性と加工」[例えば、vo
l.36,no.410(1995)p203〜210、vol.37,no.410(1996)p13
52〜1366等]に提案された種々の技術が知られている
が、数値シミュレーションや数学等の専門知識が必要で
あり、またコンピュター等のシミュレーション設備が大
型化するという問題がある。
In the above method (1), it is difficult for a technician with little experience and accumulated technology to make an accurate prediction, and cannot be said to be a method suitable for actual operation. On the other hand, the above-mentioned method (2) has been described as “plasticity and processing” [for example, vo
l.36, no.410 (1995) p203-210, vol.37, no.410 (1996) p13
52-1366 etc.] are known, but there is a problem that specialized knowledge such as numerical simulation and mathematics is required and that simulation equipment such as a computer becomes large.

【0008】本発明は、こうした状況の下でなされたも
のであって、その目的は、経験・技術蓄積を有さない技
術者が、数値シミュレーションや数学等の専門知識を有
さずとも、金属板のプレス成形時における寸法精度不良
量を、プレス成形前に予め簡単に且つ正確に予測するこ
とのできる方法を提供することにある。
The present invention has been made under such a circumstance, and an object of the present invention is to make it possible for a technician who does not have experience and technical accumulation to obtain a metallurgy even if he does not have specialized knowledge such as numerical simulation and mathematics. It is an object of the present invention to provide a method capable of easily and accurately predicting a dimensional accuracy defect amount during press forming of a plate before press forming.

【0009】[0009]

【課題を解決するための手段】上記目的を達成し得た本
発明の予測方法とは、金属板のプレス成形時における寸
法精度不良量を予測する方法であって、下記(A)〜
(E)の過程からなるものである点に要旨を有するもの
である。 (A)金属板について、降伏後は一定の応力値を有する
弾完全塑性体モデルに基づいて応力−ひずみ関係を設定
する、(B)前記弾完全塑性体モデルに基づいた応力−
ひずみ関係を用いて寸法精度不良量の予測式を導く、
(C)金属板について、引張強度以下で降伏強度を超え
る値をみかけの降伏強度として設定する、(D)前記寸
法精度不良量の予測式における降伏強度を前記みかけの
降伏強度で置換することにより加工硬化を加味した寸法
精度不良量の予測式を導く、(E)前記加工硬化を加味
した寸法精度不良量の予測式を用いて、寸法精度不良量
を求める。
The predicting method of the present invention, which has achieved the above object, is a method for predicting the amount of dimensional accuracy failure during press forming of a metal plate.
It has a gist in the point that it consists of the process of (E). (A) For a metal plate, a stress-strain relationship is set based on an elastic perfect plastic model having a constant stress value after yielding. (B) A stress based on the elastic perfect plastic model is set.
Deriving a formula for predicting the amount of dimensional accuracy failure using the strain relationship,
(C) For the metal plate, a value that is equal to or less than the tensile strength and exceeds the yield strength is set as an apparent yield strength. (D) By replacing the yield strength in the prediction formula of the dimensional accuracy defect amount with the apparent yield strength, (E) A dimensional accuracy defect amount is obtained using the dimensional accuracy defect amount prediction expression taking into account the work hardening.

【0010】上記方法における具体的な構成としては、
前記みかけの降伏強度として、下記(1)によって求め
られる値を用いることが挙げられる。 σp’=k・YS+(1−k)TS ……(1) ここで、σp’:みかけの降伏強度(MPa)、YS:
降伏強度(実測値;MPa)、TS:引張強度(実測
値;MPa)、k:内分係数、を夫々示す。
[0010] As a specific configuration in the above method,
As the apparent yield strength, a value obtained by the following (1) may be used. σp ′ = k · YS + (1−k) TS (1) where σp ′: apparent yield strength (MPa), YS:
Yield strength (actual value; MPa), TS: tensile strength (actual value; MPa), k: internal division coefficient, respectively.

【0011】また、上記(1)式における前記内分係数
kは、引張強度TSと板厚tの比(TS/t)の関数と
して表すことができ、具体的には0<k<1の範囲の値
をとるものである。
Further, the internal division coefficient k in the above equation (1) can be expressed as a function of the ratio (TS / t) between the tensile strength TS and the plate thickness t, and specifically, 0 <k <1. It takes a value in a range.

【0012】上記本発明方法において、予測対象の寸法
精度不良量がプレス成形時の壁反り量である場合には、
この壁反り量を求めるための前記加工硬化を加味した寸
法精度不良量の予測式を下記(2)式の様に設定すれば
良い。 ρ=[3σp’/(E・t)]・{1−D・[(σT/TS)−0.3]2} −C・(rd−5) ……(2) ここで、ρ:壁反り量(曲率;1/mm)、σp’:み
かけの降伏強度(MPa)、E:ヤング率(MPa)、
t:板厚(mm)、TS:引張強度(実測値;MP
a)、σT:壁部に働く張力(MPa)、rd:プレス
成形用工具のダイ肩半径(mm)、C:正の定数(1/
mm2)、D:正の定数、を夫々示す。
In the method of the present invention, when the dimensional accuracy defect amount to be predicted is the wall warpage amount at the time of press molding,
A formula for predicting the amount of dimensional accuracy failure taking into account the work hardening for obtaining the wall warpage amount may be set as in the following expression (2). ρ = [3σp ′ / (E · t)] · {1-D · [(σ T /TS)−0.3] 2 } −C · (rd-5) (2) where ρ: Wall warpage (curvature; 1 / mm), σp ': apparent yield strength (MPa), E: Young's modulus (MPa),
t: plate thickness (mm), TS: tensile strength (actual value; MP
a), σ T : tension acting on a wall (MPa), rd: die shoulder radius (mm) of a press forming tool, C: positive constant (1 /
mm 2 ) and D: a positive constant.

【0013】また、プレス成形時の壁反り量を求める方
法においては、前記みかけの降伏強度σp’は下記
(3)式に基づいて求めることができ、前記内分係数k
は下記(4)式に基づいて求めることができる。 σp’=k・YS+(1−k)TS ……(3) ここで、YS:降伏強度(実側値;MPa)、k:内分
係数、を夫々示す。 k=A・(TS/t)+B ……(4) ここで、TS:前記引張強度(MPa)、t:前記板厚
(mm)、A:負の定数(mm/MPa)、B:正の定
数、を夫々示す。
In the method of determining the amount of wall warpage at the time of press forming, the apparent yield strength σp ′ can be determined based on the following equation (3).
Can be obtained based on the following equation (4). σp ′ = k · YS + (1−k) TS (3) Here, YS: yield strength (actual side value; MPa), and k: internal division coefficient, respectively. k = A · (TS / t) + B (4) where, TS: the tensile strength (MPa), t: the plate thickness (mm), A: negative constant (mm / MPa), B: positive , Respectively.

【0014】一方、上記本発明方法において、予測対象
の寸法精度不良量がプレス成形時の角度変化量である場
合には、この角度変化量を求めるための前記加工硬化を
加味した寸法精度不良量の予測式を下記(5)式および
(6)式の様に設定すれば良い。 △θ=−θ・(rp+t/2)・Δρ ……(5) Δρ=[−3σp’/(E・t)]・{1+exp(−G・rp)] ……(6) ここで、Δθ:角度変化量(度)、θ:曲げ角度
(度)、rp:曲げ工具の肩半径(mm)、t:板厚
(mm)、Δρ:曲率変化量(1/mm)、σp’:み
かけの降伏強度(MPa)、E:ヤング率(MPa)、
G:正の定数(mm)、を夫々示す。
On the other hand, in the method of the present invention, when the amount of dimensional accuracy defect to be predicted is the amount of angle change at the time of press molding, the amount of dimensional accuracy defect taking into account the work hardening for obtaining this angle change amount is determined. May be set as in the following equations (5) and (6). Δθ = −θ · (rp + t / 2) · Δρ (5) Δρ = [− 3σp ′ / (E · t)] · {1 + exp (−G · rp)] (6) , Δθ: angle change (degree), θ: bending angle (degree), rp: shoulder radius (mm) of the bending tool, t: plate thickness (mm), Δρ: curvature change (1 / mm), σp ′ : Apparent yield strength (MPa), E: Young's modulus (MPa),
G: Positive constant (mm).

【0015】また、プレス成形時の角度変化量を求める
方法においては、前記みかけの降伏強度σp’は下記
(7)式に基づいて求めることができ、前記内分係数k
は下記(8)式に基づいて求めることができる。 σp’=k・YS+(1−k)TS ……(7) ここで、YS:降伏強度(実側値;MPa)、TS:引
張強度(実測値;MPa)、k:内分係数、を夫々示
す。 k=A・(TS/t)+B ……(8) ここで、TS:引張強度(実測値;MPa)、t:板厚
(1/mm)、A:負の定数(mm/MPa)、B:正
の定数、を夫々示す。
In the method for determining the amount of angle change during press forming, the apparent yield strength σp ′ can be determined based on the following equation (7), and the internal division coefficient k
Can be obtained based on the following equation (8). σp ′ = k · YS + (1−k) TS (7) where YS: yield strength (actual value; MPa), TS: tensile strength (actual value; MPa), k: internal division coefficient Shown respectively. k = A · (TS / t) + B (8) where, TS: tensile strength (actually measured value; MPa), t: plate thickness (1 / mm), A: negative constant (mm / MPa), B: positive constant.

【0016】[0016]

【発明の実施の形態】本発明者らは、上記課題を解決す
るべく、様々な角度から検討した。その結果、上記構成
を採用すれば、上記目的が見事に達成されることを見出
し、本発明を完成した。以下、本発明が完成された経緯
に沿って、本発明の作用・効果について図面に基づいて
説明する。尚以下の説明では、説明の便宜上、寸法精度
不良量を予測する対象部材として、自動車車体の部品に
多く用いられるハットチャンネル部材を成形する場合を
取り上げて説明するが、もとより本発明で寸法精度不良
量を予測する部材はこうしたハットチャンネル部材に限
定されるものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present inventors have studied from various angles in order to solve the above problems. As a result, it has been found that the above object can be achieved satisfactorily if the above configuration is adopted, and the present invention has been completed. Hereinafter, the operation and effect of the present invention will be described with reference to the drawings along the history of the present invention being completed. In the following description, for the sake of convenience, a case in which a hat channel member used frequently for parts of an automobile body is formed as a target member for predicting the amount of dimensional accuracy defect will be described. The member for estimating the amount is not limited to such a hat channel member.

【0017】図1は、上記ハットチャンネル部材の外観
形状例を示す説明図であるが、こうしたハットチャンネ
ル部材の主な成形方法としては、図2に示す様な絞り成
形方法[図2(a)]と、曲げ成形方法[図2(b)]
がある。これらの成形方法において、特に問題となる寸
法精度不良は、主に絞り成形時に発生する「壁反り」現
象と、主に曲げ成形時に発生する「角度変化」現象であ
る。
FIG. 1 is an explanatory view showing an example of the outer shape of the hat channel member. As a main forming method of such a hat channel member, a drawing forming method as shown in FIG. 2 [FIG. ] And a bending method [FIG. 2 (b)].
There is. In these forming methods, dimensional accuracy defects that are particularly problematic are a “wall warpage” phenomenon that occurs mainly during drawing and an “angle change” phenomenon that occurs mainly during bending.

【0018】ハットチャンネル部材の設計(目標)形状
(軸直角断面形状)が、図3(a)に示されたものとし
た場合に、「壁反り」現象は図3(b)の破線部分に示
す様に、R止まり(Rはプレス成形用工具のダイ肩半
径)間の壁部が反った現象である。また、「角度変化」
現象は、図3(c)の破線部分に示す様に、曲げ部分の
目標とする角度をθ[図3(a)]として、その角度よ
りも大きな角度θ1で成形される現象である。そして、
壁反り量ρは、前記Rの曲率(1/mm)で表わされ、
角度変化量Δθは、目標角度θと成形後に形成された角
度θ1との差(θ1−θ)で表わされる。次に、これら壁
反り量ρや角度変化量Δθを予測する為の具体的方法に
ついて、以下詳細に説明する。
When the design (target) shape (shape perpendicular to the axis) of the hat channel member is as shown in FIG. 3A, the "wall warpage" phenomenon is indicated by a broken line in FIG. 3B. As shown, this is a phenomenon in which the wall between the R stops (R is the die shoulder radius of the press forming tool) is warped. "Angle change"
The phenomenon is a phenomenon in which the target angle of the bent portion is θ (FIG. 3A) and is formed at an angle θ 1 that is larger than the angle, as indicated by the broken line in FIG. 3C. And
The wall warpage ρ is represented by the curvature (1 / mm) of the R,
The angle change amount Δθ is represented by the difference (θ 1 −θ) between the target angle θ and the angle θ 1 formed after molding. Next, a specific method for estimating the wall warpage amount ρ and the angle change amount Δθ will be described in detail below.

【0019】絞り成形時には、成形される金属板は、プ
レス成形用工具(ダイ)肩部を通過する際に、曲げ・曲
げ戻し変形を受けることになる。こうしたことから、成
形時における壁部には、板厚方向表裏で異符号の応力差
(引張り応力と圧縮応力の差)が生じる[後記図9、1
0参照]。この異符号の応力差によって板厚方向には曲
げモーメントが生じているが、離型時に外力が除荷され
ると材料のもつ弾性のために変形が幾分戻る(弾性回
復)。この弾性回復挙動こそが壁反りの原因であること
が知られている(例えば、「プレス成形難易ハンドブッ
ク」第2版(1997)、第191頁、日刊工業新聞
社)。尚、弾性回復挙動は上記曲げモーメントが0とな
るように生じ、板厚方向には後記図11(b),(c)
のようなひずみ、応力が残留する。
At the time of drawing, the metal sheet to be formed undergoes bending / unbending deformation when passing through the shoulder of the press-forming tool (die). For this reason, a stress difference (a difference between a tensile stress and a compressive stress) having a different sign is generated between the front and back of the wall portion in the thickness direction at the time of molding [see FIGS.
0]. A bending moment is generated in the plate thickness direction due to the stress difference having the different sign, but when the external force is unloaded at the time of release from the mold, the deformation somewhat returns due to the elasticity of the material (elastic recovery). It is known that this elastic recovery behavior is the cause of wall warpage (for example, “Press Forming Difficult Handbook”, 2nd edition (1997), p. 191, Nikkan Kogyo Shimbun). Note that the elastic recovery behavior occurs so that the bending moment becomes zero, and in the sheet thickness direction, FIGS. 11B and 11C described later.
Strain and stress remain.

【0020】また、壁反り量ρに関して、下記〜の
傾向があることが知られている。尚、壁反りに及ぼす主
な影響因子と壁反り量ρとの関係を図4に示す。
It is known that the wall warpage ρ has the following tendency. FIG. 4 shows the relationship between the main influencing factors on the wall warpage and the wall warpage amount ρ.

【0021】金属材料の強度(引張強度TS)が大き
くなるにつれて、壁反り量ρも大きくなる[図4
(a)]。 金属板の板厚tが薄くなるにつれて、壁反り量ρが大
きくなる[図4(b)]。 金属材料のヤング率Eが小さくなるにつれて、壁反り
量ρが大きくなる[図4(c)]。 プレス成形用工具のダイ肩半径rdが大きくなるにつ
れて、壁反り量ρが小さくなる(但し、ダイ肩半径rd
が極小の領域は除く)[図4(d)]。 壁部に働く張力σT(しわ押え力)が大きくなるにつ
れて、壁反り量ρが小さくなる(但し、張力が極小の領
域は除く)[図4(e)の破線領域]。
As the strength (tensile strength TS) of the metal material increases, the wall warpage ρ also increases [FIG.
(A)]. As the thickness t of the metal plate decreases, the wall warpage amount ρ increases [FIG. 4B]. As the Young's modulus E of the metal material decreases, the wall warp amount ρ increases [FIG. 4 (c)]. As the die shoulder radius rd of the press forming tool increases, the wall warp amount ρ decreases (however, the die shoulder radius rd
(Excluding the region where the minimum is observed) [FIG. 4 (d)]. As the tension σ T (wrinkle holding force) acting on the wall portion increases, the wall warp amount ρ decreases (however, a region where the tension is extremely small is excluded) (a broken line region in FIG. 4E).

【0022】本発明者らは、上記知見に基づき、これら
の傾向を正確(定量的)に且つ簡便に予測できる予測式
の実現を目指して、様々な角度から検討した。そして、
まず本発明者らは、壁反り量予測の為の従来技術におい
て、数値シミュレーション等の複雑な計算が行なわれて
いる理由について考察した。その結果、その大きな理由
の一つとして、従来技術では、変形(ひずみ)付加時の
応力−ひずみ関係として、図5に示す様に現実に近い関
係、即ち塑性ひずみの増加と共に応力も増加するという
塑性変形域における加工硬化分も数値シミュレーション
の直接的な対象として考慮しているからであると考える
ことができた。
Based on the above findings, the present inventors have studied from various angles with the aim of realizing a prediction formula that can accurately (quantitatively) predict these trends easily. And
First, the present inventors have considered the reason why complicated calculations such as numerical simulations are performed in the prior art for predicting the amount of wall warpage. As a result, one of the major reasons is that, in the prior art, the stress-strain relationship at the time of applying deformation (strain) is close to reality as shown in FIG. 5, that is, the stress increases as the plastic strain increases. It can be considered that work hardening in the plastic deformation region is also considered as a direct object of numerical simulation.

【0023】そこで本発明者らは、予測式をより簡略化
する為に、現実の材料挙動とは異なるが、金属材料が加
工硬化しないとする応力−ひずみ関係を想定し、こうし
た関係の中でより簡単な予測式を導くことを試みた。即
ち、図6に示す様に、降伏後(降伏強度σp)は、応力
は一定値で加工硬化しない塑性体(こうした塑性体を一
般に「弾完全塑性体」と呼ばれている)を仮定し、こう
した塑性体に基づいて予測式を導くことを試みた。
In order to further simplify the prediction formula, the present inventors suppose a stress-strain relationship which is different from the actual material behavior but does not cause work hardening of the metal material. An attempt was made to derive a simpler prediction formula. That is, as shown in FIG. 6, after yielding (yield strength σp), a stress is assumed to be a plastic body that does not work harden at a constant value (such a plastic body is generally called “elastic perfect plastic body”). An attempt was made to derive a prediction formula based on such a plastic body.

【0024】その結果、曲げ・曲げ戻し変形後の弾性回
復による曲率変化量(張力が非常に小さい場合の壁反り
量ρ)は、下記(I)式の様な簡単な式で表現できること
が分かった。また、通常のプレス成形時に多く用いられ
ている様な、ダイ肩半径が3〜20mm程度のダイを用
いる場合には、(I)式は下記(II)式の様に、更に簡略化
した式で表現できることも判明した。 ρ=[3σp/(E・t)]・ {1−7/3・[〔2σp/(E・t)〕・rd]2} ……(I) ρ≒{3σp/(E・t)} ……(II) ここで、ρ:壁反り量(曲率;1/mm)、σp:降伏
強度(MPa)、E:ヤング率(MPa)、t:板厚
(mm)、rd:プレス成形用工具のダイ肩半径(m
m)、を夫々示す。
As a result, it can be understood that the amount of change in curvature due to elastic recovery after bending / unbending deformation (the amount of wall warp ρ when the tension is extremely small) can be expressed by a simple equation such as the following equation (I). Was. In addition, when a die having a die shoulder radius of about 3 to 20 mm is used, such as is often used during normal press molding, the formula (I) is a simplified formula such as the following formula (II). It can also be expressed by ρ = [3σp / (E · t)] · {1-7 / 3 · [[2σp / (E · t)] · rd] 2 } (I) ρ {3σp / (E · t)} Where ρ: wall warpage (curvature; 1 / mm), σp: yield strength (MPa), E: Young's modulus (MPa), t: plate thickness (mm), rd: for press forming Die shoulder radius of tool (m
m), respectively.

【0025】上記(I)式および(II)式は、プレス成形の
際の変形ステップにおける曲げモーメント変化を解析す
ることによって導けるものであるが、この経緯を、図面
を参照しつつ説明する。図7は、プレス成形(特に絞り
成形)される金属板の壁部における変形履歴を説明する
為の図である。この図において、金属板は図7(a)→
図7(b)→図7(c)の様にプレス成形されていく
が、金属板における壁反りが発生する部分を着目点とし
て×印で示してある。尚、図7(a)はプレス成形前の
段階、図7(b)は曲げの段階、図7(c)は曲げ戻し
の段階の夫々を示したものである。
The above equations (I) and (II) can be derived by analyzing the change in bending moment in the deformation step in press forming. This process will be described with reference to the drawings. FIG. 7 is a diagram for explaining a deformation history of a wall portion of a metal plate to be press-formed (particularly drawn). In this figure, the metal plate is shown in FIG.
Press forming is performed as shown in FIG. 7 (b) → FIG. 7 (c), and a portion where the wall warp occurs in the metal plate is indicated by a cross as a point of interest. 7A shows a stage before press forming, FIG. 7B shows a stage of bending, and FIG. 7C shows a stage of unbending.

【0026】一方、図8〜図10は、上記図7(a)→
図7(b)→図7(c)の様にプレス成形した場合の各
段階において、金属板(前記着目点×)の板厚方向に作
用するひずみεや応力σの分布、および金属板内の弾性
域・塑性域の分布を示したものであり、図8は前記図7
(a)の段階、図9は前記図7(b)の段階、図10は
図7(c)の段階に、夫々対応するものである。また、
離型した後の金属板(前記着目点×)の板厚方向に作用
するひずみεや応力σの分布、および金属板内の弾性域
・塑性域の分布を図11に示す。尚図8〜11の各
(a)図は金属板内の弾性域・塑性域の分布、各(b)
図はひずみεの分布、各(c)図は応力σの分布を、夫
々示している。
On the other hand, FIG. 8 to FIG.
At each stage of press forming as shown in FIG. 7 (b) → FIG. 7 (c), the distribution of strain ε and stress σ acting in the thickness direction of the metal plate (the noted point x) and the inside of the metal plate FIG. 8 shows the distribution of the elastic region and the plastic region of FIG.
9A corresponds to the stage of FIG. 7B, and FIG. 10 corresponds to the stage of FIG. 7C. Also,
FIG. 11 shows the distribution of strain ε and stress σ acting in the thickness direction of the metal plate (the point of interest ×) after release, and the distribution of elastic and plastic regions in the metal plate. FIGS. 8A to 11A show the distribution of the elastic region and the plastic region in the metal plate, and FIGS.
The figure shows the distribution of strain ε, and each figure (c) shows the distribution of stress σ.

【0027】まず、前記図7(a)に示した段階では、
着目点×において板厚方向全域に亘って弾性域になって
おり[図8(a)]、またひずみεおよび応力σの分布
も発生していない[図8(b),(c)]。その結果、
この段階では曲げモーメントが発生しないことになる。
従って、このときに板厚tの中心部分に働く曲げモーメ
ント量Mは、板厚方向位置ηを変数としたときに下記
(III)式の様に表せる。
First, at the stage shown in FIG.
At the point of interest X, an elastic region is formed over the entire region in the thickness direction [FIG. 8A], and no distribution of strain ε and stress σ is generated [FIGS. 8B and 8C]. as a result,
At this stage, no bending moment is generated.
Therefore, the bending moment amount M acting on the center of the plate thickness t at this time is given by
It can be expressed as in equation (III).

【0028】[0028]

【数1】 (Equation 1)

【0029】次に、前記図7(b)に示した段階(曲げ
の段階)では、前記着目点×において、金属板の板厚方
向の両端面側が塑性域となり、中央部分が弾性域となる
[図9(a)]。そして、ひずみεの分布は、曲率をκ
(=1/rd:rdはダイ肩半径)としたときに、最大
ひずみ量がκ・(t/2)のひずみが異方向に発生する
ことになる[図9(b)]。また、このときの応力σの
分布は、加工硬化量を無視したときには(前記図6)、
最大応力σがσp(σpは降伏強度)の応力が表面側と
裏面側に異なる方向(圧縮応力と引張応力)に発生する
ことになり[図9(c)]、このときの応力分布によっ
て曲げモーメントが発生することになる。そして、金属
板の中心部分に働く曲げモーメント量Mは、板厚方向
位置ηを変数とし、板厚中心から弾性域両端部までの距
離を夫々+y1,−y1としたときには[図9(c)]、
1=σp/(E・κ)(但し、E:ヤング率、κ:曲
率)となるので、下記(IV)式の様に表せる。
Next, in the stage shown in FIG. 7B (bending stage), at the point of interest x, both end surfaces in the thickness direction of the metal plate become a plastic region, and a central portion becomes an elastic region. [FIG. 9 (a)]. Then, the distribution of strain ε is such that the curvature is κ
When (= 1 / rd: rd is the die shoulder radius), a strain with a maximum strain of κ · (t / 2) is generated in a different direction [FIG. 9B]. In addition, the distribution of the stress σ at this time, when the amount of work hardening is neglected (FIG. 6),
A stress having a maximum stress σp (σp is the yield strength) is generated in different directions (compression stress and tensile stress) on the front surface side and the back surface side (FIG. 9C), and bending is performed by the stress distribution at this time. A moment will be generated. Then, the bending moment M acting on the center portion of the metal plate is obtained by taking the position η in the thickness direction as a variable and setting the distances from the center of the thickness to both ends of the elastic region to be + y 1 and −y 1 , respectively [FIG. c)],
Since y 1 = σp / (E · κ) (where E: Young's modulus, κ: curvature), it can be expressed as the following equation (IV).

【0030】[0030]

【数2】 (Equation 2)

【0031】更に、前記図7(c)に示した段階(曲げ
戻しの段階)では、材料の着目点×において、全域が一
度弾性域に戻った後、前記図7(b)の段階とは逆方向
で再び降伏していき[図10(a)]、ひずみεの分布
は発生しない[図10(b)]。またこのときの応力σ
の分布は、加工硬化量を無視したときには、最大応力σ
がσp(σpは降伏応力)の応力が異方向で且つ上記図
9(c)とは逆の方向に発生することになる[図10
(c)]。このときに金属板の中心部分に働く曲げモー
メント量Mは、板厚方向位置ηを変数とし、板厚中心
から弾性域両端部(弾塑性境界)までの距離を夫々+y
2,−y2としたときには[図10(c)]、y2=2σ
p/(E・κ)(但し、E:ヤング率、κ:曲率)とな
るので、下記(V)式の様に表せる。
Further, at the stage shown in FIG. 7 (c) (bending-back stage), after the entire region once returns to the elastic region at the point of interest x of the material, the stage shown in FIG. Yield occurs again in the opposite direction [FIG. 10 (a)], and no distribution of strain ε occurs [FIG. 10 (b)]. The stress σ at this time
Distribution is the maximum stress σ when the amount of work hardening is ignored.
Σp (σp is the yield stress) occurs in a different direction and in a direction opposite to that of FIG. 9C [FIG.
(C)]. At this time, the bending moment M acting on the central portion of the metal plate is obtained by taking the distance from the center of the thickness to both ends (elastic-plastic boundary) of the elastic region + y
2 , −y 2 [FIG. 10C], y 2 = 2σ
Since p / (E · κ) (where E: Young's modulus, κ: curvature), it can be expressed as the following equation (V).

【0032】[0032]

【数3】 (Equation 3)

【0033】そして離型時には、外力が解放されて金属
板の板厚方向全域において弾性域となると共に[図11
(a)]、材料のもつ弾性のために有していた曲げモー
メント量が0となるように弾性回復(壁反りρ)が生じ
る。この際に板厚方向に生じるひずみ、応力分布は図1
1(b)[最大ひずみε=ρ・(t/2)]、図11
(c)のようになる。
When the mold is released, the external force is released, and the entire area of the metal sheet in the thickness direction becomes an elastic area.
(A)], elastic recovery (wall warp ρ) occurs so that the bending moment amount possessed by the elasticity of the material becomes zero. At this time, the strain and stress distribution generated in the thickness direction are shown in FIG.
1 (b) [Maximum strain ε = ρ · (t / 2)], FIG.
(C).

【0034】そして、上記弾性回復によって軽減される
曲げモーメント量eは、下記(VI)式の様に表すことがで
き、また弾性回復は、成形時の応力分布によって生じて
いる前記曲げモーメント量Mを打ち消す様に発生する
ので、壁反り量ρは、下記(VII)式を満足する曲げモー
メント量Mに対応して発生することになる。
The bending moment e reduced by the elastic recovery can be expressed by the following formula (VI). The elastic recovery is obtained by the bending moment M generated by the stress distribution during molding. Is generated in such a manner as to cancel out, so that the wall warpage amount ρ is generated corresponding to the bending moment amount M satisfying the following equation (VII).

【0035】[0035]

【数4】 (Equation 4)

【0036】[0036]

【数5】 (Equation 5)

【0037】上記(VII)式を壁反り量ρについて整理す
ると、下記(VIII)式が導かれ、この(VIII)式に前記(V)
式の関係を代入して整理すると、前記(I)式が導かれる
ことになる。 ρ={12/(E・t3)}・M ……(VIII)
When the above equation (VII) is arranged with respect to the wall warpage amount ρ, the following equation (VIII) is derived.
By rearranging by substituting the relations of the equations, the above-mentioned equation (I) is derived. ρ = {12 / (E · t 3 )} · M (VIII)

【0038】ところで、通常のプレス成形においては、
前記(I)式中の右辺第2項中の7/3[〔2σp/(E
・t)〕・rd]2の値は、1よりも非常に小さな値と
なる。例えば、σp=600MPa,rd=5mm,E
=205800MPa,t=1.2mmの場合には、7
/3[〔2σp/(E・t)〕・rd]2の値は、1.
38×10-3(≪1)となる。従って、前記(I)式の右
辺第2項{1−7/3・[〔2σp/(E・t)〕・r
d]2}は、ほぼ1となるので無視してもよく、(I)式は
前記(II)式の様に更に簡略化できることになる。
By the way, in normal press molding,
7/3 in the second term on the right side of the above equation (I) [[2σp / (E
· T)] · rd] 2 is a value much smaller than 1. For example, σp = 600 MPa, rd = 5 mm, E
= 205800MPa, t = 1.2mm, 7
/ 3 [[2σp / (E · t)] · rd] 2 has the value of 1.
38 × 10 −3 (≪1). Therefore, the second term on the right side of the above equation (I) {1-7 / 3 · [[2σp / (E · t)] · r
d] 2 } is almost 1 and can be ignored, and the equation (I) can be further simplified as in the above equation (II).

【0039】本発明者らは、種々の材料強度、成形条件
による実験により得られた壁反り量の実測値と上記(II)
式による予測値とを比較した。尚、このとき用いた実測
値は、ダイ肩半径が極小領域以上で且つ張力(しわ押え
力)が比較的小さな領域[図4(d),(e)の破線で
囲んだ領域]での採取値である。その結果、壁反り量を
正確に予測する為には、やはり加工硬化を加味する必要
があることが分かった。
The present inventors have compared the measured values of the wall warpage obtained by experiments with various material strengths and molding conditions with the above (II).
It was compared with the predicted value by the formula. The actual measurement values used at this time were taken in a region where the die shoulder radius is equal to or greater than the minimum region and the tension (wrinkle holding force) is relatively small [regions surrounded by broken lines in FIGS. 4D and 4E]. Value. As a result, it was found that work hardening must be added in order to accurately predict the wall warpage amount.

【0040】そこで本発明者らは、加工硬化の影響をで
きるだけ反映させる為に、更に検討を重ねた。その結
果、前記(II)式の降伏強度σpの代りに、図12に示す
様に引張強度以下で降伏強度σp超の値を、現実とは異
なる加工硬化分を補正したみかけの降伏強度σp’と
し、このみかけの降伏強度σp’に基づいて下記(II)’
式によって壁反り量ρを予測すれば良いことを見出し
た。また、上記みかけの降伏強度σp’として、実測の
降伏強度YSと引張強度TSに基づき下記(1)式によ
り求められる内分値とすることや、下記(1)式の係数
を引張強度TSと板厚tの比(TS/t)の関数[k=
f(TS/t)]とすれば、実測値と予測値とは比較的
良い一致を示すことも分かった。
Therefore, the present inventors have further studied to reflect as much as possible the effect of work hardening. As a result, instead of the yield strength σp of the formula (II), as shown in FIG. 12, the value of the yield strength σp that is equal to or less than the tensile strength is changed to the apparent yield strength σp ′ obtained by correcting a work hardening amount different from the actual one. Based on the apparent yield strength σp ′, the following (II) ′
It has been found that the wall warpage ρ should be predicted by the equation. In addition, the apparent yield strength σp ′ may be an internal value obtained by the following equation (1) based on the actually measured yield strength YS and tensile strength TS, or the coefficient of the following equation (1) may be referred to as the tensile strength TS. A function of the ratio of the thickness t (TS / t) [k =
f (TS / t)], the measured value and the predicted value show relatively good agreement.

【0041】ここで、上記降伏強度YSと上記引張強度
TSは、通常の引張試験等で求められる値を使用すれば
よい。また、kを(TS/t)の関数とすれがよいとす
る根拠は、次の様に説明できる。一般的に、引張試験等
により応力−ひずみ線図を測定すると、図21に示すよ
うな加工硬化の傾向が観測される。引張強度、板厚が違
う材料について、同じひずみ値(同じ工具での加工)で
の加工硬化の度合いをまとめると、下記、のように
なる。
Here, as the above-mentioned yield strength YS and the above-mentioned tensile strength TS, values obtained by a normal tensile test or the like may be used. The reason that k is preferably a function of (TS / t) can be explained as follows. Generally, when a stress-strain diagram is measured by a tensile test or the like, a tendency of work hardening as shown in FIG. 21 is observed. The following table summarizes the degree of work hardening at the same strain value (processing with the same tool) for materials having different tensile strengths and plate thicknesses.

【0042】引張強度が高いほど、TSに到達するひ
ずみ値が小さくなり[図21(a)参照]、同じひずみ
値での加工硬化の度合い[例えば、図21(a)におい
てY1/Y2で評価する。]は大きくなる。その結果、
加工硬化後の降伏強度はより引張強度TSに近い値とな
る。 板厚が薄いほど、引張強度TSに到達するひずみ値が
小さくなり[図21(b)参照」、同じひずみ値での加
工硬化の度合いが大きくある。その結果、加工硬化後の
降伏強度はより引張強度TSに近い値となる。
As the tensile strength increases, the strain value reaching the TS decreases (see FIG. 21 (a)), and the degree of work hardening at the same strain value [for example, evaluated by Y1 / Y2 in FIG. 21 (a)] I do. ] Becomes larger. as a result,
The yield strength after work hardening has a value closer to the tensile strength TS. The thinner the plate thickness, the smaller the strain value that reaches the tensile strength TS [see FIG. 21 (b)], and the greater the degree of work hardening at the same strain value. As a result, the yield strength after work hardening becomes a value closer to the tensile strength TS.

【0043】これらの傾向を踏まえたkとTSおよびt
とを関係付けた関係式の形は種々考えられるが、その中
でもkをTS/tの関数の形にすると、実測値と予測値
がよく一致することが実験的に確かめられた。 ρ={3σp’/(E・t)} ……(II)’ ここで、ρ:壁反り量(曲率;1/mm)、σp’:み
かけの降伏強度(MPa)、E:ヤング率(MPa)、
t:板厚(mm)を夫々示す。 σp’=k・YS+(1−k)TS ……(1) ここで、kは内分係数。
K, TS and t based on these trends
There are various possible forms of the relational expression relating to the above. Among them, it has been experimentally confirmed that when k is a function of TS / t, the measured value and the predicted value agree well. ρ = {3σp ′ / (E · t)} (II) ′ where ρ: wall warpage (curvature; 1 / mm), σp ′: apparent yield strength (MPa), E: Young's modulus ( MPa),
t: Plate thickness (mm) is shown. σp ′ = k · YS + (1−k) TS (1) where k is an internal division coefficient.

【0044】ところで、上記(II)’式では、ダイ肩半径
rdの影響については表現しきれていないが、本発明者
らが実験による実測値の変化具合によって検討したとこ
ろによれば、上記(II)’式に実験による補正項[−C・
(rd−5)]を追加して下記(II)’’式となる様な補
正を行なえば、予測精度が更に向上することも分かっ
た。 ρ={3σp’/(E・t)}−C・(rd−5) ……(II)’’
Incidentally, although the effect of the die shoulder radius rd is not fully expressed in the above equation (II) ′, the inventors of the present invention have studied according to the degree of change of the actually measured values by experiments, and found that II) ', the experimental correction term [-C ·
(Rd-5)], it was also found that the prediction accuracy could be further improved by performing correction so as to satisfy the following expression (II) ″. ρ = {3σp ′ / (E · t)} − C · (rd−5) (II) ″

【0045】但し、この(II)’’式においても、張力
(しわ押え力)の影響については、十分に表現しきれて
いない。つまり、上記(II)’’は、張力が比較的小さい
領域[図4(e)の頂点近傍の領域]でのみ使用可能で
ある。そこで本発明者らは、張力が大きい場合の補正に
ついて、実験による実測値の変化具合によって検討した
ところによれば、上記(II)’’式に対して、更に下記
(2)式となる様な補正を行なえば、良好な予測精度が
得られることが分かった。即ち、上記の様にして求めら
れる下記(2)式を満足させると共に、みかけの降伏強
度σp’として、引張試験によって求められる実測の降
伏強度YSと引張強度TSに基づき下記(3)式[前記
(1)式と同じ]により求められる内分値とし、且つ下
記(3)式の内分係数kを引張強度TSと板厚tの比
(TS/t)の関数[k=f(TS/t)]として下記
(4)式を採用すれば、壁反り量ρを簡単に且つ正確に
予測できたのである。 ρ={3σp’/(E・t)}・{1−D・[(σT/TS)−0.3]2} −C・(rd−5) ……(2) σp’=k・YS+(1−k)TS ……(3) k=A・(TS/t)+B ……(4) ここで、ρ:壁反り量(曲率;1/mm)、σp’:み
かけの降伏強度(MPa)、E:ヤング率(MPa)、
t:板厚(mm)、TS:引張強度(実測値;MP
a)、YS:降伏強度(実側値;MPa)、σT:壁部
に働く張力(MPa)、rd:プレス成形用工具のダイ
肩半径(mm)、k:内分係数、A:負の定数(mm/
MPa)、B:正の定数、C:正の定数(1/mm2
を夫々示す。
However, even in the equation (II) ″, the effect of the tension (wrinkle holding force) cannot be sufficiently expressed. That is, the above (II) '' can be used only in a region where the tension is relatively small [region near the vertex in FIG. 4E]. Therefore, the present inventors have studied the correction when the tension is large according to the degree of change of the actually measured value by experiment. According to the present invention, the following equation (2) is obtained from the above equation (II) ″. It has been found that a good prediction accuracy can be obtained by making an appropriate correction. That is, while satisfying the following equation (2) obtained as described above, the following equation (3) is used as the apparent yield strength σp ′ based on the actually measured yield strength YS and tensile strength TS obtained by a tensile test. Same as equation (1)], and the internal coefficient k in equation (3) below is a function [k = f (TS / t) of the ratio (TS / t) between the tensile strength TS and the sheet thickness t. t)], the following equation (4) could be used to easily and accurately predict the wall warpage amount ρ. ρ = {3σp ′ / (E · t)} · {1-D · [(σ T /TS)−0.3] 2 } −C · (rd-5) (2) σp ′ = k · YS + (1−k) TS (3) k = A · (TS / t) + B (4) where ρ: wall warpage (curvature; 1 / mm), σp ′: apparent yield strength (MPa), E: Young's modulus (MPa),
t: plate thickness (mm), TS: tensile strength (actual value; MP
a), YS: yield strength (actual value; MPa), σ T : tension acting on the wall (MPa), rd: die shoulder radius (mm) of the press forming tool, k: internal division coefficient, A: negative Constant (mm /
MPa), B: positive constant, C: positive constant (1 / mm 2 )
Are shown respectively.

【0046】次に、角度変化量Δθを予測する場合につ
いて説明する。曲げ成形時には、成形される金属板は、
プレス成形用工具としてのパンチの肩部等で曲げ変形を
受けることになる。その為に、曲げ成形時の金属板に
は、絞り成形に場合と同様に板厚方向表裏で異符号の応
力差(引張り応力と圧縮応力の差)が生じることにな
る。そして、こうした応力差は、離型時に外力が解放さ
れて曲げモーメント量が0となるところで釣り合った状
態になっても、その一部が残ることによって、前記の様
な角度変化の現象が生じることが知られている。また、
角度変化量Δθに関しては、下記〜の傾向があるこ
とが知られている。
Next, a case where the angle change amount Δθ is predicted will be described. At the time of bending, the formed metal plate is
It is subjected to bending deformation at the shoulder of the punch as a press forming tool. For this reason, a stress difference (a difference between a tensile stress and a compressive stress) having a different sign occurs between the front and back sides in the thickness direction of the metal plate at the time of bending, as in the case of drawing. Even if the stress difference is balanced when the external force is released at the time of mold release and the bending moment becomes zero, a part of the stress remains, thereby causing the phenomenon of the angle change as described above. It has been known. Also,
It is known that the angle change amount Δθ has the following tendency.

【0047】金属材料の強度(引張強度TS)が大き
くなるにつれて、角度変化量Δθも大きくなる[図13
(a)]。 金属板の板厚tが薄くなるにつれて、角度変化量Δθ
が大きくなる[図13(b)]。 金属材料のヤング率Eが小さくなるにつれて、角度変
化量Δθが大きくなる[図13(c)]。 曲げ工具(パンチ等)の肩半径rpが大きくなるにつ
れて、角度変化量Δθが大きくなる[図13(d)]。
As the strength (tensile strength TS) of the metal material increases, the angle change Δθ also increases [FIG.
(A)]. As the thickness t of the metal plate decreases, the angle change Δθ
Becomes larger [FIG. 13 (b)]. As the Young's modulus E of the metal material decreases, the angle change amount Δθ increases [FIG. 13 (c)]. As the shoulder radius rp of the bending tool (such as a punch) increases, the angle change amount Δθ increases [FIG. 13 (d)].

【0048】本発明者らは、予測式をより簡単にする為
に、前述した壁反り量ρの予測式と同様に、現実の材料
挙動とは異なるが、材料が加工硬化しないとする応力−
ひずみ関係を仮定し[前記図6]、こうした関係の中で
より簡単な予測式を導くことを試みた。但し、曲げ成形
時に生じる角度変化不良は、パンチ肩部等の曲げしか受
けない部位で発生するから、曲げ戻し現象は考慮しなく
ても良い。
To make the prediction formula simpler, the present inventors, like the above-described prediction formula for the wall warpage amount ρ, differ from the actual material behavior but have a stress-
Assuming a distortion relationship [FIG. 6], an attempt was made to derive a simpler prediction formula in such a relationship. However, the angle change defect that occurs at the time of bending is generated in a portion that is subjected to only bending, such as a punch shoulder portion, and therefore, it is not necessary to consider the bending back phenomenon.

【0049】その結果、曲げ変形および弾性回復後の角
度変化量Δθは、下記(5)式および(IX)の様な簡単な
式で表現できることが分かった。 △θ=−θ・(rp+t/2)・Δρ ……(5) Δρ={−3σp/(E・t)}・ {1-1/3[〔2σp’/(E・t)〕・rp]2] ……(IX) ここで、Δθ:角度変化量(度)、θ:曲げ角度
(度)、rp:曲げ工具の肩半径(mm)、t:板厚
(mm)、Δρ:曲率変化量(1/mm)、σp’:み
かけの降伏強度(MPa)、E:ヤング率(MPa)を
夫々示す。
As a result, it was found that the angle change Δθ after bending deformation and elastic recovery can be expressed by a simple equation such as the following equations (5) and (IX). Δθ = −θ · (rp + t / 2) · Δρ (5) Δρ = {− 3σp / (E · t)} · {1-1 / 3 [[2σp ′ / (E · t)] · rp ] 2 ] (IX) where Δθ: angle change (degree), θ: bending angle (degree), rp: shoulder radius (mm) of the bending tool, t: plate thickness (mm), Δρ: curvature The amount of change (1 / mm), σp ′: apparent yield strength (MPa), E: Young's modulus (MPa), respectively.

【0050】上記(5)式および(IX)式は、次の様にし
て求められる。即ち、曲げ成形後の弾性回復による曲げ
部の曲率変化Δρは、前記(VII)式を求めた場合と同様
に、曲げモーメントMを打ち消す様に生じることか
ら、Δρは下記(X)式を満足する様に発生することに
なる。
The above equations (5) and (IX) are obtained as follows. That is, the curvature change Δρ of the bent portion due to the elastic recovery after the bending is generated in such a manner as to cancel the bending moment M in the same manner as in the case of obtaining the above formula (VII), so that Δρ satisfies the following formula (X) Will occur.

【0051】[0051]

【数6】 (Equation 6)

【0052】その為、曲率変化量Δρについては、下記
(XI)式の様に表現でき、この式を整理すると前記(IX)式
が導かれることになる。 Δρ={−12/(E・t3)}・M ……(XI) 一方、上記曲率変化量Δρを幾何学的に変換することを
考え、曲率変化後も板厚中央部の長さは変化しないの
で、下記(XIII)式の関係が成立することになり、この(X
III)式を角度変化量Δθについて整理すると、前記
(5)式が導かれる。 θ/[1/[rp+(t/2)]] =(θ+Δθ)/[1/[rp+(t/2)]−Δρ] ……(XIII) ここで、Δθ:角度変化量(度)、θ:曲げ角度
(度)、rp:曲げ工具の肩半径(mm)、t:板厚
(mm)、Δρ:曲率変化量(1/mm)を夫々示す。
Therefore, the curvature variation Δρ is given by
It can be expressed as in equation (XI), and rearranging this equation leads to equation (IX). Δρ = {− 12 / (E · t 3 )} · M (XI) On the other hand, considering that the curvature change amount Δρ is geometrically converted, the length of the central portion of the sheet thickness after the curvature change is Since there is no change, the relationship of the following equation (XIII) holds, and this (XIII)
When the equation (III) is rearranged for the angle change amount Δθ, the above equation (5) is derived. θ / [1 / [rp + (t / 2)]] = (θ + Δθ) / [1 / [rp + (t / 2)] − Δρ] (XIII) where Δθ: angle change (degree), θ: bending angle (degree), rp: shoulder radius (mm) of bending tool, t: plate thickness (mm), Δρ: curvature change (1 / mm), respectively.

【0053】尚、通常のプレス成形時に多く用いられて
いる様な、パンチ肩半径が3〜20mm程度のパンチを
用いる場合には、上記(IX)式は、上記絞り成形の場合
と同様にすれば、下記(XII)式の様に、更に簡略化し
た式で表現できる。 Δρ={−3σp/(E・t)} ……(XII)
When a punch having a shoulder radius of about 3 to 20 mm, which is often used in ordinary press forming, is used, the above equation (IX) is as straightforward as in the case of the draw forming. For example, it can be expressed by a more simplified expression like the following expression (XII). Δρ = {− 3σp / (E · t)} (XII)

【0054】また本発明では、加工硬化の影響をできる
だけ簡略化して考慮する為に、壁反り量の予測式の場合
と同様に、降伏強度σpの値として、実測値と異なるが
前記(1)式によって定義した加工硬化分を補正したみ
かけの降伏強度σp’を用いる。また、上記(XII)式
においても、曲げ工具(パンチ等)の肩半径の影響につ
いては表現しきれていないので、実測値の変化具合によ
って判断し、下記(6)式の様な補正を行なえば良い予
測精度が得られることが分かった。 Δρ={−3σp’/(E・t)}・{1+exp(−G・rp)}……(6)
In the present invention, the value of the yield strength σp is different from the actually measured value, as in the case of the equation for predicting the amount of wall warpage, in order to simplify and consider the influence of work hardening. The apparent yield strength σp ′ obtained by correcting the work hardening defined by the equation is used. Also, in the above equation (XII), the influence of the shoulder radius of the bending tool (punch, etc.) cannot be fully expressed, so that it is necessary to judge based on the degree of change in the actually measured value and make a correction as in the following equation (6). It was found that good prediction accuracy could be obtained. Δρ = {− 3σp ′ / (E · t)} · {1 + exp (−G · rp)} (6)

【0055】即ち、上記の様にして求められる(5)式
および(6)式と共に、みかけの降伏強度σp’とし
て、引張試験によって求められる実測の降伏強度YSと
引張強度TSに基づき下記(7)式[前記(1),
(3)式と同じ]により求められる内分値とし、且つ下
記(7)式の係数kを引張強度TSと板厚tの比(TS
/t)の関数[k=f(TS/t)]として下記(8)
式を採用すれば、角度変化量Δθを比較的正確に予測で
きたのである。 σp’=k・YS+(1−k)TS ……(7) k=A・(TS/t)+B ……(8) ここで、σp’:みかけの降伏強度(MPa)、E:ヤ
ング率(MPa)、YS:降伏強度(実側値;MP
a)、TS:引張強度(実測値;MPa)、k:内分係
数、A:負の定数(mm/MPa)、B:正の定数、を
夫々示す。
That is, the apparent yield strength σp ′ together with the equations (5) and (6) obtained as described above is used as the apparent yield strength σp ′ based on the actually measured yield strength YS and tensile strength TS obtained by a tensile test. ) Formula [1]
Same as equation (3)], and the coefficient k in the following equation (7) is defined as the ratio of the tensile strength TS to the sheet thickness t (TS
/ T) as a function [k = f (TS / t)] (8)
If the equation is adopted, the angle change amount Δθ can be predicted relatively accurately. σp ′ = k · YS + (1−k) TS (7) k = A · (TS / t) + B (8) where σp ′: apparent yield strength (MPa), E: Young's modulus (MPa), YS: Yield strength (actual value; MP
a), TS: tensile strength (actually measured value; MPa), k: internal division coefficient, A: negative constant (mm / MPa), B: positive constant.

【0056】以下、本発明の効果を実施例によって更に
具体的に示すが、下記実施例は本発明を限定するもので
はなく、前・後記の趣旨に徴して設計変更することはい
ずれも本発明の技術的範囲に含まれるものである。
Hereinafter, the effects of the present invention will be described more specifically with reference to examples. However, the following examples do not limit the present invention, and any design change based on the above and following points is not limited to the present invention. It is included in the technical range of.

【0057】[0057]

【実施例】実施例1 まず、張力が比較的小さい領域[前記図4(e)参照]
での予測精度について確認を行なった。下記表1に示す
降伏強度YP、引張強度TSおよび板厚tの各種鋼板を
用い、同表1に示す成形条件(ダイ肩半径rd)でハッ
トチャンネル部材の成形実験を行なった。このとき、壁
反り量に及ぼす張力σTの影響ができるだけ小さくなる
様に、張力σTと引張強度TSの比(σT/TS)がほぼ
一定[0.3:前記図4(e)の頂点近傍の領域]とな
る様にBHF(しわ押え力)を調整した。
Embodiment 1 First, a region where the tension is relatively small [see FIG. 4 (e)].
The accuracy of the prediction was confirmed. Using various steel plates having a yield strength YP, a tensile strength TS and a plate thickness t shown in Table 1 below, a forming experiment of a hat channel member was performed under the forming conditions (die shoulder radius rd) shown in Table 1. At this time, the ratio (σ T / TS) between the tension σ T and the tensile strength TS (σ T / TS) is substantially constant so that the effect of the tension σ T on the wall warpage amount is as small as possible [0.3: FIG. (Area near the vertex)].

【0058】[0058]

【表1】 [Table 1]

【0059】その際の壁反り量(曲率)ρについて、実
測値(ρmes)を表1に示す。これらの実測値を用
い、まず前記(2)〜(4)式の定数A、BおよびCの
値を決定した。ここでは、σT/TS=0.3としてい
るため、D・[(σT/TS−0.3)]2の値はDの値
によらず0となる。従って、Dの値を無視して考える。
尚、Dの値の決定方法については後述する。そうした上
で、実測値とそれらの式による予測値とのA,Bおよび
Cの値を決定した。その結果、A=−9.708×10
-4(mm/MPa),B=0.8161,C=1.08
2×10-7(1/mm2)となった。求められたA,B
およびCの値並びに(2)〜(4)式を用いて求めた予
測値(ρcal)も表1に示す。また、それらの実測値
(ρmes)および予測値(ρcal)とを、比較して
図14に示す。両者には高い相関関係が認められ、良好
な精度で壁反り量が予測できていることが分かる。
Table 1 shows measured values (ρmes) of the wall warpage (curvature) ρ at that time. Using these measured values, the values of the constants A, B and C in the equations (2) to (4) were determined first. Here, since σ T /TS=0.3, the value of D · [(σ T /TS−0.3)] 2 is 0 regardless of the value of D. Therefore, the value of D is ignored.
The method for determining the value of D will be described later. After that, the values of A, B and C between the actually measured values and the predicted values according to those formulas were determined. As a result, A = -9.708 × 10
-4 (mm / MPa), B = 0.8161, C = 1.08
It was 2 × 10 −7 (1 / mm 2 ). A, B found
Table 1 also shows the values of C and C and the predicted value (ρcal) obtained using the equations (2) to (4). FIG. 14 shows a comparison between the measured value (ρmes) and the predicted value (ρcal). A high correlation is recognized between the two, and it can be seen that the wall warpage amount can be predicted with good accuracy.

【0060】次に、上記の実験で用いた鋼板とはヤング
率が大きく異なるアルミ板の成型にも(2)〜(4)式
および上記実験で求められたA,BおよびCの値が適用
できるかどうかを確認した。下記表2に示す降伏強度Y
P、引張強度TSおよび板厚tの各種アルミ板(3000
系,7000系)を用い、同表2に示す成形条件(ダイ肩半
径rd)で、σT/TS=0.3として[前記図4
(e)参照]でハットチャンネル部材の成形実験を行な
い、上記と同様にして、壁反り量(曲率)ρの実測値
(ρmes)と、前記(2)〜(4)式に基づく予測値
(ρcal)を比較した。その結果を、図15に示す
が、両者には高い相関関係が認められ、良好な精度で壁
反り量が予測できていることが分かる。
Next, the formulas (2) to (4) and the values of A, B, and C obtained in the above experiment are applied to the formation of an aluminum plate having a Young's modulus that is significantly different from the steel plate used in the above experiment. I checked if I could. Yield strength Y shown in Table 2 below
P, tensile strength TS and thickness t of various aluminum plates (3000
7000 series) and σ T /TS=0.3 under the molding conditions (die shoulder radius rd) shown in Table 2 [see FIG.
(E), a hat channel member forming experiment was performed, and in the same manner as described above, the measured value (ρmes) of the wall warpage (curvature) ρ and the predicted value (ρmes) based on the above equations (2) to (4) ρcal). The result is shown in FIG. 15, and a high correlation is recognized between the two, and it can be seen that the wall warpage amount can be predicted with good accuracy.

【0061】[0061]

【表2】 [Table 2]

【0062】次に、張力σTが比較的大きな領域での予
測精度についても確認を行なった。ここでは、張力の影
響を補正するために係数Dの調整を行なった。このと
き、前記表1のNo.2のものについて、BHF(しわ
押さ力)を調整して張力σTを200MPa,300M
Paおよび450MPaと変化させて成形を行なったと
きの壁反り量について、実測値(ρmes)を求めた。
これらの実測値および前記実験で求められた定数A,B
およびCの値を用い、実測値と前記(2)〜(4)式に
よる予測値(ρcal)との差の2乗和が最小になるよ
う、ニュートン−ラプソン法を用いてDの値を決定し
た。その結果、D=3.559となった。それら実測値
(ρmes)と予測値(ρcal)とを比較した結果
を、図16に示す。両者には高い相関関係が認められ、
良好な精度で壁反り量が予測できていることが分かる。
Next, the prediction accuracy in a region where the tension σ T is relatively large was also confirmed. Here, the coefficient D was adjusted to correct the effect of the tension. At this time, No. 1 in Table 1 was used. For the specimen No. 2, the tension σ T was adjusted to 200 MPa and 300 M by adjusting the BHF (wrinkle pressing force).
An actual measurement value (ρmes) was obtained for the amount of wall warpage when molding was performed while changing the pressure to Pa and 450 MPa.
These measured values and the constants A and B obtained in the above experiment
The value of D is determined using the Newton-Raphson method so that the sum of squares of the difference between the actually measured value and the predicted value (ρcal) according to the above equations (2) to (4) is minimized. did. As a result, D = 3.559. FIG. 16 shows a result of comparing the measured value (ρmes) with the predicted value (ρcal). There is a high correlation between the two,
It can be seen that the wall warpage can be predicted with good accuracy.

【0063】実施例2 角度変化量Δθの予測式の予測精度について、基礎曲げ
実験によって評価を行なった。まず、下記表3に示す降
伏強度YP、引張強度TSおよび板厚tの各種鋼板を用
い、同表3に示す成形条件(パンチ肩半径rp)でL曲
げ成形実験を行なった。L曲げ成形実験の状態を模式的
に図17に示す。
Example 2 The prediction accuracy of the prediction formula for the angle variation Δθ was evaluated by a basic bending experiment. First, an L-bending test was performed using various steel plates having a yield strength YP, a tensile strength TS and a plate thickness t shown in Table 3 below and under the forming conditions (punch shoulder radius rp) shown in Table 3. FIG. 17 schematically shows the state of the L-bending test.

【0064】[0064]

【表3】 [Table 3]

【0065】その際の角度変化量Δθについて、実測値
(Δθmes)を表3に示す。これらの実測値を用い、
前記(5)〜(8)式の各定数に値を求めた。定数A,
BおよびCは、壁反り量ρの予測式と同様に、加工硬化
を考慮したみかけの降伏強度σp’を決定するための定
数である。従って、それらの値は前述の壁反り量の実験
で求められた値と同じ値とした。ここでは、rpの影響
を補正するための係数Gについてのみ、実測値とそれら
の式による予測値との差の2乗和が最小となるよう、ニ
ュートン−ラプソン法を用いてその値を決定した。その
結果、G=0.1012(mm)となった。求められた
係数の値および(5)〜(8)式を用いて求められた予
測値(Δθcal)も、さらに表3に示す。これらの実
測値(Δθmes)と予測値(Δθcal)とを比較し
た結果を図18に示す。両者には高い相関関係が認めら
れ、良好な精度で角度変化量が予測できていることが分
かる。
Table 3 shows measured values (Δθmes) of the angle change Δθ at that time. Using these measured values,
Values were obtained for the respective constants of the above equations (5) to (8). Constant A,
B and C are constants for determining the apparent yield strength σp ′ in consideration of work hardening, similarly to the equation for predicting the amount of wall warpage ρ. Therefore, these values were set to the same values as the values obtained in the above-described experiment on the amount of wall warpage. Here, only for the coefficient G for correcting the influence of rp, the value was determined using the Newton-Raphson method so that the sum of squares of the difference between the actually measured value and the predicted value based on these formulas was minimized. . As a result, G = 0.012 (mm). Table 3 also shows the value of the obtained coefficient and the predicted value (Δθcal) obtained using the equations (5) to (8). FIG. 18 shows the result of comparing the measured value (Δθmes) with the predicted value (Δθcal). A high correlation is recognized between the two, and it can be seen that the angle change amount can be predicted with good accuracy.

【0066】次に、パンチ肩半径rpが比較的大きな領
域での予測精度について確認するために、下記表4に示
す降伏強度YP、引張強度TSおよび板厚tの鋼板を用
い、同表4に示す成形条件(パンチ肩半径rp)でU曲
げ成形実験を行なった。U曲げ成形実験の状態を模式的
に図19に示す。
Next, in order to confirm the prediction accuracy in a region where the punch shoulder radius rp is relatively large, a steel plate having a yield strength YP, a tensile strength TS and a plate thickness t shown in Table 4 below was used. A U-bend molding experiment was performed under the indicated molding conditions (punch shoulder radius rp). FIG. 19 schematically shows the state of the U-bending test.

【0067】[0067]

【表4】 [Table 4]

【0068】前記のA,B,CおよびGの値並びに前記
(5)〜(8)式を用いて角度変化量Δθの予測を行な
った。実測値(Δθmes)と、前記(5)〜(8)式
に基づく予測値(Δθcal)を、比較して図20に示
す。両者には高い相関関係が認められ、良好な精度で角
度変化量が予測できていることが分かる。
The angle change Δθ was predicted using the values of A, B, C and G and the equations (5) to (8). FIG. 20 shows a comparison between the actually measured value (Δθmes) and the predicted value (Δθcal) based on the equations (5) to (8). A high correlation is recognized between the two, and it can be seen that the angle change amount can be predicted with good accuracy.

【0069】[0069]

【発明の効果】本発明は以上の様に構成されており、経
験・技術蓄積を有さない技術者が、数値シミュレーショ
ン等の専門知識を有せずとも、プレス成形時の寸法精度
不良量を簡便且つ正確に予測できるようになり、こうし
た方法は、近年特に重要問題とされている寸法精度不良
に対して早急且つ効果的に寸法精度向上対策を打ち出す
ことが可能となり、その技術的意義は極めて大きいもの
と期待される。
The present invention is configured as described above, and a technician who does not have experience and accumulated technology can reduce the amount of dimensional accuracy defects during press molding without having specialized knowledge such as numerical simulation. This method makes it possible to easily and accurately predict, and this method makes it possible to quickly and effectively take measures for improving the dimensional accuracy, which is a particularly important problem in recent years, and its technical significance is extremely high. Expected to be large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ハットチャンネル部材の外観形状例を示す説明
図である。
FIG. 1 is an explanatory diagram showing an example of an external shape of a hat channel member.

【図2】ハットチャンネル部材の主な成形方法を示す概
略説明図である。
FIG. 2 is a schematic explanatory view showing a main method of forming a hat channel member.

【図3】本発明で対象とする寸法精度不良を説明する為
の図である。
FIG. 3 is a diagram for explaining a dimensional accuracy defect targeted by the present invention.

【図4】壁反りに及ぼす主な影響因子と壁反り量ρとの
関係を示したグラフである。
FIG. 4 is a graph showing a relationship between main influencing factors on wall warpage and wall warpage amount ρ.

【図5】従来の予測手法で用いられている応力−ひずみ
線図である。
FIG. 5 is a stress-strain diagram used in a conventional prediction method.

【図6】弾完全塑性体(加工硬化の考慮なし)を仮定し
た応力−ひずみ線図である。
FIG. 6 is a stress-strain diagram assuming an elastic perfect plastic body (without consideration of work hardening).

【図7】プレス成形される材料の壁部における変形履歴
を説明する為の図である。
FIG. 7 is a diagram for explaining a deformation history of a wall portion of a material to be press-formed.

【図8】図7(a)の段階において、材料(図7の着目
点×)の板厚方向に作用するひずみεや応力σの分布、
および材料内の弾性域・塑性域の分布を示した図であ
る。
8 (a) shows the distribution of strain ε and stress σ acting in the thickness direction of the material (the point of interest in FIG. 7) in the stage of FIG. 7 (a);
FIG. 4 is a diagram showing distribution of an elastic region and a plastic region in a material.

【図9】図7(b)の段階において、材料(図7の着目
点×)の板厚方向に作用するひずみεや応力σの分布、
および材料内の弾性域・塑性域の分布を示した図であ
る。
FIG. 9 shows the distribution of strain ε and stress σ acting in the thickness direction of the material (the point of interest in FIG. 7) in the stage of FIG.
FIG. 4 is a diagram showing distribution of an elastic region and a plastic region in a material.

【図10】図7(c)の段階において、材料(図7の着
目点×)の板厚方向に作用するひずみεや応力σの分
布、および材料内の弾性域・塑性域の分布を示した図で
ある。
FIG. 10 shows the distribution of strain ε and stress σ acting in the thickness direction of the material (the point of interest in FIG. 7) and the distribution of elastic and plastic regions in the material at the stage of FIG. FIG.

【図11】離型した後の材料(図7の着目点×)の板厚
方向に作用するひずみεや応力σの分布、および材料内
の弾性域・塑性域の分布を示した図である。
11 is a diagram showing the distribution of strain ε and stress σ acting in the thickness direction of the material after release from the material (the point of interest × in FIG. 7), and the distribution of elastic and plastic regions in the material. .

【図12】本発明で用いる応力−ひずみ線図である。FIG. 12 is a stress-strain diagram used in the present invention.

【図13】角度変化に及ぼす主な影響因子と角度変化量
Δθとの関係を示したグラフである。
FIG. 13 is a graph showing a relationship between a main influencing factor on an angle change and an angle change amount Δθ.

【図14】表1に示した各種鋼板の壁反り量(曲率)ρ
について、実測値(ρmes)と、前記(2)〜(4)
式に基づく予測値(ρcal)を、比較して示したグラ
フである。
FIG. 14 shows the wall warpage (curvature) ρ of various steel plates shown in Table 1.
, The measured value (ρmes) and the above (2) to (4)
It is the graph which showed and compared the prediction value (pcal) based on a formula.

【図15】表2に示した各種アルミ板の壁反り量(曲
率)ρについて、実測値(ρmes)と、前記(2)〜
(4)式に基づく予測値(ρcal)を、比較して示し
たグラフである。
FIG. 15 shows measured values (ρmes) of the wall warpage (curvature) ρ of various aluminum plates shown in Table 2 and the values (2) to (2).
It is the graph which showed and compared the prediction value (pcal) based on Formula (4).

【図16】張力σTが比較的大きな場合の壁反り量(曲
率)ρについて、実測値(ρmes)と、前記(2)〜
(4)式に基づく予測値(ρcal)を、比較して示し
たグラフである。
FIG. 16 shows the measured value (ρmes) of the wall warpage (curvature) ρ when the tension σ T is relatively large, and the above (2) to
It is the graph which showed and compared the prediction value (pcal) based on Formula (4).

【図17】L曲げ成形実験の状態を示す模式図である。FIG. 17 is a schematic view showing a state of an L-bending test.

【図18】表3に示した各種鋼板の角度変化量Δθにつ
いて、実測値(Δθmes)と、前記(5)〜(8)式
に基づく予測値(Δθcal)を、比較して示したグラ
フである。
FIG. 18 is a graph showing a comparison between an actually measured value (Δθmes) and a predicted value (Δθcal) based on the formulas (5) to (8) for the angle change amount Δθ of various steel plates shown in Table 3. is there.

【図19】U曲げ成形実験の状態を示す模式図である。FIG. 19 is a schematic diagram showing a state of a U-bending experiment.

【図20】U曲げ成形時の角度変化量Δθについて、実
測値(Δθmes)と、前記(5)〜(8)式に基づく
予測値(Δθcal)を、比較して示したグラフであ
る。
FIG. 20 is a graph showing a comparison between an actually measured value (Δθmes) and a predicted value (Δθcal) based on the equations (5) to (8) with respect to the angle change Δθ during the U-bending.

【図21】引張強度や板厚が加工硬化に与える影響を示
したグラフである。
FIG. 21 is a graph showing the influence of tensile strength and plate thickness on work hardening.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 金属板のプレス成形時における寸法精度
不良量を予測する方法であって、下記(A)〜(E)の
過程からなるものであることを特徴とする金属板のプレ
ス成形時における寸法精度不良量の予測方法。 (A)金属板について、降伏後は一定の応力値を有する
弾完全塑性体モデルに基づいて応力−ひずみ関係を設定
する、(B)前記弾完全塑性体モデルに基づいた応力−
ひずみ関係を用いて寸法精度不良量の予測式を導く、
(C)金属板について、引張強度以下で降伏強度を超え
る値をみかけの降伏強度として設定する、(D)前記寸
法精度不良量の予測式における降伏強度を前記みかけの
降伏強度で置換することにより加工硬化を加味した寸法
精度不良量の予測式を導く、(E)前記加工硬化を加味
した寸法精度不良量の予測式を用いて、寸法精度不良量
を求める。
1. A method for predicting an amount of dimensional accuracy failure during press forming of a metal plate, comprising the following steps (A) to (E): Method for predicting the amount of dimensional accuracy defects in (A) For a metal plate, a stress-strain relationship is set based on an elastic perfect plastic model having a constant stress value after yielding. (B) A stress based on the elastic perfect plastic model is set.
Deriving a formula for predicting the amount of dimensional accuracy failure using the strain relationship,
(C) For the metal plate, a value that is equal to or less than the tensile strength and exceeds the yield strength is set as an apparent yield strength. (D) By replacing the yield strength in the prediction formula of the dimensional accuracy defect amount with the apparent yield strength, (E) A dimensional accuracy defect amount is obtained using the dimensional accuracy defect amount prediction expression taking into account the work hardening.
【請求項2】 前記みかけの降伏強度として、下記
(1)式によって求められる値を用いる請求項1に記載
の予測方法。 σp’=k・YS+(1−k)TS ……(1) ここで、σp’:みかけの降伏強度(MPa)、YS:
降伏強度(実測値;MPa)、TS:引張強度(実測
値;MPa)、k:内分係数、を夫々示す。
2. The prediction method according to claim 1, wherein a value obtained by the following equation (1) is used as the apparent yield strength. σp ′ = k · YS + (1−k) TS (1) where σp ′: apparent yield strength (MPa), YS:
Yield strength (actual value; MPa), TS: tensile strength (actual value; MPa), k: internal division coefficient, respectively.
【請求項3】前記内分係数kを、前記引張強度TSと板
厚tの比(TS/t)の関数として設定する請求項2に
記載の予測方法。
3. The prediction method according to claim 2, wherein the internal division coefficient k is set as a function of the ratio (TS / t) between the tensile strength TS and the thickness t.
【請求項4】 請求項1に記載の寸法精度不良の予測方
法であって、予測対象の寸法精度不良量がプレス成形時
の壁反り量であり、この壁反り量を求めるための前記加
工硬化を加味した寸法精度不良量の予測式が下記(2)
式である予測方法。 ρ=[3σp’/(E・t)]・{1−D・[(σT/TS)−0.3]2} −C・(rd−5) ……(2) ここで、ρ:壁反り量(曲率;1/mm)、σp’:み
かけの降伏強度(MPa)、E:ヤング率(MPa)、
t:板厚(mm)、TS:引張強度(実測値;MP
a)、σT:壁部に働く張力(MPa)、rd:プレス
成形用工具のダイ肩半径(mm)、C:正の定数(1/
mm2)、D:正の定数、を夫々示す。
4. The method for predicting dimensional accuracy defects according to claim 1, wherein the amount of dimensional accuracy defects to be predicted is an amount of wall warpage at the time of press molding, and the work hardening for obtaining the amount of wall warpage is performed. The formula for predicting the amount of dimensional accuracy defects taking into account the following (2)
A prediction method that is an expression. ρ = [3σp ′ / (E · t)] · {1-D · [(σ T /TS)−0.3] 2 } −C · (rd-5) (2) where ρ: Wall warpage (curvature; 1 / mm), σp ': apparent yield strength (MPa), E: Young's modulus (MPa),
t: plate thickness (mm), TS: tensile strength (actual value; MP
a), σ T : tension acting on the wall (MPa), rd: die shoulder radius (mm) of the press forming tool, C: positive constant (1 /
mm 2 ) and D: a positive constant.
【請求項5】 前記みかけの降伏強度σp’を下記
(3)式に基づいて求める請求項4に記載の予測方法。 σp’=k・YS+(1−k)TS ……(3) ここで、YS:降伏強度(実側値;MPa)、k:内分
係数、を夫々示す。
5. The prediction method according to claim 4, wherein the apparent yield strength σp ′ is obtained based on the following equation (3). σp ′ = k · YS + (1−k) TS (3) Here, YS: yield strength (actual side value; MPa), and k: internal division coefficient, respectively.
【請求項6】 前記内分係数kを下記(4)式に基づい
て求める請求項5に記載の予測方法。 k=A・(TS/t)+B ……(4) ここで、TS:前記引張強度(MPa)、t:前記板厚
(mm)、A:負の定数(mm/MPa)、B:正の定
数、を夫々示す。
6. The prediction method according to claim 5, wherein the internal division coefficient k is obtained based on the following equation (4). k = A · (TS / t) + B (4) where, TS: the tensile strength (MPa), t: the plate thickness (mm), A: negative constant (mm / MPa), B: positive , Respectively.
【請求項7】 請求項1に記載の寸法精度不良の予測方
法であって、予測対象の寸法精度不良量が角度変化量で
あり、この角度変化量を求めるための前記加工硬化を加
味した寸法精度不良量の予測式が下記(5)式および
(6)式である予測方法。 Δθ=−θ・(rp+t/2)・Δρ ……(5) Δρ=[−3σp’/(E・t)]・{1+exp(−G・rp)] ……(6) ここで、Δθ:角度変化量(度)、θ:曲げ角度
(度)、rp:曲げ工具の肩半径(mm)、t:板厚
(mm)、Δρ:曲率変化量(1/mm)、σp’:み
かけの降伏強度(MPa)、E:ヤング率(MPa)、
G:正の定数(mm)、を夫々示す。
7. The method for predicting a dimensional accuracy defect according to claim 1, wherein the amount of the dimensional accuracy defect to be predicted is an angle change amount, and the size considering the work hardening for obtaining the angle change amount. A prediction method in which the prediction formula of the accuracy failure amount is the following formulas (5) and (6). Δθ = −θ · (rp + t / 2) · Δρ (5) Δρ = [− 3σp ′ / (E · t)] · {1 + exp (−G · rp)] (6) Δθ: angle change (degree), θ: bending angle (degree), rp: shoulder radius (mm) of the bending tool, t: plate thickness (mm), Δρ: curvature change (1 / mm), σp ′: Apparent yield strength (MPa), E: Young's modulus (MPa),
G: Positive constant (mm).
【請求項8】 前記みかけの降伏強度σp’を下記
(7)式に基づいて求める請求項7に記載の予測方法。 σp’=k・YS+(1−k)TS ……(7) ここで、YS:降伏強度(実側値;MPa)、TS:引
張強度(実測値;MPa)、k:内分係数、を夫々示
す。
8. The prediction method according to claim 7, wherein the apparent yield strength σp ′ is obtained based on the following equation (7). σp ′ = k · YS + (1−k) TS (7) where YS: yield strength (actual value; MPa), TS: tensile strength (actual value; MPa), k: internal division coefficient Shown respectively.
【請求項9】 前記内分係数を下記(8)式に基づいて
求める請求項8に記載の予測方法。 k=A・(TS/t)+B ……(8) ここで、TS:引張強度(実測値;MPa)、t:板厚
(1/mm)、A:負の定数(mm/MPa)、B:正
の定数、を夫々示す。
9. The prediction method according to claim 8, wherein the internal division coefficient is obtained based on the following equation (8). k = A · (TS / t) + B (8) where, TS: tensile strength (actually measured value; MPa), t: plate thickness (1 / mm), A: negative constant (mm / MPa), B: positive constant.
JP2001021927A 2000-01-31 2001-01-30 Prediction method for dimensional accuracy defects during metal sheet press forming Expired - Fee Related JP3798943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001021927A JP3798943B2 (en) 2000-01-31 2001-01-30 Prediction method for dimensional accuracy defects during metal sheet press forming

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000022773 2000-01-31
JP2000-22773 2000-01-31
JP2001021927A JP3798943B2 (en) 2000-01-31 2001-01-30 Prediction method for dimensional accuracy defects during metal sheet press forming

Publications (2)

Publication Number Publication Date
JP2001286938A true JP2001286938A (en) 2001-10-16
JP3798943B2 JP3798943B2 (en) 2006-07-19

Family

ID=26584548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001021927A Expired - Fee Related JP3798943B2 (en) 2000-01-31 2001-01-30 Prediction method for dimensional accuracy defects during metal sheet press forming

Country Status (1)

Country Link
JP (1) JP3798943B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010036239A (en) * 2008-08-08 2010-02-18 Honda Motor Co Ltd Method for predicting occurrence of deformation
JP2014173637A (en) * 2013-03-07 2014-09-22 Ntn Corp Design method of crowning and manufacturing method of roller bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010036239A (en) * 2008-08-08 2010-02-18 Honda Motor Co Ltd Method for predicting occurrence of deformation
JP2014173637A (en) * 2013-03-07 2014-09-22 Ntn Corp Design method of crowning and manufacturing method of roller bearing

Also Published As

Publication number Publication date
JP3798943B2 (en) 2006-07-19

Similar Documents

Publication Publication Date Title
Li et al. Simulation of springback
US9868145B2 (en) Forming simulation method, forming simulator, program and recording medium therefor, and simulation-based forming method
JP6547763B2 (en) Springback amount prediction method
Hou et al. Springback prediction of sheet metals using improved material models
JP6558515B2 (en) Method for evaluating deformation limit on sheared surface of metal plate, method for predicting cracks, and method for designing press dies
JP2013054001A (en) Stress-strain relation evaluation method and springback amount prediction method
JP4808679B2 (en) Thin plate press die apparatus and press molding method
WO2019017136A1 (en) Method for evaluating deformation limit and method for predicting cracks in sheared surface of metal plate, and method for designing press die
JP2019025533A (en) Press molded article manufacturing method
US20010013239A1 (en) Method for predicting an amount of dimensional accuracy defect at the time of press-forming metal sheet
JP5098901B2 (en) Calculation method of material property parameters
CN107729661B (en) Method for controlling resilience of curved surface stretching flanging of automobile covering part
JP2004042098A (en) Forming simulation analysis method
JP2001286938A (en) Prediction method for dimensional accuracy defect quantity in press-forming metal plate
Thipprakmas et al. Analysis of bending mechanism and spring-back characteristics in the offset Z-bending process
Firat et al. A FE technique to improve the accuracy of drawbead models and verification with channel drawing experiments of a high-strength steel
JP3169787B2 (en) Press forming method for sheet material
JP4305645B2 (en) Simulation method for sheet forming
JPH06154879A (en) Method for bending plate member
WO2024105988A1 (en) Method, device, and program for predicting change in shape of press-formed article, and method for manufacturing press-formed article
JP5389841B2 (en) Springback analysis method, springback analysis device, program, and storage medium
Phanitwong et al. Finite element analysis of spring-back characteristics on asymmetrical Z-shape parts in wiping Z-bending process
JPH09141339A (en) Method for bend-working of extruded shape
Yoshida et al. Material Modeling for Accuracy Improvement of the Springback Prediction of High Strength Steel Sheets
JP2024072327A (en) Method, device and program for predicting shape change of press-molded product, and method for manufacturing press-molded product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060421

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees