JP2001284678A - Spin-valve magnetoresistive effect element - Google Patents

Spin-valve magnetoresistive effect element

Info

Publication number
JP2001284678A
JP2001284678A JP2000076653A JP2000076653A JP2001284678A JP 2001284678 A JP2001284678 A JP 2001284678A JP 2000076653 A JP2000076653 A JP 2000076653A JP 2000076653 A JP2000076653 A JP 2000076653A JP 2001284678 A JP2001284678 A JP 2001284678A
Authority
JP
Japan
Prior art keywords
layer
film
ppm
less
antiferromagnetic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000076653A
Other languages
Japanese (ja)
Inventor
Tomoki Fukagawa
智機 深川
Harunami To
治涛 刀
Masanori Ueno
昌紀 上野
Hiroshi Nishida
宏 西田
Fuminori Higami
文範 樋上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Read Rite Corp
Original Assignee
Read Rite Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Read Rite Corp filed Critical Read Rite Corp
Priority to JP2000076653A priority Critical patent/JP2001284678A/en
Publication of JP2001284678A publication Critical patent/JP2001284678A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)
  • Physical Vapour Deposition (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide high output and improved thermal stability by assuring a good crystallinity even with a very thin antiferromagnetic layer, for larger exchange coupling magnetic field, resulting in higher recording density and smaller size of a magnetoresistive effect magnetic head. SOLUTION: The spin-valve magnetoresistive effect element comprises a magnetiresistive effect film 5 where there are laminated, on a base material layer 4 formed on a substrate 1, an untiferromagnetic layer 6 of Mn alloy such as PtMn which contains, as impurity, oxygen by 200 ppm or less, with 100 ppm or less preferred while 50 ppm or less more preferred, a pin magnetic layer 7, a non-magnetic conductive layer 8, and a free magnetic layer 11. The untiferromagnetic layer is formed by a vacuum melting process or vacuum metallurgy process using a pot of CaO (calcia) refractory while a molten Mn alloy target is used with, as impurity, oxygen concentration 200 ppm or less, with 100 ppm or less preferred while 50 ppm or less more preferred, for film- forming by sputtering.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば磁気記録装
置の再生用磁気ヘッドや磁界検出用センサに使用される
磁気抵抗効果素子に関し、特にスピンバルブ磁気抵抗効
果を利用した磁気抵抗効果素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive element used for, for example, a reproducing magnetic head or a magnetic field detecting sensor of a magnetic recording apparatus, and more particularly to a magnetoresistive element utilizing a spin valve magnetoresistive effect.

【0002】[0002]

【従来の技術】最近、ハードディスク装置等の磁気記録
装置はより一層の高記録密度化が要求されることから、
再生用磁気ヘッドとして、飽和磁界を小さくして磁界感
度を高めることができるスピンバルブ膜からなる磁気抵
抗(MR)センサが利用されている。スピンバルブ膜
は、基板上に非磁性層を挟んで1対の磁性層を積層した
サンドイッチ構造をなし、一方の磁性層(ピン磁性層)
の磁化が、それに隣接する反強磁性層との交換結合磁界
Hexにより素子高さ方向に固定されるのに対し、他方の
磁性層(フリー磁性層)の磁化は、一般に永久磁石の磁
界を利用したハードバイアス法により、素子のトラック
幅方向に単磁区化され、外部磁界により自由に回転す
る。
2. Description of the Related Art Recently, magnetic recording devices such as hard disk devices are required to have higher recording densities.
As a reproducing magnetic head, a magnetoresistive (MR) sensor made of a spin valve film capable of increasing a magnetic field sensitivity by reducing a saturation magnetic field is used. The spin valve film has a sandwich structure in which a pair of magnetic layers are laminated on a substrate with a non-magnetic layer interposed therebetween, and one of the magnetic layers (pin magnetic layer)
Is fixed in the element height direction by the exchange coupling magnetic field Hex with the adjacent antiferromagnetic layer, whereas the magnetization of the other magnetic layer (free magnetic layer) generally uses the magnetic field of a permanent magnet. By the hard bias method described above, the element is formed into a single magnetic domain in the track width direction, and freely rotated by an external magnetic field.

【0003】スピンバルブ型磁気センサは、反強磁性層
による一方向異方性磁界が大きいほど、ピン磁性層を良
好に単磁区化でき、またその磁化が十分に固定されるほ
ど、外部磁界に対する磁気応答の線形性が確保され、磁
気特性が向上する。反強磁性材料としては、例えば特開
平9−35212号公報に記載されるように交換結合磁
界が大きく、耐食性に優れ、ブロッキング温度を高くで
き、及び熱処理(アニール)温度が低いことなどの特性
が要求され、従来から様々な材料が提案されている。し
かしながら、従来から反強磁性材料として一般に使用さ
れているFeMn合金は腐食し易く、温度変化に対して
交換異方性磁界Hexが不安定であるという問題がある。
そのため、上記特開平9−35212号公報記載の薄膜
磁気ヘッドでは、反強磁性層として不規則結晶構造を有
するX−Mn合金(X=Ru,Rh,Ir,Pd,P
t)を使用している。
In a spin-valve magnetic sensor, the larger the unidirectional anisotropic magnetic field due to the antiferromagnetic layer, the better the pinned magnetic layer can be made into a single magnetic domain. The linearity of the magnetic response is secured, and the magnetic characteristics are improved. The antiferromagnetic material has properties such as a large exchange coupling magnetic field, excellent corrosion resistance, a high blocking temperature, and a low heat treatment (annealing) temperature as described in JP-A-9-35212. Various materials have been proposed in the past. However, the FeMn alloy generally used as an antiferromagnetic material has a problem that it is easily corroded, and the exchange anisotropic magnetic field Hex is unstable with respect to a temperature change.
Therefore, in the thin-film magnetic head described in Japanese Patent Application Laid-Open No. 9-35212, an X-Mn alloy (X = Ru, Rh, Ir, Pd, P) having an irregular crystal structure as the antiferromagnetic layer.
t).

【0004】また、IrMn合金、RhMn合金、Fe
Mn合金等は下地層の影響を受け易く、反強磁性層の上
面付近が反強磁性の性質を発揮し難い特徴を有するの
で、ピン磁性層の上に重ねて成膜するか、そうでない場
合には、膜厚を厚くしたり(111)結晶配向性の高い
下地膜を設ける必要がある。また、NiMn合金は、ピ
ン磁性層との交換結合を十分に確保するために、250
℃以上の高温で熱処理する必要があり、そのために、ピ
ン磁性層/非磁性層/フリー磁性層間に金属元素の拡散
が生じてMR比を低下させる虞がある。そこで、かかる
問題を解消するために、特開平10−91921号公報
は、熱的安定性が高くかつ耐食性が良好なPtMn合
金、PtMn−X合金(X=Ni,Pd,Rh,Ru,
Ir,Cr,Fe,Co)、PdMn合金からなる反強
磁性層を提案している。
Further, IrMn alloy, RhMn alloy, FeMn alloy,
Mn alloys and the like are easily affected by the underlayer, and have a feature that the vicinity of the upper surface of the antiferromagnetic layer is unlikely to exhibit antiferromagnetic properties. It is necessary to increase the film thickness or to provide a base film having a high (111) crystal orientation. In addition, the NiMn alloy has a thickness of 250 to ensure sufficient exchange coupling with the pinned magnetic layer.
It is necessary to perform heat treatment at a high temperature of not less than ° C., which may cause diffusion of a metal element between the pinned magnetic layer / non-magnetic layer / free magnetic layer, thereby lowering the MR ratio. In order to solve such a problem, Japanese Unexamined Patent Publication No. Hei 10-91921 discloses a PtMn alloy and a PtMn-X alloy (X = Ni, Pd, Rh, Ru, Ru, PtMn) having high thermal stability and good corrosion resistance.
An antiferromagnetic layer comprising Ir, Cr, Fe, Co) and a PdMn alloy has been proposed.

【0005】他方、反強磁性層は、その膜厚が厚くなる
と、反強磁性層への分流が増大して消費電力が増大する
だけでなく、MR変化率が低下することになる。従っ
て、反強磁性層は、磁気センサの薄型化、消費電力の低
減及び出力向上を図るという観点から、できる限り膜厚
を薄くすることが望ましい。特開平10−177706
号公報には、反強磁性層にPtMn膜を使用することに
より、総合膜厚を小さくしかつ磁気ギャップ長を狭小化
して、検出感度を高めかつ高記録密度に対応し得る、特
にデュアル型及び多層GMR構造に適したスピンバルブ
型薄膜素子が開示されている。
On the other hand, when the thickness of the antiferromagnetic layer is increased, the shunt to the antiferromagnetic layer is increased, so that not only the power consumption is increased, but also the MR ratio is reduced. Therefore, it is desirable that the antiferromagnetic layer be as thin as possible from the viewpoint of reducing the thickness of the magnetic sensor, reducing power consumption and improving output. JP-A-10-177706
Japanese Patent Application Laid-Open No. H11-157,199 discloses that the use of a PtMn film for the antiferromagnetic layer makes it possible to reduce the overall film thickness and the magnetic gap length, thereby increasing the detection sensitivity and supporting a high recording density. A spin-valve thin film element suitable for a multilayer GMR structure is disclosed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述し
たFeMn合金以外の様々なMn系合金を反強磁性層に
用いた場合でも、実用上十分な大きさの安定した交換結
合磁界Hexを確保するためには、反強磁性層の膜厚を少
なくとも250Å又はそれ以上に厚くして、隣接するピ
ン磁性層との界面における(111)結晶配向性を高め
る必要がある。上記特開平10−177706号公報で
は、PtMn膜を用いることにより、反強磁性層の膜厚
を100Å程度に薄くしても比較的高い交換異方性磁界
Hexが得られるとしているが、得られる交換異方性磁界
はせいぜい23.7kA/m(300エルステッド)程
度である。
However, even when various Mn-based alloys other than the above-described FeMn alloy are used for the antiferromagnetic layer, it is necessary to secure a stable exchange coupling magnetic field Hex of a sufficient size for practical use. In order to achieve this, it is necessary to increase the thickness of the antiferromagnetic layer to at least 250 ° or more to enhance the (111) crystal orientation at the interface with the adjacent pinned magnetic layer. JP-A-10-177706 states that a relatively high exchange anisotropic magnetic field Hex can be obtained by using a PtMn film even if the thickness of the antiferromagnetic layer is reduced to about 100 °. The exchange anisotropic magnetic field is at most about 23.7 kA / m (300 Oe).

【0007】また、高橋研らの論文「極清浄プロセスと
スピンバルブGMR薄膜」(日本応用磁気学会誌Vol.2
3,No.7,1999、第1841〜1847頁)は、より一層の高密
度化を図るためには、スピンバルブGMR薄膜素子の膜
厚の極薄化が必須の課題であると指摘している。そし
て、通常のスパッタプロセスに対して不純物濃度を約1
/10000に低減した極清浄雰囲気中で作成した積層
膜は、膜中不純物(酸素)の低減により反強磁性結晶粒
の成長が促進されて、室温では積層膜の交換磁気異方性
が増大し、極薄の高感度スピンバルブGMR膜の作製に
極めて有効なことが報告されている。ところが、高橋ら
は、成膜雰囲気中の清浄化により積層膜の平坦性が劣化
し、その結果GMR効果が極端に低減するとも述べてい
る。
[0007] Takahashi Lab.'S paper "Ultra clean process and spin valve GMR thin film" (Journal of the Japan Society of Applied Magnetics Vol.2)
3, No. 7, 1999, pp. 1841 to 1847) point out that in order to further increase the density, it is essential to make the thickness of the spin valve GMR thin film element extremely thin. I have. Then, the impurity concentration is reduced to about 1 with respect to a normal sputtering process.
In a laminated film formed in an extremely clean atmosphere reduced to / 10,000, the growth of antiferromagnetic crystal grains is promoted by the reduction of impurities (oxygen) in the film, and the exchange magnetic anisotropy of the laminated film increases at room temperature. It has been reported that the method is extremely effective for producing an ultra-thin high-sensitivity spin valve GMR film. However, Takahashi et al. Also state that the flatness of the stacked film is degraded by the cleaning in the film formation atmosphere, and as a result, the GMR effect is extremely reduced.

【0008】この反強磁性膜の高純度化及び低酸素濃度
化に関連して、特開平10−284321号公報には、
耐食性及び熱特性に優れたMn合金からなる反強磁性層
の結晶粒径を5nm以上と大粒径化し、かつ面内の結晶
粒間の結晶方向を揃えることにより、強磁性膜との十分
な交換結合力が得られる交換結合膜及び磁気抵抗効果素
子が記載されている。同公報によれば、この反強磁性層
は、酸素含有量が1重量%以下のMn合金ターゲットを
用いて成膜することにより、再現性良く形成することが
できる。
Japanese Patent Application Laid-Open No. 10-284321 discloses a technique for purifying the antiferromagnetic film with high purity and low oxygen concentration.
By increasing the crystal grain size of the antiferromagnetic layer made of a Mn alloy having excellent corrosion resistance and thermal properties to 5 nm or more, and by aligning the crystal directions between in-plane crystal grains, a sufficient ferromagnetic film can be obtained. An exchange coupling film and a magnetoresistive element capable of obtaining an exchange coupling force are described. According to the publication, this antiferromagnetic layer can be formed with good reproducibility by forming a film using a Mn alloy target having an oxygen content of 1% by weight or less.

【0009】また、特開平10−340813号公報に
は、反強磁性層に不純物として濃度1〜2000原子p
pmの酸素を含有することにより、熱安定性に優れ、磁
性多層膜からなるスピンバルブ型の磁気抵抗効果膜及び
磁気ヘッドが開示されている。この反強磁性層はスパッ
タ法により形成されるが、酸素含有量が600ppm以
下のターゲットを用い、かつスパッタガス雰囲気中の不
純物及びH2 Oの濃度を或る値以下に設定する必要があ
る。更に、使用する真空成膜装置の到達圧力は2×10
-9Torr(2.66×10-7Pa)以下にすることが必要
で、その実現には、シール部に金属ガスケット、ベーキ
ング装置、2×10-9Torr以下で作動する排気ポンプな
どを含む特殊な仕様のスパッタ装置が必要となる。
Japanese Patent Application Laid-Open No. 10-40813 discloses that an antiferromagnetic layer has a concentration of 1 to 2000 atom p as an impurity.
A spin-valve type magnetoresistive film and a magnetic head which are excellent in thermal stability by containing pm of oxygen and are composed of a magnetic multilayer film are disclosed. This antiferromagnetic layer is formed by a sputtering method. It is necessary to use a target having an oxygen content of 600 ppm or less and set the concentrations of impurities and H 2 O in a sputtering gas atmosphere to a certain value or less. Furthermore, the ultimate pressure of the vacuum film forming apparatus used is 2 × 10
-9 Torr (2.66 × 10 -7 Pa) or less is required. To achieve this, a metal gasket, a baking device, and an exhaust pump operating at 2 × 10 -9 Torr or less are included in the seal portion. A sputter device with special specifications is required.

【0010】本発明は、上述した従来技術の問題点に鑑
みてなされたものであり、その目的は、Mn系規則化合
金を反強磁性層に用いたスピンバルブ型の磁気抵抗効果
素子において、反強磁性層を極薄膜化しても良好な結晶
性を確保することができ、それにより大きな交換結合磁
界を確保して高出力化を図り、かつ熱安定性を著しく向
上させることにある。更に本発明の目的は、より高記録
密度化及び小型化を実現できる高性能のスピンバルブ型
磁気抵抗効果磁気ヘッドを提供することにある。
The present invention has been made in view of the above-mentioned problems of the prior art, and has as its object to provide a spin-valve magnetoresistive element using a Mn-based ordered alloy for an antiferromagnetic layer. Even if the antiferromagnetic layer is made extremely thin, good crystallinity can be ensured, and thereby a large exchange coupling magnetic field is ensured to achieve high output and remarkably improve thermal stability. It is a further object of the present invention to provide a high-performance spin-valve magnetoresistive head capable of achieving higher recording density and smaller size.

【0011】[0011]

【課題を解決するための手段】本発明によれば、上記目
的を達成するために、基板上に非磁性導電層を挟んで配
置された1対の磁性層と、一方の前記磁性層に隣接する
反強磁性層とを積層した磁気抵抗効果膜を備え、CaO
(カルシア)質耐火物のるつぼを用いた真空溶解法又は
真空冶金法により形成され、不純物として濃度200p
pm以下の酸素を含有する溶解Mn系合金ターゲットを
用いて、スパッタリングにより前記反強磁性層を形成し
たことを特徴とするスピンバルブ磁気抵抗効果素子が提
供される。
According to the present invention, in order to achieve the above object, a pair of magnetic layers disposed on a substrate with a nonmagnetic conductive layer interposed therebetween, and a pair of magnetic layers adjacent to one of the magnetic layers A magnetoresistive film in which an antiferromagnetic layer,
It is formed by a vacuum melting method or a vacuum metallurgy method using a (calcia) refractory crucible, and has a concentration of 200 p as an impurity.
A spin-valve magnetoresistive element is provided, wherein the antiferromagnetic layer is formed by sputtering using a molten Mn-based alloy target containing oxygen of pm or less.

【0012】更に本発明によれば、前記反強磁性層が、
不純物として酸素を200ppm以下の濃度で含有する
Mn系合金からなることを特徴とするスピンバルブ磁気
抵抗効果素子が提供される。
Further, according to the present invention, the antiferromagnetic layer comprises:
A spin-valve magnetoresistive element comprising a Mn-based alloy containing oxygen at a concentration of 200 ppm or less as an impurity is provided.

【0013】反強磁性層に使用されるMn系合金は、通
常XMn合金(XはPt,Ni,Ru,Pd,Ir,C
r又はこれらのいずれか2種以上)であるが、これらは
一般に酸化し易い性質がある。従来、一般に反強磁性層
をスパッタリングするために使用されているターゲット
は、金属又は合金粉末を焼結させて得られる焼結ターゲ
ットであるため、不純物としての酸素含有量が多くなり
がちで、特にMn系合金ターゲットの酸素濃度を低減す
ることは困難である。また、従来の酸化マグネシウム、
アルミナ又はシリカ系耐火物等のるつぼを用いて、金属
又は合金粉末を溶解させて得られるターゲットも、同様
にその酸素濃度を著しく低減することが困難である。
The Mn alloy used for the antiferromagnetic layer is usually an XMn alloy (X is Pt, Ni, Ru, Pd, Ir, C
r or any two or more of these), which generally have the property of being easily oxidized. Conventionally, a target generally used for sputtering an antiferromagnetic layer is a sintered target obtained by sintering a metal or alloy powder, so that the oxygen content as an impurity tends to increase, particularly It is difficult to reduce the oxygen concentration of the Mn-based alloy target. Also, conventional magnesium oxide,
Similarly, it is difficult to significantly reduce the oxygen concentration of a target obtained by melting a metal or alloy powder using a crucible such as an alumina or silica refractory.

【0014】これに対し、CaO質耐火物のるつぼを用
いた真空溶解法は、真空又はAr雰囲気下において、前
記るつぼ中で、Al系合金を適量添加して、Mn系合金
を高温溶解させて精錬することにより、酸素・硫黄等の
不純物を極めて低レベルに除去することができ、それに
より不純物として含有する酸素の濃度が200ppm以
下のMn系合金ターゲットを形成することができる。本
発明によれば、この合金ターゲットを用いることによ
り、反強磁性層の不純物酸素濃度を200ppm以下
に、好ましくは50ppm以下に低減できるので、その
膜厚を例えば400Å以下、好ましくは100Å以下の
極薄膜にしても良好な結晶性を確保でき、隣接する磁性
層との間で大きな交換結合磁界を確保することができ
る。
On the other hand, the vacuum melting method using a crucible made of a CaO refractory is performed by adding an appropriate amount of an Al-based alloy and melting a Mn-based alloy at a high temperature in the crucible under a vacuum or Ar atmosphere. By refining, impurities such as oxygen and sulfur can be removed to an extremely low level, whereby a Mn-based alloy target in which the concentration of oxygen contained as impurities is 200 ppm or less can be formed. According to the present invention, by using this alloy target, the impurity oxygen concentration of the antiferromagnetic layer can be reduced to 200 ppm or less, preferably to 50 ppm or less. Good crystallinity can be ensured even with a thin film, and a large exchange coupling magnetic field can be ensured between adjacent magnetic layers.

【0015】[0015]

【発明の実施の形態】以下に、本発明の好適な実施の形
態について添付の図面を参照して詳細に説明する。図1
は、本発明を適用したボトムスピンバルブ磁気抵抗効果
素子をABS(空気ベアリング面)側から見た断面図で
ある。この磁気抵抗効果素子は、ガラスやシリコン、A
l2O3・TiCなどのセラミック材料からなりかつアル
ミナ(Al2O3)等の絶縁層で被覆したる基板1の上
に、Ta膜2と(NiFe)75Cr25膜3とからなる下
地層4が形成され、その上にボトムスピンバルブ構造の
磁気抵抗(MR)膜5が積層されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG.
1 is a sectional view of a bottom spin valve magnetoresistive element to which the present invention is applied, as viewed from an ABS (air bearing surface) side. This magnetoresistive element is made of glass, silicon, A
An underlayer 4 made of a Ta film 2 and a (NiFe) 75Cr25 film 3 is formed on a substrate 1 made of a ceramic material such as l2O3.TiC and covered with an insulating layer such as alumina (Al2O3). A magnetoresistive (MR) film 5 having a bottom spin valve structure is laminated thereon.

【0016】MR膜5は、下地層4の上に積層したPt
Mn合金からなる反強磁性層6と、Co合金膜からなる
ピン磁性層7と、Cu膜からなる非磁性導電層8と、C
o合金膜9及びNi80Fe20膜10からなるフリー磁性
層11とを有する。MR膜5は、成膜後に真空磁場中で
所定の熱処理を行うことにより、反強磁性層6を規則化
させかつピン磁性層7に一方向異方性を与えて、その磁
化配向を固定する。MR膜5の上には、Taからなる保
護膜12が形成されている。MR膜5の両側は、所定の
トラック幅に合わせてエッチングにより除去され、ハー
ドバイアス層及びセンス電流を流すための電極としての
導電リード(共に図示せず)等が形成される。更にこの
積層構造全体をアルミナ絶縁層で被覆すると、スピンバ
ルブMRセンサが完成する。
The MR film 5 is made of Pt laminated on the underlayer 4.
An antiferromagnetic layer 6 made of a Mn alloy, a pinned magnetic layer 7 made of a Co alloy film, a nonmagnetic conductive layer 8 made of a Cu film,
and a free magnetic layer 11 composed of an o-alloy film 9 and a Ni80Fe20 film 10. The MR film 5 is subjected to a predetermined heat treatment in a vacuum magnetic field after film formation, thereby ordering the antiferromagnetic layer 6 and imparting unidirectional anisotropy to the pinned magnetic layer 7 to fix its magnetization orientation. . On the MR film 5, a protective film 12 made of Ta is formed. Both sides of the MR film 5 are removed by etching according to a predetermined track width, and a hard bias layer and conductive leads (both not shown) as electrodes for flowing a sense current are formed. Further, when the entire laminated structure is covered with an alumina insulating layer, a spin valve MR sensor is completed.

【0017】前記各膜層は、例えばDCスパッタリング
により連続的に成膜される。特に反強磁性層6は、不純
物として濃度200ppm以下の酸素を含有するPtM
n合金ターゲットを用いてスパッタリングすることによ
り形成する。このように極めて低レベルにまで酸素を除
去したターゲットは、CaO質耐火物のるつぼを使用
し、真空又はAr雰囲気下において、Al系合金を適量
添加して精錬する真空溶解法を用いることにより形成す
ることができる。更にこの方法は、酸素以外に硫黄等の
不純物をも極めて低レベルに除去することができる。
Each of the above film layers is continuously formed by, for example, DC sputtering. In particular, the antiferromagnetic layer 6 is made of PtM containing oxygen having a concentration of 200 ppm or less as an impurity.
It is formed by sputtering using an n-alloy target. Such a target from which oxygen has been removed to an extremely low level is formed by using a CaO refractory crucible and using a vacuum melting method in which an appropriate amount of an Al-based alloy is added and refined in a vacuum or Ar atmosphere. can do. Further, this method can remove impurities such as sulfur in addition to oxygen to an extremely low level.

【0018】この溶解PtMn合金ターゲットを使用す
ることにより、反強磁性層6は、不純物として酸素の含
有量が200ppm以下に低減する。より好ましくは酸
素濃度100ppm以下、更に好ましくは50ppm以
下のPtMn合金ターゲットを用いることにより、反強
磁性層の酸素濃度を100ppm以下、又は50ppm
以下にまで低減でき、それによりピン磁性層7とのより
大きな交換結合を得ることができる。当然ながら、スパ
ッタ装置は、成膜時に真空チャンバ内の真空度を十分に
下げ得る性能が要求される。しかし、上述した特開平1
0−340813号公報の場合のような10-7Pa(1
-9Torr)台の超高真空にする装置は必要でなく、前記
反強磁性層の形成は、通常使用されている1.33×1
-6〜6.65×10-6Pa(1×10-8〜5×10-8
Torr)程度の真空度でスパッタリングすることが好まし
い。本発明によれば、溶解Mn系合金ターゲットの不純
物濃度が十分低いために、この程度の真空度でも十分に
大きな交換結合を得ることができる。また、スパッタガ
スとして使用するArガス等も、その純度を十分に高め
て酸素及びその他の不純物濃度を小さくする必要があ
る。尚、本実施例において酸素不純物の濃度は、公知の
不活性ガス搬送溶融赤外線吸収法により測定されるもの
である。
By using this molten PtMn alloy target, the antiferromagnetic layer 6 has an oxygen content of 200 ppm or less as an impurity. More preferably, by using a PtMn alloy target having an oxygen concentration of 100 ppm or less, more preferably 50 ppm or less, the oxygen concentration of the antiferromagnetic layer is reduced to 100 ppm or less, or 50 ppm or less.
Thus, the exchange coupling with the pinned magnetic layer 7 can be increased. Naturally, the sputtering apparatus is required to have a performance capable of sufficiently reducing the degree of vacuum in the vacuum chamber during film formation. However, Japanese Patent Laid-Open No.
No. 10 -7 Pa (1) as in the case of
An apparatus for creating an ultra-high vacuum of the order of 0 -9 Torr is not required, and the formation of the antiferromagnetic layer is carried out by using a normally used 1.33 × 1
0 -6 to 6.65 × 10 -6 Pa (1 × 10 -8 to 5 × 10 -8
It is preferable to perform sputtering at a degree of vacuum of about Torr). According to the present invention, since the impurity concentration of the molten Mn-based alloy target is sufficiently low, a sufficiently large exchange coupling can be obtained even at such a degree of vacuum. Further, it is necessary to sufficiently increase the purity of Ar gas and the like used as a sputtering gas so as to reduce the concentration of oxygen and other impurities. In this example, the concentration of the oxygen impurity is measured by a known inert gas carrier melting infrared absorption method.

【0019】反強磁性層6の膜厚は、約10〜400Å
の範囲に、好ましくは150Å以下に、より好ましくは
100Å以下に設定する。本発明によれば、このように
反強磁性層の膜厚を極薄にしても、良好な結晶性を確保
することができ、従ってピン磁性層7との間で十分大き
な交換結合磁界を発揮させることができる。更に、反強
磁性層6のように磁気抵抗効果に関係しない膜層に流れ
る余分かつ無駄な電流が、その極薄膜化により減少する
ので、磁気抵抗効果素子の消費電力を少なくしかつ出力
の向上を図ることができる。
The thickness of the antiferromagnetic layer 6 is about 10 to 400 °
, Preferably set to 150 ° or less, more preferably 100 ° or less. According to the present invention, even if the thickness of the antiferromagnetic layer is made extremely thin, good crystallinity can be ensured, and therefore a sufficiently large exchange coupling magnetic field with the pinned magnetic layer 7 is exhibited. Can be done. Furthermore, the extra and useless current flowing in the film layer not related to the magnetoresistance effect such as the antiferromagnetic layer 6 is reduced by making it extremely thin, so that the power consumption of the magnetoresistance effect element is reduced and the output is improved. Can be achieved.

【0020】反強磁性層6は、その基板側の界面から少
なくとも膜厚50Åまでの層部分における平均結晶粒径
が20Å以上であることが好ましい。特にPtMn反強
磁性層がfcc(面心立方晶系)又はfct(面心正方
晶系)の結晶構造を有する場合、ピン磁性層7との界面
における強い(111)配向が得られるので、好都合で
ある。更に、隣接する下地層の(NiFe)75Cr25膜
3が20Å以上の平均結晶粒径を有する場合には、その
上に反強磁性層をエピタキシャルに成長させることがで
きるので、良好な(111)結晶配向性を確保すること
ができるので好ましい。
The antiferromagnetic layer 6 preferably has an average crystal grain size of 20 ° or more in a layer portion having a thickness of at least 50 ° from the interface on the substrate side. In particular, when the PtMn antiferromagnetic layer has an fcc (face-centered cubic) or fct (face-centered tetragonal) crystal structure, a strong (111) orientation at the interface with the pinned magnetic layer 7 can be obtained, which is advantageous. It is. Further, when the (NiFe) 75Cr25 film 3 of the adjacent underlayer has an average crystal grain size of 20 ° or more, an antiferromagnetic layer can be epitaxially grown thereon, so that a good (111) crystal can be obtained. This is preferable because the orientation can be ensured.

【0021】本発明の反強磁性層の材料としてPtMn
合金は、Ptが比較的酸化されにくい材料であることか
ら、特に好ましいが、それ以外に、Mnとの合金を形成
しかつ反強磁性を発現する元素、即ちPt,Ni,R
u,Pd,Ir,Cr又はこれらのいずれか2種以上と
のMn系合金を用いることができる。その場合にも、同
様に溶解ターゲットを用いてスパッタリングすることに
より、その膜厚を極薄にしても良好な結晶性を確保で
き、大きな交換結合磁界を発揮する反強磁性層を得るこ
とができる。
The material of the antiferromagnetic layer of the present invention is PtMn.
The alloy is particularly preferable because Pt is a material that is relatively hard to be oxidized. In addition, Pt, Ni, and R are elements that form an alloy with Mn and exhibit antiferromagnetism.
u, Pd, Ir, Cr or a Mn-based alloy with any two or more of these can be used. Also in this case, by performing sputtering using a melting target in the same manner, good crystallinity can be secured even when the film thickness is extremely thin, and an antiferromagnetic layer exhibiting a large exchange coupling magnetic field can be obtained. .

【0022】本発明は、図1に関連して上述したボトム
スピンバルブ構造だけでなく、反強磁性層を基板とは反
対側に配置した所謂トップスピンバルブ構造、2組のピ
ン磁性層と反強磁性層とをフリー磁性層を挟んで対称に
配置するデュアルスピンバルブ構造、ピン磁性層が非磁
性膜を挟んで反強磁性的に結合する1対の強磁性膜から
構成され、かつ印加磁界の存在下で反強磁性層とそれに
隣接する一方の強磁性膜とが交換結合するシンセティッ
クタイプのスピンバルブ構造など、公知の様々な構造の
スピンバルブMR素子に同様に適用することができる。
The present invention has a so-called top spin valve structure in which an antiferromagnetic layer is arranged on the side opposite to the substrate, in addition to the bottom spin valve structure described above with reference to FIG. A dual spin valve structure in which a ferromagnetic layer and a free magnetic layer are arranged symmetrically, a pinned magnetic layer is composed of a pair of ferromagnetic films antiferromagnetically coupled with a nonmagnetic film interposed, and an applied magnetic field The present invention can be similarly applied to spin valve MR elements having various known structures, such as a synthetic type spin valve structure in which an antiferromagnetic layer and one of the adjacent ferromagnetic films are exchange-coupled in the presence of.

【0023】[0023]

【実施例】(実施例1)図1のスピンバルブMR素子に
おいて、ガラス基板の上にTa30Å/(NiFe)75
Cr2540Å/PtMntÅ/Co合金21Å/Cu2
6Å/Co合金10Å/Ni80Fe2050Å/Ta30
ÅのスピンバルブMR膜を、PtMn層の膜厚tを変え
てDCスパッタリングにより連続して成膜し、PtMn
層規則化のために1.1T(テスラ)の真空磁場中で2
70℃×10時間熱処理を施した。PtMn層は、溶解
PtMn合金ターゲットを用いたものと、比較例として
従来の焼結ターゲットを用いたものとを形成し、それぞ
れについて反強磁性層膜厚tに対する交換結合磁界Hex
を測定した。反強磁性層膜厚tは、実施例1について5
0、75、100、150、200、250、300、
400Åとし、比較例について150、200、25
0、300、400Åとした。
(Embodiment 1) In the spin-valve MR element shown in FIG. 1, Ta30 @ / (NiFe) 75 was formed on a glass substrate.
Cr2540Å / PtMntÅ / Co alloy 21Å / Cu2
6Å / Co alloy 10Å / Ni80Fe2050Å / Ta30
The spin valve MR film of Å was continuously formed by DC sputtering while changing the thickness t of the PtMn layer,
2 in a vacuum magnetic field of 1.1 T (Tesla) for layer ordering.
Heat treatment was performed at 70 ° C. × 10 hours. The PtMn layer was formed by using a melted PtMn alloy target and a PtMn layer using a conventional sintered target as a comparative example.
Was measured. The film thickness t of the antiferromagnetic layer was 5 in Example 1.
0, 75, 100, 150, 200, 250, 300,
400 °, and 150, 200, 25 for the comparative example.
0, 300, and 400 °.

【0024】その結果を図2に示す。同図において、い
ずれの場合も、反強磁性層膜厚tが薄くなるに連れて、
交換結合磁界Hexが低下している。しかしながら、本実
施例の溶解PtMn合金ターゲットを用いた場合の方
が、従来のターゲットを用いた比較例よりも、Hexの低
下の度合いが大幅に小さく、膜厚t=100Å以下でも
比較的高いHex値を維持し得ることが分かる。
FIG. 2 shows the results. In this figure, in each case, as the thickness t of the antiferromagnetic layer becomes smaller,
The exchange coupling magnetic field Hex has decreased. However, when the molten PtMn alloy target of this example was used, the degree of decrease in Hex was much smaller than in the comparative example using the conventional target, and the Hex was relatively high even at a film thickness t = 100 ° or less. It can be seen that the value can be maintained.

【0025】(実施例2)実施例1におけるピン磁性層
をCo合金20Å/Ru8.5Å/Co合金26Åの積
層膜で形成したシンセティックタイプのスピンバルブ膜
を、同様にPtMn層の膜厚tを変えてDCスパッタリ
ングにより連続して成膜し、PtMn層規則化のために
1.1T(テスラ)の真空磁場中で270℃×10時間
熱処理を施した。PtMn層は、溶解PtMn合金ター
ゲットを用いたものと、比較例として従来の焼結ターゲ
ットを用いたものとを形成し、それぞれについて反強磁
性層膜厚tに対する交換結合磁界Hexを測定した。反強
磁性層膜厚tは、実施例1について75、100、15
0、200、250Åとし、比較例について75、10
0、150、200、250、300Åとした。
(Example 2) A synthetic spin valve film in which the pin magnetic layer in Example 1 was formed of a laminated film of Co alloy 20% / Ru 8.5% / Co alloy 26% was similarly formed by changing the thickness t of the PtMn layer. Instead, a film was continuously formed by DC sputtering, and a heat treatment was performed at 270 ° C. × 10 hours in a vacuum magnetic field of 1.1 T (tesla) for ordering the PtMn layer. The PtMn layer was formed using a molten PtMn alloy target and a PtMn layer using a conventional sintered target as a comparative example, and the exchange coupling magnetic field Hex with respect to the antiferromagnetic layer thickness t was measured for each. The thickness t of the antiferromagnetic layer was 75, 100, 15 for Example 1.
0, 200, 250 °, and 75, 10 for the comparative example.
0, 150, 200, 250, 300 °.

【0026】その結果を図3に示す。実施例1と同様
に、いずれの場合も、反強磁性層膜厚tが薄くなるに連
れて、交換結合磁界Hexが低下しているが、本発明の溶
解PtMn合金ターゲットを用いた場合の方が、従来の
ものよりもHexの低下の度合いが大幅に小さく、膜厚t
=100Å以下でも比較的高いHex値を維持し得ること
が分かる。
FIG. 3 shows the results. As in the first embodiment, in each case, the exchange coupling magnetic field Hex decreases as the thickness t of the antiferromagnetic layer decreases, but the exchange coupling magnetic field Hex decreases when the molten PtMn alloy target of the present invention is used. However, the degree of decrease of Hex is much smaller than the conventional one, and the film thickness t
It can be seen that a relatively high Hex value can be maintained even when = 100 ° or less.

【0027】(実施例3)実施例1と同じスピンバルブ
MR素子を、PtMn層については溶解PtMn合金タ
ーゲットを用いてかつその膜厚tを変えてDCスパッタ
リングにより成膜し、1.1T(テスラ)の真空磁場中
で270℃×10時間熱処理を施した。比較例として同
じ膜構成のスピンバルブMR素子を、PtMn層につい
て従来の焼結ターゲットを用いて成膜した。反強磁性層
膜厚tを100、150、200、250Åとし、それ
ぞれについて温度の変化(25℃から400℃まで25
℃間隔で)に対する交換結合磁界Hexを測定した。
(Embodiment 3) The same spin valve MR element as in Embodiment 1 was formed by DC sputtering using a molten PtMn alloy target for the PtMn layer and changing the thickness t of the PtMn layer. ) In a vacuum magnetic field of 270 ° C. × 10 hours. As a comparative example, a spin valve MR element having the same film configuration was formed on a PtMn layer using a conventional sintered target. The thickness t of the antiferromagnetic layer is set to 100, 150, 200, and 250 °, and the temperature of each is changed (25 ° C. to 400 ° C.
(At intervals of ° C).

【0028】実施例3の測定結果を図4に、比較例の測
定結果を図5にそれぞれ示す。これらの図において、特
に反強磁性層膜厚t=100、150Åのときに両者の
相違が顕著に現れている。即ち、従来のターゲットを用
いた場合に比して、本実施例の溶解PtMn合金ターゲ
ットを用いた場合には、比較的高温まで比較的高いHex
値を維持していることが分かる。
FIG. 4 shows the measurement results of Example 3 and FIG. 5 shows the measurement results of Comparative Example. In these figures, the difference between the two is particularly noticeable when the thickness of the antiferromagnetic layer is t = 100, 150 °. That is, when the molten PtMn alloy target of this embodiment is used, a relatively high Hex
It can be seen that the value is maintained.

【0029】[0029]

【発明の効果】本発明によれば、上述したようにCaO
(カルシア)質耐火物のるつぼを用いた真空溶解法によ
り形成したMn系合金ターゲットを用いることにより、
反強磁性層の不純物酸素濃度を著しく低減でき、その膜
厚を極薄膜にしても良好な結晶性を確保できるので、大
きな交換結合磁界及び優れた熱安定性を確保することが
できる。従って、より高記録密度化及び小型化が可能な
高性能のスピンバルブ型磁気抵抗効果磁気ヘッドを実現
することができる。
According to the present invention, as described above, CaO
By using a Mn-based alloy target formed by a vacuum melting method using a (calcia) refractory crucible,
Since the impurity oxygen concentration of the antiferromagnetic layer can be remarkably reduced and excellent crystallinity can be ensured even when the film thickness is extremely thin, a large exchange coupling magnetic field and excellent thermal stability can be ensured. Accordingly, a high-performance spin-valve magnetoresistive magnetic head capable of achieving higher recording density and smaller size can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用したボトムスピンバルブ磁気抵抗
効果素子の要部をABS側から模式的に見た断面図。
FIG. 1 is a cross-sectional view schematically showing a main part of a bottom spin-valve magnetoresistive element to which the present invention is applied, viewed from the ABS side.

【図2】図1のボトムスピンバルブ磁気抵抗効果膜の交
換結合磁場HexとPtMn反強磁性層の膜厚との関係を
示す線図。
FIG. 2 is a diagram showing the relationship between the exchange coupling magnetic field Hex and the thickness of a PtMn antiferromagnetic layer of the bottom spin valve magnetoresistive film of FIG.

【図3】シンセティックタイプのボトムスピンバルブ磁
気抵抗効果膜の交換結合磁場HexとPtMn反強磁性層
の膜厚との関係を示す線図。
FIG. 3 is a diagram showing the relationship between the exchange coupling magnetic field Hex and the thickness of a PtMn antiferromagnetic layer of a synthetic type bottom spin valve magnetoresistive film.

【図4】図1のボトムスピンバルブ磁気抵抗効果膜の交
換結合磁場Hexと温度との関係を示す線図。
FIG. 4 is a diagram showing a relationship between exchange coupling magnetic field Hex and temperature of the bottom spin valve magnetoresistive film of FIG. 1;

【図5】従来の焼結ターゲットを用いて成膜したPtM
n反強磁性層を有するボトムスピンバルブ磁気抵抗効果
膜の交換結合磁場Hexと温度との関係を示す線図。
FIG. 5 shows a PtM film formed using a conventional sintered target.
FIG. 4 is a diagram showing a relationship between exchange coupling magnetic field Hex and temperature of a bottom spin valve magnetoresistive film having an n antiferromagnetic layer.

【符号の説明】[Explanation of symbols]

1 基板 2 Ta膜 3 NiFeCr膜 4 下地層 5 MR膜 6 反強磁性層 7 ピン磁性層 8 非磁性導電層 9 CoFe膜 10 NiFe膜 11 フリー磁性層 12 保護膜 DESCRIPTION OF SYMBOLS 1 Substrate 2 Ta film 3 NiFeCr film 4 Underlayer 5 MR film 6 Antiferromagnetic layer 7 Pin magnetic layer 8 Nonmagnetic conductive layer 9 CoFe film 10 NiFe film 11 Free magnetic layer 12 Protective film

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01F 10/32 H01L 43/12 H01L 43/12 G01R 33/06 R (72)発明者 刀 治涛 大阪府三島郡島本町江川2−15−17 リー ドライト・エスエムアイ株式会社内 (72)発明者 上野 昌紀 大阪府三島郡島本町江川2−15−17 リー ドライト・エスエムアイ株式会社内 (72)発明者 西田 宏 大阪府三島郡島本町江川2−15−17 リー ドライト・エスエムアイ株式会社内 (72)発明者 樋上 文範 大阪府三島郡島本町江川2−15−17 リー ドライト・エスエムアイ株式会社内 Fターム(参考) 2G017 AD55 AD63 AD65 4K029 AA09 BA02 BA21 BB02 BD11 CA05 DC04 DC08 5D034 BA05 BA21 CA00 CA08 DA05 5E049 AA10 BA12 BA16 CB02 CC01 DB02 DB12 GC02 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01F 10/32 H01L 43/12 H01L 43/12 G01R 33/06 R (72) Inventor Jitao Osaka 2-15-17 Egawa, Shimamoto-cho, Mishima-gun Reedlight SMI Co., Ltd. (72) Inventor Masaki Ueno 2-15-17 Egawa, Shimamoto-cho, Mishima-gun, Osaka Pref. Hiroshi Nishida 2-15-17 Egawa, Shimamoto-cho, Mishima-gun, Osaka Prefecture (72) Inventor Fuminori Higami 2-15-17 Egawa, Shimamoto-cho, Mishima-gun, Osaka F: Inside readlight SMI Term (reference) 2G017 AD55 AD63 AD65 4K029 AA09 BA02 BA21 BB02 BD11 CA05 DC04 DC08 5D034 BA05 BA21 CA00 CA08 DA05 5E049 AA10 BA12 BA16 CB02 CC01 DB02 DB12 GC02

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基板上に非磁性導電層を挟んで配置され
た1対の磁性層と、一方の前記磁性層に隣接する反強磁
性層とを積層した磁気抵抗効果膜を備えるスピンバルブ
磁気抵抗効果素子であって、 CaO(カルシア)質耐火物のるつぼを用いた真空溶解
法により形成され、不純物として濃度200ppm以下
の酸素を含有する溶解Mn系合金ターゲットを用いて、
スパッタリングにより前記反強磁性層を形成したことを
特徴とするスピンバルブ磁気抵抗効果素子。
1. A spin valve magnet comprising a magnetoresistive film in which a pair of magnetic layers disposed on a substrate with a nonmagnetic conductive layer interposed therebetween and an antiferromagnetic layer adjacent to one of the magnetic layers is stacked. A resistance effect element, formed by a vacuum melting method using a crucible of CaO (calcia) refractory and using a molten Mn-based alloy target containing oxygen having a concentration of 200 ppm or less as an impurity,
A spin-valve magnetoresistive element, wherein the antiferromagnetic layer is formed by sputtering.
【請求項2】 前記反強磁性層が、不純物として酸素を
200ppm以下の濃度で含有するMn系合金からなる
ことを特徴とする請求項1に記載のスピンバルブ磁気抵
抗効果素子。
2. The spin-valve magnetoresistive element according to claim 1, wherein the antiferromagnetic layer is made of a Mn-based alloy containing oxygen as an impurity at a concentration of 200 ppm or less.
JP2000076653A 2000-03-17 2000-03-17 Spin-valve magnetoresistive effect element Pending JP2001284678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000076653A JP2001284678A (en) 2000-03-17 2000-03-17 Spin-valve magnetoresistive effect element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000076653A JP2001284678A (en) 2000-03-17 2000-03-17 Spin-valve magnetoresistive effect element

Publications (1)

Publication Number Publication Date
JP2001284678A true JP2001284678A (en) 2001-10-12

Family

ID=18594359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000076653A Pending JP2001284678A (en) 2000-03-17 2000-03-17 Spin-valve magnetoresistive effect element

Country Status (1)

Country Link
JP (1) JP2001284678A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040771A (en) * 2008-08-05 2010-02-18 Rohm Co Ltd Method of manufacturing semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040771A (en) * 2008-08-05 2010-02-18 Rohm Co Ltd Method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US6313973B1 (en) Laminated magnetorestrictive element of an exchange coupling film, an antiferromagnetic film and a ferromagnetic film and a magnetic disk drive using same
US6636394B1 (en) Spin-valve magnetic resistance sensor and thin-film magnetic head
US7046490B1 (en) Spin valve magnetoresistance sensor and thin film magnetic head
US6709767B2 (en) In-situ oxidized films for use as cap and gap layers in a spin-valve sensor and methods of manufacture
US6295186B1 (en) Spin-valve magnetoresistive Sensor including a first antiferromagnetic layer for increasing a coercive force and a second antiferromagnetic layer for imposing a longitudinal bias
KR100462926B1 (en) Spin tunnel magnetoresistive effect film and element, magnetoresistive sensor using same, magnetic apparatus, and method for manufacturing same
JP3137580B2 (en) Magnetic multilayer film, magnetoresistive element and magnetic transducer
US7885042B2 (en) CPP magneto-resistive effect device utilizing an anti-oxidizing layer as part of the spacer layer in a thin-film magnetic head usable in a head gimbal assembly in a hard disk system
US5764445A (en) Exchange biased magnetoresistive transducer
JP2000222709A (en) Spin valve magnetoresistance sensor and thin film magnetic head
JP2004022614A (en) Magnetic sensor element and method of manufacturing the same
JPH0916920A (en) Spin valve magnetoresistance sensor and magnetic recording system using said sensor
GB2401715A (en) CPP giant magnetoresistive element
JP2008060202A (en) Method for manufacturing magneto-resistance effect element of cpp structure
US7881025B2 (en) Magneto-resistive effect device having a spacer layer of a semiconductor layer interposed between first and second nonmagnetic metal layers and a work function control layer for use in a thin-film magnetic head usable in a head gimbal assembly in a hard disk system
JP2637360B2 (en) Magnetoresistance effect element
JP2003016613A (en) Magnetic head
JPH10198927A (en) Magnetoresistance effect film and its production
US6891703B2 (en) Exchange coupled film having magnetic layer with non-uniform composition and magnetic sensing element including the same
JP2001007420A (en) Magnetic resistance effect film and magnetic read sensor using this
JP2008034784A (en) Tunnel-type magnetic detection element and method of manufacturing the same
JP2001358381A (en) Magnetic resistance effect film, magnetic resistance effect type head, and information-reproducing device
EP1648039A1 (en) Ccp magnetoresistance element, method for manufacturing same, magnetic head and magnetic storage
JP3585028B2 (en) Magnetoresistive film and method of manufacturing the same
JPH09186375A (en) Magnetoresistive effect element