JP2001281200A - Measuring electrode for free residual chlorine and measuring method using it - Google Patents

Measuring electrode for free residual chlorine and measuring method using it

Info

Publication number
JP2001281200A
JP2001281200A JP2000135258A JP2000135258A JP2001281200A JP 2001281200 A JP2001281200 A JP 2001281200A JP 2000135258 A JP2000135258 A JP 2000135258A JP 2000135258 A JP2000135258 A JP 2000135258A JP 2001281200 A JP2001281200 A JP 2001281200A
Authority
JP
Japan
Prior art keywords
electrode
residual chlorine
free residual
potential
working electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000135258A
Other languages
Japanese (ja)
Inventor
Akifumi Yamada
明文 山田
Hisao Osawa
久男 大澤
Hideto Iketake
英人 池竹
Shinya Kishioka
真也 岸岡
Kazunori Hodouchi
和範 程内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUSO SEISAKUSHO KK
Original Assignee
FUSO SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUSO SEISAKUSHO KK filed Critical FUSO SEISAKUSHO KK
Priority to JP2000135258A priority Critical patent/JP2001281200A/en
Publication of JP2001281200A publication Critical patent/JP2001281200A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide measuring electrodes for quantitatively measuring the concentration of free residual chlorine in a short time and a measuring method using them. SOLUTION: The measuring electrodes for free residual chlorine comprise a working electrode made using gold as electrode material, a counter electrode disposed in proximity to the working electrode, and a reference electrode similarly disposed in proximity to the working electrode to serve as the reference of electric potential. The initial electric potential of the working electrode is set at +0.5 to +0.6 V relative to a saturated calomel electrode and is swept to a negative potential of -0.3 V relative to the saturated calomel electrode. The measuring method using the electrodes is also disclosed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は水中に含まれる遊離
残留塩素を測定する電極とこれを用いた測定方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode for measuring free residual chlorine contained in water and a measuring method using the same.

【0002】[0002]

【従来の技術】従来遊離残留塩素の測定方法としては、
JIS規格にもあるようにオルトトリジンを用いる比色
法、ジエチル・パラ・フェニレンジアミンを用いる比色
法、ヨウ素滴定法等が知られている。比色法には測定者
の個人差が発生する問題があった。遊離残留塩素と結合
残留塩素を分けるにはジエチル・パラ・フェニレンジア
ミン−硫酸アンモニウム鉄(II)滴定法、電流滴定法
等が知られているが、遊離残留塩素のみを直接簡便に測
定する方法は知られていなかった。
2. Description of the Related Art Conventionally, methods for measuring free residual chlorine include:
A colorimetric method using ortho-tolidine, a colorimetric method using diethyl-para-phenylenediamine, an iodine titration method, and the like are known as in JIS standards. The colorimetric method has a problem that individual differences of the measurers occur. Diethyl para-phenylenediamine-ammonium iron (II) sulfate (II) titration, amperometric titration, and the like are known to separate free residual chlorine and bound residual chlorine. Had not been.

【0003】[0003]

【発明が解決しようとする課題】従来の化学滴定法や比
色法等は特殊な機器と試薬を必要とし、現場における簡
便な測定法としては使用し難い欠点がある。一方、従来
の電気化学的方法は使用されている電極では遊離残留塩
素濃度に比例した電気信号が得られないので、測定の自
動化や管理が困難である。本発明は従来の化学滴定法や
比色法、電気化学的方法等の不都合を解決し遊離残留塩
素に対して高度の選択性を有するとともに、遊離残留塩
素の濃度を短時間に定量的に測定することができる遊離
残留塩素測定用電極とこれを用いた遊離残留塩素の測定
方法を提供する。
The conventional chemical titration method and colorimetric method require special equipment and reagents, and have a drawback that they are difficult to use as a simple on-site measurement method. On the other hand, in the conventional electrochemical method, since an electric signal proportional to the free residual chlorine concentration cannot be obtained at the electrode used, it is difficult to automate and control the measurement. The present invention solves the disadvantages of the conventional chemical titration method, colorimetric method, electrochemical method, etc., has high selectivity for free residual chlorine, and quantitatively measures the concentration of free residual chlorine in a short time. And a method for measuring free residual chlorine using the same.

【0004】[0004]

【課題を解決するための手段】「1. 電極材料として
金を用いた作用電極と、この作用電極に近接して配置し
た対極と、同様に作用電極に近接して配置した電位の基
準となる参照電極とからなり、作用電極の初期電位を飽
和甘コウ電極に対して+0.5〜+0.6Vに設定さ
れ、負電位側へ飽和甘コウ電極に対して−0.3Vまで
掃引されていることを特徴とする遊離残留塩素測定用電
極。 2. 作用電極が金を用いた電極であり、この作用電極
に近接して配置した対極と電位の基準となる参照電極
が、金、白金または銀を用いた電極である、1項に記載
された遊離残留塩素測定用電極。 3. 電極が同一の合成樹脂フイルム面に印刷または蒸
着等により形成された電極である、1項または2項に記
載された遊離残留塩素測定用電極。 4. 1項ないし3項のいずれか1項に記載された遊離
残留塩素測定用電極を被測定媒体中に配設し、作用電極
の電位を、初期電位から負電位側に1mV/sec〜2
00mV/secの掃引速度で掃引し、掃引の際に作用
電極に流れる電流値を測定し、得られた電流−電位曲線
から予め作製した検量線により遊離残留塩素の量を算出
することを特徴とする、遊離残留塩素の測定方法。」に
関する。
Means for Solving the Problems "1. A working electrode using gold as an electrode material, a counter electrode arranged close to the working electrode, and a reference for a potential similarly arranged close to the working electrode. The initial potential of the working electrode is set to +0.5 to +0.6 V with respect to the saturated sweetfish electrode, and the working electrode is swept to the negative potential side to -0.3 V with respect to the saturated sweetfish electrode. An electrode for measuring free residual chlorine, wherein the working electrode is an electrode using gold, and a counter electrode disposed in close proximity to the working electrode and a reference electrode serving as a potential reference are gold, platinum, or silver. 2. The electrode for measuring free residual chlorine according to item 1, wherein the electrode is a electrode formed by printing or vapor deposition on the same synthetic resin film surface. For measurement of free residual chlorine 4.1. The electrode for measuring free residual chlorine according to any one of Items 3 to 3 is disposed in the medium to be measured, and the potential of the working electrode is shifted from the initial potential to the negative potential by 1 mV / sec to 2 mV / sec.
Sweeping at a sweep speed of 00 mV / sec, measuring the value of current flowing to the working electrode during the sweep, and calculating the amount of free residual chlorine from the obtained current-potential curve using a calibration curve prepared in advance. To measure free residual chlorine. About.

【0005】[0005]

【発明の実施の形態】本発明においては作用電極は金で
形成された電極である。金で形成された作用電極は白金
や銀等で形成された作用電極とは異なり、遊離残留塩素
の電流−電位曲線が単純である。一方対極は電流を流す
ための電極であり、金、白金、ステンレス、カーボン等
で形成された電極を使用することが出来る。参照電極は
電位の基準となる電極であり、金、白金、銀等の金属の
電極または汎用の飽和甘コウ電極、銀/塩化銀電極等も
使用出来る。必須ではないがこの他温度計測電極を用い
ることもでき、市販のサミスターも使用することが出来
る。これ等の電極は夫々接触しないように例えば直径4
〜5mmのガラス管に挿入して配置したものを束ねて使
用する。作用電極は0.5〜2.0mmの金属線をガラ
ス管に挿入して接着剤で接着し、端面を平滑に研磨して
その平端面を電極として使用する。対極、参照電極等も
作用電極と同様にして使用される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a working electrode is an electrode formed of gold. A working electrode made of gold is different from a working electrode made of platinum, silver, or the like, in that a current-potential curve of free residual chlorine is simple. On the other hand, the counter electrode is an electrode for passing a current, and an electrode formed of gold, platinum, stainless steel, carbon, or the like can be used. The reference electrode is an electrode serving as a reference for the potential, and an electrode of a metal such as gold, platinum, or silver, a general-purpose saturated sweet potato electrode, or a silver / silver chloride electrode can also be used. Although not essential, a temperature measuring electrode can also be used, and a commercially available thermistor can also be used. Each of these electrodes has a diameter of 4 so that they do not contact each other.
What is inserted and arranged in a glass tube of about 5 mm is bundled and used. For the working electrode, a metal wire of 0.5 to 2.0 mm is inserted into a glass tube and bonded with an adhesive, the end face is polished smoothly, and the flat end face is used as an electrode. A counter electrode, a reference electrode and the like are used in the same manner as the working electrode.

【0006】図1に実施の1態様を示す。1は作用電極
である。該電極はガラス管5に挿入され、エポキシ樹脂
接着剤6により接着固定される。2は対極であり、作用
電極と同様にガラス管5に挿入され、エポキシ樹脂接着
剤6により接着固定される。3は参照電極であり、作用
電極と同様にガラス管5に挿入され、エポキシ樹脂接着
剤6により接着固定される。4は温度測定電極であり、
作用電極と同様にガラス管5に挿入され、エポキシ樹脂
接着剤6により接着固定される。これ等の電極は端面を
平滑に研磨しその平滑面が電極表面として作用する。対
極、参照電極は作用電極に近接して配置されている。本
発明の電極はこのほか図2のように形成することもでき
る。
FIG. 1 shows an embodiment of the present invention. 1 is a working electrode. The electrodes are inserted into a glass tube 5 and fixed by an epoxy resin adhesive 6. Reference numeral 2 denotes a counter electrode, which is inserted into the glass tube 5 similarly to the working electrode, and is bonded and fixed with an epoxy resin adhesive 6. Reference numeral 3 denotes a reference electrode, which is inserted into the glass tube 5 similarly to the working electrode, and is adhered and fixed by an epoxy resin adhesive 6. 4 is a temperature measuring electrode,
Similarly to the working electrode, it is inserted into the glass tube 5 and is fixed by an epoxy resin adhesive 6. In these electrodes, the end faces are polished smoothly, and the smooth faces act as electrode surfaces. The counter electrode and the reference electrode are arranged close to the working electrode. The electrode of the present invention can also be formed as shown in FIG.

【0007】図2に示されるように各電極は1枚の合成
樹脂のフイルムの同一面に印刷、スパッタリング、CV
D、PVD等により形成することもできる。図2におい
て1は作用電極であり、2は対極であり、3は参照電極
である。各電極は合成樹油脂フイルム7の同一面に配置
されている。合成樹脂フイルムとしてはポリイミドが好
適に用いられ、膜厚は1〜5μmが好適である。
As shown in FIG. 2, each electrode is printed, sputtered, and CV-printed on the same surface of a single synthetic resin film.
D, PVD, etc. In FIG. 2, 1 is a working electrode, 2 is a counter electrode, and 3 is a reference electrode. Each electrode is arranged on the same surface of the synthetic resin film 7. Polyimide is preferably used as the synthetic resin film, and the film thickness is preferably 1 to 5 μm.

【0008】次に各電極の作用について説明する。作用
電極は遊離塩素等の主成分である次亜塩素酸を含有する
水中で電圧を印加すると、2HOCl+2e→H
2OClの電極反応を生ずる。対極は電流を流すため
の電極である。参照電極は、作用電極に対して規制され
た電位を印加するための基準となる電極である。したが
って対極と参照電極は作用電極に近接して配置されなけ
ればならない。このほか、温度測定電極を配置すると測
定電流値の温度補正を行うことができる。作用電極の初
期電位は飽和甘コウ電極に対して+0.5V〜+0.6
Vに設定されている。+0.5V以下では遊離残留塩素
の還元が起こり、+0.6V以上では金の酸化が起こる
ので好ましくない。負電位側へは飽和甘コウ電極に対し
て−0.3Vまで掃引されていなければならない。−
0.3V以上では水中の溶存酸素の還元が起こり好まし
くない。この電極を使用して水中の遊離残留塩素の量を
測定する。電極を測定する水中に浸漬し、次いで作用電
極に飽和甘コウ電極に対して+0.6V印加し、−0.
3Vまで電位を掃引して電流−電位曲線を記録し、遊離
残留塩素の量を測定するのである。
Next, the operation of each electrode will be described. When a voltage is applied to the working electrode in water containing hypochlorous acid, which is a main component such as free chlorine, 2HOCl + 2e → H 2 +
2OCl - causing the electrode reaction. The counter electrode is an electrode for passing a current. The reference electrode is an electrode serving as a reference for applying a regulated potential to the working electrode. Therefore, the counter electrode and the reference electrode must be arranged close to the working electrode. In addition, if a temperature measuring electrode is arranged, the temperature of the measured current value can be corrected. The initial potential of the working electrode is +0.5 V to +0.6 with respect to the saturated sweetpotato electrode.
V is set. If the voltage is lower than +0.5 V, reduction of free residual chlorine occurs, and if the voltage is higher than +0.6 V, oxidation of gold occurs, which is not preferable. It must be swept to the negative potential side to -0.3 V with respect to the saturated calico electrode. −
Above 0.3 V, the dissolved oxygen in water is reduced, which is not preferable. This electrode is used to measure the amount of free residual chlorine in water. The electrode is immersed in the water to be measured, and then +0.6 V is applied to the working electrode and to the saturated sweet potato electrode.
The current-potential curve is recorded by sweeping the potential to 3 V, and the amount of free residual chlorine is measured.

【0009】[0009]

【実施例】次に実施例を挙げて本発明を具体的に説明す
る。
Next, the present invention will be described specifically with reference to examples.

【0010】実施例1 作用電極として金電極を使用し、対極として白金線を使
用し、参照電極として飽和甘コウ電極を使用し、温度測
定電極としてサーミスターを使用した。図1に示される
電極を使用して試料の水道水中に含まれる遊離残留塩素
の量を測定した。試料水中に電極を浸漬して作用電極の
初期電位は飽和甘コウ電極の電位に対して+0.5Vに
設定し、負電位側へ飽和甘コウ電極に対して−0.3V
まで掃引し、各電位における電流をサンプリングして図
3の電流−電位曲線を得た。図3中の←→印は、この長
さが0.03μAであることを示す。このようにして得
た電流−電位曲線から電流値を読み取り、予め濃度既知
の遊離残留塩素の標準溶液で作製しておいた検量線図5
から、試料水中に含まれる遊離残留塩素の量が0.28
ppmであることを検出した。
Example 1 A gold electrode was used as a working electrode, a platinum wire was used as a counter electrode, a saturated sweet potato electrode was used as a reference electrode, and a thermistor was used as a temperature measuring electrode. The amount of free residual chlorine contained in the tap water of the sample was measured using the electrode shown in FIG. The electrode is immersed in the sample water, and the initial potential of the working electrode is set to +0.5 V with respect to the potential of the saturated sweet pepper electrode, and -0.3 V to the negative potential side with respect to the saturated sweet pepper electrode.
The current at each potential was sampled to obtain a current-potential curve of FIG. The mark ← → in FIG. 3 indicates that this length is 0.03 μA. The current value was read from the thus obtained current-potential curve, and a calibration curve diagram 5 prepared in advance using a standard solution of free residual chlorine having a known concentration.
From that the amount of free residual chlorine contained in the sample water was 0.28
ppm was detected.

【0011】実施例2 試料水をプール水に変え作用電極の初期電位を飽和甘コ
ウ電極の電位に対して+0.6Vに設定し、負電位側へ
飽和甘コウ電極に対して−0.3Vまで掃引した以外は
実施例1と同様にして図4の電流−電位曲線を得た。こ
のようにして得た電流−電位曲線から電流値を読み取
り、検量線図5から試料水中に含まれる遊離残留塩素の
量が0.75ppmであることを検出した。
EXAMPLE 2 The sample water was changed to pool water, the initial potential of the working electrode was set to +0.6 V with respect to the potential of the saturated sweetfish electrode, and -0.3 V to the negative potential side with respect to the saturated sweetfish electrode. The current-potential curve of FIG. 4 was obtained in the same manner as in Example 1 except that the sweep was performed up to. The current value was read from the current-potential curve thus obtained, and it was detected from the calibration curve diagram 5 that the amount of free residual chlorine contained in the sample water was 0.75 ppm.

【0012】比較例1 作用電極として白金電極を用いた以外は実施例1と同様
にした。電流−電位曲線が金電極の場合に比べて非常に
複雑となり、遊離残留塩素の電流値を検出できなかっ
た。 比較例2 作用電極の初期電位を飽和甘コウ電極に対して+0.4
Vに設定した以外は実施例1と同様にした。遊離残留塩
素の還元が起こり測定できなかった。 比較例3 作用電極の初期電位を飽和甘コウ電極に対して+0.7
Vに設定した以外は実施例1と同様にした。作用電極の
酸化が起こり測定できなかった。 比較例4 作用電極の電位を負電位側へ飽和甘コウ電極に対して−
0.2Vまで掃引した以外は実施例1と同様にした。遊
離残留塩素の還元電流が一定にならず測定できなかっ
た。 比較例5 遊離残留塩素濃度が0〜130ppmになるように添加
した以外は、実施例1と同様にして測定した電流−電位
曲線から、得られた電流値を遊離残留塩素濃度に対して
プロットすると図6のような検量線が得られた。このよ
うにして0〜130ppmの濃度範囲で遊離残留塩素を
定量することが可能であった。
Comparative Example 1 The procedure of Example 1 was repeated except that a platinum electrode was used as a working electrode. The current-potential curve became very complicated as compared with the case of the gold electrode, and the current value of free residual chlorine could not be detected. Comparative Example 2 The initial potential of the working electrode was set to +0.4 with respect to the saturated sweetfish electrode.
The procedure was the same as in Example 1 except that V was set. Free residual chlorine was reduced and could not be measured. Comparative Example 3 The initial potential of the working electrode was set to +0.7 with respect to the saturated sweetfish electrode.
The procedure was the same as in Example 1 except that V was set. The working electrode was oxidized and could not be measured. Comparative Example 4 The potential of the working electrode was shifted to the negative potential side.
The same operation as in Example 1 was performed except that the voltage was swept to 0.2 V. The reduction current of free residual chlorine was not constant and could not be measured. Comparative Example 5 From the current-potential curve measured in the same manner as in Example 1 except that the free residual chlorine concentration was added so as to be 0 to 130 ppm, the obtained current value was plotted against the free residual chlorine concentration. A calibration curve as shown in FIG. 6 was obtained. Thus, it was possible to determine free residual chlorine in the concentration range of 0 to 130 ppm.

【0013】[0013]

【発明の効果】本発明は特殊な機器や試薬を必要とせ
ず、個人差も発生することなく、短時間で正確に水中の
遊離残留塩素の量を測定することができる優れた効果を
奏する。
The present invention has an excellent effect that the amount of free residual chlorine in water can be accurately measured in a short time without requiring any special equipment or reagents and without causing individual differences.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電極の実施例の説明図である。FIG. 1 is an explanatory view of an embodiment of an electrode of the present invention.

【図2】本発明の電極の他の実施例の説明図である。FIG. 2 is an explanatory view of another embodiment of the electrode of the present invention.

【図3】実施例の電流−電位曲線である。FIG. 3 is a current-potential curve of an example.

【図4】実施例の他の電流−電位曲線である。FIG. 4 is another current-potential curve of the example.

【図5】標準溶液で作成した検量線である。FIG. 5 is a calibration curve prepared with a standard solution.

【図6】他の溶液で作成した検量線である。FIG. 6 is a calibration curve created with another solution.

【符号の説明】[Explanation of symbols]

1 作用電極 2 対極 3 参照電極 4 温度測定電極 5 ガラス管 6 接着剤 7 合成樹脂フイルム Reference Signs List 1 working electrode 2 counter electrode 3 reference electrode 4 temperature measuring electrode 5 glass tube 6 adhesive 7 synthetic resin film

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年5月24日(2000.5.2
4)
[Submission date] May 24, 2000 (2005.2.
4)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0007】 図2に示されるように各電極は1枚の合
成樹脂のフイルムの同一面に印刷、スパッタリング、C
VD、PVD等により形成することもできる。図2にお
いて1は作用電極であり、2は対極であり、3は参照電
極である。各電極は合成樹脂フイルム7の同一面に配置
されている。合成樹脂フイルムとしてはポリイミドが好
適に用いられ、膜厚は1〜5μmが好適である。
As shown in FIG. 2, each electrode is printed, sputtered, and printed on the same surface of a single synthetic resin film.
It can also be formed by VD, PVD, or the like. In FIG. 2, 1 is a working electrode, 2 is a counter electrode, and 3 is a reference electrode. Each electrode is arranged on the same surface of the synthetic resin film 7. Polyimide is preferably used as the synthetic resin film, and the film thickness is preferably 1 to 5 μm.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 明文 新潟県長岡市緑町1丁目38番313号 (72)発明者 大澤 久男 神奈川県横浜市保土ケ谷区峰岡町1丁目94 番地の13 (72)発明者 池竹 英人 新潟県西蒲原郡吉田町堤町7番12号 ヴイ オレ87II 103号 (72)発明者 岸岡 真也 新潟県長岡市上条町157番地7 (72)発明者 程内 和範 新潟県長岡市錦1丁目4番9号 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Akifumi Yamada 1-338-313 Midoricho, Nagaoka-shi, Niigata (72) Inventor Hisao Osawa 1-94, Mineoka-cho, Hodogaya-ku, Yokohama-shi, Kanagawa 13 (72) Invention Person Hideto Iketake 7-12, Violet 87II 103, Tsutsumi-cho, Yoshida-cho, Nishikanbara-gun, Niigata (72) Inventor Shinya Kishioka 157-7, Kamijo-cho, Nagaoka-shi, Niigata (72) Inventor Kazunori Honaiuchi Ichinishiki 1-4-9

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電極材料として金を用いた作用電極と、
この作用電極に近接して配置した対極と、同様に作用電
極に近接して配置した電位の基準となる参照電極とから
なり、作用電極の初期電位を飽和甘コウ電極に対して+
0.5〜+0.6Vに設定され、負電位側へ飽和甘コウ
電極に対して−0.3Vまで掃引されていることを特徴
とする遊離残留塩素測定用電極。
A working electrode using gold as an electrode material;
It comprises a counter electrode arranged close to the working electrode and a reference electrode which is similarly arranged close to the working electrode and serves as a reference for the potential. The initial potential of the working electrode is set to + with respect to the saturated sweetfish electrode.
An electrode for measuring free residual chlorine, wherein the electrode is set to 0.5 to +0.6 V and is swept to the negative potential side to -0.3 V with respect to the saturated sweet potato electrode.
【請求項2】 作用電極が金を用いた電極であり、この
作用電極に近接して配置した対極と電位の基準となる参
照電極が、金、白金または銀を用いた電極である、請求
項1に記載された遊離残留塩素測定用電極。
2. The method according to claim 1, wherein the working electrode is an electrode using gold, and the counter electrode disposed in close proximity to the working electrode and a reference electrode serving as a reference for potential are electrodes using gold, platinum, or silver. 2. The electrode for measuring free residual chlorine according to 1.
【請求項3】 電極が同一の合成樹脂フイルム面に印刷
または蒸着等により形成された電極である、請求項1ま
たは2に記載された遊離残留塩素測定用電極。
3. The electrode for measuring free residual chlorine according to claim 1, wherein the electrode is an electrode formed on the same synthetic resin film surface by printing or vapor deposition.
【請求項4】 請求項1ないし3のいずれか1項に記載
された遊離残留塩素測定用電極を被測定媒体中に配設
し、作用電極の電位を、初期電位から負電位側に1mV
/sec〜200mV/secの掃引速度で掃引し、掃
引の際に作用電極に流れる電流値を測定し、得られた電
流−電位曲線から予め作製した検量線により遊離残留塩
素の量を算出することを特徴とする、遊離残留塩素の測
定方法。
4. An electrode for measuring free residual chlorine according to claim 1, wherein the electrode for measuring free residual chlorine is disposed in a medium to be measured, and the potential of the working electrode is set to 1 mV from the initial potential to the negative potential.
/ Sec to 200 mV / sec by sweeping, measuring the value of the current flowing to the working electrode during the sweep, and calculating the amount of free residual chlorine from the obtained current-potential curve using a calibration curve prepared in advance. A method for measuring free residual chlorine, characterized in that:
JP2000135258A 2000-03-31 2000-03-31 Measuring electrode for free residual chlorine and measuring method using it Pending JP2001281200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000135258A JP2001281200A (en) 2000-03-31 2000-03-31 Measuring electrode for free residual chlorine and measuring method using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000135258A JP2001281200A (en) 2000-03-31 2000-03-31 Measuring electrode for free residual chlorine and measuring method using it

Publications (1)

Publication Number Publication Date
JP2001281200A true JP2001281200A (en) 2001-10-10

Family

ID=18643368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000135258A Pending JP2001281200A (en) 2000-03-31 2000-03-31 Measuring electrode for free residual chlorine and measuring method using it

Country Status (1)

Country Link
JP (1) JP2001281200A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274226A (en) * 2004-03-23 2005-10-06 Akifumi Yamada Free residual chlorine concentration measuring instrument and free residual chlorine measuring method
JP2013134206A (en) * 2011-12-27 2013-07-08 Sanyo Electric Co Ltd Polarographic residual chlorine sensor
JP2014095634A (en) * 2012-11-09 2014-05-22 Osaka City Univ Photo-electro-chemical cell and photo-electro-chemical measurement apparatus
CN114740065A (en) * 2022-03-16 2022-07-12 杭州凯米斯物联传感科技有限公司 MEMS residual chlorine electrode for detecting tap water

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005274226A (en) * 2004-03-23 2005-10-06 Akifumi Yamada Free residual chlorine concentration measuring instrument and free residual chlorine measuring method
JP2013134206A (en) * 2011-12-27 2013-07-08 Sanyo Electric Co Ltd Polarographic residual chlorine sensor
JP2014095634A (en) * 2012-11-09 2014-05-22 Osaka City Univ Photo-electro-chemical cell and photo-electro-chemical measurement apparatus
CN114740065A (en) * 2022-03-16 2022-07-12 杭州凯米斯物联传感科技有限公司 MEMS residual chlorine electrode for detecting tap water
CN114740065B (en) * 2022-03-16 2024-05-03 杭州凯米斯物联传感科技有限公司 MEMS residual chlorine electrode for detecting tap water

Similar Documents

Publication Publication Date Title
Guzsvány et al. Antimony-film electrode for the determination of trace metals by sequential-injection analysis/anodic stripping voltammetry
JP6448627B2 (en) Electrochemical analytical test strip with a soluble electrochemically active coating opposite the bare electrode
Cinti et al. Sustainable monitoring of Zn (II) in biological fluids using office paper
CN100473982C (en) Method for reducing interferences in an electrochemical sensor using two different applied potentials
AU2006201650A1 (en) Electrochemical-based analytical test strip with hydrophilicity enhanced metal electrodes
US20210223197A1 (en) Reference electrode using local environment ph control
US6021339A (en) Urine testing apparatus capable of simply and accurately measuring a partial urine to indicate urinary glucose value of total urine
Alexander et al. A coated-metal enzyme electrode for urea determinations
Riso et al. Measurements of trace concentrations of mercury in sea water by stripping chronopotentiometry with gold disk electrode: influence of copper
Fadrná Polished silver solid amalgam electrode: Further characterization and applications in voltammetric measurements
Guo et al. A bespoke chloride sensor for seawater: Simple and fast with a silver electrode
JP2001281200A (en) Measuring electrode for free residual chlorine and measuring method using it
Vediappan et al. Electrochemical approaches for the determination of ranitidine drug reaction mechanism
EP3021112B1 (en) Blood component measurement device and blood component measurement method
US3960673A (en) Technique for continuously analyzing the concentration of ozone dissolved in water
do Nascimento et al. Determination of cadmium, lead and thallium in highly saline hemodialysis solutions by potentiometric stripping analysis (PSA)
Titova et al. Determination of sub-micromolar amounts of sulfide by standard free anodic stripping voltammetry and anodic stripping voltammetric titration
Franke et al. Differential pulse anodic stripping voltammetry as a rapid screening technique for heavy metal intoxications
Miyama et al. Electrochemical measurements with a periodically renewable pencil electrode
US4798655A (en) Multiparameter analytical electrode structure and method of measurement
EP0833149A1 (en) Method for measuring ion concentration
Alexander et al. A photo-cured coated-wire calcium ion selective electrode for use in flow injection potentiometry
Jagner et al. Automatic chemical current determination in coulometric stripping potentiometry facilitating calibration‐free trace metal determinations
Nowak et al. Application of the Bismuth Film Electrode for Catalytic Adsorptive Stripping Potentiometric Determination of Cobalt in Dimethylglyoxime‐Nitrite System
Haider et al. Electrodes in potentiometry