JP2001280889A - Plate type heat exchanger - Google Patents

Plate type heat exchanger

Info

Publication number
JP2001280889A
JP2001280889A JP2000094921A JP2000094921A JP2001280889A JP 2001280889 A JP2001280889 A JP 2001280889A JP 2000094921 A JP2000094921 A JP 2000094921A JP 2000094921 A JP2000094921 A JP 2000094921A JP 2001280889 A JP2001280889 A JP 2001280889A
Authority
JP
Japan
Prior art keywords
heat transfer
water
refrigerant
fluid
passage hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000094921A
Other languages
Japanese (ja)
Other versions
JP4554025B2 (en
Inventor
Tsukasa Amano
宰 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hisaka Works Ltd
Original Assignee
Hisaka Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisaka Works Ltd filed Critical Hisaka Works Ltd
Priority to JP2000094921A priority Critical patent/JP4554025B2/en
Publication of JP2001280889A publication Critical patent/JP2001280889A/en
Application granted granted Critical
Publication of JP4554025B2 publication Critical patent/JP4554025B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent the subcooling and freezing in the fluid flow passage for water for a plate type heat exchanger for obtaining cold water by conducting refrigerant and water to flow through the fluid flow passage between laminated heat transfer plates. SOLUTION: Fluid flow passages 6 for refrigerant and for water are formed alternately between a plurality of heat transfer plates 1 while the fluid flow passages 6 for water around the peripheral parts (n) of the refrigerant passage hole 2 of the heat transfer plates 1 are formed as closed spaces Ma, into which water Q will not flow. The closed spaces Ma are surrounded by the brazed parts 7 of the mutual heat transfer plates to prohibit the inflow of water Q into the closed spaces Ma by the brazed parts 7 whereby the subcooling and the freezing of the water Q, which flows through the fluid passages 6 are avoided. The brazed parts 7 are formed simultaneously with one process for brazing the peripheral rims of the plurality of heat transfer plates 1 mutually, whereby the plate type heat exchanger of brazing type having the closed spaces Ma for preventing freezing in the fluid flow passages 6 can be manufactured favorably in the manufacturing process of the same.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複数枚の伝熱プレ
ートをろう付け等で積層一体化したプレート式熱交換器
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plate heat exchanger in which a plurality of heat transfer plates are laminated and integrated by brazing or the like.

【0002】[0002]

【従来の技術】チラーユニットの冷水を得る蒸発器等に
使用されるプレート式熱交換器の従来例を図5〜図7に
示し説明すると、これは複数枚の伝熱プレート1、…と
2枚の金属フレーム12,13をろう材(図示せず)を
介し積層して、高温・真空下でろう付け(ブレージン
グ)したブレージング式熱交換器である。伝熱プレート
1と金属フレーム12,13は例えば縦長のステンレス
製の略矩形板で、各伝熱プレート1の4隅部に冷媒Pと
被冷却液Qの2種の流体が流通する通路孔2,3が形成
され、一方の金属フレーム12の4隅部に冷媒Pと被冷
却液Qの出入口となるノズル4,…が貫通させてろう付
けされる。
2. Description of the Related Art A conventional example of a plate heat exchanger used for an evaporator or the like for obtaining chilled water in a chiller unit is shown in FIGS. 5 to 7. The heat exchanger is composed of a plurality of heat transfer plates 1,. This is a brazing type heat exchanger obtained by laminating a plurality of metal frames 12 and 13 via a brazing material (not shown) and brazing under a high temperature and a vacuum. The heat transfer plate 1 and the metal frames 12 and 13 are, for example, vertically long, substantially rectangular plates made of stainless steel, and are provided at four corners of each heat transfer plate 1 with passage holes 2 through which two kinds of fluids of the refrigerant P and the liquid to be cooled Q flow. , 3 are formed, and nozzles 4, which serve as entrances and exits of the coolant P and the liquid Q to be cooled, penetrate through four corners of one metal frame 12 and are brazed.

【0003】伝熱プレート1は波板プレートの熱交換伝
熱部1aと、熱交換伝熱部1aの周縁部を折曲した縁立
て部1bを有し、隣接する伝熱プレート1の縁立て部1
bが気密にろう材で溶融接合される。複数の伝熱プレー
ト1を積層一体化したとき、各々の熱交換伝熱部1aの
4隅に形成された通路孔2,3が同心に対向して連通す
る。図6に示すように、1枚の伝熱プレート1の上下2
隅の通路孔2は、冷媒Pを外部から流入させるための入
口側冷媒通路孔2aと外部に流出させるための出口側冷
媒通路孔2bであり、残り上下2隅の通路孔3は、被冷
却液Qを外部から流入させるための入口側被冷却液通路
孔3aと外部に流出させるための出口側被冷却液通路孔
3bである。
The heat transfer plate 1 has a heat exchange heat transfer portion 1a of a corrugated plate and a rim portion 1b formed by bending a peripheral portion of the heat exchange heat transfer portion 1a. Part 1
b is hermetically welded with the brazing material. When a plurality of heat transfer plates 1 are stacked and integrated, the passage holes 2 and 3 formed at the four corners of each heat exchange heat transfer portion 1a communicate concentrically facing each other. As shown in FIG.
The corner passage holes 2 are an inlet-side refrigerant passage hole 2a for allowing the refrigerant P to flow in from the outside and an outlet-side refrigerant passage hole 2b for allowing the refrigerant P to flow to the outside. The remaining two upper and lower corner passage holes 3 are to be cooled. An inlet-side cooled liquid passage hole 3a through which the liquid Q flows in from the outside and an outlet-side cooled liquid passage hole 3b through which the liquid Q flows out.

【0004】また、複数の伝熱プレート1を積層一体化
したとき、図7に示すように各伝熱プレート1間に冷媒
Pが流通する流体流路5と被冷却液Qが流通する流体流
路6が交互に形成される。各流体流路5,6は伝熱プレ
ート1の波板状の熱交換伝熱部1aで鋏まれた凹凸空間
で、この凹凸空間の全域に冷媒Pと被冷却液Qが充満し
た状態で流通する。冷媒用流体流路5の上下開口が冷媒
用通路孔2a、2bに連通し、被冷却液用流体流路6の
上下開口が被冷却液用通路孔3a、3bに連通する。隣
接する伝熱プレート1の各通路孔2,3の周縁部同士が
ろう材で気密に接合一体化されて、冷媒用流体流路5か
ら冷媒Pが被冷却用通路孔3に流入せず、被冷却液用流
体流路6から被冷却液Qが冷媒用通路孔2に流入しない
ようにしてある。
When a plurality of heat transfer plates 1 are stacked and integrated, as shown in FIG. 7, a fluid flow path 5 through which the refrigerant P flows between the heat transfer plates 1 and a fluid flow through which the liquid to be cooled Q flows The paths 6 are formed alternately. Each of the fluid flow paths 5 and 6 is an uneven space sandwiched by the corrugated heat exchange heat transfer portions 1a of the heat transfer plate 1, and is circulated in a state where the refrigerant P and the liquid to be cooled Q are filled in the entire uneven space. I do. The upper and lower openings of the coolant flow path 5 communicate with the coolant passage holes 2a and 2b, and the upper and lower openings of the coolant liquid flow path 6 communicate with the coolant passage holes 3a and 3b. The periphery of each of the passage holes 2 and 3 of the adjacent heat transfer plate 1 is air-tightly joined and integrated with a brazing material, so that the refrigerant P does not flow from the refrigerant fluid passage 5 into the passage hole 3 to be cooled. The coolant Q is prevented from flowing into the coolant passage hole 2 from the coolant fluid channel 6.

【0005】2種の流体の一方の冷媒Pはフロンや液体
窒素等であり、他方の被冷却液Qは水である。このよう
な冷媒Pは、伝熱プレート1の下部に形成された冷媒通
路孔2aから冷媒流路5を上昇して上部の冷媒通路孔2
bに達し、冷媒通路孔2bに連通させたノズル4から外
部に流出する。被冷却液(以下、必要に応じて水と称す
る)Qは、伝熱プレート1の上部に形成された水用通路
孔3aから水用流体流路6を下降して下部の水用通路孔
3bに達する。隣接する各流体流路5、6にそれぞれ充
満させて冷媒Pと水Qを流す間に熱交換が高効率で行わ
れて、水用流体流路6の下部の水用通路孔3bに連通さ
せたノズル4から外部に所望温度の冷水が取り出され
る。
[0005] One of the two kinds of fluids, refrigerant P, is Freon or liquid nitrogen, and the other liquid to be cooled Q is water. Such refrigerant P rises in the refrigerant flow path 5 from the refrigerant passage hole 2a formed in the lower part of the heat transfer plate 1 and
and flows out from the nozzle 4 connected to the refrigerant passage hole 2b. The liquid to be cooled (hereinafter, referred to as water, if necessary) Q descends through the water flow passage 6 from the water passage hole 3a formed in the upper part of the heat transfer plate 1 and lower water passage hole 3b. Reach Heat is exchanged with high efficiency during the flow of the refrigerant P and the water Q by filling the adjacent fluid flow paths 5 and 6, respectively, so as to communicate with the water passage hole 3b below the water fluid flow path 6. Cold water of a desired temperature is taken out of the nozzle 4 outside.

【0006】[0006]

【発明が解決しようとする課題】図6に示すように、縦
長の流体流路6の上部から下部に水Qを流し、逆に流体
流路5に下部から上部に冷媒Pを流すことで、水Qと冷
媒Pの効率の良い熱交換が連続して行われるが、水用流
体流路6を温度低下しながら流下する水Qの温度が低下
し過ぎて、その流下途中で凍結する場合がある。特に、
水用流体流路6を温度低下しながら流下する水Qは、伝
熱プレート1の下部の入口側冷媒通路孔2aの周辺部分
(図6の×印部分)nで入口側冷媒通路孔2aを迂回す
るように流れて流速が落ち、かつ、この周辺部分nで水
Qが熱交換前の最低温度の冷媒Pで急冷されるために、
入口側冷媒通路孔2aに流入する冷媒Pがわずかに氷点
を下回っても周辺部分nの水Qが凍結する場合がある。
この水用流体流路6の出口側に近い位置にある入口側冷
媒通路孔2aの周辺部分nで水Qが凍結し始めると、流
速がさらに落ちて凍結面積が拡大し、凍結部分の体積膨
張によって熱交換器の内部破損が発生する場合があり、
これが冷媒の温度管理を含む熱交換器の保守管理を難し
くしている。
As shown in FIG. 6, water Q is caused to flow from the upper part to the lower part of the vertically long fluid flow path 6, and conversely, the refrigerant P is caused to flow from the lower part to the upper part in the fluid flow path 5, Although efficient heat exchange between the water Q and the refrigerant P is continuously performed, the temperature of the water Q flowing down while lowering the temperature of the water fluid flow path 6 is too low, and the water Q may freeze during the flow. is there. In particular,
The water Q flowing down while lowering the temperature of the water fluid flow path 6 passes through the inlet-side refrigerant passage hole 2a at the peripheral portion (the x mark portion in FIG. 6) n of the inlet-side refrigerant passage hole 2a at the lower part of the heat transfer plate 1. Since the water Q flows so as to detour, the flow velocity decreases, and the water Q is quenched by the refrigerant P at the lowest temperature before heat exchange in this peripheral portion n.
Even when the coolant P flowing into the inlet-side coolant passage hole 2a slightly falls below the freezing point, the water Q in the peripheral portion n may freeze.
When the water Q starts to freeze in the peripheral portion n of the inlet-side refrigerant passage hole 2a located near the outlet side of the water fluid flow path 6, the flow velocity further decreases, the freezing area increases, and the volume of the frozen portion expands. May cause internal damage to the heat exchanger,
This makes maintenance of the heat exchanger including temperature control of the refrigerant difficult.

【0007】本発明の目的とするところは、伝熱プレー
ト内部で水等の被冷却液が凍結しないようにして冷媒な
どの温度管理を容易にしたプレート式熱交換器を提供す
ることにある。
An object of the present invention is to provide a plate-type heat exchanger in which a liquid to be cooled, such as water, is prevented from freezing inside a heat transfer plate, thereby facilitating temperature control of a refrigerant or the like.

【0008】[0008]

【課題を解決するための手段】本発明は上記目的を達成
するため、請求項1の発明は、2種の流体の入口側及び
出口側通路孔を有する伝熱プレートの複数枚を対応する
2種流体の通路孔を同心状に連通させた状態で積層し
て、各伝熱プレート間に2種の流体を入口側通路孔から
出口側通路孔へと流通させる2種の流体流路を交互に形
成したプレート式熱交換器において、一方の流体の流体
流路における他方の流体の伝熱プレート通路孔周辺部分
を、同流体流路を流通する流体が流入せず迂回する閉塞
空間にしたことを特徴とする。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a heat transfer plate having a plurality of heat transfer plates each having two types of fluid inlet-side and outlet-side passage holes. The seed fluid passage holes are laminated in a concentric communication manner, and two kinds of fluid flow paths for allowing two kinds of fluid to flow between the heat transfer plates from the inlet side passage hole to the outlet side passage hole alternately. In the plate heat exchanger formed in the above, the peripheral portion of the heat transfer plate passage hole of the other fluid in the fluid flow path of one fluid is formed as a closed space in which the fluid flowing through the fluid flow path does not flow and bypasses. It is characterized by.

【0009】ここで、2種の流体はフロン等の冷媒と水
等の被冷却液であり、これら冷媒と他の流体の熱交換条
件に応じて伝熱プレート間の2種流体の流体流路の一方
或いは両方の伝熱プレート通路孔周辺部分が選択的に閉
塞空間にされて、冷媒による他の流体の過冷却や過冷却
による凍結等が回避される。流体流路における部分的な
閉塞空間は、隣接する伝熱プレート間の部分的なろう付
け、圧接、金属製ガスケット類の介在等で形成される。
Here, the two fluids are a refrigerant such as Freon and a liquid to be cooled such as water, and a fluid flow path of the two fluids between the heat transfer plates according to heat exchange conditions between the refrigerant and other fluids. One or both of the heat transfer plate passage hole peripheral portions is selectively made a closed space, so that supercooling of another fluid by the refrigerant or freezing due to supercooling is avoided. The partially closed space in the fluid flow path is formed by partial brazing between adjacent heat transfer plates, pressure welding, the interposition of metal gaskets, and the like.

【0010】また、本発明の請求項2の発明は、請求項
1の2種の流体が冷媒とこの冷媒で冷却される被冷却液
の場合で、この被冷却液の流体流路における伝熱プレー
トの冷媒用通路孔周辺部分を閉塞空間にしたことを特徴
とする。この場合、冷媒で被冷却液が凍結するのを防止
するために、被冷却液の流体流路の凍結し易い冷媒通路
孔周辺部分を閉塞空間にして、被冷却液が冷媒通路孔周
辺部分に流れないようにしている。
According to a second aspect of the present invention, in the case where the two kinds of fluids of the first aspect are a refrigerant and a liquid to be cooled which is cooled by the refrigerant, the heat transfer in the fluid flow path of the liquid to be cooled is performed. It is characterized in that a portion around the coolant passage hole of the plate is a closed space. In this case, in order to prevent the liquid to be cooled from being frozen by the refrigerant, a portion around the refrigerant passage hole that is easy to freeze in the fluid flow path of the liquid to be cooled is made a closed space, and the liquid to be cooled is placed around the refrigerant passage hole. I try not to flow.

【0011】また、請求項3の発明は、請求項2の被冷
却液用流体流路の閉塞空間形成場所を限定したもので、
被冷却液の流体流路の被冷却液流れ方向の下流側で、冷
媒の流体流路の冷媒流れ方向上流側に在る伝熱プレート
の冷媒用通路孔周辺部分を閉塞空間にしたことを特徴と
する。つまり、被冷却液用流体流路で被冷却液が最も温
度低下を起こして凍結し易い部所を被冷却液が流入しな
い閉塞空間にすることで、結果的に被冷却液用流体流路
全体での被冷却液の凍結を回避させる。
Further, the invention according to claim 3 limits the place where the closed space of the fluid flow path for the liquid to be cooled according to claim 2 is formed,
A closed space is formed around the refrigerant passage hole of the heat transfer plate downstream of the flow path of the liquid to be cooled in the direction of flow of the liquid to be cooled and upstream of the flow path of the refrigerant in the direction of flow of the refrigerant. And In other words, by making the portion of the cooling liquid fluid flow path where the cooling liquid is most likely to fall in temperature and freeze easily into a closed space into which the cooling liquid does not flow, the cooling liquid liquid flow path as a whole is consequently formed. To prevent the liquid to be cooled from freezing.

【0012】さらに、請求項4の発明は、隣接する伝熱
プレートを、各伝熱プレートの通路孔周辺部分と他の部
分の境界線部分同士を部分的にろう付けして、流体流路
に部分的に閉塞空間を形成したことを特徴とする。この
場合、複数の伝熱プレートがろう付けされるブレージン
グ式熱交換器において、流体流路に閉塞空間を伝熱プレ
ート間のろう付けで形成することで、伝熱プレートを積
層してろう付けする1工程で流体流路の閉塞空間が同時
に形成できて製作上に有利となる。
Further, according to the present invention, an adjacent heat transfer plate is partially brazed at a boundary portion between a peripheral portion of a passage hole of each heat transfer plate and another portion to form a fluid flow path. A closed space is partially formed. In this case, in a brazing type heat exchanger in which a plurality of heat transfer plates are brazed, the heat transfer plates are stacked and brazed by forming a closed space in the fluid flow path by brazing between the heat transfer plates. The closed space of the fluid flow path can be simultaneously formed in one step, which is advantageous in manufacturing.

【0013】[0013]

【発明の実施の形態】以下、図7のブレージング式のプ
レート式熱交換器に適用した本発明の一実施形態を図1
乃至図4を参照して詳述する。なお、図1乃至図4の図
3乃至図5と同一、又は、相当部分には同一参照符号を
付して説明の重複を避ける。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention applied to a brazing type plate heat exchanger shown in FIG. 7 is shown in FIG.
This will be described in detail with reference to FIGS. Note that the same or corresponding parts as those in FIGS. 3 to 5 of FIGS. 1 to 4 are denoted by the same reference numerals, to avoid duplication of description.

【0014】図1に示される第1の実施形態のプレート
式熱交換器は、図7熱交換器と基本構造は同一であり、
熱交換されるべき2種の流体は冷媒Pと被冷却液の例え
ば水Qである。図1の図7と相違する特徴は、水用流体
流路6の伝熱プレート冷媒用通路孔2aの周辺部分nだ
けを閉塞空間Maとして、この周辺部分nに水Qが流入
しないようにしたことである。図1熱交換器の伝熱プレ
ート1の隣接する2枚の概要を図3に示すと、1つの縦
長の水用流体流路6の下流側で、伝熱プレート1の入口
側冷媒通路孔1aの周辺部分nの流体流路6だけが、同
流体流路6の他の部分と区切られた閉塞空間Maにして
ある。この閉塞空間Maは、例えば図1の黒丸印で示す
ように隣接する伝熱プレート1の熱交換伝熱部1aの冷
媒通路孔周辺部分nと他の部分の境界線部分同士をろう
材で接合したろう付け部7で形成する。
The plate type heat exchanger of the first embodiment shown in FIG. 1 has the same basic structure as the heat exchanger of FIG.
The two fluids to be heat-exchanged are a refrigerant P and a liquid to be cooled, for example, water Q. A feature different from FIG. 7 in FIG. 1 is that only the peripheral portion n of the heat transfer plate refrigerant passage hole 2a of the water fluid flow path 6 is a closed space Ma so that water Q does not flow into this peripheral portion n. That is. FIG. 3 schematically shows two adjacent heat transfer plates 1 of the heat exchanger. FIG. 3 shows an inlet-side refrigerant passage hole 1a of the heat transfer plate 1 downstream of one vertically long water fluid flow path 6. Is a closed space Ma separated from other portions of the fluid flow channel 6 only in the peripheral portion n of the fluid flow channel 6. In the closed space Ma, for example, as shown by a black circle in FIG. 1, a boundary portion between the periphery n of the refrigerant passage hole of the heat exchange heat transfer portion 1a of the adjacent heat transfer plate 1 and another portion is joined with a brazing material. It is formed by the brazed portion 7 thus formed.

【0015】なお、熱交換器の他の形式によっては、上
記ろう付け部7を伝熱プレート同士の圧接部、金属製ガ
スケット等の介在物で形成してもよい。
Depending on other types of the heat exchanger, the brazing portion 7 may be formed by a press contact portion between the heat transfer plates or an intervening member such as a metal gasket.

【0016】上記実施形態の熱交換器においては、1つ
の縦長の水用流体流路6を温度低下しながら流下する水
Qは、伝熱プレート1の下部の入口側冷媒通路孔2aの
周辺部分nの閉塞空間Maに近付く。この閉塞空間Ma
の在る冷媒通路孔周辺部分nは流下する水Qの流速が落
ち、熱交換前の最低温度の冷媒Pで急冷されて最も凍結
し易い部所であるが、水Qが流体流路6を流下して周辺
部分nに近付くと、ろう付け部7に遮られて閉塞空間M
aに流入せず、水Qはろう付け部7に沿って周辺部分n
を迂回するように流れて下部の出口側水用通路孔3bに
達する。したがって、入口側冷媒通路孔2aに流入する
冷媒Pがわずかに氷点を下回るようなことがあっても、
水Qは流体流路6の最も冷却される通路孔2aの周辺部
分nを避けて流下するので、過冷却されて凍結する心配
が無くなる。
In the heat exchanger of the above-described embodiment, the water Q flowing down one vertically elongated water fluid flow path 6 while lowering its temperature is formed in the peripheral portion of the inlet side refrigerant passage hole 2 a at the lower portion of the heat transfer plate 1. It approaches the closed space Ma of n. This closed space Ma
Is a portion where the flow rate of the flowing water Q drops and is quenched by the coolant P at the lowest temperature before heat exchange, so that the water Q flows through the fluid flow path 6. When it flows down and approaches the peripheral portion n, it is blocked by the brazing portion 7 and the closed space M
a and the water Q does not flow into the peripheral portion n along the brazing portion 7.
Flows to bypass the air flow and reaches the lower outlet side water passage hole 3b. Therefore, even if the refrigerant P flowing into the inlet-side refrigerant passage hole 2a slightly falls below the freezing point,
Since the water Q flows down avoiding the peripheral portion n of the passage hole 2a where the fluid Q is cooled most, there is no fear that the water Q is overcooled and freezes.

【0017】なお、閉塞空間Maは冷媒Pと水Qの熱交
換にほとんど寄与しないが、閉塞空間Maは1つの流体
流路6の極一部を占める小体積部分であることから、閉
塞空間Maの存在で流体流路6の熱交換効率はほとんど
低下せず、熱交換器の性能に問題を引き起こすことはな
い。また、隣接する伝熱プレート1をろう付けして流体
流路6を形成するときに、同時にろう付け部7を形成し
て流体流路6の一部を閉塞空間Maとして形成すること
で、1ろう付け工程でブレージング式のプレート式熱交
換器が製作でき、かつ、図7と同様の既設伝熱プレート
1をそのまま使用して製作することができる。
The closed space Ma hardly contributes to the heat exchange between the refrigerant P and the water Q. However, since the closed space Ma is a small volume portion occupying a very small part of one fluid passage 6, the closed space Ma is closed. The heat exchange efficiency of the fluid flow path 6 is hardly reduced due to the presence of the fluid flow path 6, and does not cause a problem in the performance of the heat exchanger. Further, when the fluid passage 6 is formed by brazing the adjacent heat transfer plates 1, a part of the fluid passage 6 is formed as a closed space Ma at the same time by forming the brazing portion 7. A brazing-type plate heat exchanger can be manufactured in the brazing process, and can be manufactured using the existing heat transfer plate 1 as shown in FIG. 7 as it is.

【0018】図2及び図4に示される第2の実施形態の
プレート式熱交換器は、第1の実施形態の熱交換器にお
ける水用流体流路6に上記閉塞空間Maと共に別の閉塞
空間Mbを形成し、さらに、冷媒用流体流路5にも一対
の閉塞空間Mc、Mdを形成している。図4に示される
水用流体流路6における閉塞空間Mbは、伝熱プレート
1の上部の出口側冷媒用通路孔2bの周辺部分に他の閉
塞空間Maと同様に部分的なろう付けにて形成される。
また、冷媒用流体流路5における一方の閉塞空間Mcは
伝熱プレート1の上部の入口側水用通路孔3aの周辺部
分に形成され、他方の閉塞空間Mdは伝熱プレート1の
下部の出口側水用通路孔3bの周辺部分に形成され、こ
れら各閉塞空間Mc、Mdは、図2に示すように隣接す
る伝熱プレート1を部分的に接合したろう付け部7’で
形成される。
The plate heat exchanger according to the second embodiment shown in FIGS. 2 and 4 has another closed space together with the closed space Ma in the water fluid flow path 6 in the heat exchanger according to the first embodiment. Mb is formed, and a pair of closed spaces Mc and Md are also formed in the refrigerant fluid flow path 5. The closed space Mb in the water fluid flow path 6 shown in FIG. 4 is partially brazed to the peripheral portion of the outlet side refrigerant passage hole 2b on the upper part of the heat transfer plate 1 like the other closed space Ma. It is formed.
Further, one closed space Mc in the refrigerant fluid flow path 5 is formed in the peripheral portion of the inlet-side water passage hole 3a at the upper portion of the heat transfer plate 1, and the other closed space Md is formed at the lower outlet of the heat transfer plate 1. The closed spaces Mc and Md are formed in the peripheral portion of the side water passage hole 3b, and each of the closed spaces Mc and Md is formed by a brazing portion 7 'in which the adjacent heat transfer plates 1 are partially joined as shown in FIG.

【0019】第2の実施形態の熱交換器においても、1
つの水用流体流路6における閉塞空間Maで水Qの凍結
が防止される。この第2実施形態の場合、水用流体流路
6を流下する水Qが閉塞空間Maを迂回して出口側通路
孔3bへと流れる流路の裏面が冷媒用密閉空間Mdであ
り、この密閉空間Mdに冷媒Pが流入しないので、水Q
の過冷却と凍結がより確実、効果的に防止される。
In the heat exchanger of the second embodiment,
The freezing of the water Q is prevented in the closed space Ma in the two water fluid flow paths 6. In the case of the second embodiment, the back surface of the flow path in which the water Q flowing down the water fluid flow path 6 bypasses the closed space Ma and flows to the outlet side passage hole 3b is the refrigerant closed space Md. Since the refrigerant P does not flow into the space Md, the water Q
The overcooling and freezing of the steel are more reliably and effectively prevented.

【0020】また、第2の実施形態の場合、水用流体流
路6の上流側の出口側冷媒用通路孔2bの周辺部分で水
Qが凍結するような場合でも、この凍結を閉塞空間Mb
が防止する。さらに、図4に示すように隣接する2枚の
伝熱プレート1、1は上下対称形となるので、熱交換器
をその上下を逆にして据付使用しても問題が無い熱交換
器が提供できる。
Further, in the case of the second embodiment, even when the water Q freezes in the peripheral portion of the outlet side refrigerant passage hole 2b on the upstream side of the water fluid flow path 6, this freezing is prevented by the closed space Mb.
To prevent. Further, as shown in FIG. 4, since the two adjacent heat transfer plates 1 and 1 are vertically symmetrical, there is provided a heat exchanger having no problem even when the heat exchanger is installed and used upside down. it can.

【0021】以上は冷媒と水の2種の流体の熱交換器に
適用した実施形態であるが、2種の流体の冷媒でない流
体は水等の被冷却液に限らず気体等であってもよく、冷
媒と水以外の凍結の心配のない流体を使用する熱交換器
においては流体の過冷却によるトラブル発生を回避する
ために本発明構造が有効である。
The above embodiment is an embodiment in which the present invention is applied to a heat exchanger of two kinds of fluids, a refrigerant and water. However, the non-refrigerant fluid of the two kinds of fluids is not limited to a liquid to be cooled such as water but may be a gas or the like. The structure of the present invention is effective in a heat exchanger using a fluid other than a refrigerant and water, which does not have a fear of freezing, in order to avoid a trouble caused by supercooling of the fluid.

【0022】[0022]

【発明の効果】請求項1の発明によれば、冷媒と水等の
他の流体の熱交換動作時に、流体が伝熱プレートの冷媒
用通路孔周辺部分に近付いて過度に冷却されようとして
も、この過度に冷却される流体流路が流体の流入を阻止
する閉塞空間となっているので流体の過冷却が回避され
て、流体の過冷却に伴うトラブル発生の少ない、また、
流体過冷却防止のための冷媒の温度管理の容易なプレー
ト式熱交換器が提供できる。
According to the first aspect of the present invention, during the heat exchange operation between the refrigerant and another fluid such as water, even if the fluid approaches the periphery of the refrigerant passage hole of the heat transfer plate and is excessively cooled. Since the excessively cooled fluid flow path is a closed space for preventing the inflow of the fluid, supercooling of the fluid is avoided, and there is little trouble caused by supercooling of the fluid.
It is possible to provide a plate-type heat exchanger that can easily control the temperature of the refrigerant for preventing the fluid from being excessively cooled.

【0023】請求項2の発明によれば、冷媒で冷却され
る被冷却液が伝熱プレートの冷媒用通路孔の周辺部分に
近付いても、この周辺部分に形成された被冷却液用流体
流路の閉塞空間を通らず迂回するので、被冷却液の過冷
却による凍結が回避されて、被冷却液凍結による熱交換
器内部破損の少ない長寿命、高信頼度のプレート式熱交
換器が提供できる。
According to the second aspect of the present invention, even when the liquid to be cooled by the refrigerant approaches the peripheral portion of the refrigerant passage hole of the heat transfer plate, the fluid flow for the liquid to be cooled formed in the peripheral portion is formed. Since the detour is made without passing through the closed space of the road, freezing due to supercooling of the liquid to be cooled is avoided, and a long-life, high-reliability plate-type heat exchanger with less damage inside the heat exchanger due to freezing of the liquid to be cooled is provided. it can.

【0024】請求項3の発明によれば、被冷却液用流体
流路を流通して冷媒で冷却される被冷却液が最も冷却さ
れて凍結し易い部所に凍結を防止する閉塞空間を形成し
たので、被冷却液の凍結がより確実の防止されると共
に、1つの被冷却液用流体流路における閉塞空間の占め
る体積を最小限に抑制することができて、熱交換効率の
低下が容易に防止できる。
According to the third aspect of the present invention, a closed space for preventing freezing is formed in a part where the liquid to be cooled, which is cooled by the refrigerant through the liquid flow path for the liquid to be cooled, is most easily cooled and frozen. As a result, the freezing of the liquid to be cooled is more reliably prevented, and the volume occupied by the closed space in one fluid passage for the liquid to be cooled can be minimized, so that the heat exchange efficiency is easily reduced. Can be prevented.

【0025】請求項4の発明によれば、隣接する伝熱プ
レートの流体通路孔周辺部分の部分的なろう付けで流体
流路に閉塞空間を形成するようにしたので、複数の伝熱
プレートを同時にろう付けしたブレージング式熱交換器
の1ろう付け工程で閉塞空間も形成でき、また、特別な
別部材を使用することなく既存の伝熱プレート等の部品
を使用して既存方法で製作的有利に製造できる。
According to the fourth aspect of the present invention, since the closed space is formed in the fluid flow path by partially brazing the periphery of the fluid passage hole of the adjacent heat transfer plate, a plurality of heat transfer plates can be formed. At the same time, the closed space can be formed in one brazing step of the brazed brazing type heat exchanger, and the existing method such as a heat-transfer plate can be used without using any special member. Can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態を示すプレート式熱交
換器の要部の断面図。
FIG. 1 is a cross-sectional view of a main part of a plate heat exchanger according to a first embodiment of the present invention.

【図2】本発明の第2の実施形態を示すプレート式熱交
換器の要部の断面図。
FIG. 2 is a sectional view of a main part of a plate heat exchanger according to a second embodiment of the present invention.

【図3】図1熱交換器における伝熱プレートの概要を示
す斜視図。
FIG. 3 is a perspective view showing an outline of a heat transfer plate in the heat exchanger of FIG. 1;

【図4】図2熱交換器における伝熱プレートの概要を示
す斜視図。
FIG. 4 is a perspective view schematically showing a heat transfer plate in the heat exchanger.

【図5】(A)は従来のプレート式熱交換器の一部省略
部分を含む正面図、(B)は側面図。
FIG. 5A is a front view of a conventional plate heat exchanger including a partly omitted portion, and FIG. 5B is a side view.

【図6】図5熱交換器における伝熱プレートの概要を示
す斜視図。
FIG. 6 is a perspective view showing an outline of a heat transfer plate in the heat exchanger.

【図7】図5(A)のT−T線に沿う拡大断面図。FIG. 7 is an enlarged sectional view taken along line TT in FIG.

【符号の説明】[Explanation of symbols]

P 流体、冷媒 Q 流体、被冷却液、水 1 伝熱プレート 2 通路孔 2a 上流側通路孔 2b 下流側通路孔 3 通路孔 3a 上流側通路孔 3b 下流側通路孔 5 流体流路 6 流体流路 Ma 閉塞空間 Mb〜Md 閉塞空間 n 冷媒通路孔周辺部分 7、7’ ろう付け部 P fluid, refrigerant Q fluid, liquid to be cooled, water 1 heat transfer plate 2 passage hole 2a upstream passage hole 2b downstream passage hole 3 passage hole 3a upstream passage hole 3b downstream passage hole 5 fluid passage 6 fluid passage Ma closed space Mb-Md closed space n refrigerant passage hole peripheral portion 7, 7 'brazing portion

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 2種の流体の入口側及び出口側通路孔を
有する伝熱プレートの複数枚を対応する2種流体の通路
孔を同心状に連通させた状態で積層して、各伝熱プレー
ト間に2種の流体を入口側通路孔から出口側通路孔へと
流通させる2種の流体流路を交互に形成したプレート式
熱交換器において、 一方の流体の流体流路における他方の流体の伝熱プレー
ト通路孔周辺部分を、同流体流路を流通する流体が流入
せず迂回する閉塞空間にしたことを特徴とするプレート
式熱交換器。
1. A heat transfer plate having two kinds of fluid inlet holes and an outlet side passage hole are laminated in a state where the corresponding two kinds of fluid passage holes are concentrically communicated with each other. In a plate heat exchanger in which two kinds of fluid flow paths for alternately forming two kinds of fluids between plates on the inlet side passage hole to the outlet side passage hole are formed between the plates, the other fluid in the one fluid path The plate heat exchanger characterized in that a peripheral portion of the heat transfer plate passage hole is formed as a closed space in which a fluid flowing through the fluid flow path does not flow in and bypasses.
【請求項2】 2種の流体が冷媒とこの冷媒で冷却され
る被冷却液で、この被冷却液の流体流路の伝熱プレート
の冷媒用通路孔周辺部分を閉塞空間にしたことを特徴と
する請求項1記載のプレート式熱交換器。
2. The method according to claim 1, wherein the two fluids are a coolant and a coolant to be cooled by the coolant, and a portion around the coolant passage hole of the heat transfer plate in the fluid flow path of the coolant is a closed space. The plate heat exchanger according to claim 1, wherein
【請求項3】 被冷却液の流体流路の被冷却液流れ方向
の下流側で、冷媒の流体流路の冷媒流れ方向上流側に在
る伝熱プレートの冷媒用通路孔周辺部分を閉塞空間にし
たことを特徴とする請求項2記載のプレート式熱交換
器。
3. A closed space is formed in the vicinity of the refrigerant passage hole of the heat transfer plate located downstream of the flow path of the liquid to be cooled in the direction of flow of the liquid to be cooled and upstream of the flow path of the refrigerant in the direction of flow of the refrigerant. 3. The plate heat exchanger according to claim 2, wherein:
【請求項4】 隣接する伝熱プレートを、各伝熱プレー
トの通路孔周辺部分と他の部分の境界線部分同士を部分
的にろう付けして、流体流路に部分的に閉塞空間を形成
したことを特徴とする請求項1〜3いずれか記載のプレ
ート式熱交換器。
4. A partially closed space is formed in a fluid flow path by partially brazing an adjacent heat transfer plate to a boundary portion between a peripheral portion of a passage hole of each heat transfer plate and another portion. The plate heat exchanger according to any one of claims 1 to 3, wherein:
JP2000094921A 2000-03-30 2000-03-30 Plate heat exchanger Expired - Lifetime JP4554025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000094921A JP4554025B2 (en) 2000-03-30 2000-03-30 Plate heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000094921A JP4554025B2 (en) 2000-03-30 2000-03-30 Plate heat exchanger

Publications (2)

Publication Number Publication Date
JP2001280889A true JP2001280889A (en) 2001-10-10
JP4554025B2 JP4554025B2 (en) 2010-09-29

Family

ID=18609885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000094921A Expired - Lifetime JP4554025B2 (en) 2000-03-30 2000-03-30 Plate heat exchanger

Country Status (1)

Country Link
JP (1) JP4554025B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004150672A (en) * 2002-10-29 2004-05-27 Toyo Radiator Co Ltd Plate-type heat exchanger
JP2011247466A (en) * 2010-05-26 2011-12-08 Mitsubishi Electric Corp Plate heat exchanger
JP2012504743A (en) * 2008-10-03 2012-02-23 アルファ ラヴァル コーポレイト アクチボラゲット Plate heat exchanger
WO2012063355A1 (en) * 2010-11-12 2012-05-18 三菱電機株式会社 Plate heat exchanger and heat pump device
JP2020506366A (en) * 2017-03-10 2020-02-27 アルファ−ラヴァル・コーポレート・アーベー Plate package using heat exchange plate with integrated discharge channel and heat exchanger including such plate package
JP2020507738A (en) * 2017-03-10 2020-03-12 アルファ−ラヴァル・コーポレート・アーベー Heat exchange plate, plate and package using the heat exchange plate, heat exchange using the heat exchange plate
CN113432461A (en) * 2021-05-13 2021-09-24 江苏远卓设备制造有限公司 Heat exchange sheet set for plate heat exchanger and plate heat exchanger

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259997A (en) * 1997-03-18 1998-09-29 Hisaka Works Ltd Plate-type heat exchanger
JPH1137676A (en) * 1997-07-16 1999-02-12 Daikin Ind Ltd Plate type heat exchanger
JPH1137677A (en) * 1997-07-16 1999-02-12 Daikin Ind Ltd Plate type heat exchanger

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259997A (en) * 1997-03-18 1998-09-29 Hisaka Works Ltd Plate-type heat exchanger
JPH1137676A (en) * 1997-07-16 1999-02-12 Daikin Ind Ltd Plate type heat exchanger
JPH1137677A (en) * 1997-07-16 1999-02-12 Daikin Ind Ltd Plate type heat exchanger

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004150672A (en) * 2002-10-29 2004-05-27 Toyo Radiator Co Ltd Plate-type heat exchanger
JP2012504743A (en) * 2008-10-03 2012-02-23 アルファ ラヴァル コーポレイト アクチボラゲット Plate heat exchanger
JP2011247466A (en) * 2010-05-26 2011-12-08 Mitsubishi Electric Corp Plate heat exchanger
CN103201583B (en) * 2010-11-12 2015-04-08 三菱电机株式会社 Plate heat exchanger and heat pump device
CN103201583A (en) * 2010-11-12 2013-07-10 三菱电机株式会社 Plate heat exchanger and heat pump device
JP5661119B2 (en) * 2010-11-12 2015-01-28 三菱電機株式会社 Plate heat exchanger and heat pump device
WO2012063355A1 (en) * 2010-11-12 2012-05-18 三菱電機株式会社 Plate heat exchanger and heat pump device
US9752836B2 (en) 2010-11-12 2017-09-05 Mitsubishi Electric Corporation Plate heat exchanger and heat pump apparatus
JP2020506366A (en) * 2017-03-10 2020-02-27 アルファ−ラヴァル・コーポレート・アーベー Plate package using heat exchange plate with integrated discharge channel and heat exchanger including such plate package
JP2020507738A (en) * 2017-03-10 2020-03-12 アルファ−ラヴァル・コーポレート・アーベー Heat exchange plate, plate and package using the heat exchange plate, heat exchange using the heat exchange plate
US11371781B2 (en) 2017-03-10 2022-06-28 Alfa Laval Corporate Ab Plate package using a heat exchanger plate with integrated draining channel and a heat exchanger including such plate package
CN113432461A (en) * 2021-05-13 2021-09-24 江苏远卓设备制造有限公司 Heat exchange sheet set for plate heat exchanger and plate heat exchanger
CN113432461B (en) * 2021-05-13 2022-12-13 江苏远卓设备制造有限公司 Heat exchange sheet set for plate heat exchanger and plate heat exchanger

Also Published As

Publication number Publication date
JP4554025B2 (en) 2010-09-29

Similar Documents

Publication Publication Date Title
JP5553828B2 (en) Heat exchanger
US6681844B1 (en) Plate type heat exchanger
JP4454779B2 (en) Plate heat exchanger
KR960018437A (en) Refrigerant Evaporator
KR101314906B1 (en) Plate type heat exchanger and manufacturing process of the same of
JP5100860B2 (en) Plate heat exchanger
JP2001280889A (en) Plate type heat exchanger
JP3044436B2 (en) Stacked heat exchanger
JP5025783B2 (en) Evaporator and refrigeration system provided with the evaporator
WO2020188690A1 (en) Plate heat exchanger and heat pump device equipped with same
JP4194938B2 (en) Heat transfer plate, plate pack and plate heat exchanger
JP3911604B2 (en) Heat exchanger and refrigeration cycle
JP2009275970A (en) Refrigerating apparatus
KR20190143091A (en) Condenser
KR20100122263A (en) Plate-type heat exchanger
JPH11287572A (en) Brazing plate type heat exchanger
JP3805665B2 (en) Heat exchanger
KR100760589B1 (en) Heat exchanging plate and heat exchanger by the same
JP2007178100A (en) Plate-type heat exchanger
JPH11287576A (en) Brazing plate type heat exchanger
KR102502256B1 (en) Heat exchanger for vehicles
KR100917171B1 (en) Heat-exchanger
JP2000179987A (en) Plate type heat exchanger for heat pump
KR20050116000A (en) Plate heat exchange
JP2941768B1 (en) Stacked heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090907

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4554025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term