JP2001279460A - Manufacturing method for grain oriented silicon steel sheet extremely low in core loss - Google Patents

Manufacturing method for grain oriented silicon steel sheet extremely low in core loss

Info

Publication number
JP2001279460A
JP2001279460A JP2000093203A JP2000093203A JP2001279460A JP 2001279460 A JP2001279460 A JP 2001279460A JP 2000093203 A JP2000093203 A JP 2000093203A JP 2000093203 A JP2000093203 A JP 2000093203A JP 2001279460 A JP2001279460 A JP 2001279460A
Authority
JP
Japan
Prior art keywords
group
steel sheet
tension
iron loss
electrical steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000093203A
Other languages
Japanese (ja)
Other versions
JP4479047B2 (en
Inventor
Mineo Muraki
峰男 村木
Hiroshi Yamaguchi
山口  広
Mitsumasa Kurosawa
光正 黒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2000093203A priority Critical patent/JP4479047B2/en
Publication of JP2001279460A publication Critical patent/JP2001279460A/en
Application granted granted Critical
Publication of JP4479047B2 publication Critical patent/JP4479047B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Chemically Coating (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method in which, while high tensile stress is applied on a steel sheet without deterioration the adhesive properties of a tension film, and high insulating properties can be maintained and to provide a grain oriented silicon steel sheet obtained in the same manufacturing method. SOLUTION: In this method, a grain oriented silicon steel sheet extremely low in core loss, is produced, in which the formation of forsterite is suppressed, or forsterite is removed. An organometallic compound having a hydrophilic group or an organic coupling group and further having a metallic coupling group is mixed with a water slurry or an aqueous for a substance to form the tensile film after baking solution of the raw material, this mixture is applied on a steel sheet, bucked and annealed to form the tension film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、変圧器や発電機
の鉄芯に利用される方向性電磁鋼板に関し、なかでも鉄
損が極めて低い方向性電磁鋼板とその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grain-oriented electrical steel sheet used for an iron core of a transformer or a generator, and more particularly to a grain-oriented electrical steel sheet having extremely low iron loss and a method of manufacturing the same.

【0002】[0002]

【従来の技術】Siを含有し、かつ結晶方位が(11
0)[001]方位や(100)[001]方位に配向
した方向性電磁鋼板は優れた軟磁気特性を有することか
ら商用周波数域での各種鉄芯材料として広く用いられて
いる。この時、電磁鋼板に要求される特性としては、一
般に50Hzの周波数で1.7Tに磁化させた場合の損
失であるW17/50(W/kg)で表わされるところ
の鉄損が低いことが重要である。この鉄損は内訳とし
て、 渦電流損Weと履歴損(ヒステリシス損)Whに分
離され、W17/50=We+Whである。
2. Description of the Related Art Si is contained and the crystal orientation is (11).
Grain-oriented electrical steel sheets oriented in the 0) [001] or (100) [001] direction have excellent soft magnetic properties and are therefore widely used as various iron core materials in the commercial frequency range. At this time, as a characteristic required for the magnetic steel sheet, it is important that the iron loss, which is generally expressed by W17 / 50 (W / kg), which is a loss when magnetized to 1.7 T at a frequency of 50 Hz, is low. It is. The iron loss is broken down into eddy current loss We and hysteresis loss Wh, and W17 / 50 = We + Wh.

【0003】鉄損を低減するためには渦電流損を低下さ
せるため有効なSiを含有させ電気抵抗を高める方法、
鋼板板厚を低減する方法、さらに結晶粒径を低減する方
法があり、ヒステリシス損を低下させるために有効な結
晶方位を揃える方法がある。
[0003] In order to reduce iron loss, a method of increasing the electric resistance by containing effective Si to reduce eddy current loss,
There is a method of reducing the thickness of a steel sheet, a method of further reducing a crystal grain size, and a method of aligning crystal orientations effective for reducing hysteresis loss.

【0004】このうちSiを過度に含有させると飽和磁
束密度の低下を招き鉄芯のサイズ拡大の原因になるので
限界があり、鋼板板厚を低減する方法も極端な製造コス
トの増大をもたらすので限界があった。また、結晶方位
を揃える方法は、磁束密度B8にして1.96Tや1.
97Tの値の製品が得られており、これ以上の改善の余
地は少なくなっている。
Of these, excessive inclusion of Si causes a decrease in saturation magnetic flux density and causes an increase in the size of the iron core, so there is a limit, and a method of reducing the thickness of a steel sheet causes an extreme increase in manufacturing cost. There was a limit. The method of aligning crystal orientations is as follows.
A product with a value of 97T has been obtained, leaving little room for further improvement.

【0005】さらに、近年、プラズマジェットやレーザ
ー光を照射して鋼板表面に局所的に歪を導入したり、鋼
板表面に溝を形成する等の方法によって人工的に磁区幅
を細分化し鉄損を低減する技術が開発され、大幅な鉄損
低減効果を得た。しかし、この技術による鉄損低減効果
には限度があった。
Furthermore, in recent years, the magnetic domain width has been artificially reduced by a method such as locally introducing strain on the steel sheet surface by irradiating a plasma jet or a laser beam, or forming a groove on the steel sheet surface to reduce iron loss. A technology to reduce iron loss was developed, and a significant iron loss reduction effect was obtained. However, there is a limit to the iron loss reduction effect of this technology.

【0006】一方、これらとは別に特公昭52−244
99号公報に開示されているように鋼板金属表面と非金
属被膜との界面の粗度を低減したり、特公平4−904
1号公報、特公平5−87597号公報、および特公平
6−37694号公報に開示されているように、金属表
面に特定の結晶方位の結晶を特に残存させるところの結
晶方位強調処理を施して鉄損を低減する手法が提案さ
れ、材料の鉄損が大幅に低減することが報告された。し
かし、これらの技術によって鉄損を低減するためには、
鋼板に対し強い張力を与えることが不可欠であり、その
ためには鋼板表面に張力被膜を存在させることが必要で
あった。すなわち、張力被膜が存在しない場合には、鋼
板表面が平滑なため逆に磁区幅の拡大が促進される結果
となり、鉄損が大幅に劣化する。
On the other hand, apart from these, Japanese Patent Publication No. 52-244
As disclosed in Japanese Unexamined Patent Publication No. 99-99, the roughness of the interface between the metal surface of a steel sheet and the non-metallic coating can be reduced.
No. 1, JP-B5-87597, and JP-B6-37694, a crystal orientation emphasis treatment is performed so that a crystal having a specific crystal orientation is particularly left on a metal surface. A method for reducing iron loss was proposed, and it was reported that the iron loss of the material was significantly reduced. However, in order to reduce iron loss with these technologies,
It is indispensable to give a strong tension to the steel sheet, and for that purpose, it was necessary to make a tension film exist on the surface of the steel sheet. That is, when the tension coating is not present, the surface of the steel sheet is smooth, and consequently the expansion of the magnetic domain width is promoted, and the iron loss is greatly deteriorated.

【0007】これを解決する手段として、前述の特公昭
52−24499号公報には、鋼板表面を化学研磨や電
解研磨によって鏡面化し、さらに鋼板表面に金属簿めっ
きを施し鋼板表面の酸化や、さらに絶縁被膜を塗布焼き
付けた際の鋼板表面の劣化による磁性不良を抑制する方
法を提案しているが、金属めっきが張力を有する場合に
は絶縁被膜は焼き付け処理によって剥落しやすく、幸運
にも剥落を免れた場合であっても、鋼板使用前の歪取り
焼鈍によってメッキ層が鋼板内に拡散して効果を失う欠
点があった。
To solve this problem, Japanese Patent Publication No. 52-24499 mentioned above discloses that the surface of a steel sheet is mirror-finished by chemical polishing or electrolytic polishing, and the steel sheet surface is subjected to metal plating to oxidize the steel sheet surface. We have proposed a method of suppressing magnetic defects due to deterioration of the steel sheet surface when applying and baking an insulating coating.However, if the metal plating has tension, the insulating coating is easily peeled off by baking, and fortunately Even if it is avoided, there is a drawback that the plating layer diffuses into the steel sheet due to strain relief annealing before using the steel sheet and loses its effect.

【0008】さらに、金属めっきが張力効果を有しない
場合には、鉄損低減効果は極わずかであり、この場合、
ちなみに絶縁被膜をりん酸塩系の張力被膜とした場合に
は、被膜の密着性は全く得られないので、磁気特性の向
上効果が全くない。したがって、この技術は工業化され
ることはなかった。
Further, when the metal plating has no tension effect, the effect of reducing iron loss is very small.
Incidentally, when the insulating coating is a phosphate-based tension coating, the adhesion of the coating is not obtained at all, and there is no effect of improving the magnetic properties. Therefore, this technology was never industrialized.

【0009】さらに、特開昭62−103374号公報
には、研磨により平滑に仕上げた鋼板表面に各種酸化
物、ほう化物、珪化物、リン化物、硫化物と地鉄との混
合極薄層とその上に絶縁性塗布焼き付け層を具備する方
法が開示されているが、この方法においては、鋼板と絶
縁層との密着性にすぐれているが、鋼板の鏡面平滑化効
果が地鉄との混合極薄層の存在によって消去され磁気特
性の所望の効果が得られず、やはり、工業化されるに至
らなかった。
Furthermore, Japanese Patent Application Laid-Open No. 62-103374 discloses that an extremely thin layer of a mixture of various oxides, borides, silicides, phosphides, sulfides and ground iron is provided on the surface of a steel plate which is smoothed by polishing. There is disclosed a method in which an insulating coating and baking layer is provided thereon. In this method, although the adhesion between the steel sheet and the insulating layer is excellent, the mirror smoothing effect of the steel sheet is mixed with the ground iron. Due to the existence of the ultra-thin layer, the magnetic layer was erased and the desired effect of the magnetic properties could not be obtained, so that it was not industrialized.

【0010】さらに、特公昭56−4150号公報に
は、鋼板表面を化学研磨や電解研磨によって平均粗さR
a;0.4μm以下の平滑面とし、さらにその上にセラ
ミックス薄膜を施す方法が開示されているが、密着性の
よいセラミックス薄膜の形成方法としては、化学蒸着、
真空蒸着であり、設備的に多量生産が困難であり、成膜
速度も遅く、工業生産に適合せず、工業化されるに至っ
ていない。
Further, Japanese Patent Publication No. 56-4150 discloses that the surface of a steel sheet is subjected to an average roughness R by chemical polishing or electrolytic polishing.
a: A method of forming a smooth surface of 0.4 μm or less and further applying a ceramic thin film thereon is disclosed. As a method of forming a ceramic thin film having good adhesion, chemical vapor deposition,
It is a vacuum deposition, it is difficult to mass-produce equipment, the deposition rate is slow, it is not suitable for industrial production, and it has not been industrialized.

【0011】また、特開平3−47957、特許294
465、294466、294467、294468、
294469、294470号公報には、平滑化した地
鉄表面にもしくはその金属めっき面に低圧プラズマ溶射
法によって酸化物や珪化物被膜を形成する方法が開示さ
れているが、この方法によっては工業的な成膜速度は確
保できるものの、液滴の付着による成膜であり緻密な膜
は形成不能で、成膜された表面も粗く摩擦により容易に
剥落し、鋼板またはめっき面とプラズマ溶射酸化物、珪
化物被膜との密着性が充分ではなく所望の磁気特性が得
られず、また大規模な減圧設備が必要とされるために工
業化されるに至らなかった。
Further, Japanese Patent Application Laid-Open No. 3-47957, Japanese Patent No. 294
465, 294466, 294467, 294468,
Japanese Patent Nos. 294469 and 294470 disclose a method of forming an oxide or silicide film on a smoothed ground iron surface or its metal plating surface by a low-pressure plasma spraying method. Although the film formation rate can be secured, the film is formed by the adhesion of droplets and a dense film cannot be formed.The formed surface is also rough and easily peels off due to friction. However, the adhesiveness to the material coating was not sufficient, and the desired magnetic properties could not be obtained, and large-scale decompression equipment was required, so that it was not industrialized.

【0012】一方、特開平2−243770号公報に
は、金属アルコキシドの脱水縮合反応などのゾルゲル法
によってセラミックス被膜を被成する方法が開示されて
いるが、有効な張力を与えられる膜厚を一度に塗布する
と被膜の割れや剥離につながることから複数回の塗布処
理が必要であり、工業的には実施されていない。さら
に、特開平3−130376号公報にはゾルゲル法によ
りゲル薄膜を被成したのちに絶縁被膜を被成する方法が
開示されているが、ゾルゲル膜上には均一な被膜が被成
できず、部分的な絶縁不良を生じる問題点があった。ま
た、 特開平5−226134号公報には同じくゾルゲル
法の改良特許が示されているが、剥離に関する問題点は
根本的には解決されていない。さらに、特開平4−32
3382号公報にはフォルステライト上にアルコキシシ
ランとセラミックスの混合物を塗布焼き付けして張力被
膜を被成する技術が開示されているが、フォルステライ
トを持たない珪素鋼板上に適用した場合には全面剥離と
なり、用いることは出来ない。
On the other hand, JP-A-2-243770 discloses a method of forming a ceramic film by a sol-gel method such as a dehydration condensation reaction of a metal alkoxide. When applied to a film, the coating film may be cracked or peeled off, so that a plurality of coating treatments are required, and this method has not been industrially implemented. Further, Japanese Patent Application Laid-Open No. 3-130376 discloses a method in which a gel thin film is formed by a sol-gel method and then an insulating film is formed, but a uniform film cannot be formed on the sol-gel film. There is a problem that a partial insulation failure occurs. Japanese Patent Application Laid-Open No. 5-226134 also discloses an improved patent for the sol-gel method, but the problem relating to peeling has not been fundamentally solved. Further, JP-A-4-32
Japanese Patent No. 3382 discloses a technique in which a mixture of alkoxysilane and ceramics is applied and baked on forsterite to form a tension film, but when applied on a silicon steel sheet having no forsterite, it is completely peeled off. And cannot be used.

【0013】[0013]

【発明が解決しようとする課題】上述したように、最近
の方向性電磁鋼板の鉄損低減技術の動向は鋼板表面を仕
上げ焼鈍工程中やその後の処理で平滑化したり、結晶方
位強調処理を施した後、鋼板表面に張力被膜を被成する
ことが必要不可欠であるが、張力被膜は鋼板面に強い張
力を及ぼすため鋼板面と張力被膜との界面に強い剪断応
力が作用し必然的に被膜を剥落させるので、結果的に張
力付与も達成できず、磁気特性も劣化する。これに対
し、張力被膜の密着性確保のための種々の工夫がなされ
てきたが、密着性が良好な場合には、鋼板表面の磁気的
な平滑効果が消失し、やはり磁気特性の劣化をもたらす
結果となり、いまだ、このような技術のなかで工業的に
製品化されたものはない。
As described above, the recent trend of the iron loss reduction technology for grain-oriented electrical steel sheets is to smooth the surface of the steel sheets during and after the finish annealing process or to perform crystal orientation emphasis treatment. It is indispensable to form a tension coating on the steel sheet surface after the steel sheet is formed.However, since the tension coating exerts a strong tension on the steel sheet surface, a strong shear stress acts on the interface between the steel sheet surface and the tension coating to inevitably form the coating. As a result, tension cannot be applied, and the magnetic properties deteriorate. On the other hand, various measures have been taken to ensure the adhesion of the tension coating, but when the adhesion is good, the magnetic smoothing effect on the steel sheet surface disappears, and the magnetic properties also deteriorate. As a result, none of these technologies has been industrially commercialized yet.

【0014】鋼板表面に結晶方位強調処理を施す場合に
は張力被膜の密着性は平滑化処理の場合より、張力と密
着性との相反する要求の矛盾は多少緩和されるが、それ
でも本来あるべき密着性には程遠く、張力作用が鋼板に
充分には伝達しないため鉄損の低減量として充分なもの
が得られない。また、上記ゾルゲル法による成膜では被
膜の厚みは一回の処理ではたかだか0.5μm程度しか
得られないために、張力値も限られたものに留まってお
り、充分な鉄損低減効果が得られなかった。また、一般
にフォルステライトの発達しない鋼板上では被膜膜質の
均一性は低く、絶縁特性に難点が多かった。
When the crystal orientation enhancement treatment is applied to the surface of the steel sheet, the contradiction of the conflicting requirements between the tension and the adhesion is somewhat relaxed as compared with the case of the smoothing treatment for the adhesion of the tension film. It is far from close adhesion, and a sufficient amount of reduction in iron loss cannot be obtained because the action of tension is not sufficiently transmitted to the steel sheet. Further, in the film formation by the sol-gel method, the thickness of the film can be obtained at most only about 0.5 μm in one treatment, so that the tension value is limited, and a sufficient iron loss reduction effect is obtained. I couldn't. Further, in general, the uniformity of the coating film quality was low on a steel sheet where forsterite did not develop, and there were many difficulties in the insulating properties.

【0015】この発明は、フォルステライトの生成を抑
止した、またはフォルステライトを除去した一方向性電
磁鋼に、必要に応じて酸洗、平滑化処理、結晶方位強調
処理を施し、さらに張力被膜によって鋼板に張力を付与
し、鉄損を大幅に低減する上述の技術においても、張力
被膜の密着性を損なうことなく、鋼板に十分な張力を作
用させ、高い絶縁性を与えることのできる一方向性電磁
鋼板の製造方法を提案するとともに、このような優れた
鉄損の極めて低い一方向性電磁鋼板を工業的に提供する
ことを目的とするものである。
According to the present invention, the unidirectional magnetic steel in which the formation of forsterite has been suppressed or the forsterite has been removed is subjected to pickling, smoothing treatment, and crystal orientation enhancement treatment as necessary, and further a tension coating is applied. Even in the above-mentioned technology, which applies tension to the steel sheet and greatly reduces iron loss, unidirectionality that can apply sufficient tension to the steel sheet and give high insulation without impairing the adhesion of the tension coating An object of the present invention is to propose a method for producing an electrical steel sheet and to industrially provide such a unidirectional electrical steel sheet having extremely low iron loss.

【0016】[0016]

【課題を解決するための手段】以下、この発明の開発経
緯について説明する。発明者らは、セラミックスやコロ
イド状のセラミックス等を張力被膜の主原料とし、金属
のアルコキシドの加水分解物をバインダーとして焼き付
けを行なっても、膜形成、鋼板への密着が成されないの
に対して、金属アルコキシドにかわり、親水基もしくは
有機結合基を持ち、さらに金属結合基を持つ有機金属化
合物を密着性改良剤として用いて焼き付けを行なうと、
容易に厚膜の膜形成と鋼板への良好な密着性が得られる
ことを知見して本発明を完成した。
The development of the present invention will be described below. The inventors have found that even if baking is performed using ceramics or colloidal ceramics as a main raw material of a tension coating and a hydrolyzate of a metal alkoxide as a binder, film formation and adhesion to a steel sheet are not achieved. In place of metal alkoxide, having a hydrophilic group or an organic bonding group, further baking using an organometallic compound having a metal bonding group as an adhesion improver,
The inventors have found that the formation of a thick film and good adhesion to a steel sheet can be easily obtained, and completed the present invention.

【0017】すなわち本発明方法は、フォルステライト
の生成を抑止した、またはフォルステライトを除去した
一方向性電磁鋼に、親水基もしくは有機結合基を持ち、
さらに金属結合基を持つ有機金属化合物を、焼成後に張
力被膜となる物質の原材料または原材料の溶液に混合
し、鋼板上に塗布した後、 焼鈍して、張力被膜を形成す
ることを特徴とする極めて鉄損の低い一方向性電磁鋼板
の製造方法を提供する。ここで、前記張力被膜の形成を
100℃以上800℃以下の酸化性雰囲気での熱処理
と、400℃以上1200℃以下の不活性ガスまたは還
元性雰囲気での熱処理とを組み合わせて行う製造方法が
好ましい。また、前記金属結合基がアルコキシル基とそ
の加水分解基、アセトキシ基、メトキシカルボニル基、
ハロゲン基のうちの一つ以上である製造方法、前記有機
金属化合物が、金属結合基としてメトキシ基、エトキシ
基の単独あるいは複合、またはそれらが加水分解された
シラノール基を有するシランカップリング剤もしくはそ
のオリゴマーである製造方法、前記親水基がアミノ基、
カルボキシル基、水酸基、カルボニル基、スルホ基のう
ちの一つ以上であり、有機結合基がビニル基、エポキシ
基、メタクリル基、メタクリロキシ基、メルカプト基、
ウレイド基、グリシドキシ基、クロル基のうちの一つ以
上である製造方法が好ましい。さらに、前記有機金属化
合物が、アミノ基を有する製造方法、焼成後に張力被膜
となる物質が、 リン酸塩とクロム酸とコロイダルシリカ
を主成分とする製造方法、焼成後に張力被膜となる物質
が、 ほう酸と酸化アルミニウムを主成分とする製造方法
が好ましい。
That is, the method of the present invention provides a unidirectional magnetic steel in which forsterite formation has been suppressed or forsterite has been removed, having a hydrophilic group or an organic bonding group,
Furthermore, an organometallic compound having a metal binding group is mixed with a raw material or a raw material solution of a substance that becomes a tension film after firing, applied to a steel plate, and then annealed to form a tension film. Provided is a method for producing a grain-oriented electrical steel sheet having low iron loss. Here, a manufacturing method in which the heat treatment in an oxidizing atmosphere at a temperature of 100 ° C. or more and 800 ° C. or less and the heat treatment in an inert gas or a reducing atmosphere at a temperature of 400 ° C. or more and 1200 ° C. or less is preferable. . Further, the metal binding group is an alkoxyl group and its hydrolysis group, acetoxy group, methoxycarbonyl group,
A production method that is one or more of a halogen group, the organometallic compound has a methoxy group as a metal binding group, a single or complex ethoxy group, or a silane coupling agent having a silanol group in which they are hydrolyzed, or A method for producing an oligomer, wherein the hydrophilic group is an amino group,
A carboxyl group, a hydroxyl group, a carbonyl group, one or more of a sulfo group, and an organic bonding group is a vinyl group, an epoxy group, a methacryl group, a methacryloxy group, a mercapto group,
A production method which is at least one of a ureido group, a glycidoxy group and a chloro group is preferred. Further, the organometallic compound has a production method having an amino group, a substance which becomes a tension film after firing, a production method mainly containing phosphate, chromic acid and colloidal silica, and a substance which becomes a tension film after firing, A production method containing boric acid and aluminum oxide as main components is preferred.

【0018】以下に本発明を詳細に説明する。本発明方
法は、 用いる張力被膜の原料に、親水基もしくは有機結
合基を持ち、さらに金属結合基を持つ有機金属化合物を
混合することを1つの特徴とする。ここで、金属結合基
は鋼板と化学的に結合して被膜の密着に寄与するものと
思われる。また、有機結合基や親水基は同じく化学的に
張力被膜と作用して密着に寄与するものと思われる。
Hereinafter, the present invention will be described in detail. The method of the present invention is characterized in that an organic metal compound having a hydrophilic group or an organic bonding group and further having a metal bonding group is mixed with the raw material of the tension coating to be used. Here, it is considered that the metal binding group chemically bonds to the steel sheet and contributes to the adhesion of the coating. Further, it is considered that the organic bonding group and the hydrophilic group also chemically act on the tension film to contribute to the adhesion.

【0019】本発明に用いる有機金属化合物に含まれる
金属結合基としては、メトキシ基、エトキシ基などの、
加水分解によってM−O−Fe型の金属結合を生じるア
ルコシキル基やその加水分解基に加えて、アセトキシ基
等のアシル基、メトキシカルボニル基等の低級アルコキ
シカルボニル基やクロル基などのハロゲン基を用いるこ
とが出来る。なお、上記Mは有機金属化合物中の金属で
ありAl,Fe,Si、Ti,Zrなどの金属の単体
か、あるいは二つ以上を選ぶことができるが、後述のよ
うに安定した結合のためにはSiがより好ましい。さら
にこれらの有機Si化合物は、商品としてシランカップ
リング剤として知られるもの、またはそのオリゴマーを
用いることもできる。
The metal binding group contained in the organometallic compound used in the present invention includes a methoxy group, an ethoxy group and the like.
In addition to an alkoxy group that produces an MO-Fe type metal bond by hydrolysis and its hydrolyzable group, an acyl group such as an acetoxy group, a lower alkoxycarbonyl group such as a methoxycarbonyl group, and a halogen group such as a chloro group are used. I can do it. M is a metal in the organometallic compound and can be selected from a single metal such as Al, Fe, Si, Ti, Zr, or two or more metals. Is more preferably Si. Further, as these organic Si compounds, those commercially available as silane coupling agents or oligomers thereof can also be used.

【0020】また、親水基としてはアミノ基、カルボキ
シル基、水酸基、カルボニル基、スルホ基などを使用す
ることができる。
As the hydrophilic group, an amino group, a carboxyl group, a hydroxyl group, a carbonyl group, a sulfo group and the like can be used.

【0021】次に、有機結合基としてはビニル基、エポ
キシ基、メタクリル基、メタクリロキシ基、メルカプト
基、ウレイド基、グリシドキシ基など、単純なアルキル
基以外の有機基やクロル基等のハロゲン基が効果的に適
合する。
Next, as organic bonding groups, organic groups other than simple alkyl groups such as vinyl group, epoxy group, methacryl group, methacryloxy group, mercapto group, ureido group and glycidoxy group and halogen groups such as chloro group are effective. Suitable.

【0022】なお、メトキシカルボニル基等のアルコキ
シカルボニル基のように金属結合基が親水性を併せ持つ
場合は単独で相当の効果を得ることができる。一方、金
属結合基が有機結合基としての性格を併せ持つ場合の金
属結合基単独では本発明の効果は明確には得られない
が、この理由はいまのところ明らかとなってない。
When the metal binding group has a hydrophilic property like an alkoxycarbonyl group such as a methoxycarbonyl group, a considerable effect can be obtained by itself. On the other hand, the effect of the present invention cannot be clearly obtained by using the metal binding group alone when the metal binding group also has the character as the organic binding group, but the reason has not been clarified so far.

【0023】有機金属化合物は、上述の必須の構成基の
他に、アルキル基、アルキレン基、等を有していても良
い。
The organometallic compound may have an alkyl group, an alkylene group, and the like in addition to the essential constituent groups described above.

【0024】本発明に用いられる有機金属化合物は、 上
述の官能基を有するものであれば、特に限定されないが、
クロル基とビニル基とを有する、ビニルトリクロルシ
ラン、アルコキシル基とアミノ基とを有するアミノアル
キルトリアルコキシシラン、アルコキシル基とメタクリ
ロキシ基とを持つγ−メタクリロキシアルキルアルコキ
シシラン、グリシドキシ基とアルコキシル基とを持つグ
リシドキシアルキルトリアルコキシシラン、メルカプト
基とアルコキシル基とを持つメルカプトアルキルトリア
ルコキシシラン、これらに相当する基を持つチタネート
カップリング剤、水酸基とアミノ基とを持つトリアルコ
ールアミンチタネート等が挙げられる。
The organometallic compound used in the present invention is not particularly limited as long as it has the above-mentioned functional group.
Having a chloro group and a vinyl group, vinyl trichlorosilane, an aminoalkyl trialkoxysilane having an alkoxyl group and an amino group, a γ-methacryloxyalkylalkoxysilane having an alkoxyl group and a methacryloxy group, a glycidoxy group and an alkoxyl group. Glycidoxyalkyl trialkoxysilanes, mercaptoalkyl trialkoxysilanes having a mercapto group and an alkoxyl group, titanate coupling agents having a group corresponding thereto, and trialcoholamine titanates having a hydroxyl group and an amino group. .

【0025】張力被膜を形成するための原料は、 従来公
知の原料をそれぞれの特性を生かして用いる。以下に例
示する原料を、 そのまま、 または原材料の溶液、分散液
として鋼板上に塗布し焼鈍して、 張力被膜を得る。金属
酸化物、 金属酸化物の水和物、 金属水酸化物、シュウ酸
塩、 炭酸塩、 硝酸塩、 硫酸塩、 あるいはこれらの複合体
など、焼付け後にセラミックスとなる粒子を原材料とす
る。セラミックスの材質は限定されないが、酸化アルミ
ニウム、酸化珪素、 酸化チタン、コーディエライト、ム
ライト、スピネル、ジルコン等が好適に用いられる。こ
れらは、無機溶液、 有機溶液、 無機有機複合溶液として
用いられることが多い。具体的には、 リン酸−クロム酸
−コロイダルシリカを主成分とする液、無水クロム酸−
リン酸アルミニウムを主成分とする液、無水クロム酸−
リン酸マグネシウムを主成分とする液、無水クロム酸−
リン酸アルミニウム−コロイダルシリカを主成分とする
液、無水クロム酸−リン酸マグネシウム−コロイダルシ
リカを主成分とする液、酸化アルミニウム−酸化ほう素
系複合被膜またはほう酸アルミニウム質被膜が得られる
アルミナゾルとほう酸とを含む微粒子分散液等があげら
れる。リン酸−クロム酸−コロイダルシリカまたは酸化
アルミニウとほう酸を含む原材料が好ましく、 特に、張
力が高く磁気特性を改善できるので酸化アルミニウムと
ほう酸が好ましい。
As a raw material for forming the tension film, a conventionally known raw material is used by making use of its characteristics. The following raw materials are applied as they are or as a solution or a dispersion of raw materials on a steel plate and annealed to obtain a tension film. Particles that become ceramics after baking, such as metal oxides, metal oxide hydrates, metal hydroxides, oxalates, carbonates, nitrates, sulfates, or composites thereof, are used as raw materials. Although the material of the ceramics is not limited, aluminum oxide, silicon oxide, titanium oxide, cordierite, mullite, spinel, zircon and the like are preferably used. These are often used as inorganic solutions, organic solutions, and inorganic-organic composite solutions. Specifically, a solution containing phosphoric acid-chromic acid-colloidal silica as a main component, chromic anhydride-
Liquid containing aluminum phosphate as the main component, chromic anhydride-
Liquid mainly composed of magnesium phosphate, chromic anhydride-
Liquid containing aluminum phosphate-colloidal silica as a main component, liquid containing chromic anhydride-magnesium phosphate-colloidal silica as a main component, aluminum oxide-boron oxide-based composite coating or alumina sol and boric acid-based coating obtained from aluminum borate coating And the like. Raw materials containing phosphoric acid-chromic acid-colloidal silica or aluminum oxide and boric acid are preferred, and aluminum oxide and boric acid are particularly preferred because they have high tension and can improve magnetic properties.

【0026】前述の有機金属化合物の張力被膜の原材料
へ中の混合割合は、 特に限定されないが、 好ましくは、
混合物中、10質量%以下、さらには0.05〜3質量
%とする。
The mixing ratio of the above-mentioned organometallic compound to the raw material of the tension coating is not particularly limited.
In the mixture, the content is 10% by mass or less, and more preferably 0.05 to 3% by mass.

【0027】本発明で使用される電磁鋼板については公
知の任意の鋼板を用いることが出来るが、推奨される出
発成分組成について例示すると以下の通りである。ま
ず、鋼板の成分としては、Siを1.5〜7.0質量%
含有させることが望ましい。すなわち、Siは製品の電
気抵抗を高め鉄損を低減するのに有効な成分であるが、
Siは7.0質量%を超えると硬度が高くなり製造や加
工が困難になりがちである。また、1.5質量%未満で
あると二次再結晶焼鈍中に変態を生じて安定した二次再
結晶組織が得られないので下限を1.5質量%とする。
As the electromagnetic steel sheet used in the present invention, any known steel sheet can be used, and the recommended starting component composition is exemplified as follows. First, as a component of the steel sheet, Si is 1.5 to 7.0 mass%.
Desirably, it is contained. That is, Si is an effective component for increasing the electrical resistance of the product and reducing iron loss,
If Si exceeds 7.0% by mass, the hardness tends to be high, and production and processing tend to be difficult. If the amount is less than 1.5% by mass, transformation occurs during the secondary recrystallization annealing, and a stable secondary recrystallization structure cannot be obtained. Therefore, the lower limit is set to 1.5% by mass.

【0028】また、インヒビター元素としてAlを初期
鋼中に0.006質量%以上含有することにより結晶配
向性をよりいっそう向上することもできる。上限は0.
06質量%程度でこれを超えると再び結晶配向性の劣化
が生じる。窒素も同様の作用があり、上限はふくれ欠陥
の発生から100ppmに定める。下限は特に規定しな
いが20ppm程度未満に工業的に低下させるのは経済
的に困難であり、20ppm以上とする。また、一次再
結晶焼鈍後に増窒素処理を行う工程も有利に適合する。
増窒素処理を行わない場合には初期鋼中にSe+Sの和
で0.01質量%以上0.06質量%以下を含有するこ
とが必須であり、加えてMn化合物として析出させるた
めに0.02−0.2質量%のMnを含有させることが
必要である。それぞれ少なすぎると二次再結晶を生じる
ための析出物が過少となり、また多すぎると熱延前の固
溶が困難となるのでそれぞれ下限上限を定める。増窒素
処理を行わない場合にはMnは必ずしも必要ではない
が、鋼の延性改善等の目的で適宜添加が可能である。鋼
中には、上記の元素の他に方向性電磁鋼板の製造に適す
る添加成分元素であるB、Bi、Sb、Mo、Te、S
n、P、Ge、As、Nb、Ni、Cr、Ti、Cu、
Pb、ZnおよびInから選ばれる元素を単独、または
複合で0.0005−2.0質量%程度含有させること
が好ましい。これ以下では効果がほとんどなく、多すぎ
る場合には磁束密度の低下を生じる。また、初期鋼中に
は熱延中の再結晶を促進して磁気特性を向上させる目的
で0.005−0.08質量%程度のCを添加すること
もできる。
The crystal orientation can be further improved by containing 0.006% by mass or more of Al in the initial steel as an inhibitor element. The upper limit is 0.
If the amount exceeds about 06% by mass, the crystal orientation deteriorates again. Nitrogen has the same effect, and the upper limit is set to 100 ppm from the occurrence of blistering defects. Although the lower limit is not particularly defined, it is economically difficult to industrially lower the amount to less than about 20 ppm, and the lower limit is set to 20 ppm or more. Further, a step of performing a nitrogen increasing treatment after the primary recrystallization annealing is also advantageously applicable.
When the nitrogen increasing treatment is not performed, it is essential that the initial steel contains 0.01% by mass to 0.06% by mass in total of Se + S, and 0.02% by mass in order to precipitate as a Mn compound. It is necessary to contain -0.2% by mass of Mn. If the respective amounts are too small, the amount of precipitates for causing secondary recrystallization is too small, and if the amount is too large, solid solution before hot rolling becomes difficult. When the nitrogen increasing treatment is not performed, Mn is not necessarily required, but can be appropriately added for the purpose of improving the ductility of steel. In the steel, in addition to the above-mentioned elements, B, Bi, Sb, Mo, Te, and S, which are additional component elements suitable for manufacturing grain-oriented electrical steel sheets, are included.
n, P, Ge, As, Nb, Ni, Cr, Ti, Cu,
It is preferable to contain about 0.0005 to 2.0% by mass of an element selected from Pb, Zn and In alone or in combination. Below this, there is almost no effect, and when too much, the magnetic flux density is reduced. In addition, about 0.005 to 0.08 mass% of C can be added to the initial steel for the purpose of promoting recrystallization during hot rolling and improving magnetic properties.

【0029】C、S、Se、Nなどの元素はいずれも、
磁気特性上有害な作用があり、特に鉄損を劣化させるの
で、それぞれ製品板においてはC:0.003質量%以
下、S、Se:0.002質量%以下、N:0.002
質量%以下に低減することが好ましい。
Elements such as C, S, Se, and N are all
It has a detrimental effect on magnetic properties and particularly deteriorates iron loss. Therefore, in the product plate, C: 0.003% by mass or less, S, Se: 0.002% by mass or less, N: 0.002%
It is preferable to reduce it to not more than mass%.

【0030】フォルステライトの生成を抑止した一方向
性電磁鋼板は、焼鈍分離剤にアルミナを主剤とする分離
剤やMgOに塩化物を配合したものなど公知の方法で作
製できるが、可能な限り表面は平滑な性状が好ましい。
また、出発素材として、地鉄が一部に露出している場合
はフォルステライトが少量残存したり、焼鈍分離剤と反
応したりしてフォルステライトが形成されたもの等は酸
洗や研磨によって除去して用いることができる。この段
階までに鋼板に溝を形成する手法などで磁区細分化処理
を施すことは低鉄損化のために推奨される。また、溝形
成によらず、歪や微細粒形成など任意の磁区細分化手段
が併用可能である。板厚は必ずしも限定するものではな
いが、二次再結晶の容易さや本処理による鉄損低減の効
果を最大限に享受するためには0.15から0.30m
m程度の板厚が適当である。
The grain-oriented electrical steel sheet in which the formation of forsterite is suppressed can be manufactured by a known method such as a method in which a separating agent containing alumina as a main component in an annealing separating agent or a compound in which chloride is mixed with MgO. Preferably have smooth properties.
In addition, as a starting material, a small amount of forsterite remains when the base iron is partially exposed, and those where forsterite is formed by reacting with the annealing separator are removed by pickling or polishing. Can be used. It is recommended to perform magnetic domain refining by a method of forming grooves in the steel sheet by this stage in order to reduce iron loss. In addition, irrespective of the groove formation, any magnetic domain refining means such as strain or fine grain formation can be used together. Although the thickness is not necessarily limited, it is 0.15 to 0.30 m in order to maximize the ease of secondary recrystallization and the effect of reducing iron loss by this treatment.
A plate thickness of about m is appropriate.

【0031】引き続き、酸洗、化学研磨、電解研磨など
により平滑化処理して鉄損低減を行うことや、ハロゲン
化合物の水溶液中で電解を行う結晶方位強調処理により
磁気特性の向上を行うことも可能である。
Subsequently, iron loss can be reduced by smoothing treatment by pickling, chemical polishing, electrolytic polishing, or the like, or magnetic characteristics can be improved by crystal orientation enhancement treatment in which electrolysis is performed in an aqueous solution of a halogen compound. It is possible.

【0032】次いで、本発明の主眼である有機金属化合
物を任意のセラミックスや張力被膜の原料もしくはこの
有機溶媒または水溶液に混合して鋼板上に塗布する。塗
布方法はスプレー法やロール法など公知の手法が適用で
きる。有機金属化合物の金属結合基としては、メトキシ
基ないしはエトキシ基がより好ましく、さらに有機金属
化合物中の金属元素としてはSiが安定して密着性を保
持するとともに熱的に安定でありより好ましい。得られ
る電磁鋼板の鉄損が低いので、親水性基はアミノ基が好
ましい。市販のシランカップリング剤やこれを希釈して
プライマーとして入手できるものも適宜本目的に有効に
使用可能である。
Next, the organometallic compound, which is the main feature of the present invention, is mixed with any ceramics, a raw material for a tension coating, or an organic solvent or an aqueous solution thereof, and coated on a steel sheet. A known method such as a spray method or a roll method can be applied as a coating method. As the metal binding group of the organometallic compound, a methoxy group or an ethoxy group is more preferred, and as the metal element in the organometallic compound, Si is more preferably used because it is stable and maintains adhesion and is thermally stable. Since the iron loss of the obtained electromagnetic steel sheet is low, the hydrophilic group is preferably an amino group. Commercially available silane coupling agents and those obtained by diluting the silane coupling agents and obtaining them as primers can be appropriately and effectively used for this purpose.

【0033】張力被膜の形成は、100℃以上800℃
以下の酸化性雰囲気での熱処理と、400℃以上120
0℃以下の不活性ガスまたは還元性雰囲気での熱処理と
を組み合わせて行う。熱処理の順序はどちらを先にして
も良いが、酸化性雰囲気で熱処理し次に不活性または還
元雰囲気で熱処理するのが好ましい。熱処理時間は張力
被膜が形成されればよいが、好ましくは各熱処理で、5
〜120秒とする。張力被膜の熱処理を先ず大気中など
の酸化性雰囲気中で100℃以上800℃以下で行うこ
とは、 後に説明する鋼板中の炭素の除去のために非常に
有効である。より好ましくは、120〜200℃とす
る。次いで400℃以上1200℃以下の焼鈍を窒素な
どの不活性ガスや水素混合による弱還元性雰囲気等で行
うことは、 金属結合基の酸化分解を抑制しながら成膜を
完成させる効果を持つので推奨される。より好ましく
は、600〜900℃とする。それぞれ下限以下の温度
では有効な炭素除去や良好な成膜が得られないし、 上限
以上の温度では密着部の酸化による劣化や、鋼板および
成膜の部分溶融を生じて望ましくない。
The formation of the tension film is performed at 100 ° C. or more and 800 ° C.
Heat treatment in the following oxidizing atmosphere,
The heat treatment is performed in combination with an inert gas at 0 ° C. or lower or a heat treatment in a reducing atmosphere. The order of the heat treatment may be performed in any order, but it is preferable that the heat treatment is performed in an oxidizing atmosphere and then in an inert or reducing atmosphere. The heat treatment time may be such that a tension film is formed.
To 120 seconds. Performing the heat treatment of the tension coating in an oxidizing atmosphere such as the air at a temperature of 100 ° C. or more and 800 ° C. or less is very effective for removing carbon in a steel sheet as described later. More preferably, the temperature is set to 120 to 200 ° C. Next, annealing at 400 ° C or higher and 1200 ° C or lower in a weakly reducing atmosphere, such as an inert gas such as nitrogen or a mixture of hydrogen, is recommended because it has the effect of suppressing the oxidative decomposition of metal bonding groups and completing the film formation. Is done. More preferably, the temperature is set to 600 to 900 ° C. At temperatures below the lower limits, effective removal of carbon and good film formation cannot be obtained. At temperatures above the upper limit, degradation due to oxidation of the adhered portion and partial melting of the steel sheet and film formation are undesirable.

【0034】好ましくは張力被膜の乾燥・焼付けは、連
続焼鈍により行う。連続焼鈍とすれば、昇温速度を早く
することができるので、フォレステライトが実質的にな
い鋼板上でも密着性に富みかつ緻密な成膜ができる。ま
た、 連続焼鈍すれば、試料中の残存炭素量を低減させる
ことができる。原材料に混合された有機金属化合物中の
炭素の一部は焼鈍後に鋼中に吸収されて、 鋼中の炭素の
許容限界の30ppmを超えることがある。これは昇温
速度が小さいと、 炭素や有機物の雰囲気中への酸化放出
が生ずる前に被膜の最外層から成膜が始まり、 炭素が被
膜内部に閉じ込められ、 最終的に鋼板中に吸収されてし
まうためである。連続焼鈍では炭素の酸化と成膜が平行
して進行するため、 炭素の閉じ込めは生じずに炭素は有
効に開放されることがわかった。昇温速度は、 特に限定
されないが、およそ2℃/s以上が好ましく、5℃/s
以上がより好ましい。ライン速度も特に限定されるもの
ではないが、 鋼板の表面ガスが相対的に更新されること
により脱炭が促進されるためには、 およそ0.5m/s
以上が好ましい。更に、1.5〜5m/sがより好まし
い。
Preferably, the drying and baking of the tension coating is performed by continuous annealing. If continuous annealing is used, the rate of temperature rise can be increased, so that a dense film with good adhesion can be formed even on a steel plate substantially free of foresterite. In addition, continuous annealing can reduce the amount of residual carbon in the sample. Some of the carbon in the organometallic compound mixed with the raw material may be absorbed into the steel after annealing, exceeding the allowable limit of 30 ppm for carbon in the steel. This is because if the heating rate is low, film formation starts from the outermost layer of the coating before carbon and organic substances are oxidized and released into the atmosphere, and the carbon is trapped inside the coating and eventually absorbed into the steel sheet. This is because In continuous annealing, carbon oxidation and film formation proceed in parallel, so it was found that carbon was effectively released without confinement of carbon. The heating rate is not particularly limited, but is preferably about 2 ° C./s or more, and 5 ° C./s
The above is more preferable. Although the line speed is not particularly limited, about 0.5 m / s is required to promote decarburization by relatively updating the surface gas of the steel sheet.
The above is preferred. Furthermore, 1.5 to 5 m / s is more preferable.

【0035】張力被膜の厚みは0.5μm未満では有効
に張力を与えて低鉄損化をする効果が充分ではないの
で、好ましくは0.5μm以上に限定する。より好まし
くは、0.5〜2μmとする。
If the thickness of the tension coating is less than 0.5 μm, the effect of effectively applying tension to reduce iron loss is not sufficient, so that the thickness is preferably limited to 0.5 μm or more. More preferably, the thickness is 0.5 to 2 μm.

【0036】[0036]

【実施例】1. 磁区細分化のために微細粒を形成させ
ながらMgOを主とする分離剤を用いて2次再結晶させ
た板厚0.22mmの一方向性電磁鋼板のフォルステラ
イト被膜を酸洗により除去し、さらに硫酸とクロム酸混
液により鋼板表面の平均粗度が0.10μm程度となる
まで平滑化処理を施した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The forsterite film of a 0.22 mm-thick unidirectional electrical steel sheet that has been secondarily recrystallized using a separating agent mainly composed of MgO while forming fine grains for magnetic domain refining is removed by pickling, Further, a smoothing treatment was performed with a mixed solution of sulfuric acid and chromic acid until the average roughness of the steel sheet surface became about 0.10 μm.

【0037】この鋼板に金属結合基としてメトキシ基、
有機結合基としてγ- メタクリロキシプロピル基を有す
るγ- メタクリロキシプロピルメチルジメトキシシラン
を有機金属化合物として、エタノールとイオン交換水の
等量混合物に対して1質量%濃度に溶解混合攪拌し、さ
らにほう酸アルミニウムの微粒子を有機金属化合物の1
0倍質量懸濁させてからコーター塗布して通販速度2m
/sの連続焼鈍処理により大気中120℃で12秒乾燥
し、 1020℃の窒素雰囲気中で45秒焼き付け、片面
当たりの被膜厚みを1.2μmとした。試料全面にわた
って良好な被膜が被成され、得られた成品の磁気特性は
B8=1.911T,鉄損W17/50=0.62W/
kgであった。
A methoxy group as a metal binding group,
Using γ-methacryloxypropylmethyldimethoxysilane having a γ-methacryloxypropyl group as an organic bonding group as an organic metal compound, dissolve, mix and stir to a concentration of 1% by mass with respect to an equal mixture of ethanol and ion-exchanged water. Aluminum fine particles are made of organometallic compound 1
After applying 0 times mass suspension, apply coater and mail order speed 2m
/ S continuous annealing treatment at 120 ° C. for 12 seconds in the air and baking in a nitrogen atmosphere at 1020 ° C. for 45 seconds to make the film thickness per side 1.2 μm. A good coating was formed on the entire surface of the sample, and the magnetic properties of the obtained product were B8 = 1.911T, iron loss W17 / 50 = 0.62W /
kg.

【0038】2. 焼鈍分離剤としてMgOに対してP
bCl2 を0.3質量%含む分離剤を用いてフォルステ
ライト被膜の形成を抑止しつつ、磁区細分化のために鋼
板に溝形成を行ったのち2次再結晶させた板厚0.20
mmの方向性電磁鋼板を作成した。この鋼板に金属結合
基としてエトキシ基、親水基としてアミノ基を有するア
ミノプロピルトリエトキシシランを燐酸マグネシウムと
コロイダルシリカおよびクロム酸からなる水溶液に混合
後、コーターロール塗布して300℃の大気+窒素混合
雰囲気中での焼鈍と860℃の窒素水素混合雰囲気中で
の連続焼鈍を同一ラインで連続して行い、焼き付け、片
面あたりの被膜厚みを1.8μmとした。
2. P for MgO as an annealing separator
While suppressing formation of a forsterite film using a separating agent containing 0.3% by mass of bCl 2 , grooves were formed in the steel sheet for domain refining, and a sheet thickness of 0.20 was subjected to secondary recrystallization.
mm oriented magnetic steel sheets were prepared. An aminopropyltriethoxysilane having an ethoxy group as a metal binding group and an amino group as a hydrophilic group is mixed with an aqueous solution comprising magnesium phosphate, colloidal silica, and chromic acid, and then coated with a coater roll and mixed with air and nitrogen at 300 ° C. Annealing in an atmosphere and continuous annealing in a nitrogen-hydrogen mixed atmosphere at 860 ° C. were continuously performed on the same line, and baked, so that the film thickness per side was 1.8 μm.

【0039】得られた成品の磁気特性はB8=1.91
3T,鉄損W17/50=0.54W/kgであった。
The magnetic properties of the obtained product were as follows: B8 = 1.91
3T, iron loss W17 / 50 = 0.54 W / kg.

【0040】(比較例) 1. 磁区細分化のために微細粒を形成させながらMg
Oを主とする分離剤を用いて2次再結晶させた板厚0.
22mmの方向性電磁鋼板のフォルステライト被膜を酸
洗により除去し、さらに硫酸とクロム酸混液により鋼板
表面の平均粗度が0.10μm程度となるまで平滑化処
理を施した。
(Comparative Example) Mg while forming fine grains for magnetic domain refinement
Plate thickness obtained by secondary recrystallization using a separating agent mainly composed of O
The forsterite film of the 22 mm grain-oriented electrical steel sheet was removed by pickling, and further subjected to a smoothing treatment with a mixed solution of sulfuric acid and chromic acid until the average roughness of the steel sheet surface became about 0.10 μm.

【0041】この鋼板に金属結合基としてのエトキシ基
のみを持つテトラエトキシシランをエタノールとイオン
交換水の等量混合物に対して1質量%濃度に溶解混合攪
拌し、 さらにほう酸アルミニウムの微粒子を結合材の1
0倍懸濁させてからコーター塗布して通販速度2m/s
の連続焼鈍処理により大気中120℃で12秒乾燥し、
1020℃の窒素雰囲気中で45秒焼き付け、片面あた
りの被膜厚みを1.2μmとした。被膜は部分的に剥離
を生じ、成品の磁気特性はB8=1.913T,鉄損W
17/50=0.85W/kgであった。
A tetraethoxysilane having only an ethoxy group as a metal binding group is dissolved and stirred at a concentration of 1% by mass in an equal mixture of ethanol and ion-exchanged water in this steel sheet, and fine particles of aluminum borate are further mixed with a binder. Of 1
After suspending 0 times, coater is applied and mail order speed 2m / s
Dried in air at 120 ° C for 12 seconds by continuous annealing
It was baked for 45 seconds in a nitrogen atmosphere at 1020 ° C., and the film thickness per one side was set to 1.2 μm. The coating partially peeled off, and the magnetic properties of the product were B8 = 1.913T, iron loss W
17/50 = 0.85 W / kg.

【0042】(実施例、比較例)別に、鋼板は通常の二
次再結晶焼鈍を終了した一方向性電磁鋼板(B8=1.
895T,W17/50=0.727W/kg)を用
い、表面のフォルステライトを酸洗除去後、弗酸中で化
学研磨した材料に表1に示す各種の有機金属化合物をコ
ロイダルシリカ+リン酸塩、クロム酸系の公知の張力絶
縁被膜原液に混合して、 被膜被覆率、 張力被膜厚み、 鉄
損を評価し表1に示した。本発明の測定は以下の条件で
行った。 1)被膜被覆率:成膜した張力被膜の外観観察により測
定した。 2)張力被膜厚み:成膜の電子顕微鏡観察により測定し
た。 3)鉄損:50Hzの周波数で1.7Tに磁化させた場
合の損失[W17/50(W/kg)]を測定した。
(Examples and Comparative Examples) Separately, the steel sheet is a grain-oriented electrical steel sheet (B8 = 1.
895T, W17 / 50 = 0.727 W / kg), after pickling off forsterite on the surface, removing various organometallic compounds shown in Table 1 into colloidal silica + phosphate on a material chemically polished in hydrofluoric acid. The mixture was mixed with a known chromic acid-based stock solution of a tension insulating coating, and the coating coverage, the thickness of the tension coating, and the iron loss were evaluated. The measurement of the present invention was performed under the following conditions. 1) Coating coverage: measured by observing the appearance of the formed tension coating. 2) Tension film thickness: Measured by electron microscope observation of film formation. 3) Iron loss: The loss [W17 / 50 (W / kg)] when magnetized to 1.7 T at a frequency of 50 Hz was measured.

【0043】[0043]

【表1】 [Table 1]

【0044】[0044]

【発明の効果】この発明は、フォルステライトの生成を
抑止した、またはフォルステライトを除去した一方向性
電磁鋼に、必要に応じて酸洗、平滑化処理、結晶方位強
調処理を施し、さらに張力被膜によって鋼板に張力を付
与し、鉄損を大幅に低減する技術においても、張力被膜
の密着性を損なうことなく、鋼板に十分な張力を作用さ
せ、高い絶縁性を与えることのできる一方向性電磁鋼板
の製造方法を提案するとともに、このような優れた鉄損
の極めて低い一方向性電磁鋼板を工業的に提供すること
を目的とするものである。
According to the present invention, the unidirectional magnetic steel in which the formation of forsterite has been suppressed or the forsterite has been removed is subjected to pickling, smoothing treatment, crystal orientation emphasis treatment if necessary, Even in the technology that significantly reduces iron loss by applying tension to the steel sheet by the coating, unidirectionality that can apply sufficient tension to the steel sheet and give high insulation without impairing the adhesion of the tension coating An object of the present invention is to propose a method for producing an electrical steel sheet and to industrially provide such a unidirectional electrical steel sheet having extremely low iron loss.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C22C 38/00 303 C22C 38/00 303U 38/60 38/60 (72)発明者 黒沢 光正 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 Fターム(参考) 4D075 BB28Z CA03 CA23 DB03 4K022 AA02 AA32 AA44 BA02 BA15 BA20 BA28 BA33 BA36 CA14 CA22 DA06 DB01 DB02 EA01 4K026 AA03 AA22 BA03 BA12 BB05 BB10 CA16 CA18 CA22 CA23 CA37 CA41 DA02 DA11 EA07 EB11 4K033 AA02 PA04 PA05 PA09 RA04 TA04 5E041 AA02 AA11 BC01 BC05 CA02 HB09 HB11 HB14 NN18 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // C22C 38/00 303 C22C 38/00 303U 38/60 38/60 (72) Inventor Mitsumasa Kurosawa Okayama 1-chome, Kawasaki-dori, Mizushima, Kurashiki (No address) Kawasaki Steel Corporation Mizushima Works F-term (reference) 4D075 BB28Z CA03 CA23 DB03 4K022 AA02 AA32 AA44 BA02 BA15 BA20 BA28 BA33 BA36 CA14 CA22 DA06 DB01 DB02 EA01 4K026 AA03 A BB05 BB10 CA16 CA18 CA22 CA23 CA37 CA41 DA02 DA11 EA07 EB11 4K033 AA02 PA04 PA05 PA09 RA04 TA04 5E041 AA02 AA11 BC01 BC05 CA02 HB09 HB11 HB14 NN18

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】フォルステライトの生成を抑止した、また
はフォルステライトを除去した一方向性電磁鋼に、親水
基もしくは有機結合基を持ち、さらに金属結合基を持つ
有機金属化合物を、焼成後に張力被膜となる物質の原材
料または原材料の溶液に混合し、鋼板上に塗布した後、
焼鈍して、張力被膜を形成することを特徴とする極めて
鉄損の低い一方向性電磁鋼板の製造方法。
1. A tensile coating after sintering an organometallic compound having a hydrophilic group or an organic bonding group and further having a metal bonding group on unidirectional magnetic steel in which the formation of forsterite has been suppressed or the forsterite has been removed. After mixing with the raw material or the raw material solution of the substance to be applied and applying it on a steel plate,
A method for producing a grain-oriented electrical steel sheet having extremely low iron loss, comprising annealing to form a tension coating.
【請求項2】前記張力被膜の形成を100℃以上800
℃以下の酸化性雰囲気での熱処理と、400℃以上12
00℃以下の不活性ガスまたは還元性雰囲気での熱処理
とを組み合わせて行うことを特徴とする請求項1に記載
の極めて鉄損の低い一方向性電磁鋼板の製造方法。
2. The method according to claim 1, wherein the formation of the tension film is carried out at a temperature of 100.degree.
Heat treatment in an oxidizing atmosphere at a temperature of 400 ° C. or less,
The method for producing a grain-oriented electrical steel sheet with extremely low iron loss according to claim 1, wherein the method is performed in combination with a heat treatment in an inert gas or a reducing atmosphere at a temperature of 00 ° C or less.
【請求項3】前記金属結合基がアルコキシル基とその加
水分解基、アセトキシ基、メトキシカルボニル基、ハロ
ゲン基のうちの一つ以上である請求項1または2に記載
の極めて鉄損の低い一方向性電磁鋼板の製造方法。
3. The one-way direction having extremely low iron loss according to claim 1, wherein the metal binding group is at least one of an alkoxyl group and a hydrolyzable group thereof, an acetoxy group, a methoxycarbonyl group, and a halogen group. Manufacturing method of conductive electrical steel sheet.
【請求項4】前記有機金属化合物が、金属結合基として
メトキシ基、エトキシ基の単独あるいは複合、またはそ
れらが加水分解されたシラノール基を有するシランカッ
プリング剤もしくはそのオリゴマーであることを特徴と
する請求項1ないし3のいずれかに記載の極めて鉄損の
低い一方向性電磁鋼板の製造方法。
4. The method according to claim 1, wherein the organometallic compound is a silane coupling agent having a methoxy group or an ethoxy group as a metal binding group alone or in combination, or a silanol group obtained by hydrolyzing them, or an oligomer thereof. A method for producing a grain-oriented electrical steel sheet having extremely low iron loss according to claim 1.
【請求項5】前記親水基がアミノ基、カルボキシル基、
水酸基、カルボニル基、スルホ基のうちの一つ以上であ
り、有機結合基がビニル基、エポキシ基、メタクリル
基、メタクリロキシ基、メルカプト基、ウレイド基、グ
リシドキシ基、クロル基のうちの一つ以上である請求項
1から4のいずれかに記載の極めて鉄損の低い一方向性
電磁鋼板の製造方法。
5. The method according to claim 1, wherein the hydrophilic group is an amino group, a carboxyl group,
A hydroxyl group, a carbonyl group, one or more of a sulfo group, and an organic bonding group is one or more of a vinyl group, an epoxy group, a methacryl group, a methacryloxy group, a mercapto group, a ureido group, a glycidoxy group, and a chloro group. The method for producing a grain-oriented electrical steel sheet having extremely low iron loss according to any one of claims 1 to 4.
【請求項6】前記有機金属化合物が、アミノ基を有する
ことを特徴とする請求項1ないし5に記載の極めて鉄損
の低い一方向性電磁鋼板の製造方法。
6. The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein said organometallic compound has an amino group.
【請求項7】前記焼成後に張力被膜となる物質が、 リン
酸塩とクロム酸とコロイダルシリカを主成分とすること
を特徴とする請求項1から6のいずれかに記載の極めて
鉄損の低い一方向性電磁鋼板の製造方法。
7. A material having a very low iron loss according to claim 1, wherein the substance which becomes a tension film after the sintering is mainly composed of phosphate, chromic acid, and colloidal silica. Manufacturing method of unidirectional electrical steel sheet.
【請求項8】前記焼成後に張力被膜となる物質が、 ほう
酸と酸化アルミニウムを主成分とすることを特徴とする
請求項1から6のいずれかに記載の極めて鉄損の低い一
方向性電磁鋼板の製造方法。
8. The grain-oriented electrical steel sheet according to claim 1, wherein the substance which becomes a tension film after firing is mainly composed of boric acid and aluminum oxide. Manufacturing method.
【請求項9】親水基もしくは有機結合基を持ち、さらに
金属結合基を持つ有機金属化合物であって、焼成後に張
力被膜となる物質の原材料または原材料の溶液に混合し
て、フォルステライトの生成を抑止した、またはフォル
ステライトを除去した一方向性電磁鋼と、張力被膜との
密着性を改良することを特徴とする張力被膜の密着性改
良剤。
9. An organometallic compound having a hydrophilic group or an organic bonding group and further having a metal bonding group, which is mixed with a raw material or a raw material solution of a substance which becomes a tension film after firing to form forsterite. An adhesion improver for a tension coating, characterized by improving the adhesion between a unidirectional magnetic steel which has been suppressed or forsterite removed and a tension coating.
JP2000093203A 2000-03-30 2000-03-30 Method for producing unidirectional electrical steel sheet with extremely low iron loss Expired - Fee Related JP4479047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000093203A JP4479047B2 (en) 2000-03-30 2000-03-30 Method for producing unidirectional electrical steel sheet with extremely low iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000093203A JP4479047B2 (en) 2000-03-30 2000-03-30 Method for producing unidirectional electrical steel sheet with extremely low iron loss

Publications (2)

Publication Number Publication Date
JP2001279460A true JP2001279460A (en) 2001-10-10
JP4479047B2 JP4479047B2 (en) 2010-06-09

Family

ID=18608421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000093203A Expired - Fee Related JP4479047B2 (en) 2000-03-30 2000-03-30 Method for producing unidirectional electrical steel sheet with extremely low iron loss

Country Status (1)

Country Link
JP (1) JP4479047B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100900660B1 (en) * 2002-11-27 2009-06-01 주식회사 포스코 Coating composition with superior powder coating and surface properties
WO2020162608A1 (en) * 2019-02-08 2020-08-13 日本製鉄株式会社 Grain-oriented electrical steel sheet, method for forming insulative coating film for grain-oriented electrical steel sheet, and method for manufacturing grain-oriented electrical steel sheet
JP2021533263A (en) * 2018-07-30 2021-12-02 ポスコPosco Manufacturing method of electrical steel sheet, insulating coating composition for electrical steel sheet, and electrical steel sheet
CN114453217A (en) * 2018-07-30 2022-05-10 Posco公司 Insulating coating composition for electrical steel sheet and electrical steel sheet having insulating coating
RU2778536C1 (en) * 2019-02-08 2022-08-22 Ниппон Стил Корпорейшн Anisotropic electrical steel sheet, method of forming insulation coating of anisotropic electric steel sheet and method for producing anisotropic electric steel sheet

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5079442A (en) * 1973-11-17 1975-06-27
JPH0238581A (en) * 1988-07-28 1990-02-07 Kobe Steel Ltd Production of electrical steel sheet with insulating coating film having superior coatability
JPH0238582A (en) * 1988-07-28 1990-02-07 Kobe Steel Ltd Electrical steel sheet with formed insulating coating film
JPH03130377A (en) * 1989-10-16 1991-06-04 Babcock Hitachi Kk Formation of insulating coating film on low-iron-loss grain-oriented silicon steel sheet
JPH04323382A (en) * 1991-04-23 1992-11-12 Nippon Steel Corp Formation of insulated film grain-oriented silicon steel sheet containing no p and cr compound
JPH05287546A (en) * 1992-04-07 1993-11-02 Nippon Steel Corp Formation of insulating coating film of unidirectional silicon steel sheet
JPH06306628A (en) * 1993-04-19 1994-11-01 Nippon Steel Corp Low core loss grain-oriented silicon steel sheet
JPH07228977A (en) * 1994-02-17 1995-08-29 Nippon Steel Corp Grain oriented electrical steel sheet, insulating coating agent therefor and formation of insulating film
JPH10306380A (en) * 1997-05-06 1998-11-17 Nippon Steel Corp Production of low core loss grain-oriented silicon steel sheet
JPH10330951A (en) * 1997-06-04 1998-12-15 Nippon Steel Corp Insulating film treatment for grain oriented silicon steel sheet

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5079442A (en) * 1973-11-17 1975-06-27
JPH0238581A (en) * 1988-07-28 1990-02-07 Kobe Steel Ltd Production of electrical steel sheet with insulating coating film having superior coatability
JPH0238582A (en) * 1988-07-28 1990-02-07 Kobe Steel Ltd Electrical steel sheet with formed insulating coating film
JPH03130377A (en) * 1989-10-16 1991-06-04 Babcock Hitachi Kk Formation of insulating coating film on low-iron-loss grain-oriented silicon steel sheet
JPH04323382A (en) * 1991-04-23 1992-11-12 Nippon Steel Corp Formation of insulated film grain-oriented silicon steel sheet containing no p and cr compound
JPH05287546A (en) * 1992-04-07 1993-11-02 Nippon Steel Corp Formation of insulating coating film of unidirectional silicon steel sheet
JPH06306628A (en) * 1993-04-19 1994-11-01 Nippon Steel Corp Low core loss grain-oriented silicon steel sheet
JPH07228977A (en) * 1994-02-17 1995-08-29 Nippon Steel Corp Grain oriented electrical steel sheet, insulating coating agent therefor and formation of insulating film
JPH10306380A (en) * 1997-05-06 1998-11-17 Nippon Steel Corp Production of low core loss grain-oriented silicon steel sheet
JPH10330951A (en) * 1997-06-04 1998-12-15 Nippon Steel Corp Insulating film treatment for grain oriented silicon steel sheet

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100900660B1 (en) * 2002-11-27 2009-06-01 주식회사 포스코 Coating composition with superior powder coating and surface properties
JP2021533263A (en) * 2018-07-30 2021-12-02 ポスコPosco Manufacturing method of electrical steel sheet, insulating coating composition for electrical steel sheet, and electrical steel sheet
CN114453217A (en) * 2018-07-30 2022-05-10 Posco公司 Insulating coating composition for electrical steel sheet and electrical steel sheet having insulating coating
JP7291203B2 (en) 2018-07-30 2023-06-14 ポスコ カンパニー リミテッド Electrical steel sheet, insulating coating composition for electrical steel sheet, and method for producing electrical steel sheet
WO2020162608A1 (en) * 2019-02-08 2020-08-13 日本製鉄株式会社 Grain-oriented electrical steel sheet, method for forming insulative coating film for grain-oriented electrical steel sheet, and method for manufacturing grain-oriented electrical steel sheet
JPWO2020162608A1 (en) * 2019-02-08 2021-11-25 日本製鉄株式会社 A method for forming an insulating film of a grain-oriented electrical steel sheet, a method for forming an insulating film of a grain-oriented electrical steel sheet, and a method for manufacturing a grain-oriented electrical steel sheet.
RU2778536C1 (en) * 2019-02-08 2022-08-22 Ниппон Стил Корпорейшн Anisotropic electrical steel sheet, method of forming insulation coating of anisotropic electric steel sheet and method for producing anisotropic electric steel sheet
EP3922737A4 (en) * 2019-02-08 2022-10-12 Nippon Steel Corporation Grain-oriented electrical steel sheet, method for forming insulative coating film for grain-oriented electrical steel sheet, and method for manufacturing grain-oriented electrical steel sheet
JP7256406B2 (en) 2019-02-08 2023-04-12 日本製鉄株式会社 Grain-oriented electrical steel sheet, method for forming insulating coating on grain-oriented electrical steel sheet, and method for manufacturing grain-oriented electrical steel sheet
US11866812B2 (en) 2019-02-08 2024-01-09 Nippon Steel Corporation Grain oriented electrical steel sheet, forming method for insulation coating of grain oriented electrical steel sheet, and producing method for grain oriented electrical steel sheet

Also Published As

Publication number Publication date
JP4479047B2 (en) 2010-06-09

Similar Documents

Publication Publication Date Title
JP2664337B2 (en) Method for forming insulating film on unidirectional silicon steel sheet
JP3539028B2 (en) Forsterite coating on high magnetic flux density unidirectional silicon steel sheet and its forming method.
JP6146098B2 (en) Oriented electrical steel sheet and manufacturing method thereof
KR101651431B1 (en) Method of manufacturing oriented electrical steels
JP3552501B2 (en) Grain-oriented electrical steel sheet with extremely low iron loss and method for producing the same
JP2688147B2 (en) Manufacturing method of low iron loss grain-oriented electrical steel sheet
JPH0665755A (en) Low-iron loss grain-oriented electrical steel sheet
JPH11209891A (en) Formation of insulated film on silicon steel sheet
JP3172025B2 (en) Method for forming insulating film on unidirectional silicon steel sheet with good adhesion
JP2001279460A (en) Manufacturing method for grain oriented silicon steel sheet extremely low in core loss
JP2004342679A (en) Grain-oriented flat rolled magnetic steel sheets having excellent adhesive property to insulating coating film and extremely low iron loss and its manufacturing method
JP4479046B2 (en) Manufacturing method of unidirectional electrical steel sheet with extremely low iron loss and excellent insulation properties
JPH07228977A (en) Grain oriented electrical steel sheet, insulating coating agent therefor and formation of insulating film
JP4635347B2 (en) Magnetic steel sheet manufacturing method with excellent magnetic properties and film adhesion after strain relief annealing
CN100513597C (en) Method for annealing grain-oriented electromagnetic steel sheet and method for producing grain-oriented electromagnetic steel sheet
JPS63297575A (en) Improvement in magnesium oxide steel coating agent
JP3279450B2 (en) Grain-oriented electrical steel sheet with insulating coating formed on the surface
JP2001107146A (en) Grain-oriented silicon steel sheet extremely small in core loss and its producing method
JPH06287765A (en) Formation of tension coating film of grain oriented silicon steel sheet
JP3668994B2 (en) Method for producing grain-oriented silicon steel sheet
JPH02243754A (en) Production of grain-oriented silicon steel sheet reduced in iron loss
JP3056895B2 (en) Method for forming forsterite insulating coating on grain-oriented electrical steel sheet
JP2691753B2 (en) Method for producing grain-oriented electrical steel sheet having metallic luster with extremely excellent punchability
JP2003301271A (en) Method for forming insulative film superior in baking atmosphere resistance on grain-oriented electromagnetic steel sheet
JPH11243005A (en) Ultra-low iron loss unidirectional silicon steel sheet and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4479047

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees