JP2001279338A - Production method for molten iron using rotary kiln - Google Patents
Production method for molten iron using rotary kilnInfo
- Publication number
- JP2001279338A JP2001279338A JP2000091930A JP2000091930A JP2001279338A JP 2001279338 A JP2001279338 A JP 2001279338A JP 2000091930 A JP2000091930 A JP 2000091930A JP 2000091930 A JP2000091930 A JP 2000091930A JP 2001279338 A JP2001279338 A JP 2001279338A
- Authority
- JP
- Japan
- Prior art keywords
- rotary kiln
- molten iron
- coal
- reducing agent
- iron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Manufacture Of Iron (AREA)
Abstract
Description
【0001】[0001]
【発明が属する技術分野】本発明は、ロータリーキルン
を用いた溶鉄製造方法に関する。TECHNICAL FIELD The present invention relates to a method for producing molten iron using a rotary kiln.
【0002】[0002]
【従来の技術】粉鉱石、高炉ダスト、製鋼ダスト等を酸
化鉄含有被処理物として、ロータリーキルンを用いて溶
鉄を製造する従来技術においては、酸化鉄含有被処理物
から亜鉛成分を蒸発・除去するとともに、還元溶融して
溶鉄を製造し、最終的にペレット状の鉄固体物として回
収している。そして、ペレット状の鉄固体物は焼結過程
へと送られる。2. Description of the Related Art In the prior art for producing molten iron using a rotary kiln by using fine ore, blast furnace dust, steelmaking dust and the like as iron oxide-containing workpieces, a zinc component is evaporated and removed from the iron oxide-containing workpiece. At the same time, the molten iron is produced by reducing and melting, and finally recovered as pelleted iron solids. Then, the iron solids in the form of pellets are sent to a sintering process.
【0003】酸化鉄含有被処理物と混合して、ロータリ
ーキルンに投入される還元剤として、従来は、石炭や石
炭コークスが使用されており、特に、その反応性の高さ
から鑑みて、微粉末状の還元剤を酸化鉄含有被処理物と
混合し、粒状物に成形することがノウハウであった。す
なわち、従来は、石炭や石炭コークスを炭材として用
い、特に、その微粉末を内装炭として用いていた。[0003] Conventionally, coal or coal coke has been used as a reducing agent to be mixed with an iron oxide-containing material to be processed and fed into a rotary kiln. Particularly, in view of its high reactivity, fine powder is used. The know-how was to mix a reducing agent in the form of an iron oxide-containing material to be processed into a granular material. That is, conventionally, coal or coal coke has been used as a carbon material, and in particular, its fine powder has been used as interior coal.
【0004】[0004]
【発明が解決しようとする課題】上記のロータリーキル
ンを用いた溶鉄製造方法をさらに改良して、酸化鉄含有
被処理物からの鉄回収率を向上することともに、還元剤
の消費量を削減することを本発明の目的とする。An object of the present invention is to further improve the method for producing molten iron using a rotary kiln as described above to improve the iron recovery rate from the iron oxide-containing workpiece and to reduce the consumption of the reducing agent. Is the object of the present invention.
【0005】[0005]
【課題を解決するための手段】上記目的は、請求項1に
記載の本発明に係るロータリーキルンを用いた溶鉄製造
方法、すなわち、酸化鉄含有被処理物に還元剤を混合し
てロータリーキルン内に投入し、還元・溶融して溶融鉄
を製造する、ロータリーキルンを用いた溶鉄製造方法で
あって、当該還元剤として、石炭(A)と石油コークス
あるいはグラファイト(B)とを用い、全還元剤(A+
B)中の石炭(A)の割合を20〜60wt%に保つこ
とを特徴とするロータリーキルンを用いた溶鉄製造方法
によって、達成される。An object of the present invention is to provide a method for producing molten iron using a rotary kiln according to the present invention, that is, mixing a reducing agent into an iron oxide-containing workpiece and charging the mixture into a rotary kiln. A method for producing molten iron using a rotary kiln, wherein the molten iron is produced by reduction and melting, wherein coal (A) and petroleum coke or graphite (B) are used as the reducing agent, and a total reducing agent (A +
This is achieved by a method for producing molten iron using a rotary kiln, wherein the proportion of coal (A) in B) is maintained at 20 to 60 wt%.
【0006】[0006]
【発明の実施の形態】以下、本発明の実施形態につい
て、添付図面を参照して説明する。Embodiments of the present invention will be described below with reference to the accompanying drawings.
【0007】酸化鉄含有被処理物の還元反応は、ロータ
リーキルン内での気固相反応であり、式1に示すとおり
である。[0007] The reduction reaction of the iron oxide-containing treatment object is a gas-solid reaction in a rotary kiln, and is as shown in Equation 1.
【式1】Fe2O3+3CO=2Fe+3CO2 3CO2+3C=6CO この反応は1000℃以下の温度領域で生じる。Formula 1 Fe 2 O 3 + 3CO = 2Fe + 3CO 2 3CO 2 + 3C = 6CO This reaction occurs in a temperature range of 1000 ° C. or less.
【0008】図1は、石炭及び石油コークスについて反
応性指数と温度との関係を示すグラフである。石炭につ
いては、1000℃で反応性指数が100、950℃で
反応性指数が70であるのに対し、還元剤としての石油
コークスについては、1100℃で反応性指数が10
0、1050℃で反応性指数が90、1000℃で反応
性指数が約50と低く、950℃で反応性指数が25ま
で低下している。FIG. 1 is a graph showing the relationship between reactivity index and temperature for coal and petroleum coke. Coal has a reactivity index of 100 at 1000 ° C and a reactivity index of 70 at 950 ° C, whereas petroleum coke as a reducing agent has a reactivity index of 10 at 1100 ° C.
At 0 and 1050 ° C., the reactivity index is 90, at 1000 ° C. the reactivity index is as low as about 50, and at 950 ° C., the reactivity index decreases to 25.
【0009】なお、「反応性指数」はJIS−K215
1に規定するコークスの反応性試験に準拠して、本発明
者が求めたものである。The "reactivity index" is based on JIS-K215
This was determined by the present inventors based on the coke reactivity test specified in 1.
【0010】1000℃以下の温度領域においては、還
元剤として石炭を用いた方がはるかに反応が高く有利で
あることがわかった。In the temperature range of 1000 ° C. or less, it has been found that the use of coal as a reducing agent has a much higher reaction and is advantageous.
【0011】上記還元反応によって、固体の還元鉄が生
じるが、同時に、式2に示す浸炭反応が生じ、溶融鉄
(Fe3C)が得られる。Although the above reduction reaction produces solid reduced iron, at the same time, the carburizing reaction shown in equation 2 occurs, and molten iron (Fe 3 C) is obtained.
【式2】Fe(S)+3C=Fe3C(l)[Formula 2] Fe (S) + 3C = Fe 3 C (l)
【0012】この浸炭反応は1000℃以上の温度領域
で生じる。この温度領域では、石炭及び石油コークスと
も、図1に示すように反応性が高い。したがって、還元
剤の種類選択は、この温度領域において充分な量が残る
か否かによって判断すべきである。This carburizing reaction occurs in a temperature range of 1000 ° C. or higher. In this temperature range, both coal and petroleum coke have high reactivity as shown in FIG. Therefore, the selection of the type of reducing agent should be determined based on whether a sufficient amount remains in this temperature range.
【0013】石炭は低温で反応性が高く、大部分が消費
され、1000℃以上の温度領域で残存する石炭は少量
となる。他方、石油コークスは、1000℃以上の温度
領域においても充分な量が残存することを見出した。故
に、浸炭反応については、石油コークスが有利である。[0013] Coal is highly reactive at low temperatures, is largely consumed, and a small amount of coal remains in the temperature range of 1000 ° C or higher. On the other hand, it has been found that a sufficient amount of petroleum coke remains even in a temperature range of 1000 ° C. or higher. Therefore, petroleum coke is advantageous for the carburizing reaction.
【0014】上記の知見を統合すれば、比較的低温にお
ける還元反応については石炭が有利であり、一方、高温
における浸炭反応については石油コークスが活発とな
る。したがって、石炭(A)と石油コークス(B)とを
適切に混合すれば、最小量の炭材で、鉄回収率を最大と
することができると考え出したものである。If the above findings are integrated, coal is advantageous for a reduction reaction at a relatively low temperature, while petroleum coke is active for a carburization reaction at a high temperature. Therefore, it has been conceived that if the coal (A) and the petroleum coke (B) are properly mixed, the iron recovery rate can be maximized with a minimum amount of carbon material.
【0015】図2は、鉄回収率と炭材混合比との関係を
示す図である。炭材として、石炭(A)及び石油コーク
ス(B)を用い、炭材合計の還元当量を3当量と一定に
保ちつつ、石炭(A)/(石炭:A+石油コークス:
B)の比を変動させ、ロータリーキルンを用いて製鉄ダ
ストから溶鉄を製造する実験を行った。FIG. 2 is a diagram showing the relationship between the iron recovery rate and the carbon material mixture ratio. Using coal (A) and petroleum coke (B) as the coal material, while keeping the total reduction equivalent of the carbon material constant at 3 equivalents, coal (A) / (coal: A + petroleum coke:
An experiment was conducted in which the ratio of B) was varied, and molten iron was produced from ironmaking dust using a rotary kiln.
【0016】石油コークスのみのとき、すなわち、A/
(A+B)×100が0のときには、鉄回収率が50%
である。石炭(A)が1.2当量で石油コークス(B)
が1.8当量のとき、すなわち、A/(A+B)×10
0が40のときには、鉄回収率が約80%と最大にな
る。石炭が2.1当量で石油コークスが0.9当量のと
き、すなわち、A/(A+B)×100が70のときに
は、鉄回収率が約60%になる。また、石炭のみのと
き、すなわち、A/(A+B)×100が100のとき
には、鉄回収率が約30%となる。試験の結果、炭材の
混合比によって鉄回収率が異なることが明らかになっ
た。また、石炭/(石炭+石油コークス)の比が20〜
60wt%の範囲において鉄回収率が向上することを見
出した。When only petroleum coke is used, that is, A /
When (A + B) × 100 is 0, the iron recovery rate is 50%
It is. Petroleum coke (B) with 1.2 equivalents of coal (A)
Is 1.8 equivalents, that is, A / (A + B) × 10
When 0 is 40, the iron recovery rate reaches a maximum of about 80%. When the coal is 2.1 equivalents and the petroleum coke is 0.9 equivalents, that is, when A / (A + B) × 100 is 70, the iron recovery is about 60%. When only coal is used, that is, when A / (A + B) × 100 is 100, the iron recovery rate is about 30%. As a result of the test, it became clear that the iron recovery rate differs depending on the mixing ratio of the carbonaceous materials. In addition, the ratio of coal / (coal + petroleum coke) is 20 to
It was found that the iron recovery rate was improved in the range of 60 wt%.
【0017】石油コークスの代りに、グラファイトを炭
材として用い、同様の試験を行ったところ、石油コーク
スとグラファイトは、ほぼ同一の挙動をすることが確認
された。Similar tests were conducted using graphite as a carbonaceous material instead of petroleum coke. As a result, it was confirmed that petroleum coke and graphite behave almost identically.
【0018】[0018]
【発明の効果】本発明のロータリーキルンを用いた溶鉄
製造方法によれば、還元剤として石炭(A)と石油コー
クスあるいはグラファイト(B)とを用い、全還元剤中
の石炭の割合を20〜60wt%に保っているので、鉄
回収率を約80%にまで向上させることができるととも
に、全還元剤の消費量を3還元当量と低く抑えることが
でき、製造コスト低減も図ることができる。According to the method for producing molten iron using the rotary kiln of the present invention, coal (A) and petroleum coke or graphite (B) are used as the reducing agent, and the proportion of coal in the total reducing agent is 20 to 60 wt. %, The iron recovery rate can be improved to about 80%, the consumption amount of all reducing agents can be reduced to three reduction equivalents, and the production cost can be reduced.
【図1】石炭及び石油コークスについて反応性指数と温
度との関係を示すグラフである。FIG. 1 is a graph showing the relationship between reactivity index and temperature for coal and petroleum coke.
【図2】鉄回収率と炭材混合比との関係を示す図であ
る。FIG. 2 is a diagram showing a relationship between an iron recovery rate and a carbon material mixture ratio.
Claims (3)
ロータリーキルン内に投入し、還元・溶融して溶融鉄を
製造する、ロータリーキルンを用いた溶鉄製造方法であ
って、当該還元剤として、石炭(A)と石油コークスあ
るいはグラファイト(B)とを用い、全還元剤(A+
B)中の石炭(A)の割合を20〜60wt%に保つこ
とを特徴とするロータリーキルンを用いた溶鉄製造方
法。1. A method for producing molten iron using a rotary kiln, comprising mixing a reducing agent into an iron oxide-containing treatment object, charging the mixture into a rotary kiln, and reducing and melting the molten iron to produce molten iron. , Coal (A) and petroleum coke or graphite (B), and the total reducing agent (A +
A method for producing molten iron using a rotary kiln, wherein the proportion of coal (A) in B) is maintained at 20 to 60 wt%.
求項1に記載のロータリーキルンを用いた溶鉄製造方
法。2. The method for producing molten iron using a rotary kiln according to claim 1, wherein the particle size of the reducing agent is 0.5 to 4 mm.
O2を含有する物質をロータリーキルンに投入し、塩基
度(CaO/SiO2)を1.5以上、好ましくは2.
0以上の範囲とし、還元剤の投入量を2.5還元当量以
下とする請求項1または2に記載のロータリーキルンを
用いた溶鉄製造方法。3. CaO and Si together with the object to be treated.
A substance containing O 2 is charged into a rotary kiln, and the basicity (CaO / SiO 2 ) is 1.5 or more, preferably 2.
The method for producing molten iron using a rotary kiln according to claim 1 or 2, wherein the amount is in the range of 0 or more, and the amount of the reducing agent is 2.5 or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000091930A JP2001279338A (en) | 2000-03-29 | 2000-03-29 | Production method for molten iron using rotary kiln |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000091930A JP2001279338A (en) | 2000-03-29 | 2000-03-29 | Production method for molten iron using rotary kiln |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001279338A true JP2001279338A (en) | 2001-10-10 |
Family
ID=18607338
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000091930A Pending JP2001279338A (en) | 2000-03-29 | 2000-03-29 | Production method for molten iron using rotary kiln |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001279338A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106148684A (en) * | 2016-08-01 | 2016-11-23 | 江苏省冶金设计院有限公司 | The method and system of comprehensive utilization red mud |
US10323291B2 (en) | 2014-07-31 | 2019-06-18 | Sabic Global Technologies B.V. | Methods for utilizing olefin coke in a steel making process and products made therefrom |
-
2000
- 2000-03-29 JP JP2000091930A patent/JP2001279338A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10323291B2 (en) | 2014-07-31 | 2019-06-18 | Sabic Global Technologies B.V. | Methods for utilizing olefin coke in a steel making process and products made therefrom |
CN106148684A (en) * | 2016-08-01 | 2016-11-23 | 江苏省冶金设计院有限公司 | The method and system of comprehensive utilization red mud |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4669189B2 (en) | Production of granular metallic iron | |
TWI237061B (en) | Process for producing particulate iron metal | |
CN100378238C (en) | Ferrovanadium nitride alloy and preparation method thereof | |
NZ589107A (en) | Titanium oxide-containing agglomerate for producing granular metallic iron | |
CN105970073A (en) | Preparation method of steel-making additive for smelting molybdenum-bearing steel | |
AU2006335814B2 (en) | Method for manufacturing metallic iron | |
JPH06172916A (en) | Manufacturing of stainless steel | |
JP2001279338A (en) | Production method for molten iron using rotary kiln | |
JP2009041107A (en) | Method for manufacturing granular metal | |
US2243785A (en) | Chromium recovery | |
US4376139A (en) | Process for treating metallic starting materials for smelting plants, particularly iron sponge particles | |
JP7067532B2 (en) | A method for dephosphorizing a manganese oxide-containing substance, a method for producing a low-phosphorus-containing manganese oxide-containing substance, and a method for producing steel using the manganese oxide-containing substance. | |
CA1204943A (en) | Process of producing sponge iron by a direct reduction of iron oxide-containing material | |
JP4564126B2 (en) | Method for producing molten iron using a rotary kiln | |
JP3510408B2 (en) | Method for producing coke for iron-containing metallurgy and iron-containing granulated product | |
US3682620A (en) | Process for the manufacture of pellets of high compressive strength and abrasion resistance | |
US3202503A (en) | Production of high quality steel from iron sand | |
JP3848453B2 (en) | Manufacturing method of metallic iron | |
JP2000119722A (en) | Production of reduced iron pellet | |
KR910010056B1 (en) | Making process for the pellet of cr ore | |
JPS58174542A (en) | Manufacture of high carbon ferro-chrome | |
JP4751010B2 (en) | Blast furnace operation method | |
JPH01316406A (en) | Production of chromium-containing molten iron | |
JP5971482B2 (en) | Agglomerate production method | |
JPS62167808A (en) | Production of molten chromium iron |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061212 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090519 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090526 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20091006 |