JP2001277180A - Zirconia cutter member and its manufacturing method - Google Patents

Zirconia cutter member and its manufacturing method

Info

Publication number
JP2001277180A
JP2001277180A JP2000093986A JP2000093986A JP2001277180A JP 2001277180 A JP2001277180 A JP 2001277180A JP 2000093986 A JP2000093986 A JP 2000093986A JP 2000093986 A JP2000093986 A JP 2000093986A JP 2001277180 A JP2001277180 A JP 2001277180A
Authority
JP
Japan
Prior art keywords
zirconia
powder
weight
cutting edge
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000093986A
Other languages
Japanese (ja)
Inventor
Toru Yaginuma
徹 柳沼
Tomohiko Ogata
知彦 尾形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2000093986A priority Critical patent/JP2001277180A/en
Publication of JP2001277180A publication Critical patent/JP2001277180A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Nonmetal Cutting Devices (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve problems that a cutter made of a zirconia sintered body has high strength and toughness, but intends to degrade cutting performance of the cutting edge due to not falling but abrasion because of low hardness and the high toughness, and the tip related to the performance of the cutter is hardly machined sharply even if zirconia has high toughness as ceramic. SOLUTION: The composite zirconia sintered body for the zirconia cutter member contains zirconia ceramics components and at least one kind of ceramics components selected from not more than 50 wt.% of WC, AlN, Al2O3, and SiC. The zirconia ceramics components contain at least one kind of oxides selected from Y2O3, MgO, CaO, and CeO2 in zirconia, and has a part including 5-30 vol.% of single crystal in a part with 3 μm from the tip of the cutting edge.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は刃物に関し、更に詳
しくはジルコニアを主成分とした焼結体からなる工業用
又は民生用の刃物部材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blade, and more particularly to an industrial or consumer blade member made of a sintered body containing zirconia as a main component.

【0002】[0002]

【従来の技術】工業用、民生用を問わず各種刃物は切れ
味が良く、しかも切れ味の低下が極力少なく、耐食性が
あることと、耐摩耗性があり、しかも機械的強度が高く
て耐久性があること、といった特性が要求されている。
また繰り返し使用するためには洗浄性が良く、耐薬品性
があること、といった特性が要求される場合も多々あ
る。
2. Description of the Related Art Various types of knives, whether for industrial or consumer use, have good sharpness, have a minimal decrease in sharpness, have corrosion resistance, have abrasion resistance, and have high mechanical strength and durability. There is a demand for such characteristics.
Further, in many cases, properties such as good cleaning properties and chemical resistance are required for repeated use.

【0003】工業用刃物は、従来そのほとんどが炭素
鋼、高速度鋼、合金等の、いわゆる金属で作られてい
る。これらの金属製の工業用刃物は、刃付け加工時にか
えりを発生し易いので刃たてが難しいという難点はある
が、金属の持つ展延性により刃先のチッピングが少な
く、総じて初期の切れ味が良い。しかし、金属は硬度が
低く、使用中の温度上昇による金属特有の焼き戻し作用
等によって切れ味が大幅に低下する。更に硬度が低いた
めに耐久性の点でも問題がある。また、一般に金属は
水、酸、アルカリのいずれに対しても腐食しやすいとい
った問題がある。
Conventionally, most of industrial blades are made of so-called metal such as carbon steel, high-speed steel, and alloy. These metal industrial knives have a drawback that cutting is difficult due to the tendency to generate burrs at the time of cutting, but the chipping of the cutting edge is small due to the extensibility of the metal, and the initial sharpness is generally good. However, metals have low hardness, and sharpness is significantly reduced due to a tempering effect peculiar to metals due to a rise in temperature during use. Further, there is a problem in durability because of low hardness. Further, in general, there is a problem that metals are easily corroded by any of water, acid and alkali.

【0004】一方民生用刃物は、従来そのほとんどが炭
素鋼又はステンレス鋼であり、民生用の刃物に要求され
る特性は、工業刃物に要求される程厳しくはない。しか
し、金属である以上、これら民生用刃物もまた、程度の
差はあるが上記の工業用刃物と同様の欠点を持ってい
る。もっともステンレス鋼は、さびる心配はないが、そ
の切れ味や耐久性は炭素鋼のものに比べて大幅に劣る。
[0004] On the other hand, most of conventional consumer blades are conventionally made of carbon steel or stainless steel, and the characteristics required for consumer blades are not as severe as those required for industrial blades. However, because they are metal, these consumer knives also have the same disadvantages, albeit to varying degrees, as the industrial knives described above. Of course, stainless steel does not have to worry about rusting, but its sharpness and durability are significantly inferior to those of carbon steel.

【0005】そのため各種特性の改善のため、各種セラ
ミックスの適用が試みられ、特開昭58−71095号
公報には、単斜晶系の結晶構造を実質的には含まない、
高強度用ジルコニア刃物が開示されている。
[0005] Therefore, in order to improve various characteristics, application of various ceramics has been attempted, and Japanese Patent Application Laid-Open No. 58-71095 does not substantially include a monoclinic crystal structure.
A high strength zirconia knife is disclosed.

【0006】[0006]

【発明が解決しようとする課題】しかし、これらの組成
を有するジルコニア焼結体からなる刃物は、強度や靱性
が優れている反面、硬度が低く靱性が高いため刃先は脱
落よりも摩耗によって、切れ味の低下を招きやすい欠点
がある。また、セラミックスとしては靱性の高いジルコ
ニアであっても刃物の性能を左右する先端をシャープに
加工することは難しいことである。
However, the cutting edge made of a zirconia sintered body having these compositions is excellent in strength and toughness, but has low hardness and high toughness. There is a drawback that tends to cause a decrease in Further, it is difficult to sharply shape the tip which affects the performance of the blade even with zirconia having high toughness as ceramics.

【0007】[0007]

【課題を解決するための手段】本発明は上記の課題を解
決するために、刃物に使用する部材の切れ味低下機構と
部材の材料特性を詳細に研究した結果、ジルコニアを主
成分とする焼結体において、刃先が特定の結晶構造と微
機構並びに機械的特性を有する部材が優れた特性を発揮
することを見いだし、本発明を完成するに至った。
In order to solve the above-mentioned problems, the present invention has been studied in detail on the mechanism for reducing the sharpness of a member used for a blade and the material properties of the member. In the body, it has been found that a member having a specific crystal structure, a micromechanism, and mechanical properties with a cutting edge exhibits excellent properties, and the present invention has been completed.

【0008】即ち、本発明は、下記の刃物部材を提供す
るものである。
That is, the present invention provides the following blade member.

【0009】ジルコニアセラミックス成分と、50重量
%以下のWC、AlN、Al23及びSiCから選ばれ
た少なくとも1種類のセラミックス成分とを含む複合ジ
ルコニア系焼結体であって、該ジルコニアセラミックス
成分が、ジルコニアにY23、MgO、CaO及びCe
2から選ばれた少なくとも1種類の酸化物を含有した
ものであり、かつ刃先の先端から3μm以内の部分に、
5〜30体積%の単斜晶が生成される部分を有すること
を特徴とするジルコニア刃物部材である。
A composite zirconia-based sintered body comprising a zirconia ceramic component and at least 50% by weight or less of a ceramic component selected from WC, AlN, Al 2 O 3 and SiC, wherein the zirconia ceramic component is Adds zirconia to Y 2 O 3 , MgO, CaO and Ce
It contains at least one oxide selected from O 2 , and at a portion within 3 μm from the tip of the cutting edge,
A zirconia blade member having a portion where 5 to 30% by volume of a monoclinic crystal is generated.

【0010】さらにその刃物部材の製造方法として、Y
23、MgO、CaO及びCeO2から選ばれた少なく
とも1種類の酸化物を含有したジルコニア粉末に、少な
くとも0.1重量%以上50重量%以下のWC、Al
N、Al23及びSiCから選ばれた少なくとも1種類
のセラミックス粉末を添加した混合粉末を湿式混合粉砕
して、90%累積分布粒子径が2〜6μmで、かつ平均
粒子径が2μm以下でBET法による比表面積が3〜2
0m2/gである微粉末のスラリーとし、該スラリーを
乾燥し、得られた粉末を成形し、焼結されたジルコニア
刃物部材の表面を研削加工によって刃付けすることを特
徴とするものである。
Further, as a method of manufacturing the blade member, Y
Zirconia powder containing at least one oxide selected from 2 O 3 , MgO, CaO and CeO 2 is added with at least 0.1 wt% or more and 50 wt% or less of WC, Al
A mixed powder to which at least one type of ceramic powder selected from N, Al 2 O 3 and SiC is added is wet-mixed and pulverized so that the 90% cumulative distribution particle diameter is 2 to 6 μm and the average particle diameter is 2 μm or less. Specific surface area by BET method is 3 to 2
A slurry of fine powder of 0 m 2 / g, drying the slurry, shaping the obtained powder, and cutting the surface of the sintered zirconia blade member by grinding. .

【0011】あるいはY、Mg、Ca及びCeから選ば
れた少なくとも1種類の金属とZrの塩化物溶液に酸化
物換算で少なくとも0.1重量%以上50重量%以下の
Alを添加した塩化物溶液を共沈、熱分解の酸化物製造
法によって製造された粉末を、湿式粉砕して、90%累
積分布粒子径が2〜6μmで、かつ平均粒子径が2μm
以下でBET法による比表面積が3〜20m2/gであ
る微粉末のスラリーとし、該スラリーを乾燥し、得られ
た粉末を成形し、焼結されたジルコニア刃物部材の表面
を研削加工によって刃付けすることを特徴とするもので
ある。
[0011] Alternatively, a chloride solution obtained by adding at least 0.1% by weight to 50% by weight of Al in terms of oxide to a chloride solution of at least one metal selected from Y, Mg, Ca and Ce and Zr. Is wet-milled to obtain a powder having a 90% cumulative distribution particle diameter of 2 to 6 μm and an average particle diameter of 2 μm.
In the following, a slurry of fine powder having a specific surface area of 3 to 20 m 2 / g by the BET method is formed, the slurry is dried, the obtained powder is formed, and the surface of the sintered zirconia blade member is cut by grinding. It is characterized by being attached.

【0012】[0012]

【発明の実施の形態】本発明の刃物部材には、以下に示
す要件を備えたZrO2を主原料とする焼結体を使用す
ることが必須である。
BEST MODE FOR CARRYING OUT THE INVENTION For a blade member of the present invention, it is essential to use a sintered body having ZrO 2 as a main raw material and having the following requirements.

【0013】本発明においてZrO2 はY23、Mg
O、CaO及びCeO2のうち少なくとも1種類を含有
したものを使用する。これらの元素を含まないZrO2
は、高温での結晶構造は正方晶や立方晶、あるいは正方
晶と立方晶の混合相であり、冷却時に正方晶は単斜晶に
変態するが、その際体積膨張を伴うためにセラミックス
は破壊する。これを回避するため、純粋なZrO2にY2
3、MgO、CaO及びCeO2等の酸化物を含有させ
て安定化させる。この結果焼結後のZrO2の結晶構造
は正方晶か、正方晶と立方晶との混合相か立方晶にな
り、素材としては基本的に単斜晶を含まない構造でなけ
ればならず、安定化剤を含むことが必須である。
In the present invention, ZrO 2 is Y 2 O 3 , Mg
A material containing at least one of O, CaO and CeO 2 is used. ZrO 2 not containing these elements
The crystal structure at high temperature is tetragonal or cubic, or a mixed phase of tetragonal and cubic, and upon cooling, the tetragonal transforms to monoclinic, but at the same time, the ceramic is destroyed due to volume expansion. I do. To avoid this, pure ZrO 2 is converted to Y 2
Oxides such as O 3 , MgO, CaO and CeO 2 are contained for stabilization. As a result, the crystal structure of ZrO 2 after sintering becomes tetragonal, a mixed phase of tetragonal and cubic, or cubic, and the material must be basically a structure that does not contain monoclinic, It is essential to include a stabilizer.

【0014】ZrO2の微小破壊の発生機構は、外力等
により応力誘起変態が生じ、その結果として単斜晶が生
成される。前出の通り正方晶、立方晶が単斜晶に変態す
ることによって体積膨張が生じるため、単斜晶の周辺に
は微細な亀裂が生じており、摩擦、衝撃、切断力等によ
る応力により、その亀裂を基点として微小破壊が生じ摩
耗やチッピングを増長させ好ましくない。そこで、これ
までのジルコニア刃物は変態を起こさない材料が良いと
されてきた。そこで鋭意検討の結果、刃先に発生する微
小なチッピングは鋭利であり、この鋭利なチッピングが
微小な切れ刃とする方法を見いだした。つまりこれまで
弱点とされてきた刃先部分での単斜晶化を積極的に起こ
すことにより、摩耗により刃先が鈍化することを防ぎ、
鋭利な切れ味を長時間維持することが可能となる。この
条件を満たすための素材条件は、基本的に単斜晶を含ま
ない結晶構造でありながら、ラッピングやポリッシング
によって加工した刃先から3μm以内の部分において単
斜晶が5〜30体積%の範囲で自然に発生する部分を持
つような素材が良いことを見いだした。5体積%未満で
は微小破壊の発生が少なく刃先の摩耗が優先される為切
れ味の寿命が短くなり、30体積%を超えるときは微小
破壊の速度が速いため刃先の脱落が早くなり切れ味の寿
命が短くなる。好ましくは5〜25体積%の範囲であ
る。
As for the mechanism of micro-destruction of ZrO 2 , stress-induced transformation occurs due to external force or the like, and as a result, monoclinic crystals are generated. Transformation of tetragonal and cubic crystals to monoclinic as described above causes volume expansion, so fine cracks are generated around the monoclinic, and friction, impact, stress due to cutting force, etc. Micro-destruction occurs from the crack as a starting point, and wear and chipping increase, which is not preferable. Therefore, it has been considered that a material that does not cause transformation is preferable for the zirconia blades. Therefore, as a result of diligent studies, a minute chipping generated at the cutting edge is sharp, and a method of making the sharp chipping into a minute cutting edge has been found. In other words, by proactively causing monoclinic formation at the cutting edge, which has been regarded as a weak point, the cutting edge is prevented from becoming dull due to wear,
The sharpness can be maintained for a long time. The material condition for satisfying this condition is that the monoclinic crystal has a crystal structure basically containing no monoclinic crystal, but the monoclinic crystal has a range of 5 to 30% by volume in a portion within 3 μm from the cutting edge processed by lapping or polishing. I found that a material that had naturally occurring parts was good. If it is less than 5% by volume, micro-destruction is less likely to occur and wear of the cutting edge is prioritized, so that the cutting life is short. If it exceeds 30% by volume, the speed of micro-fracture is fast, so the falling off of the cutting edge is faster and the cutting life is longer. Be shorter. Preferably it is in the range of 5 to 25% by volume.

【0015】結晶相の測定は、レーザーラマンマイクロ
プローブを用いて行った。レーザーラマンマイクロプロ
ーブは、代表的なレーザーラマン分光器のマイクロ試料
室の代わりに光学顕微鏡を設置したもので、これを用い
ると1〜数μm程度の微小部分の結晶相の測定が可能と
なる。
The measurement of the crystal phase was performed using a laser Raman microprobe. The laser Raman microprobe is provided with an optical microscope in place of a micro sample chamber of a typical laser Raman spectroscope, and by using this, it is possible to measure a crystal phase of a minute portion of about 1 to several μm.

【0016】測定では刃先の加工が終了した刃物部材の
微小部分に、振動数ν0 のレーザー光を照射した時に生
じる振動数ν0 ±νのRaman散乱光のうち、Sto
kes線と呼ぶ振動数ν0 −νの強度を縦軸に、照射光
からのシフト(ラマンシフト)を横軸として表示したラ
マンスペクトルにおいて、ラマンシフト148/cm -1
の正方晶、181/cm-1、192/cm-1の単斜晶に
おけるラマンバンドの強度ピーク高さIt 148、Im 181
m 192を求め、これらから次式 Cm(%)={0.5(Im 181+Im 192)}/{k・It
148+0.5(Im 181+Im 192)} により単斜晶率Cm(%)を算出した。
[0016] In the measurement, of the blade member after the processing of the blade edge is completed
The frequency ν0When irradiated with laser light
Twisting frequency ν0Of the Raman scattered light of ± ν, Sto
The frequency ν called the kes line0Irradiation light with -ν intensity on the vertical axis
From the horizontal axis (Raman shift)
In the Mann spectrum, the Raman shift is 148 / cm -1
Of tetragon, 181 / cm-1, 192 / cm-1To monoclinic
Raman band intensity peak height It 148, Im 181,
Im 192From these, and the following equation Cm(%) = {0.5 (Im 181+ Im 192)} / {K ・ It
148+0.5 (Im 181+ Im 192)} Means monoclinic Cm(%) Was calculated.

【0017】ここでkは単斜晶と正方晶のラマンバンド
の絶対値強度の補正値であり、Y23が2.0mol
%、Y23が2.5mol%、Y23が4.0mol%
の試料について求めたところk=2.2±0.2となっ
たため、k=2.2として計算を行った。
Here, k is a correction value of the absolute intensity of the monoclinic and tetragonal Raman bands, and Y 2 O 3 is 2.0 mol
%, Y 2 O 3 2.5 mol%, Y 2 O 3 4.0 mol%
Since k = 2.2 ± 0.2 was obtained for the sample No., the calculation was performed with k = 2.2.

【0018】本発明の必須要件の一つであるWC、Al
N、Al23及びSiCを含有する目的は、様々な条件
で使用され被切断物の材質によって刃物部材にも様々な
特性が必要とされるためである。顔料が表面にコートし
てあるフィルムなどは、刃物部材の摩耗が早いためAl
23やSiCをジルコニアに含有させ硬度を高くするこ
とが有効である。また被切断物が固くて厚い場合など摩
擦熱が発生しやすいため、熱伝導率の低いジルコニアは
蓄熱しやすいため刃物が高温になりやすく、ジルコニア
の変態による劣化や被切断物の品位に影響することが懸
念される場合などは、WC、AlNなどの熱伝導率の高
い材料を含有させることが有効である。またこれら成分
の含有量と数は被切断物の材質や条件によって異なる
が、50重量%を超えるとジルコニア本来の強度と靱性
が低下が著しく刃物部材として好ましくない。好ましい
範囲としては40重量%以下であり、更に好ましくは3
0重量%以下である。
WC, Al which is one of the essential requirements of the present invention
The purpose of containing N, Al 2 O 3 and SiC is that the blade member is required to have various characteristics depending on the material used and the material to be cut. Films with pigment coated on the surface, etc., are subject to rapid
It is effective to increase the hardness by adding 2 O 3 or SiC to zirconia. In addition, since the frictional heat is likely to be generated when the object to be cut is hard and thick, zirconia with a low thermal conductivity is easy to store heat, so the blade is likely to become high temperature, which deteriorates due to transformation of zirconia and affects the quality of the object to be cut. When there is a concern, it is effective to include a material having high thermal conductivity such as WC and AlN. The content and number of these components vary depending on the material and conditions of the object to be cut, but if it exceeds 50% by weight, the original strength and toughness of zirconia decrease significantly, which is not preferable as a blade member. The preferred range is 40% by weight or less, more preferably 3% by weight.
0% by weight or less.

【0019】本発明においてZrO2はY23、Mg
O、CaO及びCeO2のうち少なくとも1種類を安定
化剤としてもちいたものであり、Y23やCeO2を用
いることが好ましい。Y23にあっては1〜5モル%程
度固溶されれば良く、1モル%未満では冷却時に単斜晶
に変態がおきやすく強度が低下し好ましくない。また5
モル%を超えると応力による変態が起こりにくくなるた
めにやはり強度が低下するため刃物部材として好ましく
ない。更に好ましくは1.5〜3.5モル%の範囲であ
る。
In the present invention, ZrO 2 is Y 2 O 3 , Mg
At least one of O, CaO and CeO 2 is used as a stabilizer, and it is preferable to use Y 2 O 3 or CeO 2 . It is sufficient that Y 2 O 3 is solid-solved at about 1 to 5 mol%, and if it is less than 1 mol%, transformation to monoclinic crystal is likely to occur during cooling, and the strength is unfavorably reduced. Also 5
If it exceeds mol%, transformation due to stress is unlikely to occur, so that the strength also decreases, which is not preferable as a blade member. More preferably, it is in the range of 1.5 to 3.5 mol%.

【0020】刃先の微小破壊は先端の粒子が単斜晶に変
態することで生じた微細な亀裂を起点とする微小破壊を
発生し脱落する。脱落する粒子は次の粒子に影響を及ぼ
すために、微小破壊は連続的に起きる。またこの微小破
壊によって創生された破壊面は鋭利であり切断刃として
有効であり、連続的に起こすことにより良好な切れ味を
保つことができることを見いだした。しかし、この微小
破壊の進展速度が遅い場合は刃先が摩滅により鈍化して
切れ味を低下させ、反対に進展速度が速すぎる場合には
刃先の摩耗を促進させるために寿命が短くなる。この刃
先先端の微小破壊は基本的に粒界に沿って進展するが、
特に成形時の不均一性が原因で焼結時に生成された内部
応力やヘアクラックが残留している場合には、微小破壊
の進展が著しいため、成形時の不均一性を取り除いてお
くことが重要であることを見いだした。即ち製造方法に
おいて成形性を左右するセラミックス粉末の粒子径が大
きすぎれば粒子間に大きな隙間が生成されやすく、また
焼結性が低下するために焼結温度を高温にする必要があ
り、過焼結により単斜晶が増加し、強度の低下を招く恐
れがある。反対にセラミックス粉末の粒子径が小さけれ
ば焼結性は良いが、成形までに粉体の凝集が起こりやす
く、成形時に破壊基点であるポアを作りやすくなるた
め、刃先の脱落速度が速くなりすぎる恐れがある。そこ
で鋭意検討の結果JIS−R1626「ファインセラミ
ックス粉体の気体吸着BET法比表面積の測定方法」に
記載のBET法による比表面積は3〜20m2/gであ
り、レーザー散乱式粒度分布測定結果の90%累積粒子
径が2〜6μm、平均粒子径が2μm以下であることを
見いだした。好ましくはBET法による比表面積が7〜
15m2/g、レーザー散乱式粒度分布測定の90%累
積粒子径が3〜5μm、平均粒子径が1.5μm以下で
ある。
The micro-fracture at the cutting edge causes micro-fracture starting from a fine crack generated by transformation of the particle at the tip into a monoclinic crystal, and falls off. Microfractures occur continuously because the falling particles affect the next particle. The inventors have also found that the fracture surface created by this microfracture is sharp and effective as a cutting blade, and that it can maintain good sharpness by continuously raising. However, when the rate of development of the microfracture is low, the cutting edge becomes dull due to abrasion and the sharpness is reduced. On the other hand, when the rate of development is too high, the wear of the cutting edge is accelerated, so that the life is shortened. The microfracture at the tip of the cutting edge basically propagates along the grain boundary,
In particular, if internal stress or hair cracks generated during sintering due to non-uniformity during molding remain, micro-destruction progresses significantly, so it is necessary to eliminate non-uniformity during molding. I found it important. That is, if the particle size of the ceramic powder, which influences the moldability in the manufacturing method, is too large, large gaps are likely to be formed between the particles, and the sintering temperature needs to be increased to lower the sinterability. There is a possibility that the monoclinic crystal will increase due to sintering and the strength will decrease. Conversely, if the particle size of the ceramic powder is small, the sinterability is good, but the agglomeration of the powder tends to occur before molding and the pores, which are the fracture starting points, are easily formed during molding, so the falling speed of the cutting edge may be too fast There is. The specific surface area by the BET method described in JIS-R1626 “Method of measuring specific surface area by gas adsorption BET method of fine ceramic powder” is 3 to 20 m 2 / g. The 90% cumulative particle diameter was found to be 2 to 6 μm, and the average particle diameter was 2 μm or less. Preferably, the specific surface area by the BET method is 7 to
The particle size is 15 m 2 / g, the 90% cumulative particle size measured by laser scattering particle size distribution measurement is 3 to 5 μm, and the average particle size is 1.5 μm or less.

【0021】刃物の部材中で、刃先から数μmのごく僅
かな部分が性能を大きく左右するのは明らかであり、こ
の部分に欠陥が如何に少ないかが、刃物の切れ味や寿命
を決定している要因の一つである。この刃先部分への欠
陥を少なくするために、刃先部分のみ物性を強化するの
は不可能であり、部材全体が欠陥の少ない、即ち緻密で
気孔の少ないものでなければならない。よって焼結体の
気孔率は小さいほど望ましく、好ましい気孔率は5%以
下である。5%を超えると刃物の刃先部分にポア等によ
り刃かけを生じる危険性が高くなる。さらに好ましくは
3%以下の範囲である。
It is clear that a very small portion of the blade member, a few μm from the cutting edge, greatly affects the performance, and how few defects are present in this portion determines the sharpness and life of the blade. Is one of the factors. In order to reduce the defects in the cutting edge portion, it is impossible to enhance the physical properties of only the cutting edge portion, and the entire member must have few defects, that is, be dense and have few pores. Therefore, the porosity of the sintered body is preferably as small as possible, and the preferable porosity is 5% or less. If it exceeds 5%, there is a high danger that the cutting edge of the blade will be cut by pores or the like. More preferably, it is in the range of 3% or less.

【0022】上記の気孔率P(%)の計算は、理論密度
ρ0と実際の密度ρによって次式 P=(1−ρ/ρ0)×100 によって算出することができる。
The porosity P (%) can be calculated by the following equation P = (1−ρ / ρ 0 ) × 100 based on the theoretical density ρ 0 and the actual density ρ.

【0023】本発明の刃物部材は、様々な方法によって
製造することができる。その中で好ましい方法の一例を
説明する。まず、加水分解法や共沈法などの方法によ
り、ZrO2粉末製造法によって製造されたY23
1.5〜3.5モル%含有するZrO2粉末に所定量の
Al23粉末を添加し、よく混合して混合粉末を作る。
混合操作は、湿式でも乾式でもよい。混合粉末は、必要
に応じて乾燥した後、粗粉砕し、篩い分けするか、造粒
する。この混合粉末の製造方法としては、Y、Mg、C
a及びCeから選ばれた少なくとも1種類の金属とZr
の塩化物溶液に酸化物換算で50重量%以下のAlを添
加した塩化物溶液を共沈、熱分解の酸化物製造法によっ
て製造することでも可能である。
The blade member of the present invention can be manufactured by various methods. Among them, an example of a preferable method will be described. First, by a method such as hydrolysis and coprecipitation, ZrO 2 powder preparation was produced by Y 2 O 3 of 1.5 to 3.5 mol% prescribed amount of Al 2 O 3 in ZrO 2 powder containing Add the powder and mix well to make a mixed powder.
The mixing operation may be wet or dry. The mixed powder is dried, if necessary, then coarsely pulverized, sieved or granulated. As a method for producing this mixed powder, Y, Mg, C
at least one metal selected from a and Ce and Zr
It is also possible to produce a chloride solution obtained by adding 50% by weight or less of Al in terms of oxide to the chloride solution by coprecipitation and thermal decomposition.

【0024】次に、混合粉末を各種の成型法、例えば金
型成型法やラバープレス成型法を用いて所望の刃物の形
状に成形し、ついでこの成形体を20〜100℃/hr
の昇温速度で1400℃から1650℃まで加熱し、か
かる温度下に数時間保持して焼結した後、20〜180
℃/hrの速度で800℃まで徐冷し、更に室温まで冷
却して焼結体を得る。
Next, the mixed powder is formed into a desired blade shape by various molding methods, for example, a mold molding method or a rubber press molding method, and then the molded body is heated at 20 to 100 ° C./hr.
After heating from 1400 ° C. to 1650 ° C. at a heating rate and holding at this temperature for several hours, sintering
It is gradually cooled to 800 ° C. at a rate of ° C./hr and further cooled to room temperature to obtain a sintered body.

【0025】このようにして得た、所望の形状をした焼
結体の表面を研削加工し、更にホーニング加工やラッピ
ング加工によって刃立てを行う。
The surface of the sintered body having a desired shape obtained as described above is ground, and the blade is sharpened by honing or lapping.

【0026】上記において刃物の用途によっては、原料
粉末から薄いシートを成形し、そのシートを打ち抜き加
工したものを焼結するようにしてもよい。また、成形体
を上記温度条件よりもやや低い1300〜1600℃で
焼結した後、500〜3000kg/cm2の圧力下で
1200〜1550℃で焼結する、いわゆる熱間静水圧
焼結法を用いると、結晶をより緻密にすることができて
刃物の性能を向上させることも可能である。
In the above, depending on the use of the blade, a thin sheet may be formed from raw material powder, and the sheet may be stamped and sintered. Also, a so-called hot isostatic sintering method is employed in which a molded body is sintered at 1300 to 1600 ° C, which is slightly lower than the above temperature conditions, and then sintered at 1200 to 1550 ° C under a pressure of 500 to 3000 kg / cm 2. When used, the crystal can be made denser and the performance of the blade can be improved.

【0027】[0027]

【実施例】以下に実施例について述べる。実施例の物性
の測定、評価は以下のように行った。 (1)平均粒径、90%累積粒子径 300ccのビーカーに水200g、粉末60gを入れ
良く攪拌した後、超音波発生器に10分間かけて30重
量%のスラリーを作成した。このスラリーを日機装
(株)製マイクロトラック粒度分布計モデル7995−
10SRAを用いた。調整したスラリーの粒子径分布を
測定し、累積分布が50%に相当するいわゆるメジアン
径を平均粒子径とし、粒子径の小さい方から積算して累
積分布が90%に相当する粒子径を90%粒子径とし
た。 (2)比表面積 ユアサアイオニクス(株)製“モノソープ”MS−17
を用いて粉末の比表面積を測定した。測定はJIS−R
1626「ファインセラミックス粉体の気体吸着BET
法比表面積の測定方法」に則りBET1点法で行った。 (3)結晶相の測定 粉末を成形圧力1ton/cm2でラバープレス成形、
焼結した焼結体資料を平面研削盤にて幅18mm×長さ
39mm×厚さ0.3mmの大きさに加工を施し、厚さ
0.3mmのエッジの断面が先端の角度30度になるよ
うに、600メッシュのダイアモンドホイールにて研削
加工した後、更に先端の断面の角度が40度になるよう
に1μm以下のダイヤモンド砥粒にてラッピング加工を
して仕上げた試料を用いた。測定器はJobin Yv
on社製“Ramanor”U−1000−Iを用いて
刃の先端から1μmの距離でレーザーラマンマイクロプ
ローブにてラマンバンドのピーク高さ3点測定し、単斜
晶率の算出を行った。
Embodiments will be described below. The measurement and evaluation of the physical properties of the examples were performed as follows. (1) Average particle size, 90% Cumulative particle size 200 g of water and 60 g of powder were placed in a 300 cc beaker and stirred well, and then a 30% by weight slurry was prepared in an ultrasonic generator for 10 minutes. This slurry was prepared using a Nikkiso Co., Ltd. Microtrac particle size distribution analyzer model 7995-
10SRA was used. The particle size distribution of the adjusted slurry was measured, and the so-called median diameter corresponding to a cumulative distribution of 50% was defined as the average particle diameter, and the particle diameter corresponding to the cumulative distribution of 90% was calculated from the smaller particle diameter. The particle size was used. (2) Specific surface area “Monosoap” MS-17 manufactured by Yuasa Ionics Co., Ltd.
Was used to measure the specific surface area of the powder. Measurement is JIS-R
1626 "Gas adsorption BET of fine ceramic powder
Method for Measuring the Specific Surface Area ”by the BET one-point method. (3) Measurement of crystalline phase The powder was subjected to rubber press molding at a molding pressure of 1 ton / cm 2 ,
The sintered sintered material is processed with a surface grinder to a size of 18 mm wide x 39 mm long x 0.3 mm thick, and the cross section of the 0.3 mm thick edge has a tip angle of 30 degrees. A sample finished by grinding with a diamond wheel of 600 mesh and further lapping with diamond abrasive grains of 1 μm or less so that the angle of the cross section of the tip becomes 40 degrees was used. The measuring instrument is Jobin Yv
Using "Ramanor" U-1000-I manufactured by On Co., Ltd., the peak height of the Raman band was measured at three points with a laser Raman microprobe at a distance of 1 μm from the tip of the blade, and the monoclinic fraction was calculated.

【0028】実施例1 安定化剤としてY23を2.5mol%含み、平均粒径
1.0μmのZrO2粉末に、平均粒径が0.3μm
で、純度が99.9%であるAl23粉末が20wt%
になるように加え、ボールミルにて24時間湿式混合し
た後、乾燥し、粗粉砕し混合粉末を得た。この混合粉末
の比表面積は11m2/g、90%累積粒子径は4.0
μm、平均粒子径は0.9μmであった。この粉末をス
プレードライヤーで造粒し、成型圧力1ton/cm2
でラバープレス成形、1350℃で焼結した。更にこの
焼結体を更に1000kg/cm2の圧力下で1500
℃の焼結熱間静水圧焼結を行った。
Example 1 A ZrO 2 powder containing 2.5 mol% of Y 2 O 3 as a stabilizer and having an average particle size of 1.0 μm was added to a ZrO 2 powder having an average particle size of 0.3 μm.
20 wt% of Al 2 O 3 powder having a purity of 99.9%
And then wet-mixed for 24 hours in a ball mill, dried and coarsely pulverized to obtain a mixed powder. The specific surface area of this mixed powder was 11 m 2 / g, and the 90% cumulative particle size was 4.0.
μm, and the average particle size was 0.9 μm. This powder is granulated with a spray drier and the molding pressure is 1 ton / cm 2
, And sintered at 1350 ° C. Further, the sintered body was further subjected to 1500 kg under a pressure of 1000 kg / cm 2.
C. Sintering hot isostatic sintering was performed.

【0029】この焼結体を平面研削盤にて幅18mm×
長さ39mm×厚さ0.3mmの大きさに加工を施し、
厚さ0.3mmのエッジの断面が先端の角度30度にな
るように、600メッシュのダイアモンドホイールにて
研削加工した後、更に先端の断面の角度が40度になる
ように1μm以下のダイヤモンド砥粒にてラッピング加
工をして仕上げた。
The sintered body was 18 mm wide by a surface grinder.
We process to size of 39mm in length X 0.3mm in thickness,
After grinding with a 600-mesh diamond wheel so that the cross section of the 0.3 mm thick edge has a tip angle of 30 degrees, diamond diamond of 1 μm or less so that the tip cross section angle becomes 40 degrees. Finished by wrapping with grains.

【0030】このラッピング加工をしたエッジを刃物と
して、刃先部分をレーザーラマンマイクロプローブにて
ラマンバンドのピーク高さを測定し、単斜晶率の算出を
おこなった。刃の先端から1μmの距離で3点測定を行
ったところ、単斜晶率は8.5体積%、6.1体積%、
6.0体積%であり、刃の先端から5μm以上の点(刃
先から5μm、10μm、50μm、200μm、50
0μm)では0.5体積%以下であった。
Using the wrapped edge as a blade, the peak height of the Raman band was measured with a laser Raman microprobe at the cutting edge, and the monoclinic fraction was calculated. When three points were measured at a distance of 1 μm from the tip of the blade, the monoclinic fraction was 8.5% by volume, 6.1% by volume,
6.0% by volume, and 5 μm or more from the tip of the blade (5 μm, 10 μm, 50 μm, 200 μm, 50 μm
0 μm) was 0.5% by volume or less.

【0031】この刃物を用いてアルミ蒸着された厚さ2
0μmのポリエステルフィルムを、切断速度200m/
minで使用したところ150hr以上の寿命が確認さ
れた。
Thickness 2 deposited with aluminum using this blade
A polyester film of 0 μm is cut at a cutting speed of 200 m /
When used for min, a life of 150 hours or more was confirmed.

【0032】刃先のチッピングが成長して寿命となった
刃物に、同様の測定をしたところ刃の先端から1μmの
距離での単斜晶率は3.2体積%、7.5体積%、4.
8体積%であり、刃先から5μm以上の点はやはり0.
5体積%以下であった。この刃物の刃先を再度鋭利に刃
付け加工を行ったところ、単斜晶率は同様の値を示し、
同様の切断試験を行っても、やはり150hr以上の寿
命があった。
The same measurement was carried out on a blade whose tip had grown due to chipping, and the monoclinic fraction at a distance of 1 μm from the tip of the blade was 3.2% by volume, 7.5% by volume, and 4% by volume. .
8% by volume, and the point of 5 μm or more from the cutting edge is also 0.1%.
It was 5% by volume or less. When the cutting edge of this blade was sharpened again, the monoclinic ratio showed the same value,
Even when the same cutting test was performed, the life was still 150 hours or more.

【0033】比較例1 実施例1の平均粒子径を3μmとして素材を加工したと
ころ、刃先部分の単斜晶率は35体積%あり、同様の切
断試験を行ったところ50hrで使用不可能となった。
Comparative Example 1 When the material was processed in Example 1 with the average particle diameter of 3 μm, the monoclinic crystal ratio of the cutting edge was 35% by volume, and the same cutting test was performed. Was.

【0034】実施例2 安定化剤としてY23を2.5mol%含み、平均粒径
1.0μmのZrO2粉末に、平均粒径が0.3μm
で、純度が99.9%であるAl23粉末が0.1wt
%になるように加え、ボールミルにて24時間湿式混合
した後、乾燥し、粗粉砕し混合粉末を得た。この混合粉
末の比表面積は10m2/g、90%累積粒子径は3.
5μm、平均粒子径は1.0μmであった。この粉末を
スプレードライヤーで造粒し、成型圧力1ton/cm
2でラバープレス成形、1500℃で焼結した。
Example 2 A ZrO 2 powder containing 2.5 mol% of Y 2 O 3 as a stabilizer and having an average particle size of 1.0 μm was added to a ZrO 2 powder having an average particle size of 0.3 μm.
The Al 2 O 3 powder having a purity of 99.9% is 0.1 wt.
%, And wet-mixed in a ball mill for 24 hours, then dried and coarsely pulverized to obtain a mixed powder. The specific surface area of this mixed powder is 10 m 2 / g, and the 90% cumulative particle size is 3.
The average particle size was 5 μm, and the average particle size was 1.0 μm. This powder is granulated with a spray dryer, and the molding pressure is 1 ton / cm.
Rubber pressing was performed at 2 , and sintering was performed at 1500 ° C.

【0035】この焼結体を実施例1と同様に、平面研削
盤にて幅18mm×長さ39mm×厚さ0.3mmの大
きさに加工を施し、厚さ0.3mmのエッジの断面が先
端の角度30度になるように、600メッシュのダイア
モンドホイールにて研削加工した後、更に先端の断面の
角度が40度になるように1μm以下のダイヤモンド砥
粒にてラッピング加工をして仕上げた。
This sintered body was processed into a size of 18 mm in width × 39 mm in length × 0.3 mm in thickness in the same manner as in Example 1 using a surface grinder. After grinding with a 600-mesh diamond wheel so that the angle of the tip is 30 degrees, lapping was further performed with diamond abrasive grains of 1 μm or less so that the angle of the cross section of the tip was 40 degrees. .

【0036】刃先部分をレーザーラマンマイクロプロー
ブにてラマンバンドのピーク高さを測定し、単斜晶率の
算出を行った。刃の先端から1μmの距離で3点測定を
行ったところ、単斜晶率は9.0体積%、7.4体積
%、6.8体積%であり、刃の先端から5μm以上の点
(刃先から5μm、10μm、50μm、200μm、
500μm)では0.5体積%以下であった。
The peak height of the Raman band of the cutting edge was measured using a laser Raman microprobe, and the monoclinic crystal ratio was calculated. When three points were measured at a distance of 1 μm from the tip of the blade, the monoclinic crystal ratio was 9.0% by volume, 7.4% by volume, and 6.8% by volume, and a point of 5 μm or more from the tip of the blade ( 5 μm, 10 μm, 50 μm, 200 μm,
500 μm) was 0.5% by volume or less.

【0037】この焼結体材料について、#230のダイ
アモンド砥石にて先端角60度の刃先加工をした鋏で#
100のポリエステル糸で切断試験をしたところ100
000回以上切断可能であった。
The sintered material was cut with scissors having a tip angle of 60 ° with a diamond grindstone of # 230.
When a cutting test was performed with 100 polyester yarns, 100
It could be cut more than 000 times.

【0038】比較例2 安定化剤としてY23を2.5mol%含み、平均粒径
1.0μmのZrO2粉末にAl23等のセラミックス
成分を加えず、BET法による比表面積を25m2/g
とした粉体を実施例1と同様の方法にて素材の先端にお
ける単斜晶率を測定したところ35体積%であった。こ
の素材を実施例2と同様の鋏による切断試験を行ったと
ころ、10000回以下で切れなくなった。
Comparative Example 2 A ZrO 2 powder containing 2.5 mol% of Y 2 O 3 as a stabilizer and having an average particle diameter of 1.0 μm was added with no ceramic component such as Al 2 O 3 , and the specific surface area was determined by the BET method. 25m 2 / g
The monoclinic crystal ratio at the tip of the raw material was measured by the same method as in Example 1 and found to be 35% by volume. When this material was subjected to a cutting test using scissors in the same manner as in Example 2, the material was not cut after 10,000 times or less.

【0039】[0039]

【発明の効果】刃物に使用する部材の切れ味低下機構と
部材の材料特性を詳細に研究した結果、ジルコニアを主
成分とする焼結体において、刃先が特定の結晶構造と微
機構並びに機械的特性を有する部材が優れた特性を発揮
する。
As a result of a detailed study of the mechanism of reducing the sharpness of the member used for the cutting tool and the material properties of the member, the sintered body mainly composed of zirconia has a specific crystal structure, a fine mechanism and a mechanical characteristic of the cutting edge. Have excellent characteristics.

フロントページの続き Fターム(参考) 3C027 AA11 AA17 AA18 3C046 FF33 FF42 FF47 FF49 FF51 FF52 FF55 FF57 3C058 AA04 AA09 CA01 CB10 DB02 4G031 AA03 AA04 AA07 AA08 AA12 AA29 AA37 AA38 BA19 CA01 GA02 GA03 GA12 Continuing on the front page F term (reference) 3C027 AA11 AA17 AA18 3C046 FF33 FF42 FF47 FF49 FF51 FF52 FF55 FF57 3C058 AA04 AA09 CA01 CB10 DB02 4G031 AA03 AA04 AA07 AA08 AA12 AA29 GA0319

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ジルコニアセラミックス成分と、50重
量%以下のWC、AlN、Al23及びSiCから選ば
れた少なくとも1種類のセラミックス成分とを含む複合
ジルコニア系焼結体であって、該ジルコニアセラミック
ス成分が、ジルコニアにY23、MgO、CaO及びC
eO2から選ばれた少なくとも1種類の酸化物を含有し
たものであり、かつ刃先の先端から3μm以内の部分
に、5〜30体積%の単斜晶が生成される部分を有する
ことを特徴とするジルコニア刃物部材。
1. A composite zirconia-based sintered body comprising a zirconia ceramic component and at least one ceramic component selected from WC, AlN, Al 2 O 3 and SiC at 50% by weight or less. The ceramic component is zirconia with Y 2 O 3 , MgO, CaO and C
are those containing at least one oxide selected from eO 2, and the portion within 3μm from the tip of the cutting edge, and wherein a portion of monoclinic is generated 5-30 vol% Zirconia knife member.
【請求項2】 Y23、MgO、CaO及びCeO2
ら選ばれた少なくとも1種類の酸化物を含有したジルコ
ニア粉末に、少なくとも0.1重量%以上50重量%以
下のWC、AlN、Al23及びSiCから選ばれた少
なくとも1種類のセラミックス粉末を添加した混合粉末
を湿式混合粉砕して、90%累積分布粒子径が2〜6μ
mで、かつ平均粒子径が2μm以下でBET法による比
表面積が3〜20m2/gである微粉末のスラリーと
し、該スラリーを乾燥し、得られた粉末を成形し、焼結
されたジルコニア刃物部材の表面を研削加工によって刃
付けすることを特徴とするジルコニア刃物の製造方法。
2. A zirconia powder containing at least one oxide selected from the group consisting of Y 2 O 3 , MgO, CaO and CeO 2 , wherein at least 0.1% by weight to 50% by weight of WC, AlN, Al A mixed powder to which at least one type of ceramic powder selected from 2 O 3 and SiC is added is wet-mixed and pulverized to have a 90% cumulative distribution particle diameter of 2 to 6 μm.
m, an average particle diameter of 2 μm or less, and a slurry of fine powder having a specific surface area of 3 to 20 m 2 / g by a BET method. The slurry is dried, and the obtained powder is formed into a sintered zirconia. A method for manufacturing a zirconia blade, wherein the surface of the blade member is sharpened by grinding.
【請求項3】 Y、Mg、Ca及びCeから選ばれた少
なくとも1種類の金属とZrの塩化物溶液に酸化物換算
で少なくとも0.1重量%以上50重量%以下のAlを
添加した塩化物溶液を共沈、熱分解の酸化物製造法によ
って製造された粉末を、湿式粉砕して、90%累積分布
粒子径が2〜6μmで、かつ平均粒子径が2μm以下で
BET法による比表面積が3〜20m2/gである微粉
末のスラリーとし、該スラリーを乾燥し、得られた粉末
を成形し、焼結されたジルコニア刃物部材の表面を研削
加工によって刃付けすることを特徴とするジルコニア刃
物の製造方法。
3. A chloride obtained by adding at least 0.1% by weight to 50% by weight of Al in terms of oxide to a chloride solution of at least one metal selected from Y, Mg, Ca and Ce and Zr. The solution is coprecipitated, and the powder produced by the thermal decomposition oxide production method is wet-pulverized to have a 90% cumulative distribution particle diameter of 2 to 6 μm, an average particle diameter of 2 μm or less, and a specific surface area by the BET method. Zirconia characterized in that a slurry of fine powder of 3 to 20 m 2 / g is formed, the slurry is dried, the obtained powder is formed, and the surface of the sintered zirconia blade member is ground by grinding. Manufacturing method of knife.
JP2000093986A 2000-03-30 2000-03-30 Zirconia cutter member and its manufacturing method Pending JP2001277180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000093986A JP2001277180A (en) 2000-03-30 2000-03-30 Zirconia cutter member and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000093986A JP2001277180A (en) 2000-03-30 2000-03-30 Zirconia cutter member and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2001277180A true JP2001277180A (en) 2001-10-09

Family

ID=18609096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000093986A Pending JP2001277180A (en) 2000-03-30 2000-03-30 Zirconia cutter member and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2001277180A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010052110A (en) * 2008-08-29 2010-03-11 Shimane Prefecture Sintered body
CN105503179A (en) * 2015-12-15 2016-04-20 东莞信柏结构陶瓷股份有限公司 Making method for ceramic cutting tool
WO2016190343A1 (en) * 2015-05-25 2016-12-01 京セラ株式会社 Ceramic knife
KR101887524B1 (en) * 2017-03-31 2018-09-06 주식회사 하이원화이어 Ceramic beauty blade cutting-type manufacturing process
CN109678500A (en) * 2019-01-30 2019-04-26 广州德隆宝环保科技有限公司 Yttrium stable zirconium oxide ceramic powders and its preparation method and application

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010052110A (en) * 2008-08-29 2010-03-11 Shimane Prefecture Sintered body
WO2016190343A1 (en) * 2015-05-25 2016-12-01 京セラ株式会社 Ceramic knife
JPWO2016190343A1 (en) * 2015-05-25 2017-07-06 京セラ株式会社 Ceramic blade
JP2017192737A (en) * 2015-05-25 2017-10-26 京セラ株式会社 Ceramic edged tool
US10821616B2 (en) 2015-05-25 2020-11-03 Kyocera Corporation Ceramic cutting tool
CN105503179A (en) * 2015-12-15 2016-04-20 东莞信柏结构陶瓷股份有限公司 Making method for ceramic cutting tool
KR101887524B1 (en) * 2017-03-31 2018-09-06 주식회사 하이원화이어 Ceramic beauty blade cutting-type manufacturing process
CN109678500A (en) * 2019-01-30 2019-04-26 广州德隆宝环保科技有限公司 Yttrium stable zirconium oxide ceramic powders and its preparation method and application

Similar Documents

Publication Publication Date Title
US4331048A (en) Cutting tip for metal-removing processing
US4820666A (en) Zirconia base ceramics
US7012036B2 (en) ZrO2-Al2O3 composite ceramic material and production method thereof
WO1995029141A1 (en) Zirconia sinter, process for producing the same, grinding part material, and orthodontic bracket material
JPS6140621B2 (en)
EP1279650B1 (en) Sintered alumina ceramic, method for producing the same, and cutting tool
JP5699361B2 (en) Abrasive grains based on zirconium corundum
JPH09268050A (en) Alumina-zirconia sintered material, its production and impact mill using the same
JP6416088B2 (en) Wear resistant member made of silicon nitride and method for producing sintered silicon nitride
JP2010264574A (en) Cutting tool
JP2001277180A (en) Zirconia cutter member and its manufacturing method
JPH05193948A (en) Zirconia powder and production thereof
JP2972487B2 (en) Sintered composite abrasive grits, their production and use
JP2000239063A (en) Medium which comprises zirconia-based sintered material having excellent durability and is for grinding and dispersing, and method for producing the same
JP3736649B2 (en) Zirconia sintered body, method for producing the same, and pulverized component material
JPWO2012074017A1 (en) Ceramic blade and method for manufacturing the same
JP2004115343A (en) Method of producing partially stabilized zirconia sintered compact
JPH07187774A (en) High-strength sintered zirconia material, its production, material for crushing part and ceramic die
JP2004075425A (en) Partially stabilized zirconia sintered compact
JP2001302345A (en) Zirconia sintered body excellent in durability and manufacturing method thereof
JP2003321270A (en) Alumina ceramics superior in wearing resistance and corrosion resistance and method for manufacturing its molding
JPH04275977A (en) High strength alumina-zirconia ceramic edged tool
JPH0813704B2 (en) Material for crusher
JP4396123B2 (en) Partially stabilized ZrO2 sphere and method for producing the same
JP4048017B2 (en) Crushing / dispersing media made of zirconia sintered body with excellent durability and wear resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100511