JP2001274439A - Electrode forming method for spherical semiconductor device - Google Patents

Electrode forming method for spherical semiconductor device

Info

Publication number
JP2001274439A
JP2001274439A JP2000089071A JP2000089071A JP2001274439A JP 2001274439 A JP2001274439 A JP 2001274439A JP 2000089071 A JP2000089071 A JP 2000089071A JP 2000089071 A JP2000089071 A JP 2000089071A JP 2001274439 A JP2001274439 A JP 2001274439A
Authority
JP
Japan
Prior art keywords
spherical
contact hole
negative electrode
positive electrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000089071A
Other languages
Japanese (ja)
Other versions
JP4234295B2 (en
Inventor
Joyu Nakada
仗祐 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000089071A priority Critical patent/JP4234295B2/en
Publication of JP2001274439A publication Critical patent/JP2001274439A/en
Application granted granted Critical
Publication of JP4234295B2 publication Critical patent/JP4234295B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce costs for electrode formation while including facility costs by providing mass-production technology for forming positive and negative electrodes in a granulated spherical semiconductor device. SOLUTION: A contact hole 12 for positive electrode and a contact hole 13 for negative electrode are formed on the surface of a spherical semiconductor device 11 for constituting a solar battery cell provided with a pn bond 7 and a spherical crystal 2 of a p-type semiconductor, and this spherical semiconductor device 11 is immersed in a plating liquid 23. In the state of radiating no light, nonelectrolytic plating treatment is performed and a positive electrode 15 coupled to the p-type semiconductor of the spherical crystal 2 is formed inside the contact hole 12 for positive electrode. Next, the spherical semiconductor device 11 is immersed in the other plating liquid and while generating a photovoltaic power by radiating white light, the negative electrode is formed in a contact hole 13 for negative electrode by nonelectrolytic plating treatment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】 本発明は、光起電力発生部
を形成した球状半導体素子に無電解メッキ処理により正
電極と負電極とを形成する方法に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a method for forming a positive electrode and a negative electrode by electroless plating on a spherical semiconductor device having a photovoltaic power generation unit.

【従来の技術】 本願出願人は、国際公開公報WO98
/15983号公報や同WO99/10935号公報参
照に示すように、球状のp形又はn形半導体の球状結晶
(例えば、大きさ約1〜2mmφ)の表面部にn形又は
p形の拡散層を形成してpn接合を形成し、その表面に
絶縁被膜や半導体被膜を形成し、球状結晶の中心部を挟
んで対向する正電極と負電極とを形成した球状半導体デ
バイスを提案し、目下その実用化の研究を行っている。
2. Description of the Related Art The applicant of the present application has published International Publication
As shown in Japanese Patent Publication No. 155983 and WO 99/10935, an n-type or p-type diffusion layer is formed on the surface of a spherical p-type or n-type semiconductor spherical crystal (for example, having a size of about 1 to 2 mmφ). To form a pn junction, form an insulating film or a semiconductor film on the surface thereof, and propose a spherical semiconductor device in which a positive electrode and a negative electrode opposed to each other with a central portion of the spherical crystal interposed therebetween. Researching practical application.

【0002】前記球状半導体デバイスは、太陽光エネル
ギーで発電する太陽電池セル、或いは光エネルギーを受
けて電気化学反応を起こす光触媒セル、電気エネルギー
で発光する発光ダイオードセルなどとして利用すること
ができる。この球状半導体デバイスで太陽電池を構成す
る場合には、複数の太陽電池セルを直列接続したものを
複数列並列接続することで、大容量の太陽電池を構成す
ることができる。しかも、この太陽電池は、球状半導体
素子からなるため太陽光の入射方向が変化しても、太陽
光を吸収する吸収効率が殆ど低下しないような構造にす
ることができるから優れた太陽電池となる。また、太陽
電池セルは、多結晶シリコンを素材として安価に製作で
きるため、一層有望なものである。
The spherical semiconductor device can be used as a photovoltaic cell that generates electric power by solar energy, a photocatalytic cell that generates an electrochemical reaction by receiving light energy, a light emitting diode cell that emits light by electric energy, and the like. When a solar cell is configured with this spherical semiconductor device, a large-capacity solar cell can be configured by connecting a plurality of solar cells connected in series in a plurality of columns in parallel. In addition, since the solar cell is made of a spherical semiconductor element, even if the incident direction of sunlight changes, the solar cell can have a structure in which the absorption efficiency for absorbing sunlight hardly decreases, so that the solar cell is an excellent solar cell. . Solar cells are more promising because they can be manufactured at low cost using polycrystalline silicon as a material.

【0003】この球状半導体デバイスで光触媒装置を構
成する場合には、化学反応の種類に応じて必要な起電力
を発生させ得る数の光触媒セルを直列接続したものを、
反応液中に多数セットし、光照射手段で光を照射すれば
よい。この球状半導体デバイスは、安価に製作でき、リ
サイクルして再使用することも可能である。
[0003] When a photocatalyst device is constituted by this spherical semiconductor device, a photocatalyst device in which a number of photocatalyst cells capable of generating a necessary electromotive force according to the type of a chemical reaction are connected in series,
What is necessary is just to set many in a reaction liquid, and to irradiate light with a light irradiation means. This spherical semiconductor device can be manufactured at low cost, and can be recycled and reused.

【0004】一方、米国特許第4173494号公報に
は、共通の電極膜の上に、多数の光起電力発生部を有す
る球状半導体素子を接続し、各球状半導体素子に個別の
電極を夫々形成して、太陽電池モジュールとする技術が
提案されている。米国特許第3025335号公報に
は、共通の電極膜の上に多数の光起電力発生部を有する
球状半導体素子を接続し、これら球状半導体素子に前記
共通電極膜とは異なる極性の共通の電極膜を接続し、太
陽電池モジュールとする技術が提案されている。
On the other hand, US Pat. No. 4,173,494 discloses that a spherical semiconductor element having a large number of photovoltaic power generation sections is connected on a common electrode film, and individual electrodes are formed on each of the spherical semiconductor elements. Thus, a technology for forming a solar cell module has been proposed. U.S. Pat. No. 3,025,335 discloses connecting a spherical semiconductor element having a large number of photovoltaic power generating parts on a common electrode film, and connecting these spherical semiconductor elements to a common electrode film having a polarity different from that of the common electrode film. There is proposed a technology for connecting a solar cell module to a solar cell module.

【0005】前記国際公開公報に示すように、前記球状
半導体デバイスでは、球状結晶の中心を挟んで対向する
1対の電極(正電極と負電極)とを形成する必要がある
が、従来では、化学蒸着の技術により、電極形成部位に
チタンの被膜を形成後ニッケルの被膜を形成することで
電極を形成していた。この場合、球状結晶の表面部に1
対のコンタクトホールを形成し、このコンタクトホール
が露出するように複数の球状結晶を平面的に配列した状
態で、化学蒸着を行う。
As shown in the above-mentioned International Publication, in the above-mentioned spherical semiconductor device, it is necessary to form a pair of electrodes (a positive electrode and a negative electrode) opposed to each other with the center of the spherical crystal interposed therebetween. The electrode was formed by forming a titanium film on the electrode formation site and then forming a nickel film by a chemical vapor deposition technique. In this case, 1
Chemical vapor deposition is performed with a pair of contact holes formed and a plurality of spherical crystals arranged in a plane so that the contact holes are exposed.

【0006】[0006]

【発明が解決しようとする課題】 前記のように、粒状
の球状半導体デバイスに、化学蒸着により電極を形成す
る方法では、特殊な化学蒸着装置を必要とするので設備
費が高価になること、電極形成のサイクル時間が長くな
り且つ1回に化学蒸着できる球状半導体デバイスの数が
制約されるため量産に適さないこと、電極形成の費用が
高価になること、等の問題がある。本発明の目的は、粒
状の球状半導体素子に正負の電極を形成する量産技術を
提供すること、設備費も含めて電極形成の費用を低減す
ること、などである。
As described above, the method of forming an electrode on a granular spherical semiconductor device by chemical vapor deposition requires a special chemical vapor deposition apparatus, so that the equipment cost is high, Since the cycle time of formation is long and the number of spherical semiconductor devices that can be chemically vapor-deposited at one time is limited, there are problems that the semiconductor device is not suitable for mass production and that the cost of forming electrodes is high. An object of the present invention is to provide a mass production technique for forming positive and negative electrodes on a granular spherical semiconductor element, to reduce the cost of forming electrodes including equipment costs, and the like.

【0007】[0007]

【課題を解決するための手段】 請求項1の球状半導体
素子の電極形成方法は、p形半導体の球状結晶の表面部
にn形拡散層とpn接合とを含む光起電力発生部が形成
されるとともに表面を絶縁体又は半導体からなる光透過
性の被膜で被覆してなる球状半導体素子の表面部分に、
球状結晶の中心挟んで対向する1対の電極を形成する方
法において、前記1対の電極を形成する部位の前記皮膜
を除去して、p形半導体の球状結晶を露出させた正電極
用コンタクトホールと、n形拡散層を露出させた負電極
用コンタクトホールを形成する第1工程と、前記球状半
導体素子を金属イオンを含む第1のメッキ液に浸漬し、
光を照射しない状態で無電解メッキ処理し正電極用コン
タクトホールに正電極を形成する第2工程と、前記球状
半導体素子を金属イオンを含む第2のメッキ液に浸漬
し、光を照射した状態で無電解メッキ処理し負電極用コ
ンタクトホールに負電極を形成する第3工程とを備えた
ことを特徴とするものである。
According to a first aspect of the present invention, there is provided a method for forming an electrode of a spherical semiconductor element, wherein a photovoltaic generator including an n-type diffusion layer and a pn junction is formed on a surface of a spherical crystal of a p-type semiconductor. In addition, the surface of the spherical semiconductor element whose surface is covered with a light-transmitting coating made of an insulator or a semiconductor,
In a method of forming a pair of electrodes opposed to each other across a center of a spherical crystal, a contact hole for a positive electrode exposing a spherical crystal of a p-type semiconductor by removing the film at a portion where the pair of electrodes is formed. And a first step of forming a negative electrode contact hole exposing the n-type diffusion layer, and immersing the spherical semiconductor element in a first plating solution containing metal ions,
A second step of forming a positive electrode in a positive electrode contact hole by performing electroless plating without irradiation with light, and immersing the spherical semiconductor element in a second plating solution containing metal ions and irradiating with light. And forming a negative electrode in the negative electrode contact hole by electroless plating.

【0008】第1工程では、球状半導体素子の表面部分
の1対の電極を形成する部位の被膜を除去して、p形半
導体の球状結晶を露出させた正電極用コンタクトホール
と、n形拡散層を露出させた負電極用コンタクトホール
を形成する。この場合、例えば、両コンタクトホールを
形成しない範囲を耐蝕性感光樹脂膜でマスキングした状
態で、エッチング処理することで、絶縁体又は半導体か
らなる光透過性の被膜を除去することにより、両コンタ
クトホールを形成する。
In the first step, the coating on the surface of the spherical semiconductor element where a pair of electrodes is formed is removed, and a contact hole for the positive electrode exposing the spherical crystal of the p-type semiconductor and an n-type diffusion A contact hole for a negative electrode exposing the layer is formed. In this case, for example, by etching in a state where a region where both contact holes are not formed is masked with a corrosion-resistant photosensitive resin film, a light-transmitting film made of an insulator or a semiconductor is removed. To form

【0009】第2工程では、球状半導体素子を金属イオ
ンを含む第1のメッキ液に浸漬し、光を照射しない状態
で無電解メッキ処理し正電極用コンタクトホールに正電
極を形成する。このとき、光を照射しない状態では、正
電極用コンタクトホールに露出したp形半導体の表面
が、負電極用コンタクトホールに露出したn形拡散層の
表面よりも(−)電位になっているため、約10〜20
分位無電解メッキ処理を行うと、第1のメッキ液中の金
属イオンが正電極用コンタクトホール内のp形半導体の
表面に結合し、正電極が被膜状に形成される。
In a second step, the spherical semiconductor element is immersed in a first plating solution containing metal ions and subjected to electroless plating without irradiation with light to form a positive electrode in a positive electrode contact hole. At this time, in a state where light is not irradiated, the surface of the p-type semiconductor exposed to the contact hole for the positive electrode has a (-) potential more than the surface of the n-type diffusion layer exposed to the contact hole for the negative electrode. , About 10-20
When the electroless plating is performed, metal ions in the first plating solution are bonded to the surface of the p-type semiconductor in the contact hole for the positive electrode, and the positive electrode is formed in a film shape.

【0010】第3工程では、球状半導体素子を金属イオ
ンを含む第2のメッキ液に浸漬し、例えば白色光などの
光を照射した状態で約10〜20分程無電解メッキ処理
して負電極用コンタクトホールに負電極を形成する。球
状半導体素子に光を照射している状態では光起電力発生
部により光起電力が発生し、p形半導体が(+)電位、
n形拡散層が(−)電位となるため、メッキ液中の金属
イオンが負電極用コンタクトホールに露出したn形拡散
層に結合していき、負電極用コンタクトホール内でn形
拡散層の表面に負電極が被膜状に形成される。
In the third step, the spherical semiconductor element is immersed in a second plating solution containing metal ions, and subjected to electroless plating for about 10 to 20 minutes while being irradiated with light such as white light, for example. A negative electrode in the contact hole for use. In the state where the spherical semiconductor element is irradiated with light, photovoltaic power is generated by the photovoltaic power generator, and the p-type semiconductor has a (+) potential,
Since the n-type diffusion layer has a (-) potential, the metal ions in the plating solution are combined with the n-type diffusion layer exposed in the negative electrode contact hole, and the n-type diffusion layer is formed in the negative electrode contact hole. A negative electrode is formed on the surface in the form of a film.

【0011】請求項2の球状半導体素子の電極形成方法
は、n形半導体の球状結晶の表面部にp形拡散層とpn
接合とを含む光起電力発生部が形成されるとともに表面
を絶縁体又は半導体からなる光透過性の被膜で被覆して
なる球状半導体素子の表面部分に、球状結晶の中心挟ん
で対向する1対の電極を形成する方法において、前記1
対の電極を形成する部位の前記皮膜を除去して、n形半
導体の球状結晶を露出させた負電極用コンタクトホール
と、p形拡散層を露出させた正電極用コンタクトホール
を形成する第1工程と、前記半導体素子を金属イオンを
含む第1のメッキ液に浸漬し、光を照射しない状態で無
電解メッキ処理し正電極用コンタクトホールに正電極を
形成する第2工程と、前記半導体素子を金属イオンを含
む第2のメッキ液に浸漬し、光を照射した状態で無電解
メッキ処理し負電極用コンタクトホールに負電極を形成
する第3工程とを備えたことを特徴とするものである。
According to a second aspect of the present invention, there is provided a method for forming an electrode of a spherical semiconductor device, comprising the steps of: forming a p-type diffusion layer on a surface of a spherical crystal of an n-type semiconductor;
A pair of photovoltaic generators including a junction and a surface portion of a spherical semiconductor element whose surface is covered with a light-transmitting coating made of an insulator or a semiconductor is opposed to the surface portion of the spherical semiconductor element with the center of the spherical crystal interposed therebetween. The method of forming the electrode of
A first contact hole for exposing a spherical crystal of an n-type semiconductor and a contact hole for a positive electrode exposing a p-type diffusion layer are formed by removing the film at a portion where a pair of electrodes are formed. A second step of immersing the semiconductor element in a first plating solution containing metal ions and performing an electroless plating process without irradiating light to form a positive electrode in a positive electrode contact hole; and A third step of immersing in a second plating solution containing metal ions, performing electroless plating while irradiating light, and forming a negative electrode in a negative electrode contact hole. is there.

【0012】この請求項2の発明は、請求項1の発明に
おけるp形半導体がn形半導体となり、n形拡散層がp
形拡散層に変わっただけであるので、第1工程では、請
求項1と同様にして、球状結晶のn形半導体を露出させ
た負電極用コンタクトホールと、p形拡散層を露出させ
た正電極用コンタクトホールを形成する。次に、請求項
1と同様にして、第2工程では、正電極用コンタクトホ
ール内に露出したp形拡散層の表面に正電極が形成さ
れ、次に第3工程では、負電極用コンタクトホール内に
露出させたn形半導体の表面に負電極が形成される。
According to a second aspect of the present invention, in the first aspect, the p-type semiconductor is an n-type semiconductor and the n-type diffusion layer is a p-type semiconductor.
In the first step, the contact hole for the negative electrode exposing the spherical crystal n-type semiconductor and the positive electrode exposing the p-type diffusion layer are formed in the first step. An electrode contact hole is formed. Next, in the same manner as in claim 1, in the second step, a positive electrode is formed on the surface of the p-type diffusion layer exposed in the positive electrode contact hole, and then, in the third step, the negative electrode contact hole is formed. A negative electrode is formed on the surface of the n-type semiconductor exposed inside.

【0013】ここで、前記第1のメッキ液がCuイオン
を含む場合(請求項3)、Cuイオンは微弱な電位差に
反応してメッキされ易いため、導電性に優れる銅からな
る正電極を形成することができる。前記第2のメッキ液
がNiイオンを含む場合(請求項4)、NiイオンはC
uイオン程反応性が高くないが、光起電力を印加した状
態でメッキするため、導電性に優れるニッケルからなる
負電極を形成することができる。
Here, when the first plating solution contains Cu ions (claim 3), the Cu ions are apt to be plated in response to a slight potential difference, so that a positive electrode made of copper having excellent conductivity is formed. can do. When the second plating solution contains Ni ions (Claim 4), the Ni ions are C
Although the reactivity is not as high as that of u ions, plating is performed in a state where a photoelectromotive force is applied, so that a negative electrode made of nickel having excellent conductivity can be formed.

【0014】前記被膜がSiO2 (酸化シリコン)の被
膜と、その外側のTiO2 (酸化チタン)の被膜からな
る場合(請求項5)、拡散層やpn接合を含む光起電力
発生部で光起電力を発生できるうえTiO2 による光起
電力も発生できる。前記被膜がTiO2 の被膜である場
合(請求項6)、球状半導体素子の被膜の構造が簡単に
なるうえ、拡散層やpn接合を含む光起電力発生部で光
起電力を発生できるうえ、酸化チタンによる光起電力も
発生できる。
In the case where the coating comprises a coating of SiO 2 (silicon oxide) and a coating of TiO 2 (titanium oxide) outside the coating (claim 5), the light is generated by a photovoltaic power generation unit including a diffusion layer and a pn junction. An electromotive force can be generated, and a photoelectromotive force due to TiO 2 can also be generated. When the coating is a TiO 2 coating (claim 6), the structure of the coating of the spherical semiconductor element is simplified, and a photovoltaic power can be generated in a photovoltaic power generation unit including a diffusion layer and a pn junction. Photovoltaic power can also be generated by titanium oxide.

【0015】[0015]

【発明の実施の形態】 次に本発明の実施の形態につい
て図面を参照しながら説明する。この実施の形態は、太
陽電池セルを構成する為の球状半導体素子に本発明を適
用した場合の一例である。最初に太陽電池セルの構造に
ついて説明する。図13に示すように、この太陽電池セ
ル1は、p形シリコン半導体製の球状結晶2と、この球
状結晶2の表面部のうちの大部分に形成されたn形拡散
層6と、球状結晶2の中心を挟んで対向する1対の電極
(正電極15と負電極16)と、球状結晶2の表面のう
ちの正電極15と負電極16以外の部分を覆う光透過性
のSiO2 (酸化シリコン)の被膜9と、このSiO2
の被膜9の表面に形成された光透過性のTiO2 (酸化
チタン)の被膜10とを備えている。
Next, an embodiment of the present invention will be described with reference to the drawings. This embodiment is an example in which the present invention is applied to a spherical semiconductor element for constituting a solar cell. First, the structure of the solar cell will be described. As shown in FIG. 13, the solar cell 1 includes a spherical crystal 2 made of a p-type silicon semiconductor, an n-type diffusion layer 6 formed on most of the surface of the spherical crystal 2, and a spherical crystal 2. A pair of electrodes (positive electrode 15 and negative electrode 16) opposed to each other with the center of 2 interposed therebetween, and light-transmitting SiO 2 (parts of the surface of the spherical crystal 2 other than the positive electrode 15 and the negative electrode 16) Coating 9 of silicon oxide) and this SiO 2
And a light-transmitting TiO 2 (titanium oxide) film 10 formed on the surface of the film 9.

【0016】球状結晶2の表面部にn形拡散層6とpn
接合7を含む光起電力発生部が形成され、球状結晶2と
光起電力発生部とで光起電力を発生するマイクロ光電池
が構成されている。次に、この太陽電池セル1を製造す
る製造方法について説明する。第1工程において、図1
に示すように、球状のp形シリコン半導体からなる球状
結晶2を製作する。この球状結晶2は、不純物濃度が約
1.5×1016cm-3のp形シリコン半導体を用いて例
えば直径約1.5mmの真球状に形成する。
The n-type diffusion layer 6 and pn
A photovoltaic generator including the junction 7 is formed, and a micro photovoltaic cell that generates photovoltaic power by the spherical crystal 2 and the photovoltaic generator is configured. Next, a manufacturing method for manufacturing the solar cell 1 will be described. In the first step, FIG.
As shown in FIG. 1, a spherical crystal 2 made of a spherical p-type silicon semiconductor is manufactured. The spherical crystal 2 is formed into a true spherical shape having a diameter of, for example, about 1.5 mm using a p-type silicon semiconductor having an impurity concentration of about 1.5 × 10 16 cm −3 .

【0017】このような真球状の単結晶の球状結晶2
は、多結晶又は単結晶のシリコン半導体の顆粒を電磁浮
遊加熱装置により溶融し、次に浮遊を解除して落下チュ
ーブ内を自由落下させながら凝固させることにより、滑
らかな表面の球状結晶2として製作することができる。
さらに、必要なら不活性ガス雰囲気中で600〜900
℃の温度に加熱してアニールして結晶構造の改善を図っ
たり、溶融と落下と凝固とを含む落下処理を複数回行う
ことで不純物を表面に析出させ、その不純物をエッチン
グにて除去することで、良質の球状結晶とすることがで
きる。
Such a true spherical single crystal spherical crystal 2
Is produced as a spherical crystal 2 with a smooth surface by melting polycrystalline or single-crystal silicon semiconductor granules using an electromagnetic floating heating device, then releasing the floating and solidifying it while freely falling in a falling tube. can do.
Further, if necessary, 600 to 900 in an inert gas atmosphere.
To improve the crystal structure by heating to a temperature of ℃ to improve the crystal structure, or to perform multiple drop processes including melting, falling and solidification to precipitate impurities on the surface and remove the impurities by etching Thus, a high-quality spherical crystal can be obtained.

【0018】次に第2工程において、図2に示すよう
に、球状結晶2を酸素を含む雰囲気中で約1150℃に
加熱し、表面全体に厚さ約1μmのSiO2 (酸化シリ
コン)の被膜3を形成する。次に第3工程において、図
3に示すように、被膜3を形成した球状結晶2を例えば
ガラス製の支持板4の上に載置した状態で、その支持板
4上に球状結晶2の半径の半分程度の厚さの耐酸性合成
樹脂の液状の樹脂膜5を形成し、球状結晶2の下部約1
/4を樹脂膜5で覆った状態にしてから、樹脂膜5を固
化させる。
Next, in a second step, as shown in FIG. 2, the spherical crystal 2 is heated to about 1150 ° C. in an atmosphere containing oxygen, and a SiO 2 (silicon oxide) film having a thickness of about 1 μm is formed on the entire surface. Form 3 Next, in a third step, as shown in FIG. 3, the spherical crystal 2 on which the coating 3 has been formed is placed on a support plate 4 made of glass, for example, and the radius of the spherical crystal 2 is placed on the support plate 4. A liquid resin film 5 of an acid-resistant synthetic resin having a thickness of about half of
After the 4 is covered with the resin film 5, the resin film 5 is solidified.

【0019】次に第4工程において、希釈したフッ酸水
溶液を用いて、球状結晶2のうちの樹脂膜5から露出し
た部分をエッチングし、SiO2 の被膜3を溶して除去
する。その結果図4のようになる。次に第5工程におい
て、図5に示すように、樹脂膜5を溶剤で溶解させ、球
状結晶2を支持板4から取外し、適当な洗浄液を用いて
球状結晶2の表面を洗浄し、次にn形拡散層6を形成す
る為の不純物元素(例えば、P又はAs)を、公知の方
法で球状結晶2の表面部のうちの被膜3でマスキングさ
れていない部分に熱拡散して、n形拡散層6を形成す
る。尚、このn形拡散層6のn形半導体は正しくは、n
+ 形半導体である。
Next, in a fourth step, the portion of the spherical crystal 2 exposed from the resin film 5 is etched using a diluted hydrofluoric acid aqueous solution, and the SiO 2 film 3 is dissolved and removed. The result is as shown in FIG. Next, in a fifth step, as shown in FIG. 5, the resin film 5 is dissolved with a solvent, the spherical crystal 2 is removed from the support plate 4, and the surface of the spherical crystal 2 is washed using an appropriate cleaning solution. An impurity element (for example, P or As) for forming the n-type diffusion layer 6 is thermally diffused into a portion of the surface portion of the spherical crystal 2 that is not masked by the coating 3 by a known method, and The diffusion layer 6 is formed. Note that the n-type semiconductor of the n-type diffusion layer 6 is correctly n-type semiconductor.
+ Type semiconductor.

【0020】前記熱拡散により、n形拡散層6の表面に
は被膜3に連なるSiO2 の被膜8が形成される。その
結果、球状結晶2とn形拡散層6との間のpn接合7
は、球状結晶2の表面から約0.5〜0.8μmの深さ
に形成される。外部から太陽光等の光を受光していると
き、pn接合7は光励起されたキャリア(電子と正孔)
を分離して光起電力を発生する。
By the thermal diffusion, an SiO 2 coating 8 connected to the coating 3 is formed on the surface of the n-type diffusion layer 6. As a result, a pn junction 7 between the spherical crystal 2 and the n-type diffusion layer 6 is formed.
Is formed at a depth of about 0.5 to 0.8 μm from the surface of the spherical crystal 2. When light such as sunlight is received from the outside, the pn junction 7 forms photoexcited carriers (electrons and holes).
To generate photovoltaic power.

【0021】次に第6工程において、希釈したフッ酸水
溶液を用いてエッチング処理することにより、球状結晶
2の表面の被膜3,8を除去する。次に公知の技術であ
る物理蒸着法(PVD)や化学蒸着法(CVD)によ
り、図6に示すように、n形拡散層6を含む球状結晶2
の表面に、pn接合7の表面を不活性化させる為のSi
2 の被膜9を形成し、この被膜9の表面にTiO
2 (酸化チタン)の被膜10を形成する。
Next, in a sixth step, the coating films 3 and 8 on the surface of the spherical crystal 2 are removed by etching using a diluted hydrofluoric acid aqueous solution. Next, as shown in FIG. 6, a spherical crystal 2 including an n-type diffusion layer 6 is formed by a known technique such as physical vapor deposition (PVD) or chemical vapor deposition (CVD).
Si for inactivating the surface of the pn junction 7
An O 2 coating 9 is formed, and TiO 2
2 A film 10 of (titanium oxide) is formed.

【0022】前記被膜9,10は、pn接合7の表面の
リーク電流を少なくし、安定化させるとともに屈折率の
違いにより表面での光反射を少なくする。つまり、両被
膜9,10はpn接合7を保護し表面を不活性化する絶
縁膜兼不活性化膜であり、光の反射を防止する光反射防
止膜として機能する。前記TiO2 は、n形の半導体で
あり光起電力を発生させるため、入射光のうちの約42
0nm以下の波長の光は、TiO2 の被膜10で吸収さ
れ、それよりも長い波長の光はSiO2 の被膜9を透過
して球状結晶2に吸収される。
The coatings 9 and 10 reduce and stabilize the leakage current on the surface of the pn junction 7, and reduce light reflection on the surface due to a difference in refractive index. That is, both films 9 and 10 are insulating films and passivation films that protect the pn junction 7 and passivate the surface, and function as anti-reflection films that prevent reflection of light. Since the TiO 2 is an n-type semiconductor and generates photovoltaic power, about 42% of the incident light is used.
Light having a wavelength of 0 nm or less is absorbed by the TiO 2 coating 10, and light having a longer wavelength is transmitted through the SiO 2 coating 9 and absorbed by the spherical crystal 2.

【0023】両被膜9,10の膜厚は、pn接合7の不
活性化膜としての機能と被膜10による光起電力機能
と、受光するスペクトルに対する透過度合い等を考慮し
て設定される。例えば、SiO2 の被膜9の厚さは約
0.3〜0.7μm、TiO2 の被膜10の厚さは約
0.3〜1.0μmである。こうして、まず図6に示す
ような、球状半導体素子11を製作する。
The thicknesses of the two films 9 and 10 are set in consideration of the function of the pn junction 7 as a passivation film, the photovoltaic function of the film 10 and the degree of transmission of the spectrum to be received. For example, the thickness of the SiO 2 coating 9 is about 0.3 to 0.7 μm, and the thickness of the TiO 2 coating 10 is about 0.3 to 1.0 μm. Thus, first, the spherical semiconductor element 11 as shown in FIG. 6 is manufactured.

【0024】次に第7工程において、図7に示すよう
に、球状半導体素子11の下端部とn形拡散層6の頂部
において、2層の透明な被膜9,10に、球状結晶2の
中心を挟んで相対向するように直径約0.5mmの正電
極用コンタクトホール12および負電極用コンタクトホ
ール13を形成する。この場合、耐蝕性感光樹脂膜14
により図7に示すようにマスクした状態で、公知のフォ
トリソグラフィとプラズマエッチング法などにより、両
コンタクトホール12,13を形成する。前記正電極用
コンタクトホール12は球状結晶のp形半導体を露出さ
せる開口となり、負電極用コンタクトホール13は、n
形拡散層6を露出させる開口となる。その結果、図8に
示す球状半導体素子11となる。
Next, in the seventh step, as shown in FIG. 7, at the lower end of the spherical semiconductor element 11 and the top of the n-type diffusion layer 6, two transparent coatings 9, 10 are applied to the center of the spherical crystal 2. A contact hole 12 for a positive electrode and a contact hole 13 for a negative electrode having a diameter of about 0.5 mm are formed so as to be opposed to each other. In this case, the corrosion-resistant photosensitive resin film 14
7, both contact holes 12 and 13 are formed by known photolithography and plasma etching. The contact hole 12 for the positive electrode is an opening for exposing the p-type semiconductor of the spherical crystal, and the contact hole 13 for the negative electrode is
An opening for exposing the shaped diffusion layer 6. As a result, the spherical semiconductor element 11 shown in FIG. 8 is obtained.

【0025】次に第8工程において、図9に示すよう
に、球状半導体素子11をメッキ装置20のメッキ液2
3に浸漬し、光を照射しない状態で、無電解メッキを施
して正電極用コンタクトホール12にCuの被膜からな
るの正電極15を形成する。このメッキ液は、例えば1
000ccの水に200gのCuSO4 ・5H2 Oと1
0ccのHF(フッ化水素)を混合した組成の必要量の
メッキ液であり、メッキ装置20は、外側ケース21
と、ステンレス製のメッキ槽22と、このメッキ槽22
に収容したメッキ液23と、電気ヒータ24とを備えて
おり、このメッキ液23内に多数の球状半導体素子11
を収容し、それらに同時にメッキ処理を施す。尚、図8
では、球状半導体素子11を極端に拡大して図示してあ
る。
Next, in the eighth step, as shown in FIG.
The positive electrode 15 made of a Cu film is formed in the positive electrode contact hole 12 by performing electroless plating in a state where the substrate is not irradiated with light. This plating solution is, for example, 1
CuSO of 200g of water 000cc 4 · 5H 2 O and 1
0 HF (hydrogen fluoride) is mixed with a required amount of a plating solution having a composition.
And a plating tank 22 made of stainless steel, and the plating tank 22
And a plurality of spherical semiconductor elements 11 in the plating solution 23.
And plating them simultaneously. FIG.
Here, the spherical semiconductor element 11 is illustrated in an extremely enlarged manner.

【0026】このとき、メッキ液23の温度は約50〜
60℃とし、約10〜20分のメッキ処理を行う。この
メッキ処理のとき、p形半導体はn形拡散層6に対して
(−)電位になっているので、メッキ液23中のCu++
イオンが正電極用コンタクトホール12に露出している
p形半導体の表面に結合して約5〜10μmの厚さのC
uの正電極15が形成される。このメッキ処理の後、球
状半導体素子11は図10に示す状態になる。尚、メッ
キ液23に含むHFは省略してもよい。
At this time, the temperature of the plating solution 23 is about 50 to
The temperature is set to 60 ° C., and a plating process is performed for about 10 to 20 minutes. During this plating process, the p-type semiconductor has a (-) potential with respect to the n-type diffusion layer 6, so that the Cu ++ in the plating solution 23
The ions are combined with the surface of the p-type semiconductor exposed in the contact hole 12 for the positive electrode to form a C layer having a thickness of about 5 to 10 μm.
A positive electrode 15 of u is formed. After this plating process, the spherical semiconductor element 11 is in the state shown in FIG. The HF contained in the plating solution 23 may be omitted.

【0027】次に第9工程において、図11に示すよう
に、球状半導体素子11をメッキ装置30のメッキ液3
3に浸漬し、タングステンランプから発する白色光Bを
照射した状態で、無電解メッキを施して負電極用コンタ
クトホール13にNiの被膜からなるの負電極16を形
成する。このメッキ液は、例えば1000ccの水に2
00gのNiSO4 ・6H2 Oと10ccのNH3 (ア
ンモニア)を混合した組成の必要量のメッキ液であり、
メッキ装置30は、外側ケース31と、ステンレス製で
内面に鏡面状のNi被膜を形成したメッキ槽32と、こ
のメッキ槽32に収容したメッキ液33と、電気ヒータ
34とを備えたものである。尚、図11では、球状半導
体素子11を極端に拡大して図示してある。
Next, in a ninth step, as shown in FIG.
The negative electrode 16 made of a Ni film is formed in the negative electrode contact hole 13 by applying electroless plating while immersing the negative electrode 3 in white light B emitted from a tungsten lamp. This plating solution is, for example,
A necessary amount of the plating solution NiSO 4 · 6H 2 O and the composition of a mixture of NH 3 (ammonia) in 10cc of 200 g,
The plating apparatus 30 includes an outer case 31, a plating tank 32 made of stainless steel and having a mirror-like Ni film formed on the inner surface, a plating solution 33 contained in the plating tank 32, and an electric heater 34. . In FIG. 11, the spherical semiconductor element 11 is illustrated in an extremely enlarged manner.

【0028】メッキ槽32の下部の内周内面は放物面を
なし、照射光が底部の多数の球状半導体素子11に効率
良く集中するようになっている。このメッキ液33内に
正電極15を形成済みの多数の球状半導体素子11を収
容し、それらに同時にメッキ処理を施す。このとき、メ
ッキ液33の温度は約90〜100℃とし、約10〜2
0分のメッキ処理を行う。このメッキ処理のとき、球状
半導体素子11の光起電力発生部で発生する光起電力に
より、p形半導体は(+)電位、n形拡散層6は(−)
電位になるので、メッキ液33中のNi++イオンが負電
極用コンタクトホール13に露出しているn形拡散層6
のn形半導体の表面に結合して約5〜10μmの厚さの
Niの負電極16が形成される。このメッキ処理の後、
球状半導体素子11は図12に示す状態になる。
The inner surface of the inner periphery at the lower part of the plating tank 32 forms a paraboloid so that the irradiation light is efficiently concentrated on a large number of spherical semiconductor elements 11 at the bottom. A large number of spherical semiconductor elements 11 on which the positive electrode 15 has been formed are accommodated in the plating solution 33, and they are subjected to plating simultaneously. At this time, the temperature of the plating solution 33 is about 90-100 ° C., and about 10-2
Perform a 0 minute plating process. In this plating process, the p-type semiconductor has a (+) potential, and the n-type diffusion layer 6 has a (-) potential due to the photovoltaic power generated in the photovoltaic power generation section of the spherical semiconductor element 11.
Since the potential becomes Ni, the Ni ++ ions in the plating solution 33 are exposed in the contact holes 13 for the negative electrode.
To form a negative electrode 16 of Ni having a thickness of about 5 to 10 μm. After this plating process,
The spherical semiconductor element 11 is in the state shown in FIG.

【0029】次に第10工程において、以上のように正
電極15と負電極16を形成した球状半導体素子11を
ハンダ槽(図示略)の溶融ハンダ内に浸漬し、正電極1
5と負電極16の表面にハンダ層17,18を夫々形成
し、洗浄を施すと、図13に示す状態の球状半導体素子
11(これが、太陽電池セルである)となる。
Next, in a tenth step, the spherical semiconductor element 11 on which the positive electrode 15 and the negative electrode 16 are formed as described above is immersed in molten solder in a solder bath (not shown).
When the solder layers 17 and 18 are formed on the surfaces of the negative electrode 5 and the negative electrode 16, respectively, and cleaned, the spherical semiconductor element 11 (this is a solar cell) in the state shown in FIG. 13 is obtained.

【0030】前記の第7工程〜第9工程において行う電
極形成方法によれば、Cu(銅)の正電極15とNi
(ニッケル)の負電極16とを夫々所望の厚さに形成で
きる。そして、Cuの正電極15とNiの負電極16で
あるから、正負の電極を識別することができるうえ、N
iの負電極16は磁性を有するため磁力により正負の電
極を区別することが可能になる。多数の球状半導体素子
11をメッキ液23,33内に累々と浸漬した状態で、
メッキ処理することができ、メッキ処理により多数の球
状半導体素子11に短いサイクルタイムで能率的に正負
の電極15,16を形成できる。また、簡単な構成のメ
ッキ処理装置20,30で正負の電極15,16を形成
できるため設備費と電極形成費を格段に低減することが
できる。
According to the electrode forming method performed in the seventh to ninth steps, the Cu (copper) positive electrode 15 and the Ni
The (nickel) negative electrode 16 can be formed to a desired thickness. Since the positive electrode 15 is made of Cu and the negative electrode 16 is made of Ni, the positive and negative electrodes can be identified.
Since the negative electrode 16 of i is magnetic, it is possible to distinguish between the positive and negative electrodes by the magnetic force. In a state where many spherical semiconductor elements 11 are successively immersed in the plating solutions 23 and 33,
Plating can be performed, and the positive and negative electrodes 15 and 16 can be efficiently formed in a large number of spherical semiconductor elements 11 in a short cycle time by the plating. In addition, since the positive and negative electrodes 15 and 16 can be formed by the plating apparatuses 20 and 30 having a simple configuration, equipment costs and electrode forming costs can be significantly reduced.

【0031】次に、前記実施の形態を部分的に変更する
変更形態について説明する。 1)前記SiO2 の被膜9は必須のものではなく省略し
てもよく、この場合の太陽電池セル1Aは図14に示す
ものとなる。また、前記TiO2 の被膜10の代わりに
透明ガラスの被膜またはSi3 4 の被膜を形成しても
よい。被膜9,10の代わりに、その他の絶縁体や半導
体からなる被膜を形成してもよい。
Next, a description will be given of a modification in which the above-described embodiment is partially modified. 1) The SiO 2 coating 9 is not essential and may be omitted. In this case, the solar cell 1A is as shown in FIG. Further, a transparent glass film or a Si 3 N 4 film may be formed instead of the TiO 2 film 10. Instead of the coatings 9 and 10, a coating made of another insulator or semiconductor may be formed.

【0032】2)前記球状半導体素子11は、太陽電池
セルに適用するものを例として説明したが、太陽電池セ
ルではなく光触媒セルに適用するものでもよい。この場
合、負電極16はTiO2 の被膜10から分断状態に形
成する。また、球状半導体素子は、太陽電池セルではな
く、発光ダイオードセルとして適用するものでもよい。
また、球状結晶を形成する半導体はシリコン以外の半導
体であってもよい。
2) Although the spherical semiconductor element 11 has been described as being applied to a solar cell as an example, it may be applied to a photocatalytic cell instead of a solar cell. In this case, the negative electrode 16 is formed so as to be separated from the TiO 2 coating 10. Further, the spherical semiconductor element may be applied as a light emitting diode cell instead of a solar cell.
The semiconductor forming the spherical crystal may be a semiconductor other than silicon.

【0033】3)メッキ液23に銅イオンの代わりにA
uイオンまたはNiイオンを入れておけば、Auまたは
Niの正電極を形成できる。また、メッキ液33にNi
イオンの代わりにAuイオンを入れておけば、Auの負
電極を形成することができる。正負の電極は、Cu、N
i、Auなどに限定されるものではなく、その他の金属
で構成してもよい。そして、前記メッキ液23、33は
一例を示すものに過ぎず、その他の組成のメッキ液を適
用してもよく、メッキ処理の温度や時間も一例に過ぎ
ず、実施例のものに限定される訳ではない。
3) Instead of copper ions, A
By adding u ions or Ni ions, a positive electrode of Au or Ni can be formed. Moreover, Ni is used for the plating solution 33.
If Au ions are used instead of ions, a negative electrode of Au can be formed. The positive and negative electrodes are Cu, N
It is not limited to i, Au, etc., but may be made of other metals. The plating solutions 23 and 33 are merely examples, and plating solutions of other compositions may be applied. The temperature and time of the plating process are also examples, and are limited to those of the examples. Not in translation.

【0034】4)前記実施の形態では、p形半導体の球
状結晶2を製作してその表面に拡散層6、被膜9,10
を形成した球状半導体素子11の場合を例として説明し
たが、n形半導体の球状結晶を製作してその表面にp形
の拡散層、被膜9,10を形成した球状半導体素子に、
前記同様にして正電極と負電極を形成することができ
る。この場合、第7工程において、前記実施形態と同様
にして、p形の拡散層を露出させる正電極用コンタクト
ホールと、n形半導体を露出させる負電極用コンタクト
ホールを形成する。
4) In the above embodiment, the spherical crystal 2 of p-type semiconductor is manufactured, and the diffusion layer 6 and the coatings 9 and 10 are formed on the surface thereof.
Has been described as an example, but a spherical semiconductor element in which a spherical crystal of an n-type semiconductor is manufactured and a p-type diffusion layer and coatings 9 and 10 are formed on the surface thereof,
A positive electrode and a negative electrode can be formed in the same manner as described above. In this case, in the seventh step, a contact hole for a positive electrode exposing a p-type diffusion layer and a contact hole for a negative electrode exposing an n-type semiconductor are formed in the same manner as in the above embodiment.

【0035】次に、第8工程において、前記実施形態と
同様にして、p形の拡散層に結合した正電極を形成し、
次に第9工程において、前記実施形態と同様にして、球
状結晶のn形半導体に結合した負電極を形成する。
Next, in the eighth step, a positive electrode coupled to the p-type diffusion layer is formed in the same manner as in the above embodiment.
Next, in a ninth step, a negative electrode coupled to the n-type semiconductor of the spherical crystal is formed in the same manner as in the above embodiment.

【0036】[0036]

【発明の効果】 請求項1の発明によれば、第1工程で
正負電極用の1対のコンタクトホールを形成し、第2工
程で第1のメッキ液に浸漬して光を照射せずにp形半導
体に結合した正電極を形成し、第3工程で第2のメッキ
液に浸漬して光を照射しつつにn形拡散層に結合した負
電極を形成するため、正電極と負電極とを異種又は同種
の金属で夫々所望の厚さに形成できること、正負の電極
を異なる金属で構成すれば、正負の電極を簡単に識別す
ることができる。メッキ処理により多数の球状半導体素
子に短いサイクルタイムで能率的に正負の電極を形成で
きること、簡単な構成のメッキ処理装置で電極を形成で
きるため設備費と電極形成費を安価にできること、量産
に適する電極形成技術であること、などの効果が得られ
る。
According to the first aspect of the present invention, a pair of contact holes for positive and negative electrodes are formed in the first step, and are immersed in the first plating solution in the second step without being irradiated with light. forming a positive electrode coupled to the p-type semiconductor, immersing in a second plating solution in a third step and irradiating light to form a negative electrode coupled to the n-type diffusion layer; If the positive and negative electrodes can be made of different metals or the same kind of metal and have desired thicknesses, and the positive and negative electrodes are made of different metals, the positive and negative electrodes can be easily identified. Positive and negative electrodes can be efficiently formed in a large number of spherical semiconductor elements by a plating process in a short cycle time, and electrodes can be formed by a plating apparatus having a simple structure, so that equipment costs and electrode forming costs can be reduced, which is suitable for mass production. The effect of being an electrode forming technique can be obtained.

【0037】請求項2の発明によれば、第1工程で正負
電極用の1対のコンタクトホールを形成し、第2工程で
第1のメッキ液に浸漬して光を照射せずにp形拡散層に
結合した正電極を形成し、第3工程で第2のメッキ液に
浸漬して光を照射しつつにn形半導体に結合した負電極
を形成するため、基本的に請求項1の発明と同様の効果
が得られる。
According to the second aspect of the present invention, a pair of contact holes for positive and negative electrodes are formed in the first step, and the contact holes are immersed in the first plating solution in the second step so as to be p-type without irradiating light. In order to form a positive electrode coupled to the diffusion layer, and to form a negative electrode coupled to the n-type semiconductor while irradiating light by immersing in a second plating solution in a third step, The same effect as the invention can be obtained.

【0038】請求項3の発明によれば、第1のメッキ液
がCuイオンを含ため、微弱な電位差を有効活用して導
電性に優れる銅の正電極を確実に形成することができ
る。その他請求項1又は2と同様の効果を奏する。請求
項4の発明によれば、第2のメッキ液がNiイオンを含
むため、導電性に優れるニッケルの負電極を確実に負電
極を形成することができる。銅の正電極とニッケルの負
電極となるため、正負の電極を簡単に識別することがで
きるうえ、ニッケルの負電極は磁性体であるため磁力を
用いて識別することができる。その他請求項1又は2と
同様の効果を奏する。
According to the third aspect of the present invention, since the first plating solution contains Cu ions, a copper positive electrode having excellent conductivity can be reliably formed by effectively utilizing a weak potential difference. The other effects are the same as those of the first or second aspect. According to the invention of claim 4, since the second plating solution contains Ni ions, it is possible to reliably form a negative electrode of nickel having excellent conductivity. Since the electrode is a copper positive electrode and a nickel negative electrode, the positive and negative electrodes can be easily identified. In addition, since the nickel negative electrode is a magnetic material, it can be identified using magnetic force. The other effects are the same as those of the first or second aspect.

【0039】請求項5の発明によれば、前記被膜がSi
2 の被膜と、その外側のTiO2の被膜からなるた
め、拡散層やpn接合を含む光起電力発生部で光起電力
を発生できるうえ、酸化チタンによる光起電力を発生で
きる球状半導体素子となる。その他請求項1〜4の何れ
かと同様の効果を奏する。
According to the fifth aspect of the present invention, the film is made of Si
Since it is composed of an O 2 film and a TiO 2 film outside thereof, a spherical semiconductor element capable of generating a photovoltaic power in a photovoltaic power generation section including a diffusion layer and a pn junction and generating a photovoltaic power of titanium oxide Becomes Other effects similar to those of any one of the first to fourth aspects are exhibited.

【0040】請求項6の発明によれば、前記被膜がTi
2 の被膜からなるため、球状半導体素子の被膜の構造
が簡単になるうえ、拡散層やpn接合を含む光起電力発
生部で光起電力を発生できるうえ、酸化チタンによる光
起電力を発生できる球状半導体素子となる。その他請求
項1〜4の何れかと同様の効果を奏する。
According to the invention of claim 6, the coating is made of Ti
Because of the O 2 film, the structure of the film of the spherical semiconductor element is simplified, and a photovoltaic power can be generated in a photovoltaic power generation unit including a diffusion layer and a pn junction, and a photovoltaic power generated by titanium oxide is generated. The resulting spherical semiconductor element can be obtained. Other effects similar to those of any one of the first to fourth aspects are exhibited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係るp形半導体の球状結
晶の断面図である。
FIG. 1 is a cross-sectional view of a spherical crystal of a p-type semiconductor according to an embodiment of the present invention.

【図2】球状結晶を被膜で覆った状態の断面図である。FIG. 2 is a cross-sectional view of a state where a spherical crystal is covered with a coating.

【図3】図2の球状結晶を樹脂膜でマスクした状態の断
面図である。
FIG. 3 is a cross-sectional view of a state in which the spherical crystal of FIG. 2 is masked with a resin film.

【図4】マスク後にエッチング処理した状態の断面図で
ある。
FIG. 4 is a cross-sectional view showing a state where an etching process is performed after a mask.

【図5】n形拡散層を形成した球状結晶の断面図であ
る。
FIG. 5 is a cross-sectional view of a spherical crystal on which an n-type diffusion layer is formed.

【図6】球状結晶の表面に被膜を形成した球状半導体素
子の断面図である。
FIG. 6 is a cross-sectional view of a spherical semiconductor device having a film formed on the surface of a spherical crystal.

【図7】感光性樹脂膜でマスクし正負電極用コンタクト
ホールを形成した状態の断面図である。
FIG. 7 is a cross-sectional view showing a state where positive and negative electrode contact holes are formed by masking with a photosensitive resin film.

【図8】図7の感光性樹脂膜を除去した状態の球状半導
体素子の断面図である。
8 is a cross-sectional view of the spherical semiconductor device in a state where the photosensitive resin film of FIG. 7 is removed.

【図9】メッキ装置と球状半導体素子の断面図である。FIG. 9 is a sectional view of a plating apparatus and a spherical semiconductor element.

【図10】正電極を形成した球状半導体素子の断面図で
ある。
FIG. 10 is a cross-sectional view of a spherical semiconductor element on which a positive electrode is formed.

【図11】メッキ装置と球状半導体素子の断面図であ
る。
FIG. 11 is a sectional view of a plating apparatus and a spherical semiconductor element.

【図12】正負の電極を形成した球状半導体素子の断面
図である。
FIG. 12 is a sectional view of a spherical semiconductor element on which positive and negative electrodes are formed.

【図13】球状半導体素子からなる太陽電池セルの断面
図である。
FIG. 13 is a cross-sectional view of a solar battery cell including a spherical semiconductor element.

【図14】変更形態に係る太陽電池セルの断面図であ
る。
FIG. 14 is a cross-sectional view of a solar cell according to a modified embodiment.

【符号の説明】[Explanation of symbols]

2 球状結晶(p形半導体) 6 拡散層 7 pn接合 9 酸化シリコンの被膜 10 酸化チタンの被膜 11 球状半導体素子 12 正電極用コンタクトホール 13 負電極用コンタクトホール 15 正電極 16 負電極 20 メッキ装置 23 メッキ液 30 メッキ装置 33 メッキ液 2 Spherical crystal (p-type semiconductor) 6 Diffusion layer 7 pn junction 9 Coating of silicon oxide 10 Coating of titanium oxide 11 Spherical semiconductor element 12 Contact hole for positive electrode 13 Contact hole for negative electrode 15 Positive electrode 16 Negative electrode 20 Plating device 23 Plating solution 30 Plating device 33 Plating solution

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 p形半導体の球状結晶の表面部にn形拡
散層とpn接合とを含む光起電力発生部が形成されると
ともに表面を絶縁体又は半導体からなる光透過性の被膜
で被覆してなる球状半導体素子の表面部分に、球状結晶
の中心挟んで対向する1対の電極を形成する方法におい
て、 前記1対の電極を形成する部位の前記被膜を除去して、
p形半導体の球状結晶を露出させた正電極用コンタクト
ホールと、n形拡散層を露出させた負電極用コンタクト
ホールを形成する第1工程と、 前記球状半導体素子を金属イオンを含む第1のメッキ液
に浸漬し、光を照射しない状態で無電解メッキ処理し正
電極用コンタクトホールに正電極を形成する第2工程
と、 前記球状半導体素子を金属イオンを含む第2のメッキ液
に浸漬し、光を照射した状態で無電解メッキ処理し負電
極用コンタクトホールに負電極を形成する第3工程と、 を備えたことを特徴とする球状半導体素子の電極形成方
法。
1. A photovoltaic generator including an n-type diffusion layer and a pn junction is formed on the surface of a spherical crystal of a p-type semiconductor, and the surface is covered with a light-transmitting coating made of an insulator or a semiconductor. A method of forming a pair of electrodes facing each other across the center of a spherical crystal on a surface portion of a spherical semiconductor element formed by removing the coating on a portion where the pair of electrodes is formed;
forming a first contact hole for a positive electrode exposing a spherical crystal of a p-type semiconductor and a contact hole for a negative electrode exposing an n-type diffusion layer; A second step of immersing in a plating solution and performing electroless plating in a state where light is not irradiated to form a positive electrode in a positive electrode contact hole; and immersing the spherical semiconductor element in a second plating solution containing metal ions. A third step of forming a negative electrode in a negative electrode contact hole by performing an electroless plating process in a state where light is irradiated, and a third step of forming an electrode for a spherical semiconductor element.
【請求項2】 n形半導体の球状結晶の表面部にp形拡
散層とpn接合とを含む光起電力発生部が形成されると
ともに表面を絶縁体又は半導体からなる光透過性の被膜
で被覆してなる球状半導体素子の表面部分に、球状結晶
の中心挟んで対向する1対の電極を形成する方法におい
て、 前記1対の電極を形成する部位の前記被膜を除去して、
n形半導体の球状結晶を露出させた負電極用コンタクト
ホールと、p形拡散層を露出させた正電極用コンタクト
ホールを形成する第1工程と、 前記球状半導体素子を金属イオンを含む第1のメッキ液
に浸漬し、光を照射しない状態で無電解メッキ処理し正
電極用コンタクトホールに正電極を形成する第2工程
と、 前記球状半導体素子を金属イオンを含む第2のメッキ液
に浸漬し、光を照射した状態で無電解メッキ処理し負電
極用コンタクトホールに負電極を形成する第3工程と、 を備えたことを特徴とする球状半導体素子の電極形成方
法。
2. A photovoltaic generator including a p-type diffusion layer and a pn junction is formed on the surface of a spherical crystal of an n-type semiconductor, and the surface is covered with a light-transmitting coating made of an insulator or a semiconductor. A method of forming a pair of electrodes facing each other across the center of a spherical crystal on a surface portion of a spherical semiconductor element formed by removing the coating on a portion where the pair of electrodes is formed;
a first step of forming a contact hole for a negative electrode exposing a spherical crystal of an n-type semiconductor and a contact hole for a positive electrode exposing a p-type diffusion layer; A second step of immersing in a plating solution and performing electroless plating in a state where light is not irradiated to form a positive electrode in a positive electrode contact hole; and immersing the spherical semiconductor element in a second plating solution containing metal ions. A third step of forming a negative electrode in a negative electrode contact hole by performing an electroless plating process in a state where light is irradiated, and a third step of forming an electrode for a spherical semiconductor element.
【請求項3】 前記第1のメッキ液はCuオンを含むこ
とを特徴とする請求項1又は2に記載の球状半導体素子
の電極形成方法。
3. The method according to claim 1, wherein the first plating solution contains Cu-on.
【請求項4】 前記第2のメッキ液はNiイオンを含む
ことを特徴とする請求項3に記載の球状半導体素子の電
極形成方法。
4. The method according to claim 3, wherein the second plating solution contains Ni ions.
【請求項5】 前記被膜がSiO2 の被膜と、その外側
のTiO2 の被膜からなることを特徴とする請求項1〜
4の何れかに記載の球状半導体素子の電極形成方法。
5. The film according to claim 1, wherein said film comprises a SiO 2 film and a TiO 2 film outside thereof.
5. The method for forming an electrode of a spherical semiconductor device according to any one of 4.
【請求項6】 前記被膜がTiO2 の被膜であることを
特徴とする請求項1〜4の何れかに記載の球状半導体素
子の電極形成方法。
6. The method for forming an electrode of a spherical semiconductor device according to claim 1, wherein said coating is a coating of TiO 2 .
JP2000089071A 2000-03-28 2000-03-28 Method for forming electrode of spherical semiconductor element Expired - Fee Related JP4234295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000089071A JP4234295B2 (en) 2000-03-28 2000-03-28 Method for forming electrode of spherical semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000089071A JP4234295B2 (en) 2000-03-28 2000-03-28 Method for forming electrode of spherical semiconductor element

Publications (2)

Publication Number Publication Date
JP2001274439A true JP2001274439A (en) 2001-10-05
JP4234295B2 JP4234295B2 (en) 2009-03-04

Family

ID=18604869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000089071A Expired - Fee Related JP4234295B2 (en) 2000-03-28 2000-03-28 Method for forming electrode of spherical semiconductor element

Country Status (1)

Country Link
JP (1) JP4234295B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100766943B1 (en) * 2001-08-17 2007-10-16 삼성에스디아이 주식회사 Device for forming electrode of solar cell and method of forming electrode using the device
JP2008057035A (en) * 2006-06-05 2008-03-13 Rohm & Haas Electronic Materials Llc Plating process
WO2010125861A1 (en) * 2009-04-30 2010-11-04 シャープ株式会社 Backside-electrode type solar battery and manufacturing method thereof
US7829782B2 (en) 2004-04-26 2010-11-09 Kyocera Corporation Photovoltaic conversion device, optical power generator and manufacturing method of photovoltaic conversion device
WO2013109009A1 (en) * 2012-01-17 2013-07-25 주식회사 호진플라텍 Plating apparatus and plating method for solar cell substrate, in which electroplating and light-induced plating are simultaneously performed

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100766943B1 (en) * 2001-08-17 2007-10-16 삼성에스디아이 주식회사 Device for forming electrode of solar cell and method of forming electrode using the device
US7829782B2 (en) 2004-04-26 2010-11-09 Kyocera Corporation Photovoltaic conversion device, optical power generator and manufacturing method of photovoltaic conversion device
JP2008057035A (en) * 2006-06-05 2008-03-13 Rohm & Haas Electronic Materials Llc Plating process
WO2010125861A1 (en) * 2009-04-30 2010-11-04 シャープ株式会社 Backside-electrode type solar battery and manufacturing method thereof
JP2010262979A (en) * 2009-04-30 2010-11-18 Sharp Corp Solar cell and method for manufacturing the same
WO2013109009A1 (en) * 2012-01-17 2013-07-25 주식회사 호진플라텍 Plating apparatus and plating method for solar cell substrate, in which electroplating and light-induced plating are simultaneously performed
US9525096B2 (en) 2012-01-17 2016-12-20 Hojin Platech Co., Ltd. Plating equipment for solar cell wafer using electroplating and light-induced plating jointly and method of the same

Also Published As

Publication number Publication date
JP4234295B2 (en) 2009-03-04

Similar Documents

Publication Publication Date Title
KR100386833B1 (en) Spheric semiconductor device, mithod for manufacturing the same
ES2380611T3 (en) Method to produce a solar cell as well as solar cell produced by this method
ES2364602T3 (en) PROCEDURE FOR PROCESSING PRECISION OF SUBSTRATES AND ITS USE.
KR19990063830A (en) Semiconductor device
JP2009507397A (en) Nanostructure and photovoltaic cell implementing it
CN102157621B (en) Square silicon nanometer hole and preparation method thereof
KR20130084218A (en) Nanostructure and photovoltaic cell implementing same
US20160225934A1 (en) Low resistance, low reflection, and low cost contact grids for photovoltaic cells
CN102779907B (en) The preparation method of efficient heterojunction battery
TW201017911A (en) Method of manufacturing back electrode of silicon bulk solar cell
JPS58197717A (en) Preparation of semiconductor device
CN105655420B (en) The glass-based waveguides type photodetector and preparation method of Graphene optical absorption characteristics
CN102437236A (en) Passivation method for surface of black silicon solar cell
JP2007299844A (en) Method for manufacturing photoelectric converting element
ES2673329T3 (en) Non-electrolytic deposition induced by light
JP4234295B2 (en) Method for forming electrode of spherical semiconductor element
KR101719705B1 (en) Schottky solar cell and method for manufacturing the same
JP2005276857A (en) Photoelectric conversion device and its manufacturing method
JP2014086589A (en) Method for manufacturing solar cell and solar cell
JP2002373996A (en) Solar battery cell and manufacturing method therefor
JP4391808B2 (en) Method for reclaiming silicon wafer for solar cell, method for forming solar cell, and method for producing silicon ingot for solar cell
US20020102766A1 (en) Solar cell and method of manufacturing same
TWI792400B (en) Method of fabricating inverted pyramid textured surface of monocrystalline silicon wafer
KR101151413B1 (en) Solar cell having multimple anti-reflection film and manufacturing method thereof
Liu et al. Superior antireflection coating for a silicon cell with a micronanohybrid structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees