TWI792400B - Method of fabricating inverted pyramid textured surface of monocrystalline silicon wafer - Google Patents

Method of fabricating inverted pyramid textured surface of monocrystalline silicon wafer Download PDF

Info

Publication number
TWI792400B
TWI792400B TW110125236A TW110125236A TWI792400B TW I792400 B TWI792400 B TW I792400B TW 110125236 A TW110125236 A TW 110125236A TW 110125236 A TW110125236 A TW 110125236A TW I792400 B TWI792400 B TW I792400B
Authority
TW
Taiwan
Prior art keywords
silicon wafer
etching
single crystal
crystal silicon
monocrystalline silicon
Prior art date
Application number
TW110125236A
Other languages
Chinese (zh)
Other versions
TW202302938A (en
Inventor
藍崇文
Original Assignee
國立臺灣大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立臺灣大學 filed Critical 國立臺灣大學
Priority to TW110125236A priority Critical patent/TWI792400B/en
Publication of TW202302938A publication Critical patent/TW202302938A/en
Application granted granted Critical
Publication of TWI792400B publication Critical patent/TWI792400B/en

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Drying Of Semiconductors (AREA)
  • Weting (AREA)

Abstract

A method, according to the invention, of fabricating an inverted parymid textured surface of a monocrystalline silicon wafter is, firstly, to remove an oxie on the surface of the monocrystalline silicon wafter. Next, the method according to the invention is to immerse the monocrystalline silicon wafer in an etching solution to maintain an etching temperature and an etching time to perform an etching process such that a plurality of inverted pyramid structures and a plurality of copper nano-particles are formed on the surface of the monocrystalline silicon wafer. During the etching process, a plurality of bubbles of an inert gas are conducted into the etching solution. The composition of the etching solution includes 0.02M~0.1M Cu 2+, 0.5M~3.5M HF and 0.5M~3M H 2O 2. Then, the method according to the invention is to remove the copper nano-particles formed on the surface of the monocrystalline silicon wafer. Next, the method according to the invention is to wash the monocrystalline silicon wafer. Finally, the method according to the invention is to dry the the monocrystalline silicon wafer.

Description

針對單晶矽晶圓的表面之倒金字塔結構製絨化方法Texturing Method for Inverted Pyramid Structure on the Surface of Single Crystal Silicon Wafer

本發明係關於一種針對單晶矽晶圓的表面之倒金字塔結構製絨化方法,並且特別地,關於基於銅針對單晶矽晶圓的表面之倒金字塔結構製絨化方法。The present invention relates to a method for texturing the surface of a monocrystalline silicon wafer with an inverted pyramid structure, and in particular, to a method for texturing the surface of a monocrystalline silicon wafer with an inverted pyramid structure based on copper.

關於本發明之相關技術背景,請參考以下所列之技術文獻: [1] Perez, R.; Zweibel, K.; Hoff, T. E. Solar Power Generation in the US: Too Expensive, or a Bargain? Energy Policy 2011, 39, 7290–7297. [2] Nishioka, K.; Sueto, T.; Saito, N. Formation of Antireflection Nanostructure for Silicon Solar Cells Using Catalysis of Single Nano-Sized Silver Particle. Appl. Surf. Sci. 2009, 255, 9504. [3] Grätzel, M. Recent Advances in Sensitized Mesoscopic Solar cells. Acc. Chem. Res. 2009, 42, 1788–1798. [4] Sopian, K.; Cheow, S. L.; Zaidi, S. H.  An Overview of Crystalline Silicon Solar Cell Technology: Past, Present, and Future. InAIP Conference Proceedings. https://doi.org/10.1063/1.4999854. [5] Huang, Z. G.; Gao, K.; Wang, X. G.; Xu, C.; Song, X. M.; Shi, L. X.; Zhang, Y.; Hoex, B.; Shen, W. Z. Large-Area MACE Si Nano-Inverted-Pyramids for PERC Solar Cell Application. Solar Energy 2019, 188, 300–304. [6] Cao, F.; Chen, K.; Zhang, J.; Ye, X.; Li, J.; Zou, S.; Su, X. Next-Generation Multi-Crystalline Silicon Solar Cells: Diamond-Wire Sawing, Nano-Texture and High Efficiency. Sol. Energ Mat. Sol. Cells 2015, 141, 132–138. [7] Moreno, M.; Daineka, D.; i Cabarrocas, R. Plasma Texturing for Silicon Solar Cells: From Pyramids to Inverted Pyramids-like Structures. Sol. Energy Mater. & Sol. Cells 2010, 94, 733–737. [8] Mavrokefalos, A.; Han, S. E.; Yerci, S.; Branham, M. S.; Chen, G. Efficient Light Trapping in Inverted Nanopyramid Thin Crystalline Silicon Membranes for Solar Cell Applications. Nano Lett. 2012, 12, 2792−2796. [9] Kontermann, S.; Gimpel, T.; Baumann, A. L.; Guenther, K. M.; Schade, W. Laser Processed Black Silicon for Photovoltaic Applications. Energy Procedia 2012, 27, 390−395. [10] Liu, S.; Niu, X.; Shan, W.; Lu, W.; Zheng, J.; Li, Y.; Duan, H.; Quan, W.; Han, W.; Wronski, C. R.; Yang, D. Improvement of Conversion Efficiency of Multicrystalline Silicon Solar Cells by Incorporating Reactive Ion Etching Texturing. Sol. Energy Mater. Sol. Cells 2014, 127, 21−26. [11] Kafle, B.; Mannan, A.; Freund, T.; Clochard, L.; Duffy, E.; Hofmann, M.; Rentsch, J.; Preu, R. Nanotextured Multicrystalline Al‐BSF Solar Cells Reaching 18% Conversion Efficiency Using Industrially Viable Solar Cell Processes. Phys. Status Solidi RRL 2015, 9, 448−452. [12] Xia, Y.; Liu, B.; Liu, J.; Shen, Z.; Li, C. A Novel Method to Produce Black Silicon for Solar Cells. Sol. Energy 2011, 85, 1574−1578. [13] Zhao, S.; Yuan, G.; Wang, Q.; Liu, W.; Zhang, S.; Liu, Z.; Wang, J.; Li, J. Morphology Control of c-Si via Facile Copper-Assisted Chemical Etching: Managements on Etch end-Points. APPL SURF SCI. 2019, 489, 776–785. [14] Zhang, C.; Chen, L.; Zhu, Y.; Guan, Z.; Fabrication of 20.19% Efficient Single-Crystalline Silicon Solar Cell with Inverted Pyramid Microstructure. Nanoscale research letters, 2018, 13, 91. https://doi.org/10.1186/s11671-018-2502-9. [15] Yang, B.; Lee, M.; Mask-Free Fabrication of Inverted-Pyramid Texture on Single-Crystalline Si Wafer. Opt Laser Technol 2014, 63, 120–124. [16] Zhao, J.; Wang, A.; Green, M. A. High-efficiency PERL and PERT silicon solar cells on FZ and MCZ substrates. Sol. Energy Mater. Sol. Cells 2001, 65, 429–435. [17] Lin, J. W.; Liu, E. T.; Wu, C. H.; Hsieh, J.; Chao, T. S. Formation of Inverted-Pyramid Structure by Modifying Laser Processing Parameters and Acid Etching Time. ECS Transactions 2011, 35, 67-72. [18] Liu, J.; Zhang, X.; Sun, G.; Wang, B.; Zhang, T.; Yi, F.; Liu, P. Fabrication of inverted pyramid structure by Cesium Chloride self-assembly lithography for silicon solar cell. Mat Sci Semicon Proc, 2015, 40, 44-49. [19] Liu, X.; Coxon, P. R.; Peters, M.; Hoex, B.; Cole, J. M.; Fray, D. J. Black silicon: fabrication methods, properties and solar energy applications. Energy Environ. Sci. 2014, 7, 3223–3263. [20] Wang, Y.; Yang, L.; Liu, Y.; Mei, Z.; Chen, W.; Li, J.; Liang, H.; Kuznetsov, A.; Xiaolong, D. Maskless inverted pyramid texturization of silicon. Sci. Rep. 2015, 5, 10843. [21] Wang, Y.; Liu, Y.; Yang, L.; Chen, W.; Du, X.; Kuznetsov, A. Micro-structured inverted pyramid texturization of Si inspired by self-assembled Cu nanoparticles. Nanoscale 2017, 9, 907–914. [22] Yang, Y.; Sheng, G.; Li, S.; Yu, J.; Ma, W.; Qiu, J.; El Kolaly, W. Nano-Texturing of Silicon Wafers Via One-Step Copper-Assisted Chemical Etching. Silicon, 2020, 12, 231-238. [23] Jiang, B.; Li, M.; Liang, Y.; Bai, Y.; Song, D.; Li, Y.; Luo, J. Etching anisotropy mechanisms lead to morphology-controlled silicon nanoporous structures by metal assisted chemical etching. Nanoscale 2016, 8, 3085-3092. [24] Smith, A. W.; Rohatgi, A. Ray tracing analysis of the inverted pyramid texturing geometry for high efficiency silicon solar cells. Sol. Energy Mater. Sol. Cells 1993, 29, 37–49. [25] Zheng, H.; Han, M.; Zheng, P.; Zheng, L.; Qin, H.; Deng, L. Porous silicon templates prepared by Cu-assisted chemical etching. Mater. Lett., 2014, 118, 146-149. [26] Huang, Z. P.; Geyer, N.; Liu, L. F.; Li, M. Y.; Zhong, P. Metal-assisted electrochemical etching of silicon. Nanotechnology, 2010, 21, 465301. [27] Liu, Y.; Lai, T.; Li, H.; Wang, Y.; Mei, Z.; Liang, H.; Li, Z.; Zhang, F.; Wang, W.; Kuznetsov, A. Y.; Du, X. Nanostructure formation and passivation of large‐area black silicon for solar cell applications. Small 2012, 8, 1392–1397. [28] Huang, Z.; Geyer, N.; Werner, P.; De Boor, J.; Gösele, U. Metal‐Assisted Chemical Etching of Silicon: A Review: In memory of Prof. Ulrich Gösele. Adv. mater. 2011, 23, 285-308. [29] Hesketh, P. J.; Ju, C.; Gowda, S.; Zanoria, E.; Danyluk, S. Surface free energy model of silicon anisotropic etching. J. Electrochem. Soc. 1993, 140, 1080–1085. [30] Chyan, O. M.; Chen, J. J.; Chien, H. Y., Sees, J.; Hall, L. Copper deposition on HF etched silicon surfaces: morphological and kinetic studies. J. Electrochem. Soc. 1996, 143, 92–96. Regarding the relevant technical background of the present invention, please refer to the technical documents listed below: [1] Perez, R.; Zweibel, K.; Hoff, T. E. Solar Power Generation in the US: Too Expensive, or a Bargain? Energy Policy 2011, 39, 7290–7297. [2] Nishioka, K.; Sueto, T.; Saito, N. Formation of Antireflection Nanostructure for Silicon Solar Cells Using Catalysis of Single Nano-Sized Silver Particle. Appl. Surf. Sci. 2009, 255, 9504. [3] Grätzel, M. Recent Advances in Sensitized Mesoscopic Solar cells. Acc. Chem. Res. 2009, 42, 1788–1798. [4] Sopian, K.; Cheow, S. L.; Zaidi, S. H. An Overview of Crystalline Silicon Solar Cell Technology: Past, Present, and Future. InAIP Conference Proceedings. https://doi.org/10.1063/1.4999854. [5] Huang, Z. G.; Gao, K.; Wang, X. G.; Xu, C.; Song, X. M.; Shi, L. X.; Zhang, Y.; Hoex, B.; Shen, W. Z. Large-Area MACE Si Nano-Inverted -Pyramids for PERC Solar Cell Application. Solar Energy 2019, 188, 300–304. [6] Cao, F.; Chen, K.; Zhang, J.; Ye, X.; Li, J.; Zou, S.; Su, X. Next-Generation Multi-Crystalline Silicon Solar Cells: Diamond-Wire Sawing, Nano-Texture and High Efficiency. Sol. Energ Mat. Sol. Cells 2015, 141, 132–138. [7] Moreno, M.; Daineka, D.; i Cabarrocas, R. Plasma Texturing for Silicon Solar Cells: From Pyramids to Inverted Pyramids-like Structures. Sol. Energy Mater. & Sol. Cells 2010, 94, 733–737 . [8] Mavrokefalos, A.; Han, S. E.; Yerci, S.; Branham, M. S.; Chen, G. Efficient Light Trapping in Inverted Nanopyramid Thin Crystalline Silicon Membranes for Solar Cell Applications. Nano Lett. 2012, 12, 2792−2796 . [9] Kontermann, S.; Gimpel, T.; Baumann, A. L.; Guenther, K. M.; Schade, W. Laser Processed Black Silicon for Photovoltaic Applications. Energy Procedia 2012, 27, 390−395. [10] Liu, S.; Niu, X.; Shan, W.; Lu, W.; Zheng, J.; Li, Y.; Duan, H.; C. R.; Yang, D. Improvement of Conversion Efficiency of Multicrystalline Silicon Solar Cells by Incorporating Reactive Ion Etching Texturing. Sol. Energy Mater. Sol. Cells 2014, 127, 21−26. [11] Kafle, B.; Mannan, A.; Freund, T.; Clochard, L.; Duffy, E.; Hofmann, M.; Rentsch, J.; 18% Conversion Efficiency Using Industrially Viable Solar Cell Processes. Phys. Status Solidi RRL 2015, 9, 448−452. [12] Xia, Y.; Liu, B.; Liu, J.; Shen, Z.; Li, C. A Novel Method to Produce Black Silicon for Solar Cells. Sol. Energy 2011, 85, 1574−1578. [13] Zhao, S.; Yuan, G.; Wang, Q.; Liu, W.; Zhang, S.; Liu, Z.; Wang, J.; Li, J. Morphology Control of c-Si via Facile Copper-Assisted Chemical Etching: Managements on Etch end-Points. APPL SURF SCI. 2019, 489, 776–785. [14] Zhang, C.; Chen, L.; Zhu, Y.; Guan, Z.; Fabrication of 20.19% Efficient Single-Crystalline Silicon Solar Cell with Inverted Pyramid Microstructure. Nanoscale research letters, 2018, 13, 91. https ://doi.org/10.1186/s11671-018-2502-9. [15] Yang, B.; Lee, M.; Mask-Free Fabrication of Inverted-Pyramid Texture on Single-Crystalline Si Wafer. Opt Laser Technol 2014, 63, 120–124. [16] Zhao, J.; Wang, A.; Green, M. A. High-efficiency PERL and PERT silicon solar cells on FZ and MCZ substrates. Sol. Energy Mater. Sol. Cells 2001, 65, 429–435. [17] Lin, J. W.; Liu, E. T.; Wu, C. H.; Hsieh, J.; Chao, T. S. Formation of Inverted-Pyramid Structure by Modifying Laser Processing Parameters and Acid Etching Time. ECS Transactions 2011, 35, 67-72. [18] Liu, J.; Zhang, X.; Sun, G.; Wang, B.; Zhang, T.; Yi, F.; Liu, P. Fabrication of inverted pyramid structure by Cesium Chloride self-assembly lithography for silicon solar cell. Mat Sci Semicon Proc, 2015, 40, 44-49. [19] Liu, X.; Coxon, P. R.; Peters, M.; Hoex, B.; Cole, J. M.; Fray, D. J. Black silicon: fabrication methods, properties and solar energy applications. Energy Environ. Sci. 2014, 7, 3223–3263. [20] Wang, Y.; Yang, L.; Liu, Y.; Mei, Z.; Chen, W.; Li, J.; Liang, H.; Kuznetsov, A.; Xiaolong, D. Maskless inverted pyramid texturization of silicon. Sci. Rep. 2015, 5, 10843. [21] Wang, Y.; Liu, Y.; Yang, L.; Chen, W.; Du, X.; Kuznetsov, A. Micro-structured inverted pyramid texturization of Si inspired by self-assembled Cu nanoparticles. Nanoscale 2017 , 9, 907–914. [22] Yang, Y.; Sheng, G.; Li, S.; Yu, J.; Ma, W.; Qiu, J.; El Kolaly, W. Nano-Texturing of Silicon Wafers Via One-Step Copper- Assisted Chemical Etching. Silicon, 2020, 12, 231-238. [23] Jiang, B.; Li, M.; Liang, Y.; Bai, Y.; Song, D.; Li, Y.; Luo, J. Etching anisotropy mechanisms lead to morphology-controlled silicon nanoporous structures by metal assisted chemical etching. Nanoscale 2016, 8, 3085-3092. [24] Smith, A. W.; Rohatgi, A. Ray tracing analysis of the inverted pyramid texturing geometry for high efficiency silicon solar cells. Sol. Energy Mater. Sol. Cells 1993, 29, 37–49. [25] Zheng, H.; Han, M.; Zheng, P.; Zheng, L.; Qin, H.; Deng, L. Porous silicon templates prepared by Cu-assisted chemical etching. Mater. Lett., 2014, 118, 146-149. [26] Huang, Z. P.; Geyer, N.; Liu, L. F.; Li, M. Y.; Zhong, P. Metal-assisted electrochemical etching of silicon. Nanotechnology, 2010, 21, 465301. [27] Liu, Y.; Lai, T.; Li, H.; Wang, Y.; Mei, Z.; Liang, H.; Li, Z.; A. Y.; Du, X. Nanostructure formation and passivation of large‐area black silicon for solar cell applications. Small 2012, 8, 1392–1397. [28] Huang, Z.; Geyer, N.; Werner, P.; De Boor, J.; Gösele, U. Metal‐Assisted Chemical Etching of Silicon: A Review: In memory of Prof. Ulrich Gösele. Adv. mater . 2011, 23, 285-308. [29] Hesketh, P. J.; Ju, C.; Gowda, S.; Zanoria, E.; Danyluk, S. Surface free energy model of silicon anisotropic etching. J. Electrochem. Soc. 1993, 140, 1080–1085. [30] Chyan, O. M.; Chen, J. J.; Chien, H. Y., Sees, J.; Hall, L. Copper deposition on HF etched silicon surfaces: morphological and kinetic studies. J. Electrochem. Soc. 1996, 143, 92–96 .

結晶矽(crystalline silicon, c-Si)太陽能電池由於其光電轉換高效率與低成本使其目前在光伏(photovoltaic, PV)市場中占主導地位[1-2]。然而,結晶矽的大折射率是限制轉換的最大因素之一[3-4]。黑色矽晶圓或具有奈米或微米結構製絨表面的矽晶圓的製造為解決這一光反射率問題提供了解決方案[5]。黑色矽晶圓具有高的光捕獲能力,並且可以吸收廣範圍入射角的入設光,因此,有可能提高矽太陽能電池的整體效率[6]。然而,矽晶圓的表面積的增加也會增加不希望發生的表面載流子復合[7]。因此,黑色矽基太陽能電池的光電轉換效率通常不超過10%[8]。到目前為止,已經使用了多種技術來製造黑色矽晶圓,例如,基於雷射的製絨化[9]、反應離子蝕刻[10]、大氣壓基於F 2的乾蝕刻[11]以及電漿浸入離子植佈[12]。金屬催化化學蝕刻(metal catalytic chemical etching, MCCE)製程是一種相對較新的技術,它利用貴金屬與非貴金屬,例如,鉑、金、鈀、鎳以及銅在酸性或鹼性溶液中用於矽晶圓的製絨化。由於MCCE製程在工業應用中的潛在用途,目前已有研究對該方法進行研究[13]。 Crystalline silicon (c-Si) solar cells currently dominate the photovoltaic (photovoltaic, PV) market due to their high photoelectric conversion efficiency and low cost [1-2]. However, the large refractive index of crystalline silicon is one of the biggest factors limiting conversion [3-4]. The fabrication of black silicon wafers or silicon wafers with nano- or micro-structured textured surfaces offers a solution to this light reflectivity problem [5]. Black silicon wafers have high light-harvesting capabilities and can absorb incoming light over a wide range of incident angles, thus potentially increasing the overall efficiency of silicon solar cells [6]. However, an increase in the surface area of a silicon wafer also increases the undesired surface carrier recombination [7]. Therefore, the photoelectric conversion efficiency of black silicon-based solar cells usually does not exceed 10% [8]. So far, various techniques have been used to fabricate black silicon wafers, for example, laser-based texturing [9], reactive ion etching [10], atmospheric pressure F2- based dry etching [11], and plasma immersion Ion implantation [12]. The metal catalytic chemical etching (MCCE) process is a relatively new technology that uses precious and non-noble metals, such as platinum, gold, palladium, nickel, and copper, for silicon crystals in acidic or alkaline solutions. Round texturing. Due to the potential use of the MCCE process in industrial applications, the method has been investigated [13].

結晶矽太陽能電池的工業生產通常基於立式金字塔結構通過鹼性蝕刻技術的製絨化,以達到10%至15%的平均光反射率[14]。但是由於最近的創新,倒金字塔結構由於具有相對較高的光捕獲能力以及較低的比表面積進而被研究為可行的替代方案[15]。值得注意的是,倒金字塔結構製絨化矽太陽能電池以25%的光電轉換效率打破了太陽能電池性能的世界紀錄[16]。當各種方法已用於具有倒金字塔結構之矽晶圓的製絨化,例如,雷射製絨化、微影製程以及無電為濕式化學刻蝕[17-19],MCCE技術被認為是最簡單且最具成本效益的批量生產方法[20]。The industrial production of crystalline silicon solar cells is usually based on the texturing of vertical pyramidal structures by alkaline etching techniques to achieve an average light reflectance of 10% to 15% [14]. But due to recent innovations, the inverted pyramid structure has been investigated as a viable alternative due to its relatively high light-harvesting capability and low specific surface area [15]. It is worth noting that the textured silicon solar cell with an inverted pyramid structure broke the world record of solar cell performance with a photoelectric conversion efficiency of 25% [16]. While various methods have been used for the texturing of silicon wafers with an inverted pyramid structure, such as laser texturing, lithography, and electroless wet chemical etching [17-19], MCCE technology is considered the most Simple and most cost-effective mass production method [20].

倒金字塔結構陣列的基於銅之蝕刻方法可以使用低成本的材料進行,並且無需使用光罩[21]。然而,由於先前技術的基於銅之蝕刻法會產生氫氣泡,氫氣泡隨機粘附到晶圓表面上,所以,在採用先前技術的基於銅之蝕刻法或任何其他使用過氧化氫的蝕刻法後,通常觀察不到蝕刻均勻性。顯見地,倒金字塔結構陣列的基於銅之蝕刻方法仍有改善空間。Copper-based etching methods for arrays of inverted pyramid structures can be performed using low-cost materials and without the use of photomasks [21]. However, since the prior art copper-based etching method generates hydrogen bubbles, which randomly adhere to the wafer surface, after using the prior art copper-based etching method or any other etching method using hydrogen peroxide , usually no etch uniformity is observed. Clearly, there is still room for improvement in copper-based etching methods for inverted pyramid arrays.

因此,本發明所欲解決之一技術問題在於提供一種基於銅針對單晶矽晶圓的表面之倒金字塔結構製絨化方法。Therefore, one technical problem to be solved by the present invention is to provide a copper-based method for texturizing the surface of a monocrystalline silicon wafer with an inverted pyramid structure.

根據本發明之一較佳具體實施例之基於銅針對單晶矽晶圓的表面之倒金字塔結構製絨化方法,首先,係去除單晶矽晶圓的表面上之氧化物。接著,根據本發明之較佳具體實施例之方法係將單晶矽晶圓浸入蝕刻溶液內維持蝕刻溫度與蝕刻時間以進行蝕刻處理,致使多個倒金字塔結構以及多個銅奈米顆粒係形成於單晶矽晶圓的表面上,且通入鈍氣氣泡於蝕刻溶液中。蝕刻溶液之成份包含0.02M~0.1M Cu 2+、0.5M~3.5M HF以及0.5M~3M H 2O 2。接著,根據本發明之較佳具體實施例之方法係去除形成於單晶矽晶圓的表面上之多個銅奈米顆粒。接著,根據本發明之較佳具體實施例之方法係將單晶矽晶圓進行清洗處理。最後,據本發明之較佳具體實施例之方法係乾燥單晶矽晶圓。 According to a preferred embodiment of the present invention, the copper-based method for texturizing the surface of a monocrystalline silicon wafer with an inverted pyramid structure firstly removes oxides on the surface of the monocrystalline silicon wafer. Next, the method according to the preferred embodiment of the present invention is to immerse the monocrystalline silicon wafer in the etching solution to maintain the etching temperature and etching time for etching, so that multiple inverted pyramid structures and multiple copper nanoparticles are formed. On the surface of a single crystal silicon wafer, and pass inert gas bubbles into the etching solution. The components of the etching solution include 0.02M-0.1M Cu 2+ , 0.5M-3.5M HF and 0.5M-3M H 2 O 2 . Next, the method according to a preferred embodiment of the present invention is to remove the plurality of copper nanoparticles formed on the surface of the single crystal silicon wafer. Next, the method according to a preferred embodiment of the present invention is to clean the single crystal silicon wafer. Finally, the method according to a preferred embodiment of the present invention is to dry the monocrystalline silicon wafer.

於一具體實施例中,去除形成於單晶矽晶圓的表面上之多個銅奈米顆粒之步驟係藉由將單晶矽晶圓浸入處理溶液內且導入第一超音波來執行。處理溶液之成份包含H 2O以及HNO 3。處理溶液之成份的體積比例為H 2O:HNO 3=0.5~1.5:0.5~1.5。 In one embodiment, the step of removing the plurality of copper nanoparticles formed on the surface of the single crystal silicon wafer is performed by immersing the single crystal silicon wafer in a processing solution and introducing a first ultrasonic wave. The components of the treatment solution include H 2 O and HNO 3 . The volume ratio of the components of the treatment solution is H 2 O:HNO 3 =0.5~1.5:0.5~1.5.

於一具體實施例中,去除形成於單晶矽晶圓的表面上之多個銅奈米顆粒之步驟係藉由將單晶矽晶圓浸入處理溶液維持處理時間來執行。處理時間為等於或大於20min.。In one embodiment, the step of removing the plurality of copper nanoparticles formed on the surface of the single crystal silicon wafer is performed by immersing the single crystal silicon wafer in a processing solution for a processing time. The processing time is equal to or greater than 20min.

於一具體實施例中,蝕刻溫度為45℃~65℃。In a specific embodiment, the etching temperature is 45°C-65°C.

於一具體實施例中,蝕刻時間為2min.~20min.。In a specific embodiment, the etching time is 2 min.~20 min.

於一具體實施例中,單晶矽晶圓的表面為(100)晶面。In a specific embodiment, the surface of the single crystal silicon wafer is a (100) crystal plane.

於一具體實施例中,去除單晶矽晶圓的表面上之氧化物之步驟係藉由將單晶矽晶圓浸入酸溶液,且導入第二超音波來執行。酸溶液之成份包含5~15 vol.%HF。In one embodiment, the step of removing the oxide on the surface of the single crystal silicon wafer is performed by immersing the single crystal silicon wafer in an acid solution and introducing a second ultrasonic wave. The composition of the acid solution contains 5~15 vol.%HF.

與先前技術不同,根據本發明之基於銅針對單晶矽晶圓的表面之倒金字塔結構製絨化方法可以在單晶矽晶圓表面上蝕刻出均勻分佈微型倒金字塔結構陣列。並且,根據本發明之方法表面製絨化後之單晶矽晶圓其表面的光反射率極低。Different from the prior art, according to the copper-based method for texturizing the inverted pyramid structure on the surface of the monocrystalline silicon wafer, the uniformly distributed miniature inverted pyramid structure array can be etched on the surface of the monocrystalline silicon wafer. Moreover, the light reflectivity of the surface of the monocrystalline silicon wafer after the surface is textured according to the method of the present invention is extremely low.

關於本發明之優點與精神可以藉由以下的發明詳述及所附圖式得到進一步的瞭解。The advantages and spirit of the present invention can be further understood through the following detailed description of the invention and the accompanying drawings.

請參閱圖1至圖3,該等圖式係示意地繪示根據本發明之一較佳具體實施例之基於銅針對單晶矽晶圓2的表面22之倒金字塔結構製絨化方法的各個程序步驟。根據本發明之較佳具體實施例之方法適於批量生產,因此,於圖1至圖3中,多片單晶矽晶圓2係繪示於該等圖式中,以顯示批量生產的各個程序步驟。Please refer to FIG. 1 to FIG. 3 , which schematically illustrate each method of texturing the surface 22 of a single crystal silicon wafer 2 based on copper with an inverted pyramid structure according to a preferred embodiment of the present invention. program steps. The method according to the preferred embodiment of the present invention is suitable for mass production. Therefore, in FIGS. program steps.

因為單晶矽晶圓2的表面22一般自然會生成氧化物,所以,根據本發明之一較佳具體實施例之基於銅針對單晶矽晶圓2的表面22之倒金字塔結構製絨化方法,首先,係去除單晶矽晶圓2的表面22上之氧化物。Because the surface 22 of the monocrystalline silicon wafer 2 generally naturally generates oxides, so, according to a preferred embodiment of the present invention, the inverted pyramid texture method for the surface 22 of the monocrystalline silicon wafer 2 based on copper Firstly, the oxide on the surface 22 of the single crystal silicon wafer 2 is removed.

於一具體實施例中,單晶矽晶圓2的表面22為(100)晶面,但本發明並不以此為限。In a specific embodiment, the surface 22 of the single crystal silicon wafer 2 is a (100) crystal plane, but the present invention is not limited thereto.

於一具體實施例中,去除單晶矽晶圓2的表面22上之氧化物之步驟係藉由將單晶矽晶圓2浸入酸溶液102,並且導入超音波來執行。酸溶液之成份包含5~15 vol.%HF。如圖1所示,多片單晶矽晶圓2安置在固定裝置108,再浸入盛裝酸溶液102的第一反應槽10內。並且,超音波被導入第一反應槽10內以去除表面22上的氧化物。In one embodiment, the step of removing the oxide on the surface 22 of the single crystal silicon wafer 2 is performed by immersing the single crystal silicon wafer 2 in the acid solution 102 and introducing ultrasonic waves. The composition of the acid solution contains 5~15 vol.%HF. As shown in FIG. 1 , a plurality of monocrystalline silicon wafers 2 are placed in a fixture 108 and then immersed in a first reaction tank 10 containing an acid solution 102 . Also, ultrasonic waves are introduced into the first reaction tank 10 to remove oxides on the surface 22 .

接著,根據本發明之較佳具體實施例之方法係將單晶矽晶圓2浸入蝕刻溶液122內維持蝕刻溫度與蝕刻時間以進行蝕刻處理,致使多個倒金字塔結構以及多個銅奈米顆粒係形成於單晶矽晶圓2的表面22上,且通入鈍氣氣泡於蝕刻溶液122中。蝕刻溶液122的成份包含0.02M~0.1M Cu 2+、0.5M~3.5M HF以及0.5M~3M H 2O 2Next, the method according to a preferred embodiment of the present invention is to immerse the single crystal silicon wafer 2 in the etching solution 122 to maintain the etching temperature and etching time for etching treatment, resulting in a plurality of inverted pyramid structures and a plurality of copper nanoparticles It is formed on the surface 22 of the single crystal silicon wafer 2, and the inert gas bubbles are passed into the etching solution 122. The composition of the etching solution 122 includes 0.02M˜0.1M Cu 2+ , 0.5M˜3.5M HF and 0.5M˜3M H 2 O 2 .

如圖2所示,多片單晶矽晶圓2去除表面22上的氧化物後,再浸入盛裝蝕刻溶液122的第二反應槽12內,並且第二反應槽12被維持在蝕刻溫度。氣體供應源124係連接控制閥126、管路128。管路128的末端1282成分歧狀,並且至於第二反應槽12的底部。分歧狀的末端1282上有多個氣孔。氣體供應源124內灌入氮氣,氮氣即可做為不參與反應的鈍態氣體。藉由控制閥126、管路128,氣體供應源124可以供應氮氣氣泡於蝕刻溶液122中。氮氣2的流速保持在3-15L/min.。As shown in FIG. 2 , after removing the oxide on the surface 22 of the multiple single crystal silicon wafers 2 , they are immersed in the second reaction tank 12 containing the etching solution 122 , and the second reaction tank 12 is maintained at the etching temperature. The gas supply source 124 is connected with a control valve 126 and a pipeline 128 . The end 1282 of the pipeline 128 is branched and reaches the bottom of the second reaction tank 12 . The branched end 1282 has a plurality of air holes. Nitrogen gas is poured into the gas supply source 124, and the nitrogen gas can be used as a passive gas that does not participate in the reaction. By controlling the valve 126 and the pipeline 128 , the gas supply source 124 can supply nitrogen bubbles in the etching solution 122 . The flow rate of nitrogen 2 was maintained at 3-15 L/min.

根據本發明之基於銅倒金字塔結構製絨化的機制同先前技術MCCE的機制[19、22]。先前技術MCCE的機制由以下反應式解釋:The mechanism of texturing based on the copper inverted pyramid structure according to the present invention is the same as that of the prior art MCCE [19, 22]. The mechanism of prior art MCCE is explained by the following reaction:

陰極反應: Cu 2++ 2e -→ Cu  (1) 2H 2O 2→ 2H 2O + 2h +(2) Cathodic reaction: Cu 2+ + 2e - → Cu (1) 2H 2 O 2 → 2H 2 O + 2h + (2)

陽極反應: Si + 2H 2O → SiO 2+ 4H ++ 4e -(3) SiO 2+ 6HF → H 2SiF 6+ 2H 2O  (4) Anode reaction: Si + 2H 2 O → SiO 2 + 4H + + 4e - (3) SiO 2 + 6HF → H 2 SiF 6 + 2H 2 O (4)

反應式(2)中”2h +”代表帶正電荷的孔洞。最初,Cu 2+離子從單晶矽晶圓2接收電子,然後以奈米顆粒的形式沉積到單晶矽晶圓2的表面22。沉積後,由於帶負電荷的Cu奈米顆粒藉由誘使蝕刻溶液中的Cu 2+離子來生長,導致Cu奈米顆粒的聚集[25-27]。在同一步驟中,單晶矽晶圓2的表面22被氧化。氧化的矽被HF溶解在溶液中,導致單晶矽晶圓2的表面22上形成凹坑[28]。H 2O 2還原並通過銅奈米顆粒進入矽中注入孔洞。 “2h + ” in the reaction formula (2) represents a positively charged hole. Initially, Cu 2+ ions receive electrons from the single crystal silicon wafer 2 and then deposit on the surface 22 of the single crystal silicon wafer 2 in the form of nanoparticles. After deposition, Cu NPs aggregate due to the growth of negatively charged Cu NPs by inducing Cu 2+ ions in the etching solution [25–27]. In the same step, the surface 22 of the monocrystalline silicon wafer 2 is oxidized. The oxidized silicon is dissolved in solution by HF, resulting in the formation of pits on the surface 22 of the monocrystalline silicon wafer 2 [28]. H2O2 reduces and injects holes through the copper nanoparticles into the silicon.

於一具體實施例中,Cu 2+的來源可以是Cu(SO 4),但本發明並不以此為限。 In a specific embodiment, the source of Cu 2+ may be Cu(SO 4 ), but the invention is not limited thereto.

於一具體實施例中,蝕刻溫度為45℃~65℃。In a specific embodiment, the etching temperature is 45°C-65°C.

於一具體實施例中,蝕刻時間為2min.~20min.。In a specific embodiment, the etching time is 2 min.~20 min.

接著,根據本發明之較佳具體實施例之方法係去除形成於單晶矽晶圓2的表面22上之多個銅奈米顆粒。Next, the method according to a preferred embodiment of the present invention is to remove the plurality of copper nanoparticles formed on the surface 22 of the single crystal silicon wafer 2 .

於一具體實施例中,去除形成於單晶矽晶圓2的表面22上之多個銅奈米顆粒之步驟係藉由將單晶矽晶圓2浸入處理溶液142內且導入超音波來執行。處理溶液142之成份包含H 2O以及HNO 3。處理溶液142之成份的體積比例為H 2O:HNO 3=0.5~1.5:0.5~1.5。如圖3所示,多片單晶矽晶圓2經蝕刻後,再浸入盛裝處理溶液142的第三反應槽14內。並且,超音波被導入第三反應槽14內以去除表面22上的多個銅奈米顆粒。 In one embodiment, the step of removing the plurality of copper nanoparticles formed on the surface 22 of the single crystal silicon wafer 2 is performed by immersing the single crystal silicon wafer 2 in the processing solution 142 and introducing ultrasonic waves . The components of the processing solution 142 include H 2 O and HNO 3 . The volume ratio of the components of the processing solution 142 is H 2 O:HNO 3 =0.5˜1.5:0.5˜1.5. As shown in FIG. 3 , the multi-piece single crystal silicon wafers 2 are etched and then immersed in the third reaction tank 14 containing the processing solution 142 . Moreover, ultrasonic waves are introduced into the third reaction tank 14 to remove a plurality of copper nanoparticles on the surface 22 .

於一具體實施例中,去除形成於單晶矽晶圓2的表面22上之多個銅奈米顆粒之步驟係藉由將單晶矽晶圓2浸入處理溶液142維持處理時間來執行。處理時間為等於或大於20min.。In one embodiment, the step of removing the plurality of copper nanoparticles formed on the surface 22 of the single crystal silicon wafer 2 is performed by immersing the single crystal silicon wafer 2 in the processing solution 142 for a processing time. The processing time is equal to or greater than 20min.

接著,根據本發明之較佳具體實施例之方法係將單晶矽晶圓2進行清洗處理。Next, the method according to the preferred embodiment of the present invention is to clean the single crystal silicon wafer 2 .

於一具體實施例中,多片單晶矽晶圓2用蒸餾水徹底沖洗。In a specific embodiment, the multiple monocrystalline silicon wafers 2 are thoroughly rinsed with distilled water.

最後,據本發明之較佳具體實施例之方法係乾燥單晶矽晶圓2。每一片單晶矽晶圓2的表面22上形成均勻分佈多個倒金字塔結構。Finally, the method according to a preferred embodiment of the present invention is to dry the monocrystalline silicon wafer 2 . A plurality of inverted pyramid structures are evenly distributed on the surface 22 of each single crystal silicon wafer 2 .

於第一範例中,根據本發明之較佳具體實施例之方法採用蝕刻溶液的成份包含0.06M Cu(SO 4)、2M HF以及1M H 2O 2。蝕刻溫度維持在60℃。蝕刻時間分別為3、5、7、10與15分鐘。經過上述蝕刻後的單晶矽晶圓藉由場發射電子顯微鏡(field emission scanning electron microscope, FESEM)觀察其表面形態。第一範例經蝕刻後單晶矽晶圓的FESEM照片請見圖4(a)至圖4(f)。圖4(a)為未經蝕刻的單晶矽晶圓的表面的FESEM照片。圖4(b)為經3分鐘蝕刻後的單晶矽晶圓的表面的FESEM照片。圖4(c)為經5分鐘蝕刻後的單晶矽晶圓的表面的FESEM照片。圖4(d)為經7分鐘蝕刻後的單晶矽晶圓的表面的FESEM照片。圖4(e)為經10分鐘蝕刻後的單晶矽晶圓的表面的FESEM照片。圖4(f)為經15分鐘蝕刻後的單晶矽晶圓的表面的FESEM照片。由圖4(a)至圖4(f)的FESEM照片證實,在蝕刻之前,原始單晶矽晶圓在其表面上顯示出裂紋、溝槽與鋸痕。經蝕刻後,根據單晶矽晶圓在蝕刻溶液中所花費的蝕刻時間,倒金字塔結構形成並增大了尺寸。由於在單晶矽晶圓的表面上有限的孔洞注入,在較短的蝕刻時間內發現了尺寸較小倒金字塔結構[23]。相反地,在較長的蝕刻時間,過量的孔洞注入導致矽溶解在HF溶液中,並且倒金字塔結構具有不規則的形狀與尺寸大小。在10與15分鐘的蝕刻時間時,由於沿(111)晶面的塌陷,這些倒金字塔結構可能會合併。 In the first example, the method according to the preferred embodiment of the present invention uses an etching solution containing 0.06M Cu(SO 4 ), 2M HF and 1M H 2 O 2 . The etching temperature was maintained at 60°C. The etching times were 3, 5, 7, 10 and 15 minutes, respectively. The surface morphology of the etched single crystal silicon wafer was observed by a field emission scanning electron microscope (FESEM). The FESEM photos of the etched monocrystalline silicon wafer of the first example are shown in FIGS. 4( a ) to 4 ( f ). FIG. 4( a ) is a FESEM photograph of the surface of an unetched single crystal silicon wafer. FIG. 4( b ) is a FESEM photo of the surface of the monocrystalline silicon wafer after being etched for 3 minutes. FIG. 4( c ) is a FESEM photo of the surface of the monocrystalline silicon wafer after being etched for 5 minutes. FIG. 4( d ) is a FESEM photograph of the surface of the monocrystalline silicon wafer after being etched for 7 minutes. FIG. 4( e ) is a FESEM photo of the surface of the monocrystalline silicon wafer after being etched for 10 minutes. FIG. 4( f ) is a FESEM photo of the surface of the monocrystalline silicon wafer after being etched for 15 minutes. As confirmed by the FESEM photographs of FIGS. 4( a ) to 4 ( f ), the pristine monocrystalline silicon wafer showed cracks, grooves and saw marks on its surface before etching. After etching, an inverted pyramid structure forms and increases in size depending on the etching time the monocrystalline silicon wafer spends in the etching solution. Due to the limited hole implantation on the surface of a single-crystal silicon wafer, smaller-sized inverted pyramid structures were found in a shorter etching time [23]. Conversely, at longer etch times, excessive hole implantation causes silicon to dissolve in the HF solution, and the inverted pyramid structures have irregular shapes and sizes. At etching times of 10 and 15 minutes, these inverted pyramidal structures may coalesce due to collapse along the (111) crystal plane.

請參閱圖5,圖5顯示第一範例經不同蝕刻時間蝕刻後單晶矽晶圓的光反射率測試結果。圖5證實未經蝕刻的原始單晶矽晶圓的平均光反射率最高,為32.57%。經蝕刻後,在400~1100 nm的入射光波長範圍內,平均光反射率分別在經5分鐘與7分鐘蝕刻時間後下降到5.8%與5.6%。Please refer to FIG. 5 . FIG. 5 shows the light reflectance test results of the single crystal silicon wafer etched with different etching times in the first example. Figure 5 confirms that the unetched pristine monocrystalline silicon wafer has the highest average light reflectance of 32.57%. After etching, in the incident light wavelength range of 400-1100 nm, the average light reflectance decreased to 5.8% and 5.6% after 5 minutes and 7 minutes of etching time, respectively.

這種光捕獲能力的提升即是由於倒金字塔結構的相鄰小平面在反射回光之前產生了三倍的入射光反彈。由於這種三重彈跳,入射光路的長度與入射光的總吸收量會增加[24]。經更長蝕刻時間後的單晶矽晶圓晶片其表面由於倒金字塔結構崩潰所以其表面的光反射率會增加。因此,在經大約7分鐘蝕刻時間後的單晶矽晶圓晶片其表面的光反射率最低。This enhanced light-trapping capability is due to the fact that the adjacent facets of the inverted pyramid structure bounce off three times as much incident light before reflecting it back. Due to this triple bouncing, the length of the incident light path and the total absorption of the incident light increase [24]. After a longer etching time, the surface of the monocrystalline silicon wafer will increase in light reflectance due to the collapse of the inverted pyramid structure. Therefore, the light reflectance of the surface of the single crystal silicon wafer after the etching time of about 7 minutes is the lowest.

於第二範例中,根據本發明之較佳具體實施例之方法採用蝕刻溶液的成份包含2M HF、1M H 2O 2以及不同濃度的Cu(SO 4)(0.01M、0.03M以及0.06M)、蝕刻溫度維持在60℃,蝕刻時間為7分鐘。第二範例經蝕刻後單晶矽晶圓的FESEM照片請見圖6(a)至圖6(c)。圖6(a)顯示在較低的Cu 2+濃度下,單晶矽晶圓的表面形態看起來與未蝕刻的原始單晶矽晶圓的表面形態相似。但是,圖6(b)顯示採用0.03 M Cu(SO 4)進行蝕刻會導致觀察到散亂分佈倒金字塔結構,平均尺寸為1~2 µm。圖6(c)顯示在包含0.06 M Cu(SO 4)的蝕刻溶液中,倒金字塔結構的尺寸從3 µm增加到7 µm,並且倒金字塔結構在蝕刻後完全覆蓋了單晶矽晶圓的表面。 In the second example, the method according to the preferred embodiment of the present invention uses an etching solution containing 2M HF, 1M H 2 O 2 and different concentrations of Cu(SO 4 ) (0.01M, 0.03M and 0.06M) 1. The etching temperature was maintained at 60° C., and the etching time was 7 minutes. The FESEM photos of the etched monocrystalline silicon wafer of the second example are shown in FIGS. 6( a ) to 6 ( c ). Figure 6(a) shows that at lower Cu 2+ concentrations, the surface morphology of the monocrystalline silicon wafer looks similar to that of the unetched pristine monocrystalline silicon wafer. However, Figure 6(b) shows that etching with 0.03 M Cu(SO 4 ) resulted in the observation of scattered inverted pyramid structures with an average size of 1–2 µm. Figure 6(c) shows that in the etching solution containing 0.06 M Cu(SO 4 ), the size of the inverted pyramid structure increases from 3 µm to 7 µm, and the inverted pyramid structure completely covers the surface of the monocrystalline silicon wafer after etching .

請參閱圖7,圖7顯示第二範例經不同濃度Cu(SO 4)的蝕刻溶液蝕刻後單晶矽晶圓的光反射率測試結果。圖7證實以0.01 M與0.03 M的銅離子濃度之蝕刻溶液製絨化後單晶矽晶圓的表面的平均光反射率比0.06 M的銅離子濃度之蝕刻溶液製絨化後單晶矽晶圓的表面的平均光反射率高,分別約為23.92%與7.97%。較低銅離子濃度之蝕刻溶液製絨化後單晶矽晶圓的表面的相對較高的光反射率可以由單晶矽晶圓的表面上的低氧化速率來解釋,並且可以在缺乏凹坑形成的情況下從視覺上看出。相反地,較高的銅離子濃度會促進矽的氧化和凹坑的形成,從而使散亂分佈的倒金字塔結構可能出現在單晶矽晶圓的表面。值得注意的是,結晶矽中沿著(111)與(100)晶面的鍵密度控制著蝕刻方向。例如,與(100)晶面相比較,(111)矽晶面上的可用電子要少得多。因此,(100)矽晶面上的銅離子成核具有更高的電子捕獲機率[22、30]。銅奈米顆粒沉積與生長具有異向性。該機制與以上結果表明了Cu在加速蝕刻過程中的潛在作用。 Please refer to FIG. 7 . FIG. 7 shows the light reflectance test results of the single crystal silicon wafer after being etched by etching solutions with different concentrations of Cu(SO 4 ) in the second example. Figure 7 confirms that the average light reflectance of the surface of monocrystalline silicon wafers after texturing with etching solutions with copper ion concentrations of 0.01 M and 0.03 M is higher than that of monocrystalline silicon wafers with etching solutions with copper ion concentrations of 0.06 M The average light reflectance of the round surface is high, about 23.92% and 7.97%, respectively. The relatively high light reflectance of the surface of the monocrystalline silicon wafer after texturing by the etching solution with lower copper ion concentration can be explained by the low oxidation rate on the surface of the monocrystalline silicon wafer, and can be explained by the lack of pits. Formed case can be seen visually. On the contrary, higher copper ion concentration will promote the oxidation of silicon and the formation of pits, so that scattered inverted pyramid structures may appear on the surface of single crystal silicon wafers. It is worth noting that the bonding density along the (111) and (100) crystal planes in crystalline silicon controls the etching direction. For example, there are far fewer electrons available on the (111) silicon facet compared to the (100) facet. Therefore, the nucleation of copper ions on the (100) silicon surface has a higher probability of electron capture [22, 30]. Copper nanoparticles deposition and growth are anisotropic. This mechanism together with the above results suggest the potential role of Cu in accelerating the etching process.

與先前技術之MCCE相類似,在根據本發明之基於銅針對單晶矽晶圓的表面之倒金字塔結構製絨化方法的過程中,H 2O 2充當氧化劑,並且注入空穴進入銅奈米顆粒與矽的價帶中[20]。在此,H 2O 2在Cu 2+離子存在下的正電化學勢誘使空穴注入到矽的價帶中。於第三範例中,根據本發明之較佳具體實施例之方法採用蝕刻溶液的成份包含2M HF、0.06M Cu(SO 4)以及不同濃度的H 2O 2(0.5M、1M以及2M)、蝕刻溫度維持在60℃,蝕刻時間為7分鐘。第三範例經蝕刻後單晶矽晶圓的FESEM照片請見圖8(a)至圖8(c)。圖8(a)顯示在含低濃度H 2O 2的蝕刻溶液蝕刻後僅觀察到稀疏的小倒金字塔結構與淺凹坑。由於在此低的H 2O 2濃度下氧化能力較弱,因此矽無法進行所需的MCCE反應。結果,銅奈米顆粒不能自由地從矽晶圓的表面移動,這導致它們快速生長並在矽晶圓的表面上沉積了薄的銅膜。然後,該薄膜可以充當晶圓和蝕刻劑之間的屏障[30]。圖8(b)與圖8(c)顯示在使用含高濃度的H 2O 2的蝕刻溶液蝕刻後,單晶矽晶圓的表面被2~7 µm倒金字塔結構覆蓋。由於空穴通過銅奈米顆粒注入矽的速率隨H 2O 2的濃度增加而增加,因此在銅奈米顆粒下方對矽的蝕刻也同時增加。 Similar to the MCCE of the prior art, in the process of the copper-based inverted pyramid structure texturing method of the surface of the monocrystalline silicon wafer according to the present invention, H 2 O 2 acts as an oxidizing agent and injects holes into the copper nanometers. particles in the valence band of silicon [20]. Here, the positive electrochemical potential of H2O2 in the presence of Cu2 + ions induces hole injection into the valence band of silicon. In the third example, according to the method of the preferred embodiment of the present invention, the composition of the etching solution includes 2M HF, 0.06M Cu(SO 4 ) and different concentrations of H 2 O 2 (0.5M, 1M and 2M), The etching temperature was maintained at 60° C., and the etching time was 7 minutes. The FESEM photos of the etched monocrystalline silicon wafer of the third example are shown in FIGS. 8( a ) to 8 ( c ). Fig. 8(a) shows that only sparse small inverted pyramid structures and shallow pits are observed after etching in an etching solution containing low concentration of H 2 O 2 . Silicon cannot perform the desired MCCE reaction due to its weak oxidation ability at this low H2O2 concentration. As a result, the copper nanoparticles could not move freely from the surface of the silicon wafer, which caused them to grow rapidly and deposit a thin copper film on the surface of the silicon wafer. This film can then act as a barrier between the wafer and the etchant [30]. Figure 8(b) and Figure 8(c) show that after etching with an etching solution containing a high concentration of H 2 O 2 , the surface of the monocrystalline silicon wafer is covered with 2~7 µm inverted pyramid structures. Since the rate of hole injection into silicon through the copper nanoparticles increases with the concentration of H2O2 , the etching of silicon beneath the copper nanoparticles also increases.

請參閱圖9,圖9顯示第三範例經不同濃度H 2O 2的蝕刻溶液蝕刻後單晶矽晶圓的光反射率測試結果。圖9證實由於在含低濃度H 2O 2的蝕刻溶液蝕刻下蝕刻能力差,因此觀察到約11.23%的高光反射率。雖然顯示出將蝕刻溶液中H 2O 2濃度增加到1 M時光反射率會降低,但由於倒金字塔結構陣列的無序性,以含較高濃度H 2O 2的蝕刻溶液蝕刻的樣品具有較高的光反射率。圖9中的結果顯示蝕刻溶液含1M H 2O 2大約是產生低光反射率的蝕刻單晶矽晶圓的最佳值。值得注意的是,含低濃度銅離子的蝕刻溶液不會產生任何顯著的結構,如圖6(a)所示。但是,具有含低濃度H 2O 2的蝕刻溶液會產生小規模的倒金字塔結構,如圖8(a)所示。這些觀察結果指出了銅離子在專門形成倒金字塔結構製絨化方面而不是其他微尺度圖案方面的重要性。 Please refer to FIG. 9 . FIG. 9 shows the light reflectance test results of the single crystal silicon wafer after being etched by etching solutions with different concentrations of H 2 O 2 in the third example. FIG. 9 confirms that a high light reflectance of about 11.23% is observed due to the poor etching ability under the etching solution containing low concentration of H 2 O 2 . Although it was shown that increasing the concentration of H 2 O 2 in the etching solution to 1 M reduces the light reflectance, due to the disorder of the array of inverted pyramid structures, samples etched with an etching solution containing a higher concentration of H 2 O 2 had a lower High light reflectivity. The results in Figure 9 show that the etching solution containing 1M H 2 O 2 is approximately the optimum value for etching single crystal silicon wafers resulting in low light reflectivity. It is worth noting that the etching solution containing low concentration of copper ions does not produce any significant structure, as shown in Fig. 6(a). However, an etching solution with a low concentration of H2O2 produces a small-scale inverted pyramid structure, as shown in Fig. 8(a). These observations point to the importance of copper ions in the specialized formation of textured textured inverted pyramid structures rather than other microscale patterns.

於第四範例中,根據本發明之較佳具體實施例之方法採用蝕刻溶液的成份包含0.06M Cu(SO 4)、2M HF以及1M H 2O 2。蝕刻時間為7分鐘。蝕刻溫度分別維持在50℃、55℃以及60℃。第四範例經蝕刻後單晶矽晶圓的FESEM照片請見圖10(a)至圖10(c)。經在不同蝕刻溫度下之蝕刻溶液蝕刻後,發現經蝕刻後單晶矽晶圓的表面形態具有微小差異。如圖10(a)至圖10(c)所示,倒金字塔結構最初在刻蝕和側壁上出現小的凹坑和小孔,顯示出混亂狀態。隨著蝕刻溫度的升高,這些形成的頻率降低。因此,可以直觀地猜測出光捕獲方面的一些差異。 In the fourth example, the method according to the preferred embodiment of the present invention uses an etching solution containing 0.06M Cu(SO 4 ), 2M HF and 1M H 2 O 2 . The etching time was 7 minutes. The etching temperatures were maintained at 50°C, 55°C and 60°C, respectively. The FESEM photos of the etched monocrystalline silicon wafer of the fourth example are shown in FIGS. 10( a ) to 10 ( c ). After being etched by etching solutions at different etching temperatures, it was found that the surface morphology of the etched monocrystalline silicon wafer had slight differences. As shown in Figures 10(a) to 10(c), the inverted pyramid structure initially exhibits a chaotic state with small pits and pinholes in the etch and sidewalls. The frequency of these formations decreases as the etch temperature increases. Therefore, some differences in light capture can be intuitively guessed.

請參閱圖11,圖11顯示第四範例經不同蝕刻溫度的蝕刻溶液蝕刻後單晶矽晶圓的光反射率測試結果。圖11證實在50℃、55℃與60℃蝕刻溫度下經蝕刻後的單矽經晶圓的表面的平均光反射率分別降至8.26%、7.8%與5.6%。通常,蝕刻速率隨反應溫度的升高而增加[22]。由於溫度會改變空穴注入速率,因此這些平均光反射率可能空穴注入速率改變所導致。因此,可以在較高溫度下以較少的時間規模觀察到單晶矽晶圓的表面的快速氧化。在低溫下,只有在反應有足夠的時間完成反應時才能觀察到倒金字塔結構的形成。Please refer to FIG. 11 . FIG. 11 shows the light reflectance test results of the single crystal silicon wafer after being etched by etching solutions with different etching temperatures in the fourth example. FIG. 11 demonstrates that the average light reflectance of the surface of the etched single-silicon wafer decreased to 8.26%, 7.8% and 5.6% at etching temperatures of 50°C, 55°C, and 60°C, respectively. Generally, the etch rate increases with increasing reaction temperature [22]. Since temperature changes the hole injection rate, these average light reflectances may be caused by changes in the hole injection rate. Therefore, rapid oxidation of the surface of single crystal silicon wafers can be observed at higher temperatures on a smaller time scale. At low temperatures, the formation of an inverted pyramid structure can only be observed if the reaction has had sufficient time to complete.

於第五範例中,根據本發明之較佳具體實施例之方法採用蝕刻溶液的成份包含0.06M Cu(SO 4)、1M H 2O 2以及不同濃度的HF (1M、2M以及3M)、蝕刻溫度維持在60℃,蝕刻時間為7分鐘。第五範例經蝕刻後單晶矽晶圓的FESEM照片請見圖12(a)至圖12(c)。圖12(a)至圖12(c)顯示當蝕刻溶液增加HF濃度時,矽的溶解和蝕刻速率增加。 In the fifth example, the method according to the preferred embodiment of the present invention uses an etching solution containing 0.06M Cu(SO 4 ), 1M H 2 O 2 and different concentrations of HF (1M, 2M and 3M), etching The temperature was maintained at 60° C., and the etching time was 7 minutes. The FESEM photos of the etched monocrystalline silicon wafer of the fifth example are shown in FIGS. 12( a ) to 12 ( c ). Fig. 12(a) to Fig. 12(c) show that when the concentration of HF in the etching solution is increased, the dissolution of silicon and the etching rate increase.

請參閱圖13,圖13顯示第五範例經不同濃度HF的蝕刻溶液蝕刻後單晶矽晶圓的光反射率測試結果。圖13證實在不同HF濃度下蝕刻的相應樣品的反射率結果。在此,含2M HF的蝕刻溶液蝕刻後單晶矽晶圓的的平均光反射率最低。Please refer to FIG. 13 . FIG. 13 shows the test results of the light reflectance of the single crystal silicon wafer after being etched by etching solutions with different concentrations of HF in the fifth example. Figure 13 demonstrates the reflectance results for the corresponding samples etched at different HF concentrations. Here, the average light reflectance of the monocrystalline silicon wafer after etching by the etching solution containing 2M HF is the lowest.

在上述範例的觀察中,這些觀察與測試結果強烈表明在高溫蝕刻過程中會發生H 2O 2的蒸發。因此,有必要在整個蝕刻過程中監測成份中濃度的變化,特別是H 2O 2的變化。 In the above example observations , these observations and test results strongly suggest that H2O2 evaporation occurs during high temperature etching. Therefore, it is necessary to monitor the changes in the concentrations of the components, especially the changes in H2O2 , throughout the etching process.

藉由以上較佳具體實施例之詳述,相信能清楚了解,根據本發明之基於銅針對單晶矽晶圓的表面之倒金字塔結構製絨化方法可以在單晶矽晶圓表面上蝕刻出均勻分佈微型倒金字塔結構陣列。並且,根據本發明之方法表面製絨化後之單晶矽晶圓其表面的光反射率極低。並且,根據本發明適於批量生產,具有很強的商業應用潛力。By the above detailed description of the preferred specific embodiments, it is believed that it can be clearly understood that the copper-based method for the inverted pyramid structure texturing of the surface of the monocrystalline silicon wafer according to the present invention can be etched on the surface of the monocrystalline silicon wafer. Uniform distribution of arrays of micro-inverted pyramid structures. Moreover, the light reflectivity of the surface of the monocrystalline silicon wafer after the surface is textured according to the method of the present invention is extremely low. Moreover, according to the invention, it is suitable for mass production and has strong commercial application potential.

藉由以上較佳具體實施例之詳述,係希望能更加清楚描述本發明之特徵與精神,而並非以上述所揭露的較佳具體實施例來對本發明之面向加以限制。相反地,其目的是希望能涵蓋各種改變及具相等性的安排於本發明所欲申請之專利範圍的面向內。因此,本發明所申請之專利範圍的面向應該根據上述的說明作最寬廣的解釋,以致使其涵蓋所有可能的改變以及具相等性的安排。Through the above detailed description of the preferred embodiments, it is hoped that the characteristics and spirit of the present invention can be described more clearly, and the aspect of the present invention is not limited by the preferred embodiments disclosed above. On the contrary, the purpose is to cover various changes and equivalent arrangements within the scope of the patent application for the present invention. Therefore, the aspect of the scope of the patent application for the present invention should be interpreted in the broadest way based on the above description, so as to cover all possible changes and equivalent arrangements.

10:底板 100:上表面 102:下表面 10:第一反應槽 102:酸溶液 108:固定裝置 12:第二反應槽 122:蝕刻溶液 124:氣體供應源 126:控制閥 128:管路 1282:末端 14:第三反應槽 142:處理溶液 2:單晶矽晶圓 22:表面 10: Bottom plate 100: upper surface 102: lower surface 10: The first reaction tank 102: acid solution 108: Fixtures 12: The second reaction tank 122: Etching solution 124: Gas supply source 126: Control valve 128: pipeline 1282: end 14: The third reaction tank 142: Treatment solution 2: Monocrystalline silicon wafer 22: surface

圖1至圖3分別係本發明之一較佳具體實施例之基於銅針對單晶矽晶圓的表面之倒金字塔結構製絨化方法的各個程序步驟示意圖。 圖4(a)至圖4(f)係本發明之第一範例其經不同蝕刻時間後單晶矽晶圓的場發射電子顯微鏡(FESEM)照片。 圖5係本發明之第一範例其經不同蝕刻時間後單晶矽晶圓的光反射率測試結果圖。 圖6(a)至圖6(c)係本發明之第二範例其經不同濃度Cu(SO 4)的蝕刻溶液蝕刻後單晶矽晶圓的FESEM照片。 圖7係本發明之第二範例其經不同濃度Cu(SO 4)的蝕刻溶液蝕刻後單晶矽晶圓的光反射率測試結果圖。 圖8(a)至圖8(c)係本發明之第三範例其經不同濃度H 2O 2的蝕刻溶液蝕刻後單晶矽晶圓的FESEM照片。 圖9係本發明之第三範例其經不同濃度H 2O 2的蝕刻溶液蝕刻後單晶矽晶圓的光反射率測試結果圖。 圖10(a)至圖10(c)係本發明之第四範例其經不同蝕刻溫度的蝕刻溶液蝕刻後單晶矽晶圓的FESEM照片。 圖11係本發明之第四範例其經不同蝕刻溫度的蝕刻溶液蝕刻後單晶矽晶圓的光反射率測試結果圖。 圖12(a)至圖12(c)係本發明之第五範例其經不同濃度HF的蝕刻溶液蝕刻後單晶矽晶圓的FESEM照片。 圖13係本發明之第五範例其經不同濃度HF的蝕刻溶液蝕刻後單晶矽晶圓的光反射率測試結果圖。 FIGS. 1 to 3 are schematic diagrams of each procedural step of a copper-based method for texturizing the surface of a monocrystalline silicon wafer with an inverted pyramid structure according to a preferred embodiment of the present invention. Fig. 4(a) to Fig. 4(f) are field emission electron microscope (FESEM) photographs of the monocrystalline silicon wafer after different etching times in the first example of the present invention. FIG. 5 is a graph showing the light reflectance test results of the single crystal silicon wafer after different etching times in the first example of the present invention. Fig. 6(a) to Fig. 6(c) are the FESEM photographs of the single crystal silicon wafer etched by etching solutions with different concentrations of Cu(SO 4 ) in the second example of the present invention. FIG. 7 is a graph showing the light reflectance test results of a single crystal silicon wafer etched by etching solutions of different concentrations of Cu(SO 4 ) according to the second example of the present invention. Fig. 8(a) to Fig. 8(c) are the FESEM photographs of the monocrystalline silicon wafers etched by etching solutions with different concentrations of H 2 O 2 according to the third example of the present invention. FIG. 9 is a graph showing the light reflectance test results of a single crystal silicon wafer etched by etching solutions with different concentrations of H 2 O 2 according to the third example of the present invention. Fig. 10(a) to Fig. 10(c) are the FESEM photographs of the monocrystalline silicon wafer after being etched by etching solutions with different etching temperatures according to the fourth example of the present invention. FIG. 11 is a graph showing the light reflectance test results of a single crystal silicon wafer etched by etching solutions with different etching temperatures according to the fourth example of the present invention. Fig. 12(a) to Fig. 12(c) are the FESEM photographs of the monocrystalline silicon wafers etched by etching solutions with different concentrations of HF in the fifth example of the present invention. FIG. 13 is a graph showing the test results of light reflectance of a single crystal silicon wafer etched by etching solutions with different concentrations of HF in the fifth example of the present invention.

108:固定裝置 12:第二反應槽 122:蝕刻溶液 124:氣體供應源 126:控制閥 128:管路 1282:末端 2:單晶矽晶圓 22:表面 108: Fixtures 12: The second reaction tank 122: Etching solution 124: Gas supply source 126: Control valve 128: pipeline 1282: end 2: Monocrystalline silicon wafer 22: surface

Claims (4)

一種針對一單晶矽晶圓的一表面之一倒金字塔結構製絨化方法,包含下列步驟:(a)藉由將該單晶矽晶圓浸入一酸溶液且導入一第二超音波來去除該單晶矽晶圓之該表面上之一氧化物,其中該酸溶液之成份包含5~15vol.%HF;(b)將該單晶矽晶圓浸入一蝕刻溶液內維持一蝕刻溫度與一蝕刻時間以進行一蝕刻處理致使多個倒金字塔結構以及多個銅奈米顆粒係形成於該單晶矽晶圓之該表面上,且通入一鈍氣氣泡於該蝕刻溶液中,其中該蝕刻溶液之成份包含0.02M~0.1M Cu2+、0.5M~3.5M HF以及0.5M~3M H2O2,該蝕刻溫度為45℃~65℃,該蝕刻時間為2min.~20min.;(c)去除形成於該單晶矽晶圓之該表面上之該多個銅奈米顆粒;(d)將該單晶矽晶圓進行一清洗處理;以及(e)乾燥該單晶矽晶圓,其中該單晶矽晶圓之該表面之一平均反射率係等於或小於8.26%。 A method for texturizing an inverted pyramid structure on a surface of a single crystal silicon wafer, comprising the following steps: (a) removing the texture by immersing the single crystal silicon wafer in an acid solution and introducing a second ultrasonic wave An oxide on the surface of the single crystal silicon wafer, wherein the composition of the acid solution contains 5~15vol.%HF; (b) immersing the single crystal silicon wafer in an etching solution to maintain an etching temperature and a Etching time is to carry out an etching process so that a plurality of inverted pyramid structures and a plurality of copper nanoparticles are formed on the surface of the single crystal silicon wafer, and an inert gas bubble is passed into the etching solution, wherein the etching The components of the solution include 0.02M~0.1M Cu 2+ , 0.5M~3.5M HF and 0.5M~3M H 2 O 2 , the etching temperature is 45°C~65°C, and the etching time is 2min.~20min.;( c) removing the plurality of copper nanoparticles formed on the surface of the single crystal silicon wafer; (d) performing a cleaning process on the single crystal silicon wafer; and (e) drying the single crystal silicon wafer , wherein an average reflectance of the surface of the single crystal silicon wafer is equal to or less than 8.26%. 如請求項1所述之倒金字塔結構製絨化方法,其中步驟(c)係藉由將該單晶矽晶圓浸入一處理溶液內且導入一第一超音波來執行,該處理溶液之成份包含H2O以及HNO3,該處理溶液之成份的體積比例為H2O:HNO3=0.5~1.5:0.5~1.5。 The texturing method of an inverted pyramid structure as described in Claim 1, wherein step (c) is performed by immersing the single crystal silicon wafer in a treatment solution and introducing a first ultrasonic wave, the composition of the treatment solution Containing H 2 O and HNO 3 , the volume ratio of the components of the treatment solution is H 2 O:HNO 3 =0.5-1.5:0.5-1.5. 如請求項2所述之倒金字塔結構製絨化方法,其 中步驟(c)係藉由將該單晶矽晶圓浸入該處理溶液維持一處理時間來執行,該處理時間為等於或大於20min.。 The inverted pyramid structure texturing method as described in claim 2, wherein The step (c) is performed by immersing the single crystal silicon wafer in the processing solution for a processing time equal to or greater than 20 min. 如請求項3所述之倒金字塔結構製絨化方法,其中該單晶矽晶圓之該表面為(100)晶面。 The method for texturing an inverted pyramid structure as described in claim 3, wherein the surface of the single crystal silicon wafer is a (100) crystal plane.
TW110125236A 2021-07-09 2021-07-09 Method of fabricating inverted pyramid textured surface of monocrystalline silicon wafer TWI792400B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110125236A TWI792400B (en) 2021-07-09 2021-07-09 Method of fabricating inverted pyramid textured surface of monocrystalline silicon wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110125236A TWI792400B (en) 2021-07-09 2021-07-09 Method of fabricating inverted pyramid textured surface of monocrystalline silicon wafer

Publications (2)

Publication Number Publication Date
TW202302938A TW202302938A (en) 2023-01-16
TWI792400B true TWI792400B (en) 2023-02-11

Family

ID=86657866

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110125236A TWI792400B (en) 2021-07-09 2021-07-09 Method of fabricating inverted pyramid textured surface of monocrystalline silicon wafer

Country Status (1)

Country Link
TW (1) TWI792400B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107611226A (en) * 2017-10-09 2018-01-19 浙江晶科能源有限公司 A kind of crystalline silicon method for manufacturing textured surface, solar cell and preparation method thereof
CN109087853A (en) * 2018-07-03 2018-12-25 昆明理工大学 A kind of method of the copper catalysis etching round and smooth processing of making herbs into wool silicon chip surface

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107611226A (en) * 2017-10-09 2018-01-19 浙江晶科能源有限公司 A kind of crystalline silicon method for manufacturing textured surface, solar cell and preparation method thereof
CN109087853A (en) * 2018-07-03 2018-12-25 昆明理工大学 A kind of method of the copper catalysis etching round and smooth processing of making herbs into wool silicon chip surface

Also Published As

Publication number Publication date
TW202302938A (en) 2023-01-16

Similar Documents

Publication Publication Date Title
KR101962469B1 (en) A method for producing a textured structure of a crystalline silicon solar cell
JP6392866B2 (en) Surface texture structure of crystalline silicon solar cell and manufacturing method thereof
TWI472049B (en) Method of fabricating solar cell
KR101387715B1 (en) Method for fabricating selar cell having semiconductor wafer substrate with nano texturing structure
TWI358087B (en) Method for producing silicon substrate for solar c
CN103456804A (en) Method for forming inverted-pyramid porous surface nanometer texture on polycrystalline silicon and method for manufacturing short-wave reinforcing solar cell
CN106024988B (en) The black silicon of one-step method wet method prepares and surface treatment method
CN106229386B (en) A kind of method that silver-bearing copper bimetallic MACE method prepares black silicon structure
US20130025663A1 (en) Inverted pyramid texture formation on single-crystalline silicon
CN102157608A (en) Method for reducing surface light reflectivity of silicon chip
CN102157621A (en) Square silicon nanometer hole and preparation method thereof
CN108417669B (en) Texturing method for diamond wire-electrode cutting polycrystalline silicon wafer solar cell
Tang et al. Cu-assisted chemical etching of bulk c-Si: A rapid and novel method to obtain 45 μm ultrathin flexible c-Si solar cells with asymmetric front and back light trapping structures
CN113410319A (en) Normal-temperature texturing method, silicon wafer textured by same, solar cell and preparation method of solar cell
US9911878B2 (en) Metal-assisted etch combined with regularizing etch
TWI792400B (en) Method of fabricating inverted pyramid textured surface of monocrystalline silicon wafer
Kubendhiran et al. Copper assisted inverted pyramids texturization of monocrystalline silicon in a nitrogen bubbling bath for highly efficient light trapping
Ji et al. Improvement of the surface structure for the surface passivation of black silicon
Pu et al. High-efficiency passivated emitter and rear cells with nano honeycomb structure
Sreejith et al. Optimization of MACE black silicon surface morphology in multi-crystalline wafers for excellent opto-electronic properties
JP2016131232A (en) Semiconductor substrate, semiconductor device manufacturing method, semiconductor device manufacturing apparatus, solar cell, solar cell manufacturing method and solar cell manufacturing apparatus
Imamura et al. High conversion efficiency of crystalline Si solar cells using black− Si fabricated by SSCT method
Huo et al. Metal‐Assisted Chemical Etching of Silicon: Origin, Mechanism, and Black Silicon Solar Cell Applications
KR101359407B1 (en) Two-Step Wet Texturing Production Method Using Metal Ultra Thin Film
CN109888030B (en) Preparation method of crystal silicon surface type inverted pyramid suede structure