JP2001268071A - Anti-tamper encryption device - Google Patents

Anti-tamper encryption device

Info

Publication number
JP2001268071A
JP2001268071A JP2000074177A JP2000074177A JP2001268071A JP 2001268071 A JP2001268071 A JP 2001268071A JP 2000074177 A JP2000074177 A JP 2000074177A JP 2000074177 A JP2000074177 A JP 2000074177A JP 2001268071 A JP2001268071 A JP 2001268071A
Authority
JP
Japan
Prior art keywords
circuit
tamper
configuration data
data
encryption device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000074177A
Other languages
Japanese (ja)
Inventor
Satoru Ito
哲 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ADVANCED MOBILE TELECOMM SECUR
Advanced Mobile Telecommunications Security Technology Research Laboratory Co Ltd
Original Assignee
ADVANCED MOBILE TELECOMM SECUR
Advanced Mobile Telecommunications Security Technology Research Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ADVANCED MOBILE TELECOMM SECUR, Advanced Mobile Telecommunications Security Technology Research Laboratory Co Ltd filed Critical ADVANCED MOBILE TELECOMM SECUR
Priority to JP2000074177A priority Critical patent/JP2001268071A/en
Publication of JP2001268071A publication Critical patent/JP2001268071A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/173Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components
    • H03K19/177Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using elementary logic circuits as components arranged in matrix form
    • H03K19/17748Structural details of configuration resources
    • H03K19/17768Structural details of configuration resources for security

Abstract

PROBLEM TO BE SOLVED: To provide an anti-tamper encryption device having the enhanced recurity by disenabling the analysis of contents even when fluctuation pattern of operating power of the encryption device is observed. SOLUTION: An encryption arithmetic circuit 1 consists of an FPGA/PLD on an SRAM/flash memory basis. A circuit storage means 3 stores a plurality of configuration data that indicate the same function with different internal operations. A circuit update means 2 reads the configuration data in prescribed timing and writes the data to the encryption arithmetic circuit 1. Since the internal operation differs from each other according to the configuration data, a fluctuation pattern of the operation power differs from each other according to the configuration data. Even when the fluctuation of power consumption is observed, it is difficult to estimate the internal encryption processing so as to enhance the anti-tamper performance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐タンパー暗号装
置に関し、特に、暗号演算回路の回路構成を動的に変更
できる耐タンパー暗号装置に関する。
The present invention relates to a tamper-resistant encryption device, and more particularly to a tamper-resistant encryption device capable of dynamically changing the circuit configuration of a cryptographic operation circuit.

【0002】[0002]

【従来の技術】従来の暗号回路は、回路構成が固定され
ていたため、暗号装置の入出力信号を暗号化しても、D
PA(Differential Power Analysis:消費電力の変動
を観測し、内部の暗号処理を推定することで秘密のデー
タを得る暗号回路攻撃方法)により、内部の演算内容が
解析できてしまう。これを避けるため、プログラムある
いはマイクロプログラムを書き換えて処理方法を変える
か、複数の回路を切り換えて演算を行なっている。
2. Description of the Related Art A conventional cryptographic circuit has a fixed circuit configuration.
PA (Differential Power Analysis: a cryptographic circuit attack method that obtains secret data by observing fluctuations in power consumption and estimating internal cryptographic processing) can analyze the contents of internal computations. In order to avoid this, the processing is changed by rewriting the program or the microprogram, or the operation is performed by switching a plurality of circuits.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記従来の暗
号回路では、プログラムの書換えに時間がかかってDP
A攻撃に有効に対処できず、暗号処理も高速に行なえな
かった。また、回路を複数にすると回路規模が大きくな
り、低コストで小型軽量にすることができなかった。こ
のように、従来の暗号回路では、効率的にDPA攻撃を
防いでセキュリティを高めることができないという問題
があった。
However, in the above-mentioned conventional encryption circuit, it takes a long time to rewrite the program and the DP
The attack could not be effectively dealt with, and the encryption process could not be performed at high speed. Further, when a plurality of circuits are used, the circuit scale becomes large, and it is not possible to reduce the size and weight at low cost. As described above, the conventional encryption circuit has a problem that it is not possible to efficiently prevent a DPA attack and enhance security.

【0004】本発明は、上記従来の問題を解決して、暗
号回路の性能を低下させずにセキュリティを向上させる
ことを目的とする。
An object of the present invention is to solve the above-mentioned conventional problems and to improve security without lowering the performance of a cryptographic circuit.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明では、耐タンパー暗号装置を、再コンフィ
グレーション可能な演算回路と、機能的に同一で内部動
作が異なる複数のコンフィグレーションデータを保持す
る回路データ記憶手段と、コンフィグレーションデータ
を演算回路へ書き込む回路更新手段とを具備する構成と
した。このように構成したことにより、同じ演算でも内
部動作が変わり、DPA攻撃が困難になるので、暗号回
路のセキュリティを向上させることができる。
In order to solve the above-mentioned problems, according to the present invention, a tamper-resistant encryption device is provided with a reconfigurable arithmetic circuit and a plurality of configurations having the same function but different internal operations. A circuit data storage means for holding data and a circuit updating means for writing configuration data to the arithmetic circuit are provided. With such a configuration, the internal operation changes even with the same operation, and a DPA attack becomes difficult, so that the security of the encryption circuit can be improved.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図1〜図4を参照しながら詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to FIGS.

【0007】(第1の実施の形態)本発明の第1の実施
の形態は、暗号演算を実行するFPGA/PLD回路の
コンフィグレーションデータを、同一機能の複数の候補
から選択交換できるようにした耐タンパー暗号装置であ
る。
(First Embodiment) In a first embodiment of the present invention, configuration data of an FPGA / PLD circuit for executing a cryptographic operation can be selectively exchanged from a plurality of candidates of the same function. It is a tamper-resistant encryption device.

【0008】図1は、本発明の第1の実施の形態におけ
る耐タンパー暗号装置の機能ブロック図である。図1に
おいて、暗号演算回路1は、回路の再コンフィグレーシ
ョンが可能なデバイスで構成された、暗号化演算と復号
演算を行なう回路である。回路の再コンフィグレーショ
ンが可能なデバイスとは、一度しかコンフィグレーショ
ンできないアンチヒューズではなく、何度も書換えが可
能なSRAM/フラッシュメモリベースのFPGA/P
LDである。例えば、Xilinx社やAltera社の製品などを
利用する。回路更新手段2は、コンフィグレーションデ
ータを暗号演算回路に書き込む手段である。回路記憶手
段3は、コンフィグレーションデータを保持する記憶手
段である。
FIG. 1 is a functional block diagram of the tamper-resistant encryption device according to the first embodiment of the present invention. In FIG. 1, a cryptographic operation circuit 1 is a circuit configured to perform an encryption operation and a decryption operation, and is configured by a device capable of reconfiguring the circuit. Devices that can reconfigure circuits are not antifuses that can be configured only once, but SRAM / flash memory-based FPGAs / Ps that can be rewritten many times.
LD. For example, Xilinx or Altera products are used. The circuit updating means 2 is means for writing the configuration data into the cryptographic operation circuit. The circuit storage unit 3 is a storage unit that stores configuration data.

【0009】上記のように構成された本発明の第1の実
施の形態における耐タンパー暗号装置の動作を説明す
る。暗号演算回路1のコンフィグレーションデータとし
て、複数の暗号回路構成データから選択交換できるよう
にする。各暗号回路は、同じデータ入力に対して同じ出
力結果を返すが、内部動作が異なるように設計するた
め、動作中の消費電力の変動パターンが異なる。
The operation of the tamper-resistant encryption device according to the first embodiment of the present invention configured as described above will be described. As the configuration data of the cryptographic operation circuit 1, a plurality of cryptographic circuit configuration data can be selectively exchanged. Although each cryptographic circuit returns the same output result for the same data input, since the internal operation is designed differently, the fluctuation pattern of power consumption during operation is different.

【0010】あらかじめ、同じ機能をもつが内部動作の
異なる複数のコンフィグレーションデータを用意する。
例えば、速度(遅延)優先/サイズ優先など、配置配線
ルールを様々に変えたコンフィグレーションデータを用
意する。また、例えば、ベキ乗剰余演算における左向き
/右向き2進展開法など、演算方式が異なる複数のコン
フィグレーションデータを作成する。このようにして、
同じ機能だが内部動作が異なる回路のコンフィグレーシ
ョンデータを複数作成する。
A plurality of configuration data having the same function but different internal operations are prepared in advance.
For example, configuration data in which placement and wiring rules are variously changed such as speed (delay) priority / size priority is prepared. Further, for example, a plurality of configuration data having different arithmetic methods, such as a leftward / rightward binary expansion method in a power-residue calculation, is created. In this way,
Create multiple configuration data for circuits with the same function but different internal operations.

【0011】それら複数のコンフィグレーションデータ
を、回路記憶装置3にストックする。回路記憶装置3に
ストックするコンフィグレーションデータは、定期的も
しくは必要に応じて、逐次作成したものを入れ替える。
[0011] The plurality of configuration data are stored in the circuit storage device 3. The configuration data to be stocked in the circuit storage device 3 is replaced periodically or as needed.

【0012】任意のトリガにより、回路更新手段2で、
その中の一つのコンフィグレーションデータを選んで、
再コンフィグレーションする。この再コンフィグレーシ
ョンされた回路は、同じ機能を持つが、回路の配線遅延
や演算方式が異なるために、同じデータを処理しても、
消費電力変動パターンに差が生じる。したがって、消費
電力を観測して内部の動作を解析することを防ぐことが
でき、DPA攻撃に対する耐タンパー性が向上する。
In response to an arbitrary trigger, the circuit updating means 2
Select one of the configuration data,
Reconfigure. This reconfigured circuit has the same function, but due to differences in circuit wiring delays and arithmetic methods, even when processing the same data,
A difference occurs in the power consumption fluctuation pattern. Therefore, it is possible to prevent the internal operation from being analyzed by observing the power consumption, and the tamper resistance against the DPA attack is improved.

【0013】秘密鍵などの秘密の変数を処理する演算回
路に、外部から既知の変数を自由に入力できる構成の暗
号演算回路では、その消費電力変動パターンを観測する
ことにより、変動パターンと秘密の変数との相関を知る
ことができる。したがって、そのような方式の回路で
は、DPA攻撃の対象となりやすい。しかし、上記のよ
うに、演算回路構成を更新することにより、演算回路と
秘密の変数との間の相関関係が、消費電力の変動を通じ
て観測できないようになる。すなわち、暗号に使う演算
回路そのものではなくて、暗号演算を行なう際の秘密の
変数を保護することができる。
In a cryptographic operation circuit having a configuration in which a known variable can be freely input from the outside to an operation circuit for processing a secret variable such as a secret key, the fluctuation pattern and the secret are observed by observing the power consumption fluctuation pattern. You can know the correlation with the variables. Therefore, such a circuit is likely to be a target of a DPA attack. However, as described above, by updating the arithmetic circuit configuration, the correlation between the arithmetic circuit and the secret variable cannot be observed through fluctuations in power consumption. That is, it is possible to protect not only the operation circuit used for encryption but also a secret variable when performing the encryption operation.

【0014】上記のように、本発明の第1の実施の形態
では、耐タンパー暗号装置を、暗号演算を実行するFP
GA/PLD回路のコンフィグレーションデータを、同
一機能の複数の候補から選択交換できるように構成した
ので、DPA攻撃に対する耐タンパー性が向上する。
As described above, according to the first embodiment of the present invention, the tamper-resistant encryption device is connected to the FP that executes the cryptographic operation.
Since the configuration data of the GA / PLD circuit can be selectively exchanged from a plurality of candidates of the same function, the tamper resistance against a DPA attack is improved.

【0015】(第2の実施の形態)本発明の第2の実施
の形態は、回路仕様データに基づいてコンフィグレーシ
ョンデータを作成する耐タンパー暗号装置である。
(Second Embodiment) A second embodiment of the present invention is a tamper-resistant encryption device that creates configuration data based on circuit specification data.

【0016】図2は、本発明の第2の実施の形態におけ
る耐タンパー暗号装置の機能ブロック図である。第2の
実施の形態の基本的構成は、第1の実施の形態と同じで
ある。第2の実施の形態が第1の実施の形態と異なると
ころは、回路生成手段と仕様記憶手段を設けた点であ
る。図2において、回路生成手段4は、回路仕様データ
からコンフィグレーションデータを生成する手段であ
る。仕様記憶手段5は、回路仕様データを保持するメモ
リである。
FIG. 2 is a functional block diagram of a tamper-resistant encryption device according to a second embodiment of the present invention. The basic configuration of the second embodiment is the same as that of the first embodiment. The second embodiment differs from the first embodiment in that a circuit generation unit and a specification storage unit are provided. In FIG. 2, a circuit generating means 4 is means for generating configuration data from circuit specification data. The specification storage means 5 is a memory for holding circuit specification data.

【0017】上記のように構成された本発明の第2の実
施の形態における耐タンパー暗号装置の動作を説明す
る。同一のHDLや論理合成後のbitデータから、様々
なパラメータによる論理合成や配置配線という処理を経
ることによって、様々なタイプのコンフィグレーション
データを作成する。HDLや論理合成後のbitデータ
に、論理合成や配置配線に使用するパラメータも加えて
「回路仕様データ」と呼ぶ。
The operation of the tamper-resistant encryption device according to the second embodiment of the present invention configured as described above will be described. Various types of configuration data are created from the same HDL or bit data after logic synthesis through processes such as logic synthesis and placement and routing using various parameters. The parameters used for the logic synthesis and the placement and routing are added to the HDL and the bit data after the logic synthesis, and are called “circuit specification data”.

【0018】あらかじめ、HDLや論理合成後データな
どの回路仕様データを、仕様記憶手段5に記憶してお
く。回路生成手段4で、仕様記憶手段5から読み出した
回路仕様データに従って、論理合成からコンフィグレー
ションデータ作成までを行なう。作成したコンフィグレ
ーションデータを、回路記憶手段3に格納しておく。
Circuit specification data such as HDL and data after logic synthesis is stored in the specification storage means 5 in advance. The circuit generation means 4 performs from logic synthesis to configuration data creation according to the circuit specification data read from the specification storage means 5. The created configuration data is stored in the circuit storage unit 3.

【0019】回路記憶手段3に、外部からコンフィグレ
ーションデータを入力することもできる。逆に、暗号チ
ップ外にはコンフィグレーションデータを持たないよう
にしてもよい。回路仕様データを仕様記憶手段5に保持
しておく代わりに、外部から入力することもできる。し
かし、暗号処理に使う演算回路を秘密にするためには、
外部入力は無いほうがよく、そのほうが耐タンパー性は
高い。
Configuration data can be externally input to the circuit storage means 3. Conversely, configuration data may not be provided outside the encryption chip. Instead of holding the circuit specification data in the specification storage means 5, the circuit specification data can be inputted from outside. However, in order to keep the arithmetic circuit used for cryptographic processing secret,
It is better not to have an external input, which has higher tamper resistance.

【0020】上記のように、本発明の第2の実施の形態
では、耐タンパー暗号装置を、回路仕様データに基づい
てコンフィグレーションデータを作成する構成としたの
で、多くのコンフィグレーションデータを容易に生成で
きる。
As described above, in the second embodiment of the present invention, the tamper-resistant encryption device is configured to create the configuration data based on the circuit specification data. Can be generated.

【0021】(第3の実施の形態)本発明の第3の実施
の形態は、演算途中のデータを退避し、演算途中で演算
回路にコンフィグレーションデータを書き込み、演算途
中のデータを復元して演算を続行する耐タンパー暗号装
置である。
(Third Embodiment) In a third embodiment of the present invention, data in the middle of an operation is saved, configuration data is written in an arithmetic circuit in the middle of the operation, and data in the middle of the operation is restored. It is a tamper-resistant encryption device that continues the operation.

【0022】図3は、本発明の第3の実施の形態におけ
る耐タンパー暗号装置の機能ブロック図である。第3の
実施の形態の基本的構成は、第2の実施の形態と同じで
ある。第3の実施の形態が第2の実施の形態と異なると
ころは、退避復元手段とイベント検出手段を設けた点で
ある。図3において、退避復元手段6は、演算途中のデ
ータを退避復元する手段である。イベント検出手段7
は、演算の切れ目などの各種のイベントを検出する手段
である。
FIG. 3 is a functional block diagram of a tamper-resistant encryption device according to a third embodiment of the present invention. The basic configuration of the third embodiment is the same as that of the second embodiment. The third embodiment is different from the second embodiment in that a save / restore means and an event detection means are provided. In FIG. 3, the save / restore means 6 is a means for saving / restoring data that is being calculated. Event detection means 7
Is a means for detecting various events such as breaks in computation.

【0023】上記のように構成された本発明の第3の実
施の形態における耐タンパー暗号装置の動作を説明す
る。イベント検出手段7で、演算ステップ数や処理ビッ
ト数に基づいて、演算の切れ目を検出する。回路更新手
段2は、イベント検出信号を受けて、暗号演算回路1の
途中の計算結果を、退避復元手段6のメモリに退避させ
る。回路更新手段2により、暗号演算の途中で演算回路
を書き換えて、暗号演算回路1を再コンフィグレーショ
ンする。その後、退避復元手段6のメモリから演算途中
データを復元して、演算を再開する。同一のデータで演
算を継続することになるので、中間結果が同じになる演
算回路しか使えないことになる。
The operation of the tamper-resistant encryption device according to the third embodiment of the present invention configured as described above will be described. The event detecting means 7 detects a break in the calculation based on the number of calculation steps and the number of processing bits. The circuit updating means 2 receives the event detection signal and saves the calculation result in the middle of the cryptographic operation circuit 1 to the memory of the saving and restoring means 6. The arithmetic circuit is rewritten by the circuit updating means 2 in the middle of the cryptographic operation, and the cryptographic operation circuit 1 is reconfigured. Thereafter, the data in the middle of the operation is restored from the memory of the save / restore means 6, and the operation is restarted. Since the operation is continued with the same data, only the operation circuit having the same intermediate result can be used.

【0024】演算途中で演算回路を書き換える再コンフ
ィグレーションの速度について、具体例を説明する。べ
き乗剰余演算回路では、コンフィグレーションデータ
(HEXファイル)のサイズは480KBである。これをバイナ
リに変換すると約240KBとなる。bit換算では1925Kbitで
ある。これを33MHzのPCIクロックで書き込むと、1925Kb
it/33MHz=58.3msecとなる。また、高速なPROM(例え
ば、Xilinx社のXC1800ファミリ)を使った場合、最大500
Mbit/secなので、(1925kbit/1024)/500×1000=3.76m
secとなる。
A specific example of the reconfiguration speed at which the arithmetic circuit is rewritten during the arithmetic operation will be described. In the modular exponentiation arithmetic circuit, the size of the configuration data (HEX file) is 480 KB. Converting this to binary results in about 240KB. It is 1925Kbit in bit conversion. When this is written with 33MHz PCI clock, 1925Kb
it / 33MHz = 58.3msec. Also, when using a high-speed PROM (for example, Xilinx's XC1800 family), up to 500
Because it is Mbit / sec, (1925kbit / 1024) /500×1000=3.76m
sec.

【0025】一方、演算速度は、Xilinx社のFPGA(XC408
5XL)で、クロック27MHzの場合、1回のべき乗剰余演算
が2〜3秒かかる。したがって、演算時間の方がはるか
に大きいため、演算途中の回路書換えによって演算速度
が大幅に落ちるようなことはない。
On the other hand, the operation speed is determined by the Xilinx FPGA (XC408
5XL), when the clock is 27 MHz, one exponentiation remainder operation takes 2-3 seconds. Therefore, since the operation time is much longer, there is no possibility that the operation speed is greatly reduced by rewriting the circuit during the operation.

【0026】上記のように、本発明の第3の実施の形態
では、耐タンパー暗号装置を、演算途中のデータを退避
し、演算途中で演算回路にコンフィグレーションデータ
を書き込み、演算途中のデータを復元して演算を続行す
る構成としたので、DPAによる解析が一層困難にな
る。
As described above, in the third embodiment of the present invention, the tamper-resistant encryption device saves data in the middle of calculation, writes configuration data in the calculation circuit in the middle of calculation, and stores the data in the middle of calculation. Since the configuration is such that restoration is performed and the calculation is continued, analysis by DPA becomes more difficult.

【0027】(第4の実施の形態)本発明の第4の実施
の形態は、タンパー攻撃検出や、タイミング信号や、電
源投入に応じて、演算回路にコンフィグレーションデー
タを書き込む耐タンパー暗号装置である。
(Fourth Embodiment) A fourth embodiment of the present invention relates to a tamper-resistant encryption device that writes configuration data to an arithmetic circuit in response to detection of a tamper attack, a timing signal, or power-on. is there.

【0028】図4は、本発明の第4の実施の形態におけ
る耐タンパー暗号装置の機能ブロック図である。第4の
実施の形態の基本的構成は、第3の実施の形態と同じで
ある。第4の実施の形態が第3の実施の形態と異なると
ころは、タンパー検出手段とタイマを設けた点である。
図4において、タンパー検出手段8は、タンパー攻撃を
検出する手段である。タイマ9は、定期的なタイミング
信号を出力する回路である。
FIG. 4 is a functional block diagram of a tamper-resistant encryption device according to a fourth embodiment of the present invention. The basic configuration of the fourth embodiment is the same as that of the third embodiment. The fourth embodiment differs from the third embodiment in that a tamper detecting means and a timer are provided.
In FIG. 4, a tamper detecting means 8 is a means for detecting a tamper attack. The timer 9 is a circuit that outputs a periodic timing signal.

【0029】上記のように構成された本発明の第4の実
施の形態における耐タンパー暗号装置の動作を説明す
る。再コンフィギュレーションのトリガとして、タイマ
の出力信号、バッテリー交換検出信号、電源投入検出信
号、タンパー検出信号などを利用する。
The operation of the tamper-resistant cryptographic device according to the fourth embodiment of the present invention configured as described above will be described. As a reconfiguration trigger, an output signal of a timer, a battery replacement detection signal, a power-on detection signal, a tamper detection signal, and the like are used.

【0030】タイマ9で、定期的なタイミング信号を発
生し、イベント検出手段7で演算の切れ目を検出する
と、再コンフィギュレーションのトリガをかける。タイ
マ9で、ランダムなタイミング信号を発生させてもよ
い。タンパー検出手段8で、バッテリー交換や電源投入
を検出した際にも、再コンフィギュレーションする。こ
れは、タンパー攻撃の際に、電源再投入を伴うことが多
いからである。
When the timer 9 generates a periodic timing signal and the event detecting means 7 detects a break in the operation, a reconfiguration trigger is activated. The timer 9 may generate a random timing signal. Reconfiguration is also performed when the tamper detector 8 detects battery replacement or power-on. This is because a tamper attack often involves turning on the power again.

【0031】特に、タンパー検出手段8で、電源電圧の
変動を検出して、タンパー攻撃があったことを検知す
る。これは、電源インピーダンスを高くして電源電圧の
変動を観測しやすくする方法でタンパー攻撃を行なうこ
とが多いからである。逆に、タンパー検出手段8で、電
源電圧の変動の大きいコンフィグレーションデータを選
別して除き、電源電圧変動の少ないコンフィグレーショ
ンデータのみを保持しておくことで、耐タンパー性を高
めることもできる。
In particular, the tamper detecting means 8 detects a change in the power supply voltage to detect that a tamper attack has occurred. This is because a tamper attack is often performed by a method in which power supply impedance is increased to make it easier to observe fluctuations in power supply voltage. Conversely, the tamper detection means 8 selects and removes configuration data having a large fluctuation in power supply voltage, and retains only configuration data having a small fluctuation in power supply voltage, thereby improving tamper resistance.

【0032】上記のように、本発明の第4の実施の形態
では、耐タンパー暗号装置を、タンパー攻撃検出や、タ
イミング信号や、電源投入に応じて、演算回路にコンフ
ィグレーションデータを書き込む構成としたので、DP
Aで同じ信号を観測することがほとんどなくなる。
As described above, in the fourth embodiment of the present invention, the tamper-resistant encryption device is configured to write the configuration data into the arithmetic circuit in response to the detection of a tamper attack, a timing signal, or power-on. So, DP
It is almost impossible to observe the same signal at A.

【0033】[0033]

【発明の効果】以上の説明から明らかなように、本発明
では、耐タンパー暗号装置を、再コンフィグレーション
可能な演算回路と、機能的に同一で内部動作が異なる複
数のコンフィグレーションデータを保持する回路データ
記憶手段と、コンフィグレーションデータを演算回路へ
書き込む回路更新手段とを具備する構成としたので、D
PAが困難になって耐タンパー性が高まり、暗号回路の
セキュリティが向上するという効果が得られる。
As is apparent from the above description, in the present invention, the tamper-resistant encryption device holds a reconfigurable arithmetic circuit and a plurality of configuration data which are functionally the same and have different internal operations. Since the configuration includes circuit data storage means and circuit update means for writing configuration data to the arithmetic circuit, D
An effect is obtained that PA becomes difficult, tamper resistance increases, and security of the encryption circuit improves.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態における耐タンパー
暗号装置の機能ブロック図、
FIG. 1 is a functional block diagram of a tamper-resistant encryption device according to a first embodiment of the present invention;

【図2】本発明の第2の実施の形態における耐タンパー
暗号装置の機能ブロック図、
FIG. 2 is a functional block diagram of a tamper-resistant encryption device according to a second embodiment of the present invention;

【図3】本発明の第3の実施の形態における耐タンパー
暗号装置の機能ブロック図、
FIG. 3 is a functional block diagram of a tamper-resistant encryption device according to a third embodiment of the present invention;

【図4】本発明の第4の実施の形態における耐タンパー
暗号装置の機能ブロック図である。
FIG. 4 is a functional block diagram of a tamper-resistant encryption device according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 暗号演算回路 2 回路更新手段 3 回路記憶手段 4 回路生成手段 5 仕様記憶手段 6 退避復元手段 7 イベント検出手段 8 タンパー検出手段 9 タイマ DESCRIPTION OF SYMBOLS 1 Cryptographic operation circuit 2 Circuit updating means 3 Circuit storing means 4 Circuit generating means 5 Specification storing means 6 Evacuation and restoring means 7 Event detecting means 8 Tamper detecting means 9 Timer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 再コンフィグレーション可能な演算回路
と、機能的に同一で内部動作が異なる回路を構成するた
めの複数のコンフィグレーションデータを保持する回路
データ記憶手段と、前記コンフィグレーションデータを
前記演算回路へ書き込む回路更新手段とを具備すること
を特徴とする耐タンパー暗号装置。
1. A reconfigurable arithmetic circuit, circuit data storage means for storing a plurality of configuration data for configuring a circuit having the same function and different internal operations, and performing the arithmetic operation on the configuration data A tamper-resistant encryption device, comprising: a circuit updating means for writing to a circuit.
【請求項2】 回路仕様データに基づいて前記コンフィ
グレーションデータを作成する回路生成手段を設けたこ
とを特徴とする請求項1記載の耐タンパー暗号装置。
2. The tamper-resistant encryption device according to claim 1, further comprising circuit generation means for generating the configuration data based on circuit specification data.
【請求項3】 前記演算回路に、演算途中の中間データ
を退避し復元する手段を設け、前記回路更新手段に、演
算途中で前記演算回路に前記中間データで演算継続可能
な回路のコンフィグレーションデータを書き込む手段を
設けたことを特徴とする請求項1記載の耐タンパー暗号
装置。
3. The arithmetic circuit is provided with means for saving and restoring intermediate data during the operation, and the circuit updating means is provided with configuration data of a circuit capable of continuing the arithmetic operation with the intermediate data in the arithmetic circuit during the operation. 2. A tamper-resistant encryption device according to claim 1, further comprising means for writing a password.
【請求項4】 タンパー攻撃を検出してタンパー検出信
号を出力するタンパー検出手段と、一定時間ごとまたは
ランダムにタイミング信号を出力するタイマと、前記タ
ンパー検出信号と前記タイミング信号と電源投入信号と
の少なくとも1つに応じてイベント検出信号を出力する
イベント検出手段とを設け、前記回路更新手段に、前記
イベント検出信号に応じて前記演算回路に更新回路デー
タを書き込む手段を設けたことを特徴とする請求項1記
載の耐タンパー暗号装置。
4. A tamper detecting means for detecting a tamper attack and outputting a tamper detection signal, a timer for outputting a timing signal at regular time intervals or at random, and a timer for outputting the tamper detection signal, the timing signal and the power-on signal. An event detection unit that outputs an event detection signal in accordance with at least one of the circuit units; and the circuit updating unit includes a unit that writes updated circuit data to the arithmetic circuit in response to the event detection signal. The tamper-resistant encryption device according to claim 1.
JP2000074177A 2000-03-16 2000-03-16 Anti-tamper encryption device Pending JP2001268071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000074177A JP2001268071A (en) 2000-03-16 2000-03-16 Anti-tamper encryption device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000074177A JP2001268071A (en) 2000-03-16 2000-03-16 Anti-tamper encryption device

Publications (1)

Publication Number Publication Date
JP2001268071A true JP2001268071A (en) 2001-09-28

Family

ID=18592272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000074177A Pending JP2001268071A (en) 2000-03-16 2000-03-16 Anti-tamper encryption device

Country Status (1)

Country Link
JP (1) JP2001268071A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006526227A (en) * 2003-05-23 2006-11-16 ワシントン ユニヴァーシティー Intelligent data storage and processing using FPGA devices
JP2006345242A (en) * 2005-06-09 2006-12-21 Sony Corp Encoding/decoding processing circuit and system thereof
JP2007180810A (en) * 2005-12-27 2007-07-12 Fuji Xerox Co Ltd Electronic circuit and method for using programmable logical device
JP2007228141A (en) * 2006-02-22 2007-09-06 Hitachi Ltd Encryption processing method and apparatus
JP2009200617A (en) * 2008-02-19 2009-09-03 Mitsubishi Electric Corp Logic-changeable device
JP2010104018A (en) * 2009-12-16 2010-05-06 Research In Motion Ltd System and method for protecting data on communication apparatus
US7921046B2 (en) 2006-06-19 2011-04-05 Exegy Incorporated High speed processing of financial information using FPGA devices
US8078869B2 (en) 2003-02-28 2011-12-13 Research In Motion Limited System and method of protecting data on a communication device
US8095508B2 (en) 2000-04-07 2012-01-10 Washington University Intelligent data storage and processing using FPGA devices
US8379841B2 (en) 2006-03-23 2013-02-19 Exegy Incorporated Method and system for high throughput blockwise independent encryption/decryption
US8762249B2 (en) 2008-12-15 2014-06-24 Ip Reservoir, Llc Method and apparatus for high-speed processing of financial market depth data
JP2014120974A (en) * 2012-12-18 2014-06-30 Dainippon Printing Co Ltd Cipher token and cipher processing system
JP2014178809A (en) * 2013-03-14 2014-09-25 Fujitsu Advanced Engineering Ltd Electronic device, circuit data protection device and circuit data protection method
US8879727B2 (en) 2007-08-31 2014-11-04 Ip Reservoir, Llc Method and apparatus for hardware-accelerated encryption/decryption
JP2017117065A (en) * 2015-12-22 2017-06-29 株式会社Pfu Information processing device, information processing method, and program
US9990393B2 (en) 2012-03-27 2018-06-05 Ip Reservoir, Llc Intelligent feed switch
US10037568B2 (en) 2010-12-09 2018-07-31 Ip Reservoir, Llc Method and apparatus for managing orders in financial markets
US10121196B2 (en) 2012-03-27 2018-11-06 Ip Reservoir, Llc Offload processing of data packets containing financial market data
US10572824B2 (en) 2003-05-23 2020-02-25 Ip Reservoir, Llc System and method for low latency multi-functional pipeline with correlation logic and selectively activated/deactivated pipelined data processing engines
US10650452B2 (en) 2012-03-27 2020-05-12 Ip Reservoir, Llc Offload processing of data packets
US10846624B2 (en) 2016-12-22 2020-11-24 Ip Reservoir, Llc Method and apparatus for hardware-accelerated machine learning
US11436672B2 (en) 2012-03-27 2022-09-06 Exegy Incorporated Intelligent switch for processing financial market data

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8095508B2 (en) 2000-04-07 2012-01-10 Washington University Intelligent data storage and processing using FPGA devices
US8078869B2 (en) 2003-02-28 2011-12-13 Research In Motion Limited System and method of protecting data on a communication device
US9154469B2 (en) 2003-02-28 2015-10-06 Blackberry Limited System and method of protecting data on a communication device
US8386778B2 (en) 2003-02-28 2013-02-26 Research In Motion Limited System and method of protecting data on a communication device
JP2006526227A (en) * 2003-05-23 2006-11-16 ワシントン ユニヴァーシティー Intelligent data storage and processing using FPGA devices
US8620881B2 (en) 2003-05-23 2013-12-31 Ip Reservoir, Llc Intelligent data storage and processing using FPGA devices
US10719334B2 (en) 2003-05-23 2020-07-21 Ip Reservoir, Llc Intelligent data storage and processing using FPGA devices
US8751452B2 (en) 2003-05-23 2014-06-10 Ip Reservoir, Llc Intelligent data storage and processing using FPGA devices
US11275594B2 (en) 2003-05-23 2022-03-15 Ip Reservoir, Llc Intelligent data storage and processing using FPGA devices
US10929152B2 (en) 2003-05-23 2021-02-23 Ip Reservoir, Llc Intelligent data storage and processing using FPGA devices
US9176775B2 (en) 2003-05-23 2015-11-03 Ip Reservoir, Llc Intelligent data storage and processing using FPGA devices
US8768888B2 (en) 2003-05-23 2014-07-01 Ip Reservoir, Llc Intelligent data storage and processing using FPGA devices
US10572824B2 (en) 2003-05-23 2020-02-25 Ip Reservoir, Llc System and method for low latency multi-functional pipeline with correlation logic and selectively activated/deactivated pipelined data processing engines
US10346181B2 (en) 2003-05-23 2019-07-09 Ip Reservoir, Llc Intelligent data storage and processing using FPGA devices
US9898312B2 (en) 2003-05-23 2018-02-20 Ip Reservoir, Llc Intelligent data storage and processing using FPGA devices
JP2006345242A (en) * 2005-06-09 2006-12-21 Sony Corp Encoding/decoding processing circuit and system thereof
JP2007180810A (en) * 2005-12-27 2007-07-12 Fuji Xerox Co Ltd Electronic circuit and method for using programmable logical device
JP2007228141A (en) * 2006-02-22 2007-09-06 Hitachi Ltd Encryption processing method and apparatus
US8009827B2 (en) 2006-02-22 2011-08-30 Hitachi, Ltd. Encryption processing method and encryption processing device
US8379841B2 (en) 2006-03-23 2013-02-19 Exegy Incorporated Method and system for high throughput blockwise independent encryption/decryption
US8983063B1 (en) 2006-03-23 2015-03-17 Ip Reservoir, Llc Method and system for high throughput blockwise independent encryption/decryption
US8737606B2 (en) 2006-03-23 2014-05-27 Ip Reservoir, Llc Method and system for high throughput blockwise independent encryption/decryption
US8595104B2 (en) 2006-06-19 2013-11-26 Ip Reservoir, Llc High speed processing of financial information using FPGA devices
US10169814B2 (en) 2006-06-19 2019-01-01 Ip Reservoir, Llc High speed processing of financial information using FPGA devices
US11182856B2 (en) 2006-06-19 2021-11-23 Exegy Incorporated System and method for routing of streaming data as between multiple compute resources
US10817945B2 (en) 2006-06-19 2020-10-27 Ip Reservoir, Llc System and method for routing of streaming data as between multiple compute resources
US7921046B2 (en) 2006-06-19 2011-04-05 Exegy Incorporated High speed processing of financial information using FPGA devices
US8407122B2 (en) 2006-06-19 2013-03-26 Exegy Incorporated High speed processing of financial information using FPGA devices
US8655764B2 (en) 2006-06-19 2014-02-18 Ip Reservoir, Llc High speed processing of financial information using FPGA devices
US8626624B2 (en) 2006-06-19 2014-01-07 Ip Reservoir, Llc High speed processing of financial information using FPGA devices
US8600856B2 (en) 2006-06-19 2013-12-03 Ip Reservoir, Llc High speed processing of financial information using FPGA devices
US10504184B2 (en) 2006-06-19 2019-12-10 Ip Reservoir, Llc Fast track routing of streaming data as between multiple compute resources
US9582831B2 (en) 2006-06-19 2017-02-28 Ip Reservoir, Llc High speed processing of financial information using FPGA devices
US9672565B2 (en) 2006-06-19 2017-06-06 Ip Reservoir, Llc High speed processing of financial information using FPGA devices
US10467692B2 (en) 2006-06-19 2019-11-05 Ip Reservoir, Llc High speed processing of financial information using FPGA devices
US8478680B2 (en) 2006-06-19 2013-07-02 Exegy Incorporated High speed processing of financial information using FPGA devices
US9916622B2 (en) 2006-06-19 2018-03-13 Ip Reservoir, Llc High speed processing of financial information using FPGA devices
US10360632B2 (en) 2006-06-19 2019-07-23 Ip Reservoir, Llc Fast track routing of streaming data using FPGA devices
US8458081B2 (en) 2006-06-19 2013-06-04 Exegy Incorporated High speed processing of financial information using FPGA devices
US9363078B2 (en) 2007-03-22 2016-06-07 Ip Reservoir, Llc Method and apparatus for hardware-accelerated encryption/decryption
US8879727B2 (en) 2007-08-31 2014-11-04 Ip Reservoir, Llc Method and apparatus for hardware-accelerated encryption/decryption
JP2009200617A (en) * 2008-02-19 2009-09-03 Mitsubishi Electric Corp Logic-changeable device
US10929930B2 (en) 2008-12-15 2021-02-23 Ip Reservoir, Llc Method and apparatus for high-speed processing of financial market depth data
US11676206B2 (en) 2008-12-15 2023-06-13 Exegy Incorporated Method and apparatus for high-speed processing of financial market depth data
US8762249B2 (en) 2008-12-15 2014-06-24 Ip Reservoir, Llc Method and apparatus for high-speed processing of financial market depth data
US10062115B2 (en) 2008-12-15 2018-08-28 Ip Reservoir, Llc Method and apparatus for high-speed processing of financial market depth data
US8768805B2 (en) 2008-12-15 2014-07-01 Ip Reservoir, Llc Method and apparatus for high-speed processing of financial market depth data
JP2010104018A (en) * 2009-12-16 2010-05-06 Research In Motion Ltd System and method for protecting data on communication apparatus
US11803912B2 (en) 2010-12-09 2023-10-31 Exegy Incorporated Method and apparatus for managing orders in financial markets
US10037568B2 (en) 2010-12-09 2018-07-31 Ip Reservoir, Llc Method and apparatus for managing orders in financial markets
US11397985B2 (en) 2010-12-09 2022-07-26 Exegy Incorporated Method and apparatus for managing orders in financial markets
US10963962B2 (en) 2012-03-27 2021-03-30 Ip Reservoir, Llc Offload processing of data packets containing financial market data
US10872078B2 (en) 2012-03-27 2020-12-22 Ip Reservoir, Llc Intelligent feed switch
US10650452B2 (en) 2012-03-27 2020-05-12 Ip Reservoir, Llc Offload processing of data packets
US9990393B2 (en) 2012-03-27 2018-06-05 Ip Reservoir, Llc Intelligent feed switch
US11436672B2 (en) 2012-03-27 2022-09-06 Exegy Incorporated Intelligent switch for processing financial market data
US10121196B2 (en) 2012-03-27 2018-11-06 Ip Reservoir, Llc Offload processing of data packets containing financial market data
JP2014120974A (en) * 2012-12-18 2014-06-30 Dainippon Printing Co Ltd Cipher token and cipher processing system
JP2014178809A (en) * 2013-03-14 2014-09-25 Fujitsu Advanced Engineering Ltd Electronic device, circuit data protection device and circuit data protection method
JP2017117065A (en) * 2015-12-22 2017-06-29 株式会社Pfu Information processing device, information processing method, and program
US10846624B2 (en) 2016-12-22 2020-11-24 Ip Reservoir, Llc Method and apparatus for hardware-accelerated machine learning
US11416778B2 (en) 2016-12-22 2022-08-16 Ip Reservoir, Llc Method and apparatus for hardware-accelerated machine learning

Similar Documents

Publication Publication Date Title
JP2001268071A (en) Anti-tamper encryption device
Güneysu et al. Generic side-channel countermeasures for reconfigurable devices
US6064740A (en) Method and apparatus for masking modulo exponentiation calculations in an integrated circuit
US20080201592A1 (en) Hibernating a processing apparatus for processing secure data
US8738926B2 (en) Data processing system, method for executing a cryptographic algorithm and method for preparing execution of a cryptographic algorithm
KR101946509B1 (en) System and method for protection from side-channel attacks by varying clock delays
CN109684030B (en) Virtual machine memory key generation device and method, encryption method and SoC system
EP3499788B1 (en) Dynamic masking
US10320562B2 (en) Application specific low-power secure key
Otero et al. A modular peripheral to support self-reconfiguration in SoCs
Mentens Hiding side-channel leakage through hardware randomization: A comprehensive overview
Agrawal et al. Security and privacy of blockchain-based single-bit cache memory architecture for IoT systems
US20050241005A1 (en) Data processing apparatus and method for operating a dual rail circuit component
Mahmoud et al. FPGA-to-CPU undervolting attacks
JP2002055883A (en) Unpredictable microprocessor or microcomputer
JP2014049891A (en) Central processing unit and arithmetic unit
CN101366231A (en) Cryptographic calculation processing circuit
CN106776132A (en) Data recovery system and method
WO2011047064A1 (en) Protecting electronic systems from unauthorized access and hardware piracy
JP4863279B2 (en) Memory system and memory access method
US10999058B2 (en) System-on-chip and security circuit including a system-on-chip of this type
KR20010032564A (en) Data processing device and operating method for preventing a differential current consumption analysis
US9571267B2 (en) Data processor and decryption method
Thoonen Hardening FPGA-based AES implementations against side channel attacks based on power analysis
US8074081B2 (en) Method for replacing contents of a data storage unit

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040330