JP2001264657A - Optical scanner - Google Patents

Optical scanner

Info

Publication number
JP2001264657A
JP2001264657A JP2000075111A JP2000075111A JP2001264657A JP 2001264657 A JP2001264657 A JP 2001264657A JP 2000075111 A JP2000075111 A JP 2000075111A JP 2000075111 A JP2000075111 A JP 2000075111A JP 2001264657 A JP2001264657 A JP 2001264657A
Authority
JP
Japan
Prior art keywords
scanning
light source
laser light
semiconductor laser
beams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000075111A
Other languages
Japanese (ja)
Inventor
Susumu Saito
進 斉藤
Masanobu Sakamoto
順信 坂本
Kenji Mochizuki
健至 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koki Holdings Co Ltd
Original Assignee
Hitachi Koki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Koki Co Ltd filed Critical Hitachi Koki Co Ltd
Priority to JP2000075111A priority Critical patent/JP2001264657A/en
Priority to KR10-2001-0013891A priority patent/KR100396192B1/en
Priority to US09/810,217 priority patent/US6836278B2/en
Publication of JP2001264657A publication Critical patent/JP2001264657A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/47Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light
    • B41J2/471Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light using dot sequential main scanning by means of a light deflector, e.g. a rotating polygonal mirror
    • B41J2/473Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light using dot sequential main scanning by means of a light deflector, e.g. a rotating polygonal mirror using multiple light beams, wavelengths or colours

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem that it is indispensable to hold a scanning line interval to a prescribed value while separating all scanning line intervals uniformly in order to realize high-quality image printing by using a simultaneous scanning system, although the simultaneous scanning system of a plurality of beams is effective in the writing of image information in the high speed and high printing dot density by beam scanning of a laser printer, etc. SOLUTION: An optical system capable of forming a composite beam by using two semiconductor laser arrays in which a plurality of beam outputs are possible by itself and beam scanning of the number corresponding to the output beam count from a laser light source in a prescribed scan layer, is set and a stabilization control means for holding the scanning beam interval equally to this is introduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高速、高印刷ドッ
ト密度印刷に適した、それぞれが独立変調可能な多数本
のレーザビームを同時に並行走査するための光走査装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical scanning apparatus suitable for high-speed, high-print-dot-density printing and for simultaneously scanning a plurality of laser beams, each of which can be independently modulated, in parallel.

【0002】[0002]

【従来の技術】レーザビーム走査による画像情報の書き
込みを基本とするレーザプリンタでは、印刷速度の増大
と高印刷ドット密度化を両立させるための手段として、
複数ビームの同時並行走査方式が有効である事は広く知
られている。例えば、(1)単一出力光のレーザ光源を
2個用い、2つのビームを一括して、偏向、走査した
後、走査面上で2ビームの間隔を制御可能とする2ビー
ム走査方式(特願昭60―86446)、(2)レーザ
光源からの単一ビームを複数に分割し、それぞれ分割ビ
ームごとの光変調器を通過後、偏向、走査し複数の走査
ビームとする方式(特開昭53―146644)、
(3)個別の半導体レーザの出力ビームを光の導波体で
結合し、この光導波体の出射端を近接して配置しアレイ
光源を構成する方式(特開昭54―7328 )、
(4)単一の半導体レーザ光源の中に独立駆動可能なレ
ーザ素子を複数組み込んだアレイ形半導体レーザを使用
する方式(特願昭53―66770)、(5)2個の2
素子アレイ光源を用い、これからの各走査ビームの間隔
を設定値にするために光源位置の調整機構を設ける(特
開平3−107910)、さらには(6)2ビーム走査
用として、ビームピッチ間隔を検知、調整する光学系方
式(特開平9−193465)、などが提案されてい
る。
2. Description of the Related Art In a laser printer based on writing of image information by laser beam scanning, a means for achieving both an increase in printing speed and a higher printing dot density is known.
It is widely known that the simultaneous and parallel scanning method of a plurality of beams is effective. For example, (1) a two-beam scanning method in which two single light source laser light sources are used, two beams are collectively deflected and scanned, and then the interval between the two beams can be controlled on a scanning surface (specifically, No. 60-84646), (2) A method in which a single beam from a laser light source is divided into a plurality of beams, and after passing through an optical modulator for each of the divided beams, deflection and scanning are performed to form a plurality of scanning beams (Japanese Patent Application Laid-Open No. 53-146644),
(3) A method in which output beams of individual semiconductor lasers are coupled by a light waveguide, and an emission end of the optical waveguide is arranged close to the array light source (Japanese Patent Laid-Open No. 54-7328).
(4) A method using an array-type semiconductor laser in which a plurality of independently drivable laser elements are incorporated in a single semiconductor laser light source (Japanese Patent Application No. 53-66770).
An element array light source is used, and a light source position adjusting mechanism is provided to set the interval between each scanning beam to a set value (Japanese Patent Laid-Open No. 3-107910). (6) The beam pitch interval is set for two-beam scanning. An optical system for detecting and adjusting (JP-A-9-193465) has been proposed.

【0003】[0003]

【発明が解決しようとする課題】複数ビーム走査光学系
で画像情報を記録する際には、印刷ドット密度に対応し
て走査直交方向のビーム間隔が適正値からずれている場
合には、走査方向に帯状の濃淡むらが生じ印刷画像の品
質低下をもたらす。このため従来技術(1)では、各ビ
ーム走査毎のサーボ制御方式によるビーム間隔安定化を
図っているが、本方式では3ビーム以上の複数ビーム走
査への適用は困難である。従来技術(2)〜(4)は、
複数ビーム走査線の間隔安定化は考慮されていない。従
来技術(5)では、2ビーム走査の際の各走査線位置を
印刷ジョブの合間に個別に検出し調整を行うもので、長
時間連続運転を要する場合や走査ビーム数が3本以上の
場合には適さない。
When recording image information with a multi-beam scanning optical system, if the beam interval in the scanning orthogonal direction deviates from an appropriate value in accordance with the print dot density, the scanning direction is reduced. In this case, band-like uneven shading occurs, and the quality of a printed image is degraded. Therefore, in the prior art (1), the beam interval is stabilized by the servo control method for each beam scanning, but it is difficult to apply this method to scanning of three or more beams. Conventional technologies (2) to (4)
No consideration is given to stabilizing the spacing between multiple beam scan lines. In the prior art (5), each scanning line position during two-beam scanning is individually detected and adjusted between print jobs. In the case where continuous operation is required for a long time or the number of scanning beams is three or more, Not suitable for

【0004】本発明は、印刷ジョブを中断することなく
複数ビームの走査線間隔をビーム走査毎に検出し、設定
値に対する安定化制御を行うためのもので、画像情報を
高速・高解像度かつ大量に記録・処理する場合にも適用
可能とすることを目的とする。
[0004] The present invention detects the scanning line interval of a plurality of beams for each beam scanning without interrupting a print job, and performs stabilization control with respect to a set value. It is intended to be applicable to the case of recording and processing in a computer.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
の光源には、図2に示すような従来からのアレイ型半導
体レーザを使用する。この光源は、例えば3個のレーザ
素子を有するアレイ光源とすれば、独立変調可能な複数
のレーザ素子91,92,93が同一基板90上に形成
されていて、それぞれの発光部95,96,97が直線
上で等間隔になるように配列している。この例では、簡
単のためレーザ素子数が3個の場合について記述してい
るが、以下の内容は、レーザ素子数とは無関係である。
該レーザ素子からの出力光11,12,13(または、
21,22,23)は、ほぼ同一の光波長と強度を有
し、かつ、それらの偏光方向114,115,116
(または、214,215,216)もレーザ素子の配
列方向19に対して同方向となっている。このような半
導体レーザ光源を2個使用し、これらの半導体レーザか
ら発生した各々の出力ビーム11,12,13および2
1,22,23は合成され1束になり、回転多面鏡およ
びFΘレンズを介して、画像記録媒体である感光ドラム
上を、一括して偏向走査される。したがって、それぞれ
のレーザ光源からの総和のビーム本数で同時並行走査に
よる画像書き込みを行う。このドラム上では、各ビーム
は、それぞれ印刷ドット密度によって決められた間隔に
分離され、画像信号により独立に光強度変調される。
As a light source for solving the above problems, a conventional array type semiconductor laser as shown in FIG. 2 is used. If this light source is, for example, an array light source having three laser elements, a plurality of independently modulatable laser elements 91, 92, and 93 are formed on the same substrate 90, and the light emitting sections 95, 96, 97 are arranged at equal intervals on a straight line. In this example, the case where the number of laser elements is three is described for simplicity, but the following contents are irrelevant to the number of laser elements.
The output light from the laser element 11, 12, 13 (or
21, 22, 23) have substantially the same light wavelength and intensity and their polarization directions 114, 115, 116
(Or 214, 215, 216) are also in the same direction as the arrangement direction 19 of the laser elements. Two such semiconductor laser light sources are used, and output beams 11, 12, 13, and 2 generated from these semiconductor lasers are used.
The bundles 1, 22, and 23 are combined into one bundle, and are collectively deflected and scanned on a photosensitive drum as an image recording medium via a rotary polygon mirror and an F lens. Therefore, image writing by simultaneous and parallel scanning is performed with the total number of beams from the respective laser light sources. On this drum, each beam is separated at intervals determined by the print dot density, and the light intensity is independently modulated by an image signal.

【0006】ここで、複数ビーム走査による印刷画像の
高品質化には、各ビームの走査位置間隔が常に、設定さ
れた値となっていなければならない。このため、個々の
レーザ光源からのビーム間隔については、各走査の開始
端付近で走査ビーム間隔を検出し、仮に設定値からのず
れが生じた場合には、このずれを補正する機構を設け、
安定化を図る。また、アレイ光源1とアレイ光源2の相
対的な位置ずれによって発生する走査ビーム位置ずれに
ついては、各光源からビーム光の一部を取り出し、これ
らのビーム間の走査位置間隔を設定値に安定化する方式
とする。
Here, in order to improve the quality of a printed image by scanning a plurality of beams, the interval between scanning positions of each beam must always be a set value. For this reason, regarding the beam intervals from the individual laser light sources, a scanning beam interval is detected near the start end of each scan, and if there is a deviation from the set value, a mechanism for correcting this deviation is provided.
Stabilize. Regarding the scanning beam position shift caused by the relative position shift between the array light source 1 and the array light source 2, a part of the light beam is extracted from each light source and the scanning position interval between these beams is stabilized at a set value. Method.

【0007】上記の手段により、実用的に入手可能な実
装素子数のアレイ光源を2個採用することにより、単一
のアレイ型半導体レーザの場合にくらべ、走査ビーム本
数が倍増でき、一層の高速化、高dpi化への対応が可
能となる。
By adopting two array light sources having the number of practically available mounting elements by the above means, the number of scanning beams can be doubled as compared with the case of a single array type semiconductor laser, and a higher speed can be achieved. And high dpi can be supported.

【0008】[0008]

【発明の実施の形態】図1に、本発明の複数ビーム走査
光学系の実施例を示す。本光学系は、それぞれ複数の独
立に光変調可能な半導体レーザ素子(ここではそれぞれ
3個の場合について説明する)を内臓した2個のレーザ
光源1及び2、これらの光源からの出力ビームの偏光方
向を互いに直交させるための光源2の出射側に配置した
1/2波長板10、偏光プリズム3、この偏光プリズム
3を通過後に一束にまとめられた合成ビーム4を、形状
整形しかつ回転多面鏡に線状に収束させるための第1光
学系15、さらには回転多面鏡5とこれにより偏向され
た合成ビーム4を所定の走査面17の全域で、それぞれ
均等なビーム径に収束するための走査レンズ6などから
構成される。走査面17での複数のビーム111,11
2,113,121,122,123は、いずれも印刷
ドット密度で決まる間隔に設定された値に等しく分離さ
れている。また、偏光プリズム3の後に置いた1/4波
長板25は両レーザ光源からのビームの直交した偏光方
向をそろえて、各ビームの回転多面鏡での光反射率を等
しく保つために用いている。
FIG. 1 shows an embodiment of a multiple beam scanning optical system according to the present invention. This optical system includes two laser light sources 1 and 2 each including a plurality of semiconductor laser elements capable of independently modulating light (three laser light sources are described here), and polarization of output beams from these light sources. The half-wave plate 10 arranged on the emission side of the light source 2 for making the directions orthogonal to each other, the polarizing prism 3, and the combined beam 4 bundled after passing through the polarizing prism 3 are shaped and shaped into a rotating polygon. A first optical system 15 for linearly converging the mirror, and a rotating polygon mirror 5 and a synthetic beam 4 deflected by the polygon mirror 5 for converging the combined beam 4 to a uniform beam diameter over a predetermined scanning surface 17. It comprises a scanning lens 6 and the like. The plurality of beams 111, 11 on the scanning surface 17
2, 113, 121, 122, and 123 are all separated by a value set at an interval determined by the print dot density. A quarter-wave plate 25 placed after the polarizing prism 3 is used to align the orthogonal polarization directions of the beams from both laser light sources to keep the light reflectance of each beam on the rotating polygon mirror equal. .

【0009】ここで、図2に示したようにレーザ光源1
は、それぞれ独立変調可能な半導体レーザ素子が直線上
に等間隔に配列された構成で、かつ各レーザ素子からの
出力ビーム11,12,13の偏光方向は、配列方向1
9に平行である。各レーザ光源1及び2には、駆動回路
31,32が接続されている。
Here, as shown in FIG.
Has a configuration in which semiconductor laser elements that can be independently modulated are arranged at equal intervals on a straight line, and the polarization directions of output beams 11, 12, and 13 from each laser element are the same in the arrangement direction 1.
9 parallel. Drive circuits 31 and 32 are connected to the laser light sources 1 and 2, respectively.

【0010】2つのレーザ光源は、レーザ素子の配列方
向19が走査面17のビーム走査方向20に対しある所
定の角度Θをなすように配列してある。この角度Θは、
レーザ光源の素子間隔、光源と走査面間の光学系倍率、
及び走査面上の所定ビーム間隔によって決定される。こ
の関係を図3に示してある。半導体レーザ光源のレーザ
素子の配列間隔をd、走査面上の走査ビーム間隔をp、
光学系倍率をmとすると、ビーム走査線方向20に対す
るレーザ素子の配列方向19の傾き角度:Θは次の式1
で与えられる。
The two laser light sources are arranged such that the arrangement direction 19 of the laser elements forms a predetermined angle に 対 し with respect to the beam scanning direction 20 of the scanning surface 17. This angle Θ
Laser light source element spacing, optical system magnification between light source and scanning plane,
And a predetermined beam interval on the scanning surface. This relationship is shown in FIG. The arrangement interval of the laser elements of the semiconductor laser light source is d, the scanning beam interval on the scanning surface is p,
Assuming that the magnification of the optical system is m, the inclination angle of the laser element array direction 19 with respect to the beam scanning line direction 20 is:
Given by

【0011】[0011]

【式1】Θ=sin-1[p/md] それぞれの出力ビームは、偏光プリズム3を介して合成
ビーム4とするため、レーザ光源の一方の側に1/2波
長板10を配置し、レーザ光源からの出力ビームの偏光
方向を互いに直交させてある。合成ビーム4は、駆動電
源33により一定速度で回転する回転多面鏡5、fΘレ
ンズ等で構成される走査レンズ6を介して、レーザ光源
からの出力ビーム11,12,13および21,22,
23に対応する走査ビーム111,112,113,1
21,122,123に変換される。走査面近くには、
走査ビーム位置検出用の光検出器16が配置して有り、
それぞれの走査ビームの通過時刻を検出し、この信号6
0を同期信号として、制御系30からの画像情報信号に
よって各レーザ素子の光強度を変調する。
[Formula 1] [= sin -1 [p / md] In order to convert each output beam into a combined beam 4 through the polarizing prism 3, a half-wave plate 10 is disposed on one side of the laser light source. The polarization directions of the output beams from the laser light source are orthogonal to each other. The combined beam 4 is output from a laser light source through output beams 11, 12, 13 and 21, 22, via a rotary polygon mirror 5, which is rotated at a constant speed by a driving power supply 33, and a scanning lens 6, such as an fΘ lens.
23, the scanning beams 111, 112, 113, 1
21, 122, and 123. Near the scanning plane,
A photodetector 16 for detecting a scanning beam position is arranged,
The passing time of each scanning beam is detected, and this signal 6
Using 0 as a synchronization signal, the light intensity of each laser element is modulated by an image information signal from the control system 30.

【0012】以上により、2個のアレイレーザ光源を用
いた複数ビーム走査が構成されるが、次に、各ビームの
走査間隔の安定化方法について図7を用いて説明する。
A plurality of beam scans using two array laser light sources are configured as described above. Next, a method for stabilizing the scan interval of each beam will be described with reference to FIG.

【0013】2個のアレイレーザ光源を用いた時の、感
光ドラム上での走査線間隔の変動原因として、レーザ光
源間の相対的な位置変動と各光源自体の走査線方向に対
する傾き角変動がある。光源間の相対的な位置変動への
対策は以下のようである。それぞれのレーザ光源1およ
び2と偏光プリズム3との光路中に、走査直交方向にビ
ーム位置を調整するためのアクチュエータ35,36を
配置する。さらに各レーザ光源からの出力ビームの走査
直交方向の相対位置を検出するために、同一基板上に固
定した分割形光検出器53,54を配置し、これにビー
ム位置モニター用にそれぞれの光源からの光エネルギー
の一部を取り出し、モニター光として該光検出器53,
54に照射する。この時のモニター光としては、各レー
ザ光源からの出力ビーム全体としての光束から一部のエ
ネルギーを取り出し利用する、あるいは、それぞれ特定
のビームを1本選んで、このビームの光エネルギーの一
部を取り出し利用することが可能である。
When two array laser light sources are used, the fluctuation of the scanning line interval on the photosensitive drum is caused by the relative position fluctuation between the laser light sources and the inclination angle fluctuation of each light source itself with respect to the scanning line direction. is there. Countermeasures against relative position fluctuation between light sources are as follows. Actuators 35 and 36 for adjusting the beam position in the scanning orthogonal direction are arranged in the optical path between the laser light sources 1 and 2 and the polarizing prism 3. Further, in order to detect the relative position of the output beam from each laser light source in the scanning orthogonal direction, split-type photodetectors 53 and 54 fixed on the same substrate are arranged, and the respective light sources are used for beam position monitoring. A part of the light energy of the photodetector 53,
Irradiate 54. As the monitor light at this time, a part of energy is taken out from the light flux as the whole output beam from each laser light source and used, or one specific beam is selected and a part of the light energy of this beam is used. It is possible to take out and use.

【0014】光検出器53,54は、差分検出が可能な
ように中心線155,156で2分割されたタイプであ
る。モニター光照射によって得られる差分電気信号を、
差動増幅器55,56およびアクチュエータ駆動系3
5,36を介してアクチュエータ51,52を駆動さ
せ、モニター用ビーム位置が常に光検出器53,54の
中心線155,156上に在るように制御する。モニタ
光量の調整は、別の波長板26,27を調整して行う。
光検出器53,54と走査面17を、光学的に共役関係
に保つことにより(光検出器53,54前面の光学系は
図示してない)、中心線155,156の間隔が各レー
ザ光源毎の走査ビーム間隔、例えば、112と122、
あるいは111と121、113と123等の間隔に対
応させることが可能である。また、アクチュエータ3
5,36には、がルバノミラー、あるいは振動ミラーな
どを用いることができる。
The photodetectors 53 and 54 are of a type that is divided into two by center lines 155 and 156 so that a difference can be detected. The difference electric signal obtained by the monitor light irradiation is
Differential amplifiers 55 and 56 and actuator drive system 3
The actuators 51 and 52 are driven via the actuators 5 and 36, and control is performed such that the monitoring beam position is always on the center lines 155 and 156 of the photodetectors 53 and 54. The adjustment of the monitor light amount is performed by adjusting the other wave plates 26 and 27.
By keeping the optical detectors 53 and 54 and the scanning surface 17 in an optically conjugate relationship (the optical system on the front surface of the optical detectors 53 and 54 is not shown), the distance between the center lines 155 and 156 can be set to each laser light source. Scan beam spacing for each, eg, 112 and 122,
Alternatively, it is possible to correspond to intervals such as 111 and 121 and 113 and 123. Actuator 3
A rubano mirror or a vibrating mirror can be used for 5, 36.

【0015】上記ビーム位置検出信号の摘出および制御
は、ビーム走査開始時刻検出のために別の光検出器16
を照射するためのビーム点灯時に同時に行い、走査周期
中この状態をホールドする方式を適用する。これによ
り、2つレーザ光源から出射したビームの走査直交方向
の相対位置を設定間隔で制御・保持することが可能であ
る。
The extraction and control of the beam position detection signal are performed by another photodetector 16 for detecting the beam scanning start time.
Is applied simultaneously when the beam for irradiating is applied, and this state is held during the scanning cycle. This makes it possible to control and hold the relative positions of the beams emitted from the two laser light sources in the scanning orthogonal direction at the set intervals.

【0016】走査ビーム間隔を乱す他の原因であるレー
ザ光源傾き角Θの変動対策を以下に示す。図4に示すよ
うに、各レーザ光源毎の走査ビーム群81(あるいは8
2)において、ある特定の2個のビーム、例えば111
と113に着目し、これらのビームが走査開始時刻検出
用の光検出器16を通過する際の時間間隔Tは、走査線
間隔p、走査速度:v、傾き角Θとすると式2の関係が
ある。
The following is a countermeasure against the fluctuation of the inclination angle 傾 き of the laser light source, which is another cause of disturbing the scanning beam interval. As shown in FIG. 4, a scanning beam group 81 (or 8) for each laser light source is provided.
In 2), certain two beams, for example, 111
And 113, the time interval T when these beams pass through the photodetector 16 for detecting the scanning start time is defined as the scanning line interval p, the scanning speed: v, and the inclination angle Θ. is there.

【0017】[0017]

【式2】 T=2pcot[Θ]/v =2mdcos[Θ]/v この時間間隔に対して、所定値(T0=2t0、t0は隣
接ビーム間の通過時間間隔)からのずれを検出し、この
ずれが生じないようにレーザ光源の傾き角を安定化制御
する。光検出器16からの検出信号60の信号波形64
とこの信号間の時間間隔を電圧値に変換した際の波形7
0も図4に示してある。基準の時間間隔T0に対する電
圧信号がV0、レーザ光源の傾き角度が大の場合の時間
間隔がT1、この時の電圧信号がV1である(T2、V2
傾き角度少の場合に対応する)。光検出信号60は、走
査ビーム群81と82に対応してビーム信号選択器65
によって区別され、それぞれのレーザ光源部に附置され
た回転アクチュエータ61,62を駆動するための制御
系37,38に入力される。図5と図6は、制御系3
7,38の回路構成例およびこの場合のタイムチャート
を示す。すべての走査ビーム信号111A〜123Aの
うちレーザ光源1のみからのビーム信号71により、該
レーザ光源からの注目する2つのビームが通過する時間
間隔72を決める。サンプリング回路74により、この
時間72内にコンデンサーに充電される電圧V75が得ら
れ、この価が注目ビームの通過時間72に対応し、これ
と設定通過時間に対応する基準電圧V0 76との差分
出力信号77で回転アクチュエータ61を駆動し、該差
分出力信号77がゼロとなるようにして、ホールド期間
73の間中この状態を維持する。信号79はリセット信
号で各走査毎、あるいは適当な走査回数間隔で上記のサ
ンプリング/ホールド動作を繰り返すことが可能であ
る。回転アクチュエータ62の駆動系38についても同
様である。
[Formula 2] T = 2pcot [2] / v = 2mdcos [Θ] / v With respect to this time interval, a deviation from a predetermined value (T 0 = 2t 0 , t 0 is a passage time interval between adjacent beams). Then, the tilt angle of the laser light source is stably controlled so that this deviation does not occur. Signal waveform 64 of detection signal 60 from photodetector 16
And waveform 7 when the time interval between these signals is converted into a voltage value
0 is also shown in FIG. The voltage signal for the reference time interval T 0 is V 0 , the time interval when the tilt angle of the laser light source is large is T 1 , and the voltage signal at this time is V 1 (T 2 and V 2 are small tilt angles). Corresponding to the case). The light detection signal 60 is output from a beam signal selector 65 corresponding to the scanning beam groups 81 and 82.
And input to the control systems 37 and 38 for driving the rotary actuators 61 and 62 attached to the respective laser light source units. 5 and 6 show the control system 3
7 and 38 show circuit configuration examples and a time chart in this case. A time interval 72 during which two beams of interest from the laser light source pass is determined by a beam signal 71 from only the laser light source 1 among all the scanning beam signals 111A to 123A. The sampling circuit 74 obtains a voltage V75 that charges the capacitor within this time 72. This value corresponds to the passing time 72 of the beam of interest, and the difference output between this and the reference voltage V0 76 corresponding to the set passing time. The rotation actuator 61 is driven by the signal 77 so that the difference output signal 77 becomes zero, and this state is maintained during the hold period 73. The signal 79 is a reset signal, and the above-described sampling / holding operation can be repeated at each scanning or at an appropriate scanning count interval. The same applies to the drive system 38 of the rotary actuator 62.

【0018】以上の光学系構成により、2個の独立した
アレーレーザ光源からの複数の出力ビームを合わせて同
時並行走査する際に、走査面上での各走査ビームの隣接
間隔を所定間隔に常に保持することができ、高速かつ高
精度のレーザビーム書き込みが可能となる。
With the above-described optical system configuration, when a plurality of output beams from two independent array laser light sources are simultaneously scanned in parallel, the adjacent intervals of each scanning beam on the scanning surface are always maintained at a predetermined interval. And high-speed and high-precision laser beam writing becomes possible.

【0019】なお、これまでの説明では、レーザ光源
は、3個のレーザ素子を含む場合を対象にしたが、本発
明はレーザ素子を2個以上含むアレーレーザ光源であれ
ば、すべて適用出来るものである。
In the above description, the laser light source includes three laser elements. However, the present invention is applicable to any array laser light source including two or more laser elements. is there.

【0020】[0020]

【発明の効果】本発明により、複数のビームを出射する
ことが可能な半導体レーザアレイ光源を同時に2個使用
する複数ビーム走査光学系で、すべてのビームの隣接走
査間隔を予め定められた値に安定化制御することが可能
となる。これにより、高速、かつ高ドット密度書き込み
を高精度で実現出来るようになり、高速、高印刷品質レ
ーザプリンタの実現に役立つものである。
According to the present invention, in a multi-beam scanning optical system using two semiconductor laser array light sources capable of emitting a plurality of beams at the same time, the adjacent scanning interval of all the beams is set to a predetermined value. Stabilization control can be performed. As a result, high-speed, high-dot-density writing can be realized with high accuracy, which is useful for realizing a high-speed, high-quality laser printer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例である光走査装置の模式図で
ある。
FIG. 1 is a schematic view of an optical scanning device according to an embodiment of the present invention.

【図2】半導体レーザアレイ光源の概略構成を示す模式
図である。
FIG. 2 is a schematic diagram showing a schematic configuration of a semiconductor laser array light source.

【図3】レーザ素子アレイ間隔と走査ビーム間隔の関係
を示す模式図である。
FIG. 3 is a schematic diagram showing a relationship between a laser element array interval and a scanning beam interval.

【図4】半導体レーザアレイ光源の傾き補正原理を示す
模式図である。
FIG. 4 is a schematic diagram illustrating the principle of tilt correction of a semiconductor laser array light source.

【図5】半導体レーザアレイ光源の傾き補正のための回
路図である。
FIG. 5 is a circuit diagram for correcting a tilt of a semiconductor laser array light source.

【図6】本発明による傾き補正回路の信号タイムチャー
トである。
FIG. 6 is a signal time chart of the inclination correction circuit according to the present invention.

【図7】本発明の他の実施例である光走査装置の模式図
である。
FIG. 7 is a schematic view of an optical scanning device according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,2…レーザアレイ光源、3…偏光プリズム、5…回
転多面鏡、6…走査レンズ、10…1/2波長板、16
…走査開始時刻検知用光検出器、51,52…副走査方
向ビーム位置調整用アクチュエータ、53,54…副走
査方向走査ビーム位置検知用光検出器、61,62…レ
ーザアレイ光源傾き調整用アクチュエータ。
1, 2, laser array light source, 3, polarizing prism, 5 rotating polygon mirror, 6 scanning lens, 10 1/2 wavelength plate, 16
... Scanning start time detecting photodetector, 51, 52... Subscanning direction beam position adjusting actuator, 53, 54... Subscanning direction scanning beam position detecting photodetector, 61, 62... Laser array light source tilt adjusting actuator .

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2C362 AA03 AA10 AA14 AA45 AA48 BA61 BA69 BA71 BB29 BB30 BB32 BB34 BB46 2H045 AA01 BA02 BA23 BA33 CA23 CA88 CA98 DA21 5C072 AA03 BA17 CA06 HA02 HA04 HA06 HA08 HA14 HB08 HB15 XA01  ────────────────────────────────────────────────── ─── Continued on the front page F term (reference) 2C362 AA03 AA10 AA14 AA45 AA48 BA61 BA69 BA71 BB29 BB30 BB32 BB34 BB46 2H045 AA01 BA02 BA23 BA33 CA23 CA88 CA98 DA21 5C072 AA03 BA17 CA06 HA02 HA04 HA06 HA08 HA14 HB08

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 直線状に等間隔に配列した複数の発光素
子を含む2個の半導体レーザ光源と、ビーム走査手段
と、ビーム収束手段を有し、該半導体レーザ光源からの
複数ビームを画像記録媒体上で所定のピッチ間隔で並行
走査をする複数ビームの光走査装置において、 それぞれの半導体レーザ光源毎のビーム走査方向に対す
る複数の発光素子の傾き角をビーム走査中に常時制御す
る制御手段を設けたことを特徴とする光走査装置。
An image recording apparatus includes two semiconductor laser light sources including a plurality of light emitting elements arranged linearly at equal intervals, a beam scanning unit, and a beam converging unit, and image-records a plurality of beams from the semiconductor laser light sources. In a multi-beam optical scanning device that performs parallel scanning at a predetermined pitch interval on a medium, control means is provided for constantly controlling the inclination angles of a plurality of light emitting elements with respect to the beam scanning direction for each semiconductor laser light source during beam scanning. An optical scanning device.
【請求項2】 各光源ごとのビームがビーム走査開始端
付近に設けた光検出器を通過する時間間隔のずれを検出
して、該光源の傾き角を調整する制御手段を設けたこと
を特徴とする請求項1記載の光走査装置。
2. A control means for detecting a shift in a time interval at which a beam for each light source passes through a photodetector provided near a beam scanning start end and adjusting a tilt angle of the light source. The optical scanning device according to claim 1.
【請求項3】 直線状に等間隔に配列した複数の発光素
子を含む2個の半導体レーザ光源と、ビーム走査手段
と、ビーム収束手段を有し、該半導体レーザ光源からの
複数ビームを画像記録媒体上で所定のピッチ間隔で並行
走査をする複数ビームの光走査装置において、 該光源からの出射ビームの走査方向と直交方向の位置
を、 ビーム走査中にも常時検出、該光源の相対的位置
変動に起因する走査線ピッチ間隔を制御する制御手段を
設けたことを特徴とする光走査装置。
3. It has two semiconductor laser light sources including a plurality of light emitting elements arranged linearly at equal intervals, a beam scanning means, and a beam converging means, and image-records a plurality of beams from the semiconductor laser light sources. In a multi-beam optical scanning device that performs parallel scanning at a predetermined pitch interval on a medium, a position in a direction orthogonal to a scanning direction of a beam emitted from the light source is always detected even during beam scanning, and a relative position of the light source An optical scanning device comprising a control unit for controlling a scanning line pitch interval caused by a fluctuation.
【請求項4】 直線状に等間隔に配列した複数の発光素
子を含む2個の半導体レーザ光源と、ビーム走査手段
と、ビーム収束手段を有し、該半導体レーザ光源からの
複数ビームを画像記録媒体上で所定のピッチ間隔で並行
走査をする複数ビームの光走査装置において、 該光源からの出射ビーム走査方向と直交方向の位置およ
び該光源のビーム走査方向に対する発光素子の配列方向
の傾き角を、 常時制御する制御手段を設けたことを特
徴とする光走査装置。
4. It has two semiconductor laser light sources including a plurality of light emitting elements arranged linearly at equal intervals, a beam scanning unit, and a beam converging unit, and records an image of a plurality of beams from the semiconductor laser light source. In a multi-beam optical scanning device that performs parallel scanning at a predetermined pitch interval on a medium, a position in a direction orthogonal to a scanning direction of a beam emitted from the light source and a tilt angle of an arrangement direction of the light emitting elements with respect to the beam scanning direction of the light source are determined. An optical scanning device comprising a control means for constantly controlling.
JP2000075111A 2000-03-17 2000-03-17 Optical scanner Pending JP2001264657A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000075111A JP2001264657A (en) 2000-03-17 2000-03-17 Optical scanner
KR10-2001-0013891A KR100396192B1 (en) 2000-03-17 2001-03-17 Optical scanning apparatus
US09/810,217 US6836278B2 (en) 2000-03-17 2001-03-19 Optical scanning apparatus using a plurality of laser beams

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000075111A JP2001264657A (en) 2000-03-17 2000-03-17 Optical scanner

Publications (1)

Publication Number Publication Date
JP2001264657A true JP2001264657A (en) 2001-09-26

Family

ID=18593053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000075111A Pending JP2001264657A (en) 2000-03-17 2000-03-17 Optical scanner

Country Status (1)

Country Link
JP (1) JP2001264657A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7256815B2 (en) 2001-12-20 2007-08-14 Ricoh Company, Ltd. Image forming method, image forming apparatus, optical scan device, and image forming apparatus using the same
JP2008170518A (en) * 2007-01-09 2008-07-24 Konica Minolta Business Technologies Inc Laser scanning optical apparatus
DE102009011667A1 (en) 2008-03-04 2009-10-22 Ricoh Co., Ltd. Imaging device
US7626722B2 (en) 2002-06-17 2009-12-01 Ricoh Company, Ltd. Image recording apparatus
US7706040B2 (en) 2002-03-15 2010-04-27 Ricoh Company, Ltd. Optical scanning apparatus, illuminant apparatus and image forming apparatus
US7813021B2 (en) 2006-06-21 2010-10-12 Ricoh Company, Ltd. Light scanning apparatus and image forming apparatus including light scanning apparatus
JP2011148310A (en) * 2010-01-20 2011-08-04 Palo Alto Research Center Inc Apparatus for forming image on photosensitive surface
US8319811B2 (en) 2008-09-05 2012-11-27 Ricoh Company, Limited Scanning line aligned image forming apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7256815B2 (en) 2001-12-20 2007-08-14 Ricoh Company, Ltd. Image forming method, image forming apparatus, optical scan device, and image forming apparatus using the same
US7706040B2 (en) 2002-03-15 2010-04-27 Ricoh Company, Ltd. Optical scanning apparatus, illuminant apparatus and image forming apparatus
US7626722B2 (en) 2002-06-17 2009-12-01 Ricoh Company, Ltd. Image recording apparatus
US7813021B2 (en) 2006-06-21 2010-10-12 Ricoh Company, Ltd. Light scanning apparatus and image forming apparatus including light scanning apparatus
JP2008170518A (en) * 2007-01-09 2008-07-24 Konica Minolta Business Technologies Inc Laser scanning optical apparatus
DE102009011667A1 (en) 2008-03-04 2009-10-22 Ricoh Co., Ltd. Imaging device
US7929006B2 (en) 2008-03-04 2011-04-19 Ricoh Company, Ltd. Nonparallel beam scanning apparatus for laser printer
US8319811B2 (en) 2008-09-05 2012-11-27 Ricoh Company, Limited Scanning line aligned image forming apparatus
JP2011148310A (en) * 2010-01-20 2011-08-04 Palo Alto Research Center Inc Apparatus for forming image on photosensitive surface

Similar Documents

Publication Publication Date Title
KR100396192B1 (en) Optical scanning apparatus
US8072667B2 (en) Optical scanning device and image forming apparatus
US7697180B2 (en) Light deflector, optical scanner, and image forming apparatus
EP1147906B1 (en) Multi-beam exposure apparatus
JPH0876039A (en) Multi-beam laser recorder
US5808656A (en) Arrangement and process for generating a matrix image on a photosensitive recording substrate
JP2001264657A (en) Optical scanner
JPH02179603A (en) Multibeam scanner
US7858923B2 (en) Light beam scanning apparatus and image forming apparatus provided with the same
KR100754215B1 (en) Two-dimensional surface emitting laser array, multi-beam scanning unit employing the same and image forming apparatus employing the multi-beam scanning unit
JPH0582905A (en) Light source unit
EP0773461B1 (en) Multibeam scanning method and apparatus
US6825868B2 (en) Radiation image data recording method employing a rotating reflector and multiple radiation beams
EP0549204B1 (en) Spot position control in a raster output scanning device
US8320028B2 (en) Optical scanning apparatus
JP2001264658A (en) Beam scanner
EP1202550B1 (en) Laser irradiation device and image recorder
JP2007301731A (en) Light beam scanner, light beam scanning method, and light beam scanning program
JP2743858B2 (en) Optical printer
JP4083935B2 (en) Image forming apparatus
JPS61137122A (en) Laser printer device
JP5397723B2 (en) Optical scanning device
JP3758082B2 (en) Optical scanning device
JP3441310B2 (en) Multi-beam scanner
JPH0519197A (en) Optical device using semiconductor laser array

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080704

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090929