JP2001264427A - Radar - Google Patents

Radar

Info

Publication number
JP2001264427A
JP2001264427A JP2000080452A JP2000080452A JP2001264427A JP 2001264427 A JP2001264427 A JP 2001264427A JP 2000080452 A JP2000080452 A JP 2000080452A JP 2000080452 A JP2000080452 A JP 2000080452A JP 2001264427 A JP2001264427 A JP 2001264427A
Authority
JP
Japan
Prior art keywords
weight coefficient
sum
signal
data
beam weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2000080452A
Other languages
Japanese (ja)
Inventor
Hideyuki Kimura
英之 木村
Hidetoshi Furukawa
英俊 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000080452A priority Critical patent/JP2001264427A/en
Publication of JP2001264427A publication Critical patent/JP2001264427A/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a radar which effectively measures the angular position of a target corresponding to an area of the angular measurement. SOLUTION: First and second digital beam forming circuits 74, 75 are connected in parallel to an active array radar receiver so that the mono-pulse angular measurement signal and the amplitude comparison angular measurement signal are obtained from an angular error voltage measurement circuit 73 and an amplitude comparison circuit 77, respectively by switching circuits 761, 762 in a selectively switching manner. As a result, in the angular measurement area having a low angle of elevation, the amplitude comparison angular measurement is correct with less influence of the multi-pass such as the ground reflecting wave. On the other hand, in the angular measurement area having the high angle of elevation, the mono-pulse angular measurement can be achieved with a large angle of elevation, and the target position (angular measurement) of the target can be effectively detected corresponding to a designated coverage.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、走査空間領域を
区分し、その区分に対応してモノパルス測角または振幅
比較測角のいずれかを選択的に行い、目標位置を的確か
つ効果的に測角し得るレーダ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention divides a scanning space area, selectively performs either a monopulse angle measurement or an amplitude comparison angle measurement in accordance with the division, and accurately and effectively measures a target position. The present invention relates to a radar device that can be angled.

【0002】[0002]

【従来の技術】レーダ波によるモノパルス測角あるいは
振幅比較測角により、目標物の位置方位を測定できるこ
とが知られている。
2. Description of the Related Art It is known that the position and orientation of a target can be measured by monopulse angle measurement or amplitude comparison angle measurement using radar waves.

【0003】図3は従来のモノパルス測角を行うように
構成されたDBF(DigitalBeam Form
ing:デジタルビーム形成)レーダ装置を示す構成図
である。
FIG. 3 shows a DBF (Digital Beam Form) configured to perform a conventional monopulse angle measurement.
FIG. 1 is a configuration diagram showing a (ing: digital beam forming) radar apparatus.

【0004】すなわち、ダイポールアンテナ等からなる
多数のアンテナ素子1が面アレイを形成するように配置
され、各アンテナ素子1にはそれぞれ送受信モジュール
2が接続されている。これら各送受信モジュール2に
は、給電部3を経て送信機4に至る送信系と、受信機
5、A/D変換器6、信号処理部7を経て図示しないレ
ーダ指示器等に連なりアクティブアレイレーダ受信機を
構成する受信系とが接続されている。
[0004] That is, a large number of antenna elements 1 such as dipole antennas are arranged so as to form a plane array, and a transmission / reception module 2 is connected to each antenna element 1. Each of these transmission / reception modules 2 is connected to a transmission system via a power supply unit 3 to a transmitter 4, a receiver 5, an A / D converter 6, a signal processing unit 7 and a radar indicator (not shown). A receiving system constituting the receiver is connected.

【0005】送受信モジュール5には、送受信用の各増
幅器、移相器、送受経路切替えスイッチ、及びこれらの
制御回路等が内蔵されていて、レーダ制御部8からの制
御信号により、送受の切替え及びレーダ送信信号の位相
制御が行われ、アンテナ素子1では指定方向にアンテナ
パターンが形成されるように構成されている。
The transmission / reception module 5 has built-in transmission / reception amplifiers, phase shifters, transmission / reception path changeover switches, control circuits for these circuits, and the like. The transmission / reception switching and transmission / reception are controlled by a control signal from a radar control unit 8. The phase of the radar transmission signal is controlled, and the antenna element 1 is configured to form an antenna pattern in a specified direction.

【0006】アンテナ素子1で受信された目標からの反
射信号は、受信機5で増幅された後、A/D変換器6で
デジタル信号に変換され、信号処理部7のデジタルビー
ム形成(DBF)回路71に供給される。
[0006] The reflected signal from the target received by the antenna element 1 is amplified by the receiver 5, converted into a digital signal by the A / D converter 6, and digitally formed (DBF) by the signal processing unit 7. It is supplied to the circuit 71.

【0007】DBF回路71は、図4(a)に示すよう
に、アンテナ素子1を介して、例えば、仰角度方向に一
部重なり合った2つのアンテナパターン6a,6bによ
る目標反射信号を導入し、ウエイト係数設定回路72に
おいて設定されたアンテナパターンの和ビームウエイト
係数データ72a及び差ビームウエイト係数データ72
bの各演算係数を用いて演算して、図4(b)に示すよ
うに、和ビーム71a及び差ビーム71bの各信号を生
成し、目標反射信号とともに角度誤差電圧算出回路73
に供給する。
As shown in FIG. 4A, the DBF circuit 71 introduces, via the antenna element 1, target reflected signals from two antenna patterns 6a and 6b which partially overlap in the elevation angle direction, for example. Sum beam weight coefficient data 72a and difference beam weight coefficient data 72 of the antenna pattern set in the weight coefficient setting circuit 72.
4B, each signal of the sum beam 71a and the difference beam 71b is generated, and the angle error voltage calculation circuit 73 is generated together with the target reflected signal, as shown in FIG.
To supply.

【0008】角度誤差電圧算出回路73は、和ビーム7
1a及び差ビーム71bから、図4(c)に示すような
角度誤差電圧特性曲線上の電圧値を算出して出力端子7
3aから導出するので、その電圧値の読取りによって目
標位置の方位(仰角度)を検出することができる。
The angle error voltage calculation circuit 73 calculates the sum beam 7
1a and the difference beam 71b, a voltage value on the angle error voltage characteristic curve as shown in FIG.
Since it is derived from 3a, the azimuth (elevation angle) of the target position can be detected by reading the voltage value.

【0009】目標位置の例えば仰角方位を検出(測角)
するための、デジタルビーム形成回路71で形成される
和ビーム71a及び差ビーム71bのアンテナパターン
は、図5に示すように、目標(M)方向へ向けた和ビー
ム71aを中心にして、上下(仰角)に2つの差ビーム
71b,71bが形成される。
For example, an elevation direction of a target position is detected (angle measurement).
As shown in FIG. 5, the antenna patterns of the sum beam 71a and the difference beam 71b formed by the digital beam forming circuit 71 are vertically and vertically (centered) with respect to the sum beam 71a directed to the target (M) direction. (The elevation angle), two difference beams 71b, 71b are formed.

【0010】すなわち、モノパルス測角では、図5に示
すように、下方(低仰角)を指向する差ビーム71b
は、目標からの直接波のほかに、地表面Eに反射して受
信される目標反射信号(間接波)がノイズとして受信処
理されるので、誤った測角が行われるという欠点があっ
た。
That is, in the monopulse angle measurement, as shown in FIG. 5, the difference beam 71b directed downward (low elevation angle)
However, in addition to the direct wave from the target, the target reflected signal (indirect wave) reflected and received on the ground surface E is subjected to reception processing as noise, so that there is a disadvantage that an incorrect angle measurement is performed.

【0011】また、図3に示した従来のレーダ装置で
は、DBF回路71において、ウエイト係数の設定によ
り、仰角方位に若干角度を変えた2つのアンテナパター
ンを形成し、目標反射波の受信振幅レベルの差から目標
位置方位を検出する、いわゆる振幅比較測角を行うよう
に構成することもできる。
In the conventional radar apparatus shown in FIG. 3, the DBF circuit 71 forms two antenna patterns at slightly different angles in the elevation direction by setting the weight coefficient, and sets the reception amplitude level of the target reflected wave. It is also possible to perform so-called amplitude comparison angle measurement for detecting the target position azimuth from the difference.

【0012】この振幅比較測角は、図5に示したモノパ
ルス測角とは相違し、測角に際し、わずかな角度差を有
する2つのアンテナパターンを目標位置方向に向けて形
成して測角を行うので、測角方向でのビームの広がりは
小さくマルチパス上の間接波を高レベルで受信してしま
うことは避けられる。しかし、振幅比較測角は、単に指
向方向の異なる2つのアンテナパターンによる受信レベ
ルの相対比較によるので、目標位置方向を高精度に捕ら
え難いという特徴がある。
This amplitude comparison angle measurement is different from the monopulse angle measurement shown in FIG. 5, and in angle measurement, two antenna patterns having a slight angle difference are formed toward the direction of the target position to measure the angle. Therefore, the spread of the beam in the angle measurement direction is small, and it is possible to avoid receiving the indirect wave on the multipath at a high level. However, since the amplitude comparison angle measurement is based solely on the relative comparison of the reception levels of two antenna patterns having different directivity directions, it is difficult to accurately detect the target position direction.

【0013】[0013]

【発明が解決しようとする課題】いずれにしても、DB
F回路を備えた従来のレーダ装置は、DBF回路におい
て、モノパルス測角あるいは振幅比較測角のいずれか一
方の測角により、目標位置方位の検出が行なわれてい
た。
In any case, the DB
In a conventional radar apparatus provided with an F circuit, a target position and azimuth is detected by one of a monopulse angle measurement and an amplitude comparison angle measurement in a DBF circuit.

【0014】しかしながら、モノパルス測角では上述の
ようにマルチパスの一つとして仰角度が低い目標領域か
らの位置信号を、地上反射波によめノイズとして捕らえ
やすく、目標位置方位を誤検出してしまうという問題が
あった。
However, in the monopulse angle measurement, as described above, as one of the multipaths, a position signal from a target area having a low elevation angle is easily detected as noise by ground reflected waves, and the target position azimuth is erroneously detected. There was a problem.

【0015】また、振幅比較測角は、単に一部重なり合
う2つのアンテナパターンによる信号検出レベルの差異
から、目標位置方向を検出するので、高精度の測角は困
難であった。
The amplitude comparison angle measurement detects the target position direction only from the difference in signal detection level between two partially overlapping antenna patterns, so that it is difficult to measure the angle with high accuracy.

【0016】そこで、本発明は簡単な構成により、目標
位置検出領域(覆域)に対応して、より的確かつ最適な
パターンで目標位置を測角できるレーダ装置を提供する
ことを目的とする。
Accordingly, it is an object of the present invention to provide a radar device capable of measuring a target position in a more accurate and optimum pattern in a simple configuration corresponding to a target position detection area (covered area).

【0017】[0017]

【課題を解決するための手段】本発明のレーダ装置は、
アクティブアレイレーダ受信機に並列に接続された第1
及び第2のデジタルビーム形成手段と、この第1及び第
2のデジタルビーム形成手段に、和ビームウェイト係数
及び差ビームウエイト係数のデータ、または上方和ビー
ムウエイト係数及び下方和ビームウエイト係数のデータ
のいずれかを、切替手段を介して、それぞれ対応供給可
能に構成されたウエイト係数設定手段と、前記和ビーム
ウエイト係数のデータ供給を受けて演算導出された前記
第1のデジタルビーム形成手段からの和ビーム信号と、
前記差ビームウエイト係数のデータ供給を受けて演算導
出された第2のデジタルビーム形成手段からの差ビーム
信号とによりモノパルス測角信号を導出する角度誤差電
圧算出手段と、前記上方和ビームウエイト係数のデータ
供給を受けて演算導出された前記第1のデジタルビーム
形成手段からの上方和ビーム信号と、前記下方和ビーム
ウエイト係数のデータ供給を受けて演算導出された第2
のデジタルビーム形成手段からの下方和ビーム信号とに
より振幅比較測角信号を導出する振幅比較手段と、前記
切替手段に対し、予め設定された測角領域に対応して切
替え操作を行うように制御する制御手段とを具備するこ
とを特徴とする。
The radar apparatus according to the present invention comprises:
A first parallel-connected active array radar receiver
And second digital beam forming means, and the first and second digital beam forming means are provided with data of a sum beam weight coefficient and a difference beam weight coefficient, or data of an upper sum beam weight coefficient and a lower sum beam weight coefficient. Either a weight coefficient setting means configured to be able to supply correspondingly via a switching means, and a sum from the first digital beam forming means calculated and derived by receiving the data of the sum beam weight coefficient. A beam signal,
Angle error voltage calculation means for deriving a monopulse angle measurement signal based on the difference beam signal from the second digital beam forming means which has been calculated and received in response to the data supply of the difference beam weight coefficient; and An upper sum beam signal from the first digital beam forming means calculated and derived by receiving the data supply, and a second calculated and derived by receiving data supply of the lower sum beam weight coefficient.
And an amplitude comparison means for deriving an amplitude comparison angle measurement signal based on the lower sum beam signal from the digital beam forming means, and controlling the switching means to perform a switching operation corresponding to a predetermined angle measurement area. And control means for performing the control.

【0018】このように、本発明によれば、第1及び第
2のDBF(デジタルビーム形成)手段を備え、かつ予
め設定された測角領域に対応した制御手段による切替え
操作により、走査覆域に対応してモノパルス測角または
振幅比較測角のいずれかを選択的に行うので、目標位置
角度(覆域)に対応した最適な測角が可能なレーダ装置
を実現することができる。
As described above, according to the present invention, the first and second DBF (digital beam forming) means are provided, and the switching coverage by the control means corresponding to a predetermined angle measurement area is set. Since either the monopulse angle measurement or the amplitude comparison angle measurement is selectively performed in response to the above, a radar device capable of performing an optimum angle measurement corresponding to the target position angle (coverage) can be realized.

【0019】[0019]

【発明の実施の形態】以下この発明によるレーダ装置の
一実施の形態を図1及び図2を参照して詳細に説明す
る。なお、図3ないし図5に示した従来の構成と同一構
成には同一符号を付して、詳細な説明は省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of a radar apparatus according to the present invention will be described below in detail with reference to FIGS. The same components as those of the conventional configuration shown in FIGS. 3 to 5 are denoted by the same reference numerals, and detailed description is omitted.

【0020】すなわち、図1は本発明によるレーダ装置
の一実施の形態を示した構成図である。図1において、
面アレイを形成した多数のアンテナ素子1にはそれぞれ
送受信モジュール2が接続され、各送受信モジュール2
は、給電部3及び送信機4の送信系、並びに、受信系を
構成する受信機5、A/D変換器6、信号処理部7及び
図示しないレーダ指示器等に接続されている。
FIG. 1 is a block diagram showing an embodiment of a radar apparatus according to the present invention. In FIG.
A transmitting / receiving module 2 is connected to each of the multiple antenna elements 1 forming the surface array.
Is connected to a transmission system of the power supply unit 3 and the transmitter 4, and a receiver 5, an A / D converter 6, a signal processing unit 7, a radar indicator (not shown), and the like, which constitute a reception system.

【0021】送受信モジュール5には、送受信用の各増
幅器、移相器、送受経路切替えスイッチ、及びこれらの
制御回路等が内蔵されていて、レーダ制御部8からの信
号により、送受の切替え及びレーダ送信信号の位相制御
が行われ、アンテナ素子1では指定方向に対する所定の
アンテナパターン形成が行われる。
The transmission / reception module 5 has built-in transmission / reception amplifiers, phase shifters, transmission / reception path switching switches, control circuits for these circuits, and the like. The transmission / reception switching and radar are performed by a signal from the radar control unit 8. The phase of the transmission signal is controlled, and the antenna element 1 forms a predetermined antenna pattern in the designated direction.

【0022】アンテナ素子1で受信された目標からの反
射信号は、受信機5で増幅された後、A/D変換器6を
経て、並列接続された第1及び第2の各デジタルビーム
形成(DBF)回路74,75に供給される。
The reflected signal from the target received by the antenna element 1 is amplified by the receiver 5 and then passed through the A / D converter 6 to form first and second digital beamformers (parallel connected). DBF) circuits 74 and 75.

【0023】第1及び第2のDBF回路74,75に
は、第1の切替回路761により、ウエイト係数設定回
路72に格納された和ビームウェイト係数データ72a
及び差ビームウエイト係数データ72b、または上方和
ビームウエイト係数データ72c及び下方和ビームウエ
イト係数データ72dのいずれかがそれぞれ対応して切
替え供給されるように構成されている。なお、この実施
の形態では、上方和ビームとは、目標位置方向を中心に
して仰角度の大きい方のアンテナパターンを称し、下方
和ビームとは一部上方和ビームと重なりかつ目標位置方
向を中心にして仰角度の小さい方のアンテナパターンを
称するものとする。
The first and second DBF circuits 74 and 75 are provided by a first switching circuit 761 with the sum beam weight coefficient data 72a stored in the weight coefficient setting circuit 72.
And the difference beam weight coefficient data 72b, or the upper sum beam weight coefficient data 72c and the lower sum beam weight coefficient data 72d are switched and supplied correspondingly. In this embodiment, the upper sum beam refers to an antenna pattern having a larger elevation angle with respect to the target position direction, and the lower sum beam partially overlaps the upper sum beam and is centered on the target position direction. Is referred to as an antenna pattern having a smaller elevation angle.

【0024】そこで、和ビームウエイト係数データ72
aの供給を受けて和ビーム信号を演算導出した第1のデ
ジタルビーム形成回路74、及び差ビームウエイト係数
データ72bの供給を受けて差ビーム信号を演算導出し
た第2のデジタルビーム形成回路75は、それぞれ第2
の切替回路77を介して、従来の構成と同様に、角度誤
差算出回路73に接続され、ここで算出された目標位置
のモノパルス測角信号が出力端子73aから導出され
る。
Therefore, the sum beam weight coefficient data 72
The first digital beam forming circuit 74 which has calculated and derived the sum beam signal upon receiving the supply of a, and the second digital beam forming circuit 75 which has calculated and derived the difference beam signal upon receiving the difference beam weight coefficient data 72b. , Each second
Is connected to the angle error calculation circuit 73 in the same manner as in the conventional configuration, and the monopulse angle measurement signal of the target position calculated here is derived from the output terminal 73a.

【0025】他方、第1の切替回路761の切替動作に
より、上方和ビームウエイト係数データ72cの供給を
受けた第1のデジタルビーム形成回路74は上方和ビー
ム信号を演算導出し、下方和ビームウエイト係数データ
72dの供給を受けた第2のデジタルビーム形成回路7
5は下方和ビーム信号を演算導出し、第2の切替回路7
62を介してに振幅比較回路77に供給されるので、振
幅比較回路77は目標位置方位に対する振幅測角信号を
生成して出力端子77aから導出する。
On the other hand, by the switching operation of the first switching circuit 761, the first digital beam forming circuit 74 receiving the supply of the upper sum beam weight coefficient data 72c calculates and derives the upper sum beam signal, and outputs the lower sum beam weight. The second digital beam forming circuit 7 receiving the supply of the coefficient data 72d
5 calculates and derives a lower sum beam signal, and a second switching circuit 7
The amplitude comparison circuit 77 is supplied to the amplitude comparison circuit 77 via 62, so that the amplitude comparison circuit 77 generates an amplitude measurement signal for the target position and azimuth and derives it from the output terminal 77a.

【0026】上記第1及び第2の切替回路761,76
2の切替動作は切替制御回路78からの制御信号により
同期的に行われ、この実施の形態では、切替制御回路7
8は、測角領域設定回路79からの指令信号に基づき第
1及び第2の切替回路761,762を同期的に切替制
御するように構成した。
The first and second switching circuits 761, 76
2 is performed synchronously by a control signal from the switching control circuit 78. In this embodiment, the switching control circuit 7
8 is configured to synchronously switch control the first and second switching circuits 761 and 762 based on a command signal from the angle measurement area setting circuit 79.

【0027】すなわち、測角領域設定回路79は、予め
目標位置の測角領域(覆域)を仰角方向に2分し、高仰
角領域での目標位置方位検出に際しては、モノパルス測
角を行うように、また低仰角領域での目標位置方位検出
に際しては、振幅比較測角を行うように切替制御回路7
8に指令信号を供給する。切替制御回路78による第1
及び第2の切替回路761,762の切替操作により、
その指令信号に対応した覆域の測角信号が角度誤差算出
回路73の出力端子73aまたは振幅比較回路77の出
力端子77aから導出される。
That is, the angle measurement area setting circuit 79 preliminarily divides the angle measurement area (covered area) of the target position into two in the elevation direction, and performs monopulse angle measurement when detecting the target position azimuth in the high elevation angle area. In addition, when detecting the target position and azimuth in the low elevation angle region, the switching control circuit 7 performs an amplitude comparison angle measurement.
8 is supplied with a command signal. First by the switching control circuit 78
And by the switching operation of the second switching circuits 761 and 762,
The angle measurement signal of the coverage area corresponding to the command signal is derived from the output terminal 73a of the angle error calculation circuit 73 or the output terminal 77a of the amplitude comparison circuit 77.

【0028】従って、この実施の形態によれば、目標反
射波の地面による反射波(間接波)の影響の受けやすい
低仰角の目標測角においは、図2に示すように、仰角方
向に狭い角度範囲内で、上方(高仰角側)和ビーム77
aと下方(低仰角側)和ビーム77bとに基づく振幅比
較測角が行われるので、地表面Eで反射した間接波等の
マルチパスの影響を受けることなく、誤検出を回避し
て、信頼性の高い目標位置測角を行うものである。
Therefore, according to this embodiment, as shown in FIG. 2, the target angle measurement at a low elevation angle which is easily affected by the reflected wave (indirect wave) of the target reflected wave from the ground is narrow in the elevation angle direction. Within the angle range, the upper (higher elevation angle) sum beam 77
a and the lower (lower elevation angle) sum beam 77b, the amplitude comparison angle measurement is performed, so that it is not affected by multipath such as an indirect wave reflected on the ground surface E, and erroneous detection can be avoided to improve reliability. This is to perform highly accurate target position angle measurement.

【0029】他方、比較的高仰角領域の目標位置測角
は、切替制御回路78の切替操作により、モノパルス測
角を行うように第1及び第2の切替回路761,762
は切替え操作が行われるので、図3に示した従来装置と
同様に、高精度の目標測角が可能である。
On the other hand, the target position angle measurement in the relatively high elevation angle region is controlled by the switching operation of the switching control circuit 78 so that the first and second switching circuits 761 and 762 perform monopulse angle measurement.
Since the switching operation is performed, a highly accurate target angle measurement can be performed similarly to the conventional device shown in FIG.

【0030】このように、アクティブアレイレーダ受信
機を内蔵した本発明のレーダ装置によれば、目標走査の
仰角覆域に応じて、モノパルス測角と振幅比較測角とを
切替え得るように構成し、高精度なモノパルス測角と、
よりマルチパスによる間接波による誤検出を回避した振
幅比較測角との効果的な切替えにより、測角機能の向上
を図ることができる。
As described above, according to the radar apparatus of the present invention incorporating the active array radar receiver, the monopulse angle measurement and the amplitude comparison angle measurement can be switched according to the elevation coverage of the target scan. , High-precision monopulse angle measurement,
The angle measurement function can be improved by effectively switching to amplitude comparison angle measurement in which erroneous detection due to indirect waves due to multipath is avoided.

【0031】[0031]

【発明の効果】この発明によれば、モノパルス測角と振
幅比較測角とを目標位置の測角領域区分に対応して切替
え実施するように構成し、測角機能の向上したレーダ装
置を提供することができる。
According to the present invention, a monopulse angle measurement and an amplitude comparison angle measurement are switched in accordance with the angle measurement area division of the target position, and a radar apparatus having an improved angle measurement function is provided. can do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明によるレーダ装置の一実施の形態を示
した構成図である。
FIG. 1 is a configuration diagram showing an embodiment of a radar device according to the present invention.

【図2】図1に示す装置において、振幅比較測角の様子
を示すアンテナパターン図である。
FIG. 2 is an antenna pattern diagram showing a state of amplitude comparison angle measurement in the device shown in FIG. 1;

【図3】従来のDBFレーダ装置を示す構成図である。FIG. 3 is a configuration diagram showing a conventional DBF radar device.

【図4】図3に示した装置におけるモノパルス測角の手
順を説明する説明図である。
FIG. 4 is an explanatory diagram illustrating a procedure of monopulse angle measurement in the device shown in FIG. 3;

【図5】図3に示した装置において、モノパルス測角の
様子を示すアンテナパターン図である。
FIG. 5 is an antenna pattern diagram showing a state of monopulse angle measurement in the device shown in FIG. 3;

【符号の説明】[Explanation of symbols]

1 アンテナ素子 2 送受信モジュール 3 給電部 4 送信機 5 受信機 6 A/D変換器 7 信号処理部 72 ウエイト係数設定回路(ウエイト係数設定手段) 73 角度誤差算出回路(角度誤差算出手段) 74 第1のデジタルビーム形成回路(DBF手段) 75 第2のデジタルビーム形成回路(DBF手段) 761 第1の切替回路(切替手段) 762 第2の切替回路 77 振幅比較回路 78 切替制御回路(切替制御手段) 79 測角領域設定回路 8 レーダ制御部 REFERENCE SIGNS LIST 1 antenna element 2 transmission / reception module 3 feed unit 4 transmitter 5 receiver 6 A / D converter 7 signal processing unit 72 weight coefficient setting circuit (weight coefficient setting means) 73 angle error calculation circuit (angle error calculation means) 74 first Digital beam forming circuit (DBF means) 75 second digital beam forming circuit (DBF means) 761 first switching circuit (switching means) 762 second switching circuit 77 amplitude comparison circuit 78 switching control circuit (switching control means) 79 Angle measurement area setting circuit 8 Radar controller

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5J021 AA05 AA09 AA11 AB03 DB03 DB04 EA02 FA13 GA02 HA04 JA10 5J070 AC02 AC12 AD05 AD07 AD09 AD10 AK07 AK22  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5J021 AA05 AA09 AA11 AB03 DB03 DB04 EA02 FA13 GA02 HA04 JA10 5J070 AC02 AC12 AD05 AD07 AD09 AD10 AK07 AK22

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アクティブアレイレーダ受信機に並列に
接続された第1及び第2のデジタルビーム形成手段と、 この第1及び第2のデジタルビーム形成手段に、和ビー
ムウェイト係数及び差ビームウエイト係数のデータ、ま
たは上方和ビームウエイト係数及び下方和ビームウエイ
ト係数のデータのいずれかを、切替手段を介して、それ
ぞれ対応供給可能に構成されたウエイト係数設定手段
と、 前記和ビームウエイト係数のデータ供給を受けて演算導
出された前記第1のデジタルビーム形成手段からの和ビ
ーム信号と、前記差ビームウエイト係数のデータ供給を
受けて演算導出された第2のデジタルビーム形成手段か
らの差ビーム信号とによりモノパルス測角信号を導出す
る角度誤差電圧算出手段と、 前記上方和ビームウエイト係数のデータ供給を受けて演
算導出された前記第1のデジタルビーム形成手段からの
上方和ビーム信号と、前記下方和ビームウエイト係数の
データ供給を受けて演算導出された第2のデジタルビー
ム形成手段からの下方和ビーム信号とにより振幅比較測
角信号を導出する振幅比較手段と、 前記切替手段に対し、予め設定された測角領域に対応し
て切替え操作を行うように制御する制御手段とを具備す
ることを特徴とするレーダ装置。
A first and a second digital beam forming means connected in parallel to an active array radar receiver; a sum beam weight coefficient and a difference beam weight coefficient provided to the first and second digital beam forming means; Weight data setting means configured to be able to supply either the data of the sum beam weight coefficient or the data of the upper sum beam weight coefficient via the switching means, and data supply of the sum beam weight coefficient. The sum beam signal from the first digital beam forming means calculated and received in response to the difference beam weight, and the difference beam signal from the second digital beam forming means calculated and derived in response to the data supply of the difference beam weight coefficient. An angle error voltage calculating means for deriving a monopulse angle measuring signal, and a data supply of the upper sum beam weight coefficient. The upper sum beam signal from the first digital beam forming means, which is calculated and derived by receiving the data, and the lower sum from the second digital beam forming means, which is calculated by receiving the data supply of the lower sum beam weight coefficient. An amplitude comparison unit that derives an amplitude comparison angle measurement signal from the sum beam signal, and a control unit that controls the switching unit to perform a switching operation corresponding to a predetermined angle measurement area. A radar device characterized by the following.
【請求項2】 前記切替手段は、予め定めた仰角度を境
にして、より高い仰角領域では和ビームウェイト係数及
び差ビームウエイト係数のデータを、またより低い仰角
領域では上方和ビームウエイト係数及び下方和ビームウ
エイト係数のデータをそれぞれ前記第1及び第2のデジ
タルビーム形成手段に対応供給するように構成されたこ
とを特徴とする請求項1記載のレーダ装置。
2. The switching means, based on a predetermined elevation angle, outputs data of a sum beam weight coefficient and a difference beam weight coefficient in a higher elevation angle region, and an upper sum beam weight coefficient and a difference beam weight coefficient in a lower elevation angle region. 2. The radar apparatus according to claim 1, wherein data of a lower sum beam weight coefficient is supplied to each of said first and second digital beam forming means.
JP2000080452A 2000-03-22 2000-03-22 Radar Abandoned JP2001264427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000080452A JP2001264427A (en) 2000-03-22 2000-03-22 Radar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000080452A JP2001264427A (en) 2000-03-22 2000-03-22 Radar

Publications (1)

Publication Number Publication Date
JP2001264427A true JP2001264427A (en) 2001-09-26

Family

ID=18597556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000080452A Abandoned JP2001264427A (en) 2000-03-22 2000-03-22 Radar

Country Status (1)

Country Link
JP (1) JP2001264427A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006029959A (en) * 2004-07-15 2006-02-02 Toshiba Corp Radar system
JP2006078342A (en) * 2004-09-09 2006-03-23 Toshiba Corp Height measurement radar apparatus and its angle measurement processing method
US7190305B2 (en) 2004-03-22 2007-03-13 Fujitsu Ten Limited Radar apparatus
JP2007278772A (en) * 2006-04-04 2007-10-25 Toshiba Corp Radar device
JP2009098070A (en) * 2007-10-18 2009-05-07 Toshiba Corp Radar device
JP2009250834A (en) * 2008-04-08 2009-10-29 Mitsubishi Electric Corp Radar device
JP2010286435A (en) * 2009-06-15 2010-12-24 Toshiba Corp Radar signal processor and radar signal processing method
JP2011128011A (en) * 2009-12-17 2011-06-30 Toshiba Corp Guidance device and target detection method
JP2012185007A (en) * 2011-03-04 2012-09-27 Nec Corp Angle measuring device, radar device, and method and program for measuring angle
JP2013174498A (en) * 2012-02-24 2013-09-05 Mitsubishi Electric Corp Monopulse angle measurement apparatus and monopulse angle measurement method
GB2516064A (en) * 2013-07-10 2015-01-14 Bae Systems Plc Improvements in and relating to radar
CN106772283A (en) * 2016-11-24 2017-05-31 江西洪都航空工业集团有限责任公司 A kind of method that angle measurement is carried out using the passive conformal antenna layout in circle battle array broadband
CN110187332A (en) * 2019-05-15 2019-08-30 中科宇达(北京)科技有限公司 Low-level defence radar system and method based on digital beam forming technology
US10459075B2 (en) 2013-07-10 2019-10-29 Bae Systems Plc Radar
CN113820699A (en) * 2021-10-19 2021-12-21 中安锐达(北京)电子科技有限公司 One-dimensional simultaneous multi-beam radar angle measurement method under asymmetric beam condition

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7190305B2 (en) 2004-03-22 2007-03-13 Fujitsu Ten Limited Radar apparatus
JP2006029959A (en) * 2004-07-15 2006-02-02 Toshiba Corp Radar system
JP2006078342A (en) * 2004-09-09 2006-03-23 Toshiba Corp Height measurement radar apparatus and its angle measurement processing method
JP4521238B2 (en) * 2004-09-09 2010-08-11 株式会社東芝 Height measuring radar device and its angle measurement processing method
JP2007278772A (en) * 2006-04-04 2007-10-25 Toshiba Corp Radar device
JP2009098070A (en) * 2007-10-18 2009-05-07 Toshiba Corp Radar device
JP2009250834A (en) * 2008-04-08 2009-10-29 Mitsubishi Electric Corp Radar device
JP2010286435A (en) * 2009-06-15 2010-12-24 Toshiba Corp Radar signal processor and radar signal processing method
JP2011128011A (en) * 2009-12-17 2011-06-30 Toshiba Corp Guidance device and target detection method
JP2012185007A (en) * 2011-03-04 2012-09-27 Nec Corp Angle measuring device, radar device, and method and program for measuring angle
JP2013174498A (en) * 2012-02-24 2013-09-05 Mitsubishi Electric Corp Monopulse angle measurement apparatus and monopulse angle measurement method
GB2516064A (en) * 2013-07-10 2015-01-14 Bae Systems Plc Improvements in and relating to radar
GB2516064B (en) * 2013-07-10 2018-02-28 Bae Systems Plc Improvements in and relating to radar
US10459075B2 (en) 2013-07-10 2019-10-29 Bae Systems Plc Radar
CN106772283A (en) * 2016-11-24 2017-05-31 江西洪都航空工业集团有限责任公司 A kind of method that angle measurement is carried out using the passive conformal antenna layout in circle battle array broadband
CN110187332A (en) * 2019-05-15 2019-08-30 中科宇达(北京)科技有限公司 Low-level defence radar system and method based on digital beam forming technology
CN110187332B (en) * 2019-05-15 2022-01-18 中科宇达(北京)科技有限公司 Low altitude defense radar system and method based on digital beam forming technology
CN113820699A (en) * 2021-10-19 2021-12-21 中安锐达(北京)电子科技有限公司 One-dimensional simultaneous multi-beam radar angle measurement method under asymmetric beam condition

Similar Documents

Publication Publication Date Title
US10581150B2 (en) Method and apparatus for radar accuracy measurements
JP2001264427A (en) Radar
US7692575B2 (en) Radar target detection method and radar apparatus using the same
US6157339A (en) Radar for enabling accurate determination of false image of target
US9470782B2 (en) Method and apparatus for increasing angular resolution in an automotive radar system
US9229100B2 (en) Phased array radar with monopulse algorithm measurement
US20100127932A1 (en) Method of calibrating an active antenna and active antenna
JP3441326B2 (en) Radar equipment
JP2012098107A (en) Radar apparatus
JP6044116B2 (en) Radar apparatus, angle measuring method and program
JP3197217B2 (en) Radar target angle measuring device
JPH11251821A (en) Antenna directivity direction control method
JP3522153B2 (en) Azimuth / position detection device
JP3335832B2 (en) Radar receiver
JP3946692B2 (en) Radio wave detector
US5051753A (en) Array antenna system with direction finding capability
JP3341711B2 (en) Radar altimeter
JPH0584884U (en) Antenna device
JP2001208828A (en) Radar system
JP2980573B2 (en) SRA radar system
JP2005283167A (en) Beam switching radar equipment
JP2757667B2 (en) Flying object guidance device
JP3015494B2 (en) Monopulse angle measurement radar device
JPS5926085A (en) Radar device
JP2697046B2 (en) Direction of arrival measuring equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20040716