JP2001263953A - Heat source device for drying - Google Patents

Heat source device for drying

Info

Publication number
JP2001263953A
JP2001263953A JP2000079187A JP2000079187A JP2001263953A JP 2001263953 A JP2001263953 A JP 2001263953A JP 2000079187 A JP2000079187 A JP 2000079187A JP 2000079187 A JP2000079187 A JP 2000079187A JP 2001263953 A JP2001263953 A JP 2001263953A
Authority
JP
Japan
Prior art keywords
heat
drying
exhaust gas
electromagnetic induction
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000079187A
Other languages
Japanese (ja)
Inventor
Yukio Shigenaga
幸夫 茂長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2000079187A priority Critical patent/JP2001263953A/en
Publication of JP2001263953A publication Critical patent/JP2001263953A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Drying Of Solid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat source device for drying capable of contriving energy saving by utilizing the waste heat of a gas turbine as a heat source for drying. SOLUTION: This heat source device for drying is provided with an exhaust gas discharging system 2 communicating with a heat storage type heat exchanger 1 through an exhaust gas boiler 5, a drying air supplying system 3 communicating with a drying furnace 7 through the heat storage type heat exchanger 1, and a drying steam supplying system 8 communicating with a drying air header 11 through the exhaust gas boiler 5 and an electromagnetic induction heating device 10. The heat storage type heat exchanger 1 is provided with a plurality of heat exchanging chambers in which a heat storage element is installed, while connecting the exhaust gas discharging system 2 to the drying air supplying system 3 switchably through damper devices 15a-15q, and the electromagnetic induction heating device 10 is provided with an electromagnetic induction heat generating body arranged in the tubular body of the same while a high-frequency inverter is connected to a work coil.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、乾燥用熱源装置に
関し、建材等の製造工場において乾燥炉等の乾燥手段へ
ガスタービンの廃熱を供給する省エネルギー技術に係る
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat source apparatus for drying, and more particularly to an energy saving technique for supplying waste heat of a gas turbine to a drying means such as a drying furnace in a factory for building materials.

【0002】[0002]

【従来の技術】従来、例えば建材の製造工場では、成形
機により成形したワークを乾燥炉における乾燥工程およ
びオートクレーブにおける高温・高圧下での養生工程に
よって基材を製造し、基材に塗布した水性塗料を乾燥エ
アーヘッダーから噴出する蒸気の熱およびオーブンによ
って乾燥させている。
2. Description of the Related Art Conventionally, for example, in a building material manufacturing plant, a substrate formed by a molding machine by a drying process in a drying furnace and a curing process under a high temperature and a high pressure in an autoclave is used to produce a base material. The paint is dried by the heat of the steam ejected from the dry air header and the oven.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記した従来
の製造工場においては、乾燥炉や乾燥エアーヘッダー等
にそれぞれ専用の熱供給源を設ける一方で、工場内に設
けたガスタービン発電機から排出する廃熱は十分に有効
利用されてはいなかった。
However, in the above-mentioned conventional manufacturing plant, a drying furnace, a drying air header and the like are provided with a dedicated heat supply source, respectively, while the exhaust gas is discharged from a gas turbine generator provided in the plant. Waste heat was not fully utilized.

【0004】本発明は上記した課題を解決するものであ
り、ガスタービンの廃熱を乾燥用熱源として利用するこ
とで、省エネルギー化を図ることができる乾燥用熱源装
置を提供することを目的とする。
An object of the present invention is to solve the above-mentioned problems, and an object of the present invention is to provide a drying heat source device that can save energy by using waste heat of a gas turbine as a drying heat source. .

【0005】[0005]

【課題を解決するための手段】上記した課題を解決する
ために、本発明の乾燥用熱源装置は、蓄熱式熱交換器
と、基端側がガスタービンの排気口に連通するとともに
先端側が排ガスボイラーを通して蓄熱式熱交換器に連通
する排ガス排出系と、基端側が送風機に連通するととも
に先端側が蓄熱式熱交換器を通して第1乾燥手段に連通
する乾燥用空気供給系と、基端側が給水源に連通すると
ともに先端側が排ガスボイラーおよび電磁誘導加熱装置
を通して第2乾燥手段に連通する乾燥用蒸気供給系とを
備え、蓄熱式熱交換器は、複数の熱交換室を有し、各熱
交換室内に熱の受熱・放熱を行う熱交換要素をなす複数
の蓄熱エレメントを静置し、各熱交換室に流路切換手段
を介して排ガス排出系と乾燥用空気供給系とを切換可能
に接続してなり、電磁誘導加熱装置は、蒸気流路をなす
筒体の周囲にワークコイルを配置するとともに、筒体の
内部に電磁誘導発熱体を配置し、ワークコイルに高周波
インバータを接続してなる構成としたものである。
In order to solve the above-mentioned problems, a heat source device for drying according to the present invention comprises a regenerative heat exchanger, a base end communicating with an exhaust port of a gas turbine, and a tip end provided with an exhaust gas boiler. An exhaust gas discharge system that communicates with the regenerative heat exchanger through the air, a drying air supply system that communicates with the blower at the base end and communicates with the first drying means through the regenerative heat exchanger at the distal end, and a water supply source at the base end A drying steam supply system communicating with the second drying means through the exhaust gas boiler and the electromagnetic induction heating device while communicating with the exhaust gas boiler; the regenerative heat exchanger has a plurality of heat exchange chambers; A plurality of heat storage elements forming a heat exchange element for receiving and radiating heat are left standing, and each of the heat exchange chambers is switchably connected to an exhaust gas discharge system and a drying air supply system via flow path switching means. Become The induction heating device has a configuration in which a work coil is arranged around a cylinder that forms a steam flow path, an electromagnetic induction heating element is arranged inside the cylinder, and a high-frequency inverter is connected to the work coil. is there.

【0006】上記した構成により、蓄熱式熱交換器にお
ける蓄熱操作時には、流路切換手段を操作して排ガス排
出系を蓄熱式熱交換器の熱交換室に接続する。排ガス排
出系を通して蓄熱式熱交換器の熱交換室に流入するガス
タービンの排ガスは、熱交換要素をなす複数の蓄熱エレ
メント間の間隙を縫って流通し、蓄熱エレメントを加熱
して後に熱交換室から流出する。この間に、蓄熱式熱交
換器の蓄熱エレメントは高温度域の排ガスから受熱する
ことにより高温の熱を蓄熱する。
[0006] With the above configuration, during the heat storage operation in the heat storage type heat exchanger, the exhaust gas discharge system is connected to the heat exchange chamber of the heat storage type heat exchanger by operating the flow path switching means. Exhaust gas from the gas turbine that flows into the heat exchange chamber of the regenerative heat exchanger through the exhaust gas discharge system flows through the gaps between the plurality of heat storage elements that form the heat exchange elements, heats the heat storage elements, and then heats the heat exchange chamber. Spill out of. During this time, the heat storage element of the heat storage type heat exchanger stores high-temperature heat by receiving heat from exhaust gas in a high temperature range.

【0007】放熱操作時には、流路切換手段を操作して
乾燥用空気供給系を蓄熱式熱交換器の熱交換室に接続す
る。乾燥用空気供給系の上流側配管から蓄熱式熱交換器
の熱交換室に流入する乾燥用空気は、熱交換要素をなす
複数の蓄熱エレメント間の間隙を縫って流通し、蓄熱エ
レメントが放熱する熱を奪って昇温して後に、熱交換室
から乾燥用空気供給系の下流側配管を通って第1乾燥手
段に流入する。
At the time of the heat radiation operation, the air supply system for drying is connected to the heat exchange chamber of the regenerative heat exchanger by operating the flow path switching means. The drying air flowing from the upstream pipe of the drying air supply system into the heat exchange chamber of the regenerative heat exchanger circulates through the gap between the plurality of heat storage elements forming the heat exchange element, and the heat storage element radiates heat. After depriving the heat and raising the temperature, it flows into the first drying means from the heat exchange chamber through the downstream piping of the drying air supply system.

【0008】複数の熱交換室を並列に接続することによ
り、一つの熱交換室で蓄熱操作する状態において他の熱
交換室で放熱操作することができ、各熱交換室において
蓄熱操作と放熱操作とを相互に違えて繰り返し行うこと
によって、蓄熱エレメントを介して排ガスと乾燥用空気
との間における熱交換を連続して行えるので、常に安定
した温度の乾燥用空気を供給することができる。
[0008] By connecting a plurality of heat exchange chambers in parallel, it is possible to perform a heat dissipation operation in another heat exchange chamber in a state where the heat storage operation is performed in one heat exchange chamber. By performing the above steps differently and repeatedly, heat exchange between the exhaust gas and the drying air can be continuously performed via the heat storage element, so that the drying air at a stable temperature can be always supplied.

【0009】ガスタービンの排ガスを熱源として排ガス
ボイラーで発生・加熱する蒸気を電磁誘導加熱装置へ導
いて加熱する。電磁誘導加熱装置においては、ワークコ
イルによって発生させる磁界の変化により、電磁誘導に
よって電磁誘導発熱体を発熱させて筒体内を流通する蒸
気を加熱する。加熱した乾燥用蒸気は乾燥用蒸気供給系
を通して第2乾燥手段に供給する。
[0009] The steam generated and heated by the exhaust gas boiler using the exhaust gas of the gas turbine as a heat source is guided to an electromagnetic induction heating device to be heated. In the electromagnetic induction heating device, a change in a magnetic field generated by a work coil causes an electromagnetic induction heating element to generate heat by electromagnetic induction to heat steam flowing through a cylinder. The heated drying steam is supplied to the second drying means through a drying steam supply system.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて説明する。図1〜図3において、蓄熱式熱交換
器1には排ガス排出系2と乾燥用空気供給系3とが連通
している。排ガス排出系2は、基端側がガスタービン発
電機4の排気口に連通するとともに先端側が排ガスボイ
ラー5を通して蓄熱式熱交換器1に連通している。乾燥
用空気供給系3は、基端側が送風機6に連通するととも
に先端側が蓄熱式熱交換器1を通して乾燥炉7に連通し
ている。乾燥炉7はセメント等からなる生地を乾燥させ
て建材の基材を形成するものである。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 3, an exhaust gas discharge system 2 and a drying air supply system 3 communicate with a regenerative heat exchanger 1. The exhaust gas discharge system 2 has a base end communicating with an exhaust port of the gas turbine generator 4 and a distal end communicating with the regenerative heat exchanger 1 through an exhaust gas boiler 5. The drying air supply system 3 has a proximal end communicating with the blower 6 and a distal end communicating with the drying furnace 7 through the regenerative heat exchanger 1. The drying furnace 7 is for drying the dough made of cement or the like to form the base material of the building material.

【0011】排ガスボイラー5には乾燥用蒸気供給系8
が連通しており、乾燥用蒸気供給系8は基端側が給水源
に連通し、先端側が排ガスボイラー5を通って蒸気ター
ビン発電機9のタービン給気口に連通する配管8aと電
磁誘導加熱装置10を通して乾燥エアーヘッダー11に
連通する配管8bとに分岐している。
The exhaust gas boiler 5 has a drying steam supply system 8.
The steam supply system 8 for drying has a pipe 8a communicating with a water supply source at the base end and a turbine supply port of the steam turbine generator 9 at the tip end through the exhaust gas boiler 5 and an electromagnetic induction heating device. 10 and a pipe 8b communicating with the dry air header 11.

【0012】乾燥エアーヘッダー11は乾燥用蒸気を噴
出することで乾燥対象物である基材に塗布した塗料を乾
燥させるためのスチームカーテンを形成するものであ
り、オーブン12は基材に塗料を焼き付けるためのもの
である。
The drying air header 11 forms a steam curtain for drying the coating applied to the substrate to be dried by ejecting the drying steam, and the oven 12 bake the coating on the substrate. It is for.

【0013】図2に示すように、蓄熱式熱交換器1は、
複数の熱交換室13a〜13cを有し、各熱交換室13
a〜13cの内部に熱の受熱・放熱を行う熱交換要素を
なす複数の蓄熱エレメント14を静置している。この蓄
熱エレメント14は、多孔体をなすハニカムセラミック
や、粒体で10mm〜50mmの粒径をなすセラミックボー
ル等の耐熱性部材からなる。各熱交換室13a〜13c
は流路切換手段をなす複数のダンパ装置15a〜15q
を介して排ガス排出系2および乾燥用空気供給系3とを
切換可能に、かつ並列に接続している。
As shown in FIG. 2, the regenerative heat exchanger 1 comprises:
It has a plurality of heat exchange chambers 13a to 13c.
A plurality of heat storage elements 14 serving as heat exchange elements for receiving and radiating heat are set aside in a to 13c. The heat storage element 14 is made of a heat-resistant member such as a honeycomb ceramic having a porous body or a ceramic ball having a particle diameter of 10 to 50 mm. Each heat exchange chamber 13a to 13c
Are a plurality of damper devices 15a to 15q forming a flow path switching means.
The exhaust gas discharge system 2 and the drying air supply system 3 are switchable and connected in parallel via the.

【0014】図3に示すように、電磁誘導加熱装置10
は、蒸気流路をなす非金属パイプ等からなる筒体16の
周囲にワークコイル17を配置するとともに、筒体16
の内部にフィン状の電磁誘導発熱体18をハニカム構造
等の状態で配置しており、ワークコイル17に高周波イ
ンバータ19を接続している。
As shown in FIG. 3, the electromagnetic induction heating device 10
Disposes a work coil 17 around a cylindrical body 16 made of a non-metallic pipe or the like forming a steam flow path,
A fin-shaped electromagnetic induction heating element 18 is arranged in a honeycomb structure or the like inside the inside, and a high-frequency inverter 19 is connected to the work coil 17.

【0015】以下、上記した構成における作用を説明す
る。蓄熱式熱交換器1の各熱交換室13a〜13cにお
ける蓄熱操作および放熱操作は同じであるので、ここで
は一つの熱交換室13aにおける作用を例示的に説明す
る。
The operation of the above configuration will be described below. Since the heat storage operation and the heat radiation operation in each of the heat exchange chambers 13a to 13c of the heat storage type heat exchanger 1 are the same, the operation in one heat exchange chamber 13a will be exemplified here.

【0016】蓄熱操作時には、ダンパ装置15a、15
dを開放するとともに、ダンパ装置15gを閉鎖して排
ガス排出系2を熱交換室13に接続し、ダンパ装置15
j、15mを閉鎖して乾燥用空気供給系8と熱交換室1
3とを遮断する。
During the heat storage operation, the damper devices 15a, 15
d, the damper device 15g is closed, the exhaust gas discharge system 2 is connected to the heat exchange chamber 13, and the damper device 15g is closed.
j, 15m are closed and the drying air supply system 8 and the heat exchange chamber 1 are closed.
3 is shut off.

【0017】この状態で排ガス排出系2の上流側配管か
ら熱交換室13aに流入するガスタービン発電機の排ガ
スは、熱交換要素をなす複数の蓄熱エレメント14の間
の間隙を縫って流通し、蓄熱エレメント14を加熱して
後に熱交換室13aから排ガス排出系2の下流側配管へ
流出する。この間に、蓄熱エレメント14は高温度域の
排ガスから受熱することにより高温の熱を蓄熱する。
In this state, the exhaust gas of the gas turbine generator flowing into the heat exchange chamber 13a from the upstream pipe of the exhaust gas discharge system 2 flows through the gap between the plurality of heat storage elements 14 forming the heat exchange element. After the heat storage element 14 is heated, it flows out of the heat exchange chamber 13 a to the downstream pipe of the exhaust gas discharge system 2. During this time, the heat storage element 14 stores high-temperature heat by receiving heat from exhaust gas in a high-temperature range.

【0018】排ガスはダンパ装置15pを開放する状態
で大気へ放出するか、ダンパ装置15qを開放する状態
でオーブン12又は乾燥炉7の入口側へ供給して乾燥用
熱源として利用する。あるいは、後述する放熱操作後の
他の熱交換室13b、13cの何れかへダンパ装置15
hもしくは15iを開放して供給し、蓄熱エレメント1
4を加熱する。
The exhaust gas is discharged to the atmosphere with the damper device 15p opened, or supplied to the oven 12 or the inlet of the drying furnace 7 with the damper device 15q opened to be used as a heat source for drying. Alternatively, the damper device 15 is transferred to one of the other heat exchange chambers 13b and 13c after the heat radiation operation described later.
h or 15i is released and supplied to the heat storage element 1
Heat 4

【0019】放熱操作時には、ダンパ装置15a、15
d、15gを閉鎖して排ガス排出系2と熱交換室13と
を遮断し、ダンパ装置15j、15mを開放して乾燥用
空気供給系8と熱交換室13とを接続する。
At the time of heat radiation operation, the damper devices 15a, 15
The exhaust gas discharge system 2 and the heat exchange chamber 13 are shut off by closing d and 15 g, and the damper devices 15 j and 15 m are opened to connect the drying air supply system 8 and the heat exchange chamber 13.

【0020】この状態で、乾燥用空気供給系3の上流側
配管から熱交換室13aに流入する乾燥用空気は、複数
の蓄熱エレメント14の間の間隙を縫って流通し、蓄熱
エレメント14が放熱する熱を奪って昇温して後に、熱
交換室13aから乾燥用空気供給系3の下流側配管を通
って乾燥炉7へ流入し、乾燥用熱源として利用する。
In this state, the drying air flowing into the heat exchange chamber 13a from the upstream pipe of the drying air supply system 3 flows through the gaps between the plurality of heat storage elements 14, and the heat storage elements 14 radiate heat. After the heat is removed by taking the heat from the heat exchange chamber 13a, the heat flows from the heat exchange chamber 13a to the drying furnace 7 through the downstream pipe of the drying air supply system 3, and is used as a drying heat source.

【0021】各熱交換室13a〜13cは並列に接続し
ているので、各熱交換室13a〜13cの何れかにおい
て蓄熱操作する状態において、他の熱交換室13a〜1
3cの何れかで放熱操作することができ、各熱交換室1
3a〜13cにおいて蓄熱操作と放熱操作とを相互に違
えて繰り返し行うことによって、蓄熱エレメント14を
介して排ガスと乾燥用空気との間における熱交換を連続
して行えるので、常に安定した温度の乾燥用空気を供給
することができる。また、放熱直後の熱交換室13a〜
13cに、放熱操作を行っている熱交換室13a〜13
cから排出する排ガスを供給して蓄熱エレメント14を
加熱することにより熱効率が高まる。
Since each of the heat exchange chambers 13a to 13c is connected in parallel, any one of the heat exchange chambers 13a to 13c performs a heat storage operation while the other heat exchange chambers 13a to 13c are connected.
3c, the heat radiation operation can be performed.
By repeatedly performing the heat storage operation and the heat radiation operation differently in 3a to 13c, heat exchange between the exhaust gas and the drying air can be continuously performed via the heat storage element 14, so that the drying at a stable temperature is always performed. Supply air. Moreover, the heat exchange chambers 13a to 13a
13c, heat exchange chambers 13a to 13 which are performing a heat radiation operation.
Heat efficiency is improved by heating the heat storage element 14 by supplying the exhaust gas discharged from c.

【0022】乾燥用蒸気供給系9を通して電磁誘導加熱
装置10に流入する乾燥用蒸気は、排ガスボイラー5で
予熱した状態にある。電磁誘導加熱装置10において
は、高周波インバータ19によってワークコイル17へ
供給する電流を断続的に遮断し、ワークコイル17に発
生する磁界の変化により、電磁誘導によって電磁誘導発
熱体18を発熱させ、筒体16の内部を流通する蒸気を
加熱する。加熱した乾燥用蒸気は乾燥用蒸気供給系8を
通して乾燥エアーヘッダー11に供給する。
The drying steam flowing into the electromagnetic induction heating device 10 through the drying steam supply system 9 is preheated by the exhaust gas boiler 5. In the electromagnetic induction heating device 10, the current supplied to the work coil 17 is intermittently cut off by the high-frequency inverter 19, and the change in the magnetic field generated in the work coil 17 causes the electromagnetic induction heating element 18 to generate heat by electromagnetic induction. The steam flowing inside the body 16 is heated. The heated drying steam is supplied to the drying air header 11 through the drying steam supply system 8.

【0023】[0023]

【発明の効果】以上述べたように本発明によれば、蓄熱
操作時にガスタービンの廃熱を蓄熱エレメントに受熱し
て高温の熱を蓄熱し、放熱操作時に蓄熱エレメントが放
熱する熱を奪って乾燥用空気が昇温し、各熱交換室にお
いて蓄熱操作と放熱操作とを相互に違えて繰り返し行う
ことによって、蓄熱エレメントを介して排ガスと乾燥用
空気との間における熱交換を連続して行い、常に安定し
た温度の乾燥用空気を供給することができる。ガスター
ビンの排ガスを熱源として排ガスボイラーで発生・加熱
した蒸気を電磁誘導加熱装置で加熱することにより、乾
燥用蒸気(熱風)を安定供給することができる。
As described above, according to the present invention, the waste heat of the gas turbine is received by the heat storage element during the heat storage operation to store high-temperature heat, and the heat radiated by the heat storage element during the heat radiation operation is taken away. The temperature of the drying air rises, and the heat storage operation and the heat radiation operation are performed differently and repeatedly in each heat exchange chamber, thereby continuously performing heat exchange between the exhaust gas and the drying air through the heat storage element. It is possible to always supply stable drying air. By heating the steam generated and heated by the exhaust gas boiler using the exhaust gas of the gas turbine as a heat source by the electromagnetic induction heating device, the drying steam (hot air) can be stably supplied.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態における乾燥用熱源装置の構
成を示すフローシートである。
FIG. 1 is a flow sheet showing a configuration of a drying heat source device according to an embodiment of the present invention.

【図2】同実施形態における蓄熱式熱交換器の構成を示
す模式図である。
FIG. 2 is a schematic diagram showing a configuration of a regenerative heat exchanger according to the embodiment.

【図3】同実施形態における電磁誘導加熱装置の構成を
示す模式図である。
FIG. 3 is a schematic diagram showing a configuration of an electromagnetic induction heating device in the embodiment.

【符号の説明】[Explanation of symbols]

1 蓄熱式熱交換器 2 排ガス排出系 3 乾燥用空気供給系 4 ガスタービン発電機 5 排ガスボイラー 6 送風機 7 乾燥炉 8 乾燥用蒸気供給系 9 蒸気タービン発電機 10 電磁誘導加熱装置 11 乾燥エアーヘッダー 12 オーブン 13a〜13c 熱交換室 14 蓄熱エレメント 15a〜15q ダンパ装置 16 筒体 17 ワークコイル 18 電磁誘導発熱体 19 インバータ REFERENCE SIGNS LIST 1 regenerative heat exchanger 2 exhaust gas discharge system 3 drying air supply system 4 gas turbine generator 5 exhaust gas boiler 6 blower 7 drying furnace 8 drying steam supply system 9 steam turbine generator 10 electromagnetic induction heating device 11 drying air header 12 Oven 13a to 13c Heat exchange chamber 14 Heat storage element 15a to 15q Damper device 16 Cylindrical body 17 Work coil 18 Electromagnetic induction heating element 19 Inverter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 蓄熱式熱交換器と、基端側がガスタービ
ンの排気口に連通するとともに先端側が排ガスボイラー
を通して蓄熱式熱交換器に連通する排ガス排出系と、基
端側が送風機に連通するとともに先端側が蓄熱式熱交換
器を通して第1乾燥手段に連通する乾燥用空気供給系
と、基端側が給水源に連通するとともに先端側が排ガス
ボイラーおよび電磁誘導加熱装置を通して第2乾燥手段
に連通する乾燥用蒸気供給系とを備え、 蓄熱式熱交換器は、複数の熱交換室を有し、各熱交換室
内に熱の受熱・放熱を行う熱交換要素をなす複数の蓄熱
エレメントを静置し、各熱交換室に流路切換手段を介し
て排ガス排出系と乾燥用空気供給系とを切換可能に接続
してなり、 電磁誘導加熱装置は、蒸気流路をなす筒体の周囲にワー
クコイルを配置するとともに、筒体の内部に電磁誘導発
熱体を配置し、ワークコイルに高周波インバータを接続
してなることを特徴とする乾燥用熱源装置。
1. A regenerative heat exchanger, an exhaust gas discharge system having a base end communicating with an exhaust port of a gas turbine and a distal end communicating with a regenerative heat exchanger through an exhaust gas boiler, and a base end communicating with a blower. A drying air supply system in which the distal end communicates with the first drying means through a regenerative heat exchanger, and a drying air supply system in which the proximal end communicates with a water supply source and the distal end communicates with the second drying means through an exhaust gas boiler and an electromagnetic induction heating device. The heat storage type heat exchanger has a plurality of heat exchange chambers, and has a plurality of heat storage elements that serve as heat exchange elements for receiving and radiating heat in each heat exchange chamber. The exhaust gas discharge system and the drying air supply system are switchably connected to the heat exchange chamber via flow path switching means. The electromagnetic induction heating device has a work coil arranged around a cylinder that forms a steam flow path. Then To, to place the electromagnetic induction heating element in the interior of the tubular body, the drying heat source apparatus characterized by comprising connecting the high-frequency inverter to the work coil.
JP2000079187A 2000-03-22 2000-03-22 Heat source device for drying Pending JP2001263953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000079187A JP2001263953A (en) 2000-03-22 2000-03-22 Heat source device for drying

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000079187A JP2001263953A (en) 2000-03-22 2000-03-22 Heat source device for drying

Publications (1)

Publication Number Publication Date
JP2001263953A true JP2001263953A (en) 2001-09-26

Family

ID=18596470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000079187A Pending JP2001263953A (en) 2000-03-22 2000-03-22 Heat source device for drying

Country Status (1)

Country Link
JP (1) JP2001263953A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018138974A1 (en) * 2017-01-30 2018-08-02 孝夫 神戸 Steam air wiper system
JP2018184119A (en) * 2017-04-27 2018-11-22 孝夫 神戸 Steam air wiper system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018138974A1 (en) * 2017-01-30 2018-08-02 孝夫 神戸 Steam air wiper system
CN110225849A (en) * 2017-01-30 2019-09-10 神户孝夫 Steam wiper system
JP2018184119A (en) * 2017-04-27 2018-11-22 孝夫 神戸 Steam air wiper system

Similar Documents

Publication Publication Date Title
JP6239031B2 (en) Gas conversion system
US6693263B2 (en) Convection type brazing apparatus for metal workpieces
CN203982907U (en) A kind of baker of producing enamelled wire
CN201057496Y (en) Hot oven
EP1795801B1 (en) Heat exchanger and superheated steam generating device using the same
JP3719616B2 (en) Airflow furnace
CN103575085A (en) Combustion disposing, drying and heating integrated unit for organic waste gas emitted by coater
KR20110069570A (en) Boiler using microwave
KR101235567B1 (en) The hot air blower using microwave
JP2001263953A (en) Heat source device for drying
CN103017501A (en) Wet object drying method and wet object drying device
CN211075123U (en) Printing stock drying device of printing equipment
CN2817281Y (en) Microwave foam oven
CN201754022U (en) Heating apparatus for directly heating and drying working air flow
JP2001041554A (en) Kitchen exhaust heat recovering system
CN105145795A (en) Electric heating two-stage polygonatum odoratum drying machine and application method thereof
CN109183491A (en) A kind of pulp machine
CN108688311A (en) One kind is for the dry heat-exchange system of water-based ink printing
CN211134513U (en) Powder coating process drying and curing fuel gas radiation heating device
CN204115496U (en) A kind of residual heat of tunnel kiln utilize device
CN201907972U (en) Energy-saving consumption-reducing production line for carbon products
CN206648469U (en) A kind of enamelling machine afterheat utilizing system
JP2001255020A (en) Hot air generating furnace
KR100754003B1 (en) Electric water heater
JPH05299170A (en) Hot-air combustion apparatus using dielectric heating element