JP2001263878A - Absorption refrigerating machine - Google Patents

Absorption refrigerating machine

Info

Publication number
JP2001263878A
JP2001263878A JP2000084576A JP2000084576A JP2001263878A JP 2001263878 A JP2001263878 A JP 2001263878A JP 2000084576 A JP2000084576 A JP 2000084576A JP 2000084576 A JP2000084576 A JP 2000084576A JP 2001263878 A JP2001263878 A JP 2001263878A
Authority
JP
Japan
Prior art keywords
absorber
gas
absorption
concentration
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000084576A
Other languages
Japanese (ja)
Inventor
Yukioki Yamazaki
志奥 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000084576A priority Critical patent/JP2001263878A/en
Publication of JP2001263878A publication Critical patent/JP2001263878A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent an absorption refrigerating machine from running into an unoperatable state due to a refrigerant shortage even when the load is low or the temperature of cooling water drops. SOLUTION: This absorption refrigerating machine is constituted in such a way that, when the concentration of an absorbent detected by means of a concentration sensor 20 becomes lower than a set value, the gas extraction by means of this absorption refrigerating machine is limited or the gas extracting function of this machine is stopped by narrowing a flow control valve 16 installed to a bleeding tube 17 which connects the gas-phase section of an absorber 1 to the ejector 11 of a gas extracting device 10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、吸収冷凍機(吸収
冷温水機を含む)に係わるものである。
The present invention relates to an absorption refrigerator (including an absorption chiller / heater).

【0002】[0002]

【従来の技術】吸収冷凍機は、低負荷運転時や冷却水の
温度が低下したときには、吸収液の濃度が低下し、蒸発
器で蒸発させる冷媒が不足して運転を継続することがで
きなくなる恐れがあるので、機内に冷媒溜まりを設け、
冷却水の温度が低下しても運転が継続できるように設計
されている。
2. Description of the Related Art When an absorption refrigerator is operated at a low load or when the temperature of cooling water decreases, the concentration of the absorption liquid decreases, and the refrigerant to be evaporated by an evaporator becomes insufficient, so that the operation cannot be continued. Because there is a fear, a refrigerant pool is provided inside the machine,
It is designed so that operation can be continued even if the temperature of the cooling water drops.

【0003】[0003]

【発明が解決しようとする課題】しかし、冷却水の温度
がかなり下がっても運転が継続できるように、冷媒貯留
部を大容積化して冷媒を多量に保有しようとすると、装
置の小型化が図れなくなる。したがって、低負荷時や冷
却水の温度が低下したときにも運転が問題なく継続で
き、且つ、装置の小型化が図れるようにする必要があっ
た。
However, in order to continue the operation even if the temperature of the cooling water is considerably lowered, if the capacity of the refrigerant storage section is increased to hold a large amount of the refrigerant, the size of the apparatus can be reduced. Disappears. Therefore, it is necessary to be able to continue the operation without any problem even when the load is low or the temperature of the cooling water is lowered, and to reduce the size of the apparatus.

【0004】[0004]

【課題を解決するための手段】本発明は上記従来技術の
課題を解決するための具体的手段として、機内の不凝縮
ガスを抽気する抽気装置を備えた吸収冷凍機において、
SUMMARY OF THE INVENTION The present invention is, as a specific means for solving the above-mentioned problems of the prior art, in an absorption refrigerator equipped with an extraction device for extracting non-condensable gas in the device.

【0005】吸収液の濃度に基づいて抽気装置の能力を
制御する手段を備えるようにした第1の構成の吸収冷凍
機と、
[0005] An absorption refrigerator having a first configuration, which comprises means for controlling the capacity of the bleeding device based on the concentration of the absorption liquid;

【0006】抽気装置の不凝縮ガスを貯留するタンクに
溜まった不凝縮ガスを吸収液の濃度に基づいて機内に戻
す手段を備えるようにした第2の構成の吸収冷凍機と、
を提供することにより、前記した従来技術の課題を解決
するものである。
An absorption refrigerating machine having a second structure, comprising means for returning the non-condensable gas accumulated in a tank for storing the non-condensable gas of the bleeding device to the inside of the apparatus based on the concentration of the absorbing solution;
To solve the above-mentioned problem of the prior art.

【0007】[0007]

【発明の実施の形態】〔第1の実施形態〕以下、本発明
の第1の実施形態を図1と図2に基づいて説明する。例
示した吸収冷凍機は、吸収器1から図示しない再生器に
吸収液ポンプ2によって送られている吸収液から分岐
し、吸収器1に戻される吸収液を動力源として、吸収器
1にある気体を抽気する抽気装置10を備えたものであ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [First Embodiment] A first embodiment of the present invention will be described below with reference to FIGS. The absorption chiller illustrated divides the absorption liquid sent from the absorption liquid pump 2 by the absorption liquid pump 2 from the absorber 1 to a regenerator (not shown), and uses the absorption liquid returned to the absorber 1 as a power source to generate gas in the absorber 1. Is provided with an extraction device 10 for extracting air.

【0008】抽気装置10は、エゼクター11を上部に
備え、その下部に気液分離部12を備えた本体部13
と、吸収液ポンプ2を上流側に備えて吸収器1の底部か
ら図示しない再生器に延設された吸収液管3の吸収液ポ
ンプ2下流側から分岐し、エゼクター11に至る吸収液
導入管14と、気液分離部12の底部から吸収器1の気
相部に延設された吸収液戻し管15と、途中に流量制御
弁16を備えて吸収器1の気相部からエゼクター11ま
で延設された抽気管17と、気液分離部12の不凝縮ガ
スが溜まる気相部12Aと連通して設けられた不凝縮ガ
スタンク18と、不凝縮ガスタンク18に設置され、不
凝縮ガスタンク18内の水素を排出するパラジウムセル
19と、吸収器1の底部に溜まった吸収液の濃度を検出
する濃度センサ20と、濃度センサ20が検出する吸収
液濃度に基づいて流量制御弁16を制御する制御器21
とから構成されている。
The bleeding device 10 has an ejector 11 at its upper part, and a main part 13 having a gas-liquid separating part 12 at its lower part.
And an absorption liquid introduction pipe that branches from the absorption liquid pipe 3 downstream of the absorption liquid pipe 3 extending from the bottom of the absorber 1 to a regenerator (not shown) with the absorption liquid pump 2 provided on the upstream side to reach the ejector 11. 14, an absorbent return pipe 15 extending from the bottom of the gas-liquid separation unit 12 to the gas phase of the absorber 1, and a flow control valve 16 on the way from the gas phase of the absorber 1 to the ejector 11. The non-condensable gas tank 18 provided in communication with the extended bleed pipe 17, the gas phase part 12 </ b> A in which the non-condensable gas of the gas-liquid separation part 12 is stored, and the non-condensable gas tank 18. Control for controlling the flow rate control valve 16 based on the concentration of the absorbing solution detected by the concentration sensor 20 and the concentration sensor 20 for detecting the concentration of the absorbing solution collected at the bottom of the absorber 1. Vessel 21
It is composed of

【0009】なお、吸収液戻し管15の終端は、気液分
離部12の中段部まで立ち上げられて吸収器1の気相部
に開口している。したがって、吸収液ポンプ2により気
液分離部12に送り込まれた吸収液は、気液分離部12
の底から中段部までに溜まり、それより上には溜まらな
い。
The end of the absorbent return pipe 15 rises to the middle of the gas-liquid separator 12 and opens to the gas phase of the absorber 1. Therefore, the absorbing liquid sent to the gas-liquid separating section 12 by the absorbing liquid pump 2
Accumulates from the bottom to the middle, not above it.

【0010】そして、吸収液ポンプ2により吸収液管3
から分岐し、吸収液導入管14を介してエゼクター11
に供給され、勢い良く噴出する吸収液によって作り出さ
れる負圧によって、吸収器1の気体が抽気管17を介し
てエゼクター11に引き込まれ、気液が一体になって気
液分離部12に突入する。
[0010] Then, the absorbing liquid pump 3
From the ejector 11 through the absorbent introduction pipe 14.
The gas in the absorber 1 is drawn into the ejector 11 through the bleed pipe 17 by the negative pressure created by the absorbing liquid that is supplied to the air and vigorously ejected, and the gas and liquid integrally enter the gas-liquid separation unit 12. .

【0011】吸収器1から気液分離部12に気液一体で
引き込まれた気体の内の冷媒蒸気は、気液分離部12内
で吸収液に吸収される。しかし、金属腐食などによって
機内で発生した水素などの吸収液に吸収されない不凝縮
ガスは、吸収液から分離して浮上し、気相部12Aに溜
まり、不凝縮ガスタンク18に入る。そして、図示しな
い電熱ヒータにより所定の温度に加熱されたパラジウム
セル19を通過して、不凝縮ガスの水素は機外に排出さ
れる。
The refrigerant vapor in the gas which is drawn into the gas-liquid separation unit 12 from the absorber 1 in a gas-liquid manner is absorbed by the absorption liquid in the gas-liquid separation unit 12. However, the non-condensable gas that is not absorbed by the absorbing liquid such as hydrogen generated in the machine due to metal corrosion or the like is separated from the absorbing liquid, floats, accumulates in the gas phase part 12A, and enters the non-condensing gas tank 18. Then, through the palladium cell 19 heated to a predetermined temperature by an electric heater (not shown), hydrogen of the non-condensable gas is discharged outside the apparatus.

【0012】本発明の吸収冷凍機においては、流量制御
弁16の開度を濃度センサ20が検出した吸収器1にお
ける吸収液濃度に基づいて、制御器21が例えば図2の
ように制御する。
In the absorption refrigerator of the present invention, the controller 21 controls the opening degree of the flow control valve 16 based on the concentration of the absorbent in the absorber 1 detected by the concentration sensor 20, for example, as shown in FIG.

【0013】すなわち、濃度センサ20が検出する吸収
液の濃度が56%以上のときには流量制御弁16は全開
され、前記濃度が56%以下のときには流量制御弁16
は全閉され、前記濃度が54〜56%の範囲にあるとき
には濃度に比例する開度に制御される。
That is, when the concentration of the absorbing solution detected by the concentration sensor 20 is 56% or more, the flow control valve 16 is fully opened, and when the concentration is 56% or less, the flow control valve 16 is opened.
Is fully closed, and when the density is in the range of 54 to 56%, the opening is controlled to be proportional to the density.

【0014】したがって、低負荷時や冷却水管4から吸
収器1や図示しない凝縮器に供給している冷却水の温度
が低く、吸収器1における吸収液による冷媒蒸気の吸収
が過剰に進むようになり、濃度センサ20が検出した吸
収液の濃度が56%より低くなると、流量制御弁16の
開度は絞られ、吸収器1と、吸収器1に併設された蒸発
器5にある不凝縮ガスの排出が抑えられる。
Therefore, the temperature of the cooling water supplied to the absorber 1 and the condenser (not shown) from the cooling water pipe 4 at a low load or the cooling water pipe is low, and the absorption of the refrigerant vapor by the absorbing liquid in the absorber 1 proceeds excessively. When the concentration of the absorbent detected by the concentration sensor 20 becomes lower than 56%, the opening degree of the flow control valve 16 is reduced, and the non-condensable gas in the absorber 1 and the evaporator 5 attached to the absorber 1 is removed. Emissions are reduced.

【0015】このため、吸収器1と蒸発器5の気相部に
おける不凝縮ガスの濃度は上昇し、蒸発器5における冷
媒の蒸発が抑えられる。したがって、蒸発器5から吸収
器1に供給される冷媒蒸気の量は減少し、吸収器1にお
いて冷媒が吸収液に過剰に吸収されることがなくなるの
で、吸収液濃度の低下が抑制され、冷媒ポンプ6によっ
て蒸発器5内の冷水管7の上に散布される冷媒が不足す
ると云った不都合は生じない。
For this reason, the concentration of the non-condensable gas in the gas phase portion of the absorber 1 and the evaporator 5 increases, and the evaporation of the refrigerant in the evaporator 5 is suppressed. Accordingly, the amount of the refrigerant vapor supplied from the evaporator 5 to the absorber 1 is reduced, and the refrigerant is not excessively absorbed by the absorbent in the absorber 1, so that the decrease in the concentration of the absorbent is suppressed, and the refrigerant is suppressed. Inconvenience such as a shortage of the refrigerant sprayed on the cold water pipe 7 in the evaporator 5 by the pump 6 does not occur.

【0016】〔第2の実施形態〕以下、本発明の第2の
実施形態を、主に図3に基づいて説明する。図3に例示
した吸収冷凍機が、前記図1に示した吸収冷凍機と相違
するところは、流量制御弁16の設置位置だけである。
Second Embodiment Hereinafter, a second embodiment of the present invention will be described mainly with reference to FIG. The only difference between the absorption refrigerator illustrated in FIG. 3 and the absorption refrigerator illustrated in FIG. 1 is the installation position of the flow control valve 16.

【0017】すなわち、図1に示した吸収冷凍機におい
ては、流量制御弁16は吸収器1からエゼクター11に
至る抽気管17に設けられていたが、図3に示した第2
の実施形態の吸収冷凍機においては、流量制御弁16は
吸収液管3からエゼクター11に至る吸収液導入管14
に設けられており、この流量制御弁16が制御器21に
より前記図2のように制御される。
That is, in the absorption refrigerator shown in FIG. 1, the flow control valve 16 is provided in the bleed pipe 17 extending from the absorber 1 to the ejector 11, but the flow control valve 16 shown in FIG.
In the absorption refrigerator of the embodiment, the flow control valve 16 is connected to the absorption liquid introduction pipe 14 extending from the absorption liquid pipe 3 to the ejector 11.
The flow control valve 16 is controlled by the controller 21 as shown in FIG.

【0018】吸収液導入管14に設置された流量制御弁
16が、図2のように制御されても、低負荷時や冷却水
管4から吸収器1や図示しない凝縮器に供給している冷
却水の温度が低く、吸収器1における吸収液による冷媒
蒸気の吸収が過剰に進む懸念があるときには、流量制御
弁16の開度が絞られて吸収器1と蒸発器5にある不凝
縮ガスの排出が抑えられる。
Even if the flow control valve 16 installed in the absorption liquid introduction pipe 14 is controlled as shown in FIG. 2, the cooling water supplied to the absorber 1 and the condenser (not shown) from the cooling water pipe 4 at low load or when the cooling water pipe 4 is used. When the temperature of the water is low and there is a concern that the absorption of the refrigerant vapor by the absorbing liquid in the absorber 1 may proceed excessively, the opening of the flow control valve 16 is narrowed to remove the non-condensable gas in the absorber 1 and the evaporator 5. Emissions are reduced.

【0019】したがって、この構成の吸収冷凍機におい
ても、吸収器1と蒸発器5にある不凝縮ガスの濃度は上
昇し、蒸発器5における冷媒の蒸発が抑えられるので、
蒸発器5から吸収器1に供給される冷媒蒸気の量は減少
し、吸収器1において冷媒が吸収液に過剰に吸収される
ことはなくなり、これにより冷媒ポンプ6によって蒸発
器5内の冷水管7の上に散布される冷媒が不足すると云
った不都合が生じることはない。
Therefore, also in the absorption refrigerator of this configuration, the concentration of the non-condensable gas in the absorber 1 and the evaporator 5 increases, and the evaporation of the refrigerant in the evaporator 5 is suppressed.
The amount of the refrigerant vapor supplied from the evaporator 5 to the absorber 1 is reduced, and the refrigerant is not excessively absorbed by the absorbing liquid in the absorber 1, whereby the chilled water pipe in the evaporator 5 by the refrigerant pump 6 is provided. There is no inconvenience such as a shortage of the refrigerant to be sprayed on 7.

【0020】〔第3の実施形態〕以下、本発明の第3の
実施形態を、主に図4に基づいて説明する。図4に例示
した吸収冷凍機が、前記図1に示した吸収冷凍機と機器
構成上相違する点は、吸収器1の気相部と不凝縮ガスタ
ンク18とを、さらに開閉弁22を有するガス戻し管2
3により接続した点にある。
[Third Embodiment] A third embodiment of the present invention will be described below mainly with reference to FIG. The absorption chiller illustrated in FIG. 4 is different from the absorption chiller illustrated in FIG. 1 in equipment configuration in that the gas phase unit of the absorber 1 and the non-condensing gas tank 18 are further provided with a gas having an on-off valve 22. Return pipe 2
3.

【0021】そして、図4に示した吸収冷凍機において
は、制御器21が抽気管17に設けた流量制御弁16を
前記図2のように濃度センサ20が検出した吸収液の濃
度に基づいて制御すると共に、流量制御弁16を全閉し
て吸収器1からの抽気を停止するとき、すなわち濃度セ
ンサ20が検出する吸収液の濃度が54%以下になった
ときには、開閉弁22を全開して不凝縮ガスタンク18
に溜まっている不凝縮ガスをガス戻し管23を介して吸
収器1と蒸発器5に戻し、吸収器1における吸収液によ
る冷媒の吸収を積極的に阻害するようにしてある。
In the absorption refrigerator shown in FIG. 4, the controller 21 controls the flow control valve 16 provided in the bleed pipe 17 based on the concentration of the absorption liquid detected by the concentration sensor 20 as shown in FIG. When the control is performed and the flow control valve 16 is fully closed to stop the bleeding from the absorber 1, that is, when the concentration of the absorbing liquid detected by the concentration sensor 20 becomes 54% or less, the on-off valve 22 is fully opened. Non-condensable gas tank 18
The non-condensable gas accumulated in the reservoir 1 is returned to the absorber 1 and the evaporator 5 via the gas return pipe 23, so that the absorption of the refrigerant by the absorbing liquid in the absorber 1 is positively inhibited.

【0022】なお、開閉弁22を全開したときに、不凝
縮ガスタンク18から吸収器1に相当量の不凝縮ガスが
戻されるように、冷却水管4を流れる冷却水の温度が低
下してくると、パラジウムセル19の水素排出機能を落
とすように、図示しないヒータへの通電を控えるように
も、制御器21を構成してある。
When the on-off valve 22 is fully opened, the temperature of the cooling water flowing through the cooling water pipe 4 decreases so that a considerable amount of non-condensable gas is returned from the non-condensable gas tank 18 to the absorber 1. Also, the controller 21 is configured so as to reduce the hydrogen discharge function of the palladium cell 19 and to refrain from energizing a heater (not shown).

【0023】したがって、この図4に示した第3の実施
形態の吸収冷凍機においては、前記第1および第2の実
施形態の吸収冷凍機よりも、吸収液による冷媒の吸収作
用を抑える効果は強く、蒸発器5における冷媒の蒸発は
一層抑えられるので、蒸発器5から吸収器1に供給され
る冷媒蒸気の量は効果的に減少し、吸収器1において冷
媒が吸収液に過剰に吸収されることは速やかになくな
る。これにより、冷媒ポンプ6によって蒸発器5内の冷
水管7の上に散布される冷媒が不足すると云った不都合
が生じることはなくなる。
Therefore, in the absorption refrigerator of the third embodiment shown in FIG. 4, the effect of suppressing the absorption of the refrigerant by the absorption liquid is smaller than in the absorption refrigerators of the first and second embodiments. Since it is strong and the evaporation of the refrigerant in the evaporator 5 is further suppressed, the amount of the refrigerant vapor supplied from the evaporator 5 to the absorber 1 is effectively reduced, and the refrigerant in the absorber 1 is excessively absorbed by the absorbing liquid. Things disappear quickly. Thus, the disadvantage that the refrigerant pump 6 runs short of the refrigerant sprayed on the cold water pipe 7 in the evaporator 5 does not occur.

【0024】なお、本発明は上記実施形態に限定される
ものではないので、特許請求の範囲に記載の趣旨から逸
脱しない範囲で各種の変形実施が可能である。
Since the present invention is not limited to the above embodiment, various modifications can be made without departing from the spirit of the appended claims.

【0025】例えば、図2に示した第2の実施形態の吸
収冷凍機においても、図4に示した吸収冷凍機のように
吸収器1の気相部と不凝縮ガスタンク18とを開閉弁2
2を備えたガス戻し管23によって接続し、濃度センサ
20が検出する吸収液の濃度が54%以下になったとき
には、流量制御弁16を全閉して吸収器1からの抽気を
停止すると共に、開閉弁22を全開して不凝縮ガスタン
ク18に溜まっている不凝縮ガスを吸収器1と蒸発器5
に戻し、吸収液による冷媒の吸収を積極的に阻害するよ
うに構成することもできる。
For example, in the absorption refrigerator of the second embodiment shown in FIG. 2, the gas phase part of the absorber 1 and the non-condensable gas tank 18 are connected to the open / close valve 2 as in the absorption refrigerator shown in FIG.
When the concentration of the absorbing solution detected by the concentration sensor 20 becomes 54% or less, the flow control valve 16 is fully closed to stop the bleeding from the absorber 1 when the concentration is 20% or less. The on-off valve 22 is fully opened, and the non-condensable gas stored in the non-condensable gas tank 18 is removed from the absorber 1 and the evaporator 5.
, The absorption of the refrigerant by the absorbing liquid can be positively inhibited.

【0026】また、流量制御弁16と開閉弁22の制御
は、吸収器1で冷媒を吸収して吸収液濃度を下げた吸収
液の濃度ではなく、図示しない高温再生器で冷媒を蒸発
分離して濃縮された中間吸収液の濃度、または図示しな
い低温再生器で冷媒を蒸発分離して濃縮された濃吸収液
の濃度を検出し、その濃度に基づいて行うようにするこ
ともできる。
The flow control valve 16 and the on-off valve 22 are controlled not by the concentration of the absorbing liquid whose absorption liquid concentration has been reduced by absorbing the refrigerant by the absorber 1, but by evaporating and separating the refrigerant by a high-temperature regenerator (not shown). It is also possible to detect the concentration of the concentrated intermediate absorption liquid or the concentration of the concentrated absorption liquid concentrated by evaporating and separating the refrigerant by a low-temperature regenerator (not shown), and perform the detection based on the detected concentration.

【0027】また、不凝縮ガスタンク18には、パラジ
ウムセル19に代えて真空ポンプを設け、不凝縮ガスタ
ンク18に溜まった不凝縮ガスを、例えば定期的に排出
するように構成することもできる。
Further, a vacuum pump may be provided in the non-condensable gas tank 18 instead of the palladium cell 19, and the non-condensable gas accumulated in the non-condensable gas tank 18 may be periodically discharged, for example.

【0028】[0028]

【発明の効果】以上説明したように、吸収液の濃度に基
づいて抽気装置の能力を制御する手段を備えるようにし
た請求項1の吸収冷凍機によれば、抽気装置の能力を制
限したり、抽気機能を停止させることで吸収器と蒸発器
にある不凝縮ガスの排出を抑え、それにより吸収器と蒸
発器の気相部における不凝縮ガスの濃度を上昇させ、蒸
発器における冷媒の蒸発を抑えて蒸発器から吸収器に供
給する冷媒蒸気の量を減少させ、吸収器において吸収液
が冷媒を過剰に吸収することを防止できる。
As described above, according to the absorption refrigerator of the first aspect, means for controlling the capacity of the extraction device based on the concentration of the absorbing liquid is provided. Stopping the bleed function suppresses the discharge of non-condensable gas in the absorber and evaporator, thereby increasing the concentration of non-condensable gas in the gas phase of the absorber and evaporator, and evaporating the refrigerant in the evaporator. Thus, the amount of refrigerant vapor supplied from the evaporator to the absorber can be reduced to prevent the absorbing liquid from excessively absorbing the refrigerant in the absorber.

【0029】したがって、低負荷時や冷却水温度の低下
に伴って冷媒が吸収液に過剰に吸収され始め、吸収液の
濃度が低下してきたときに、抽気装置の能力を制限した
り、抽気機能を停止させることで、冷媒不足による運転
不能に陥ることがないようにすることができるので、機
内に保有する冷媒の量を従来装置より少なくしても冷却
水の広い温度範囲で運転することができ、これにより装
置の小型化と運転範囲の拡大と云う、相反する二つの課
題が同時に達成できるようになった。
Therefore, when the load starts to be excessively absorbed by the absorbing liquid at a low load or as the cooling water temperature decreases, and the concentration of the absorbing liquid decreases, the capacity of the extraction device is limited or the extraction function is restricted. By stopping the operation, it is possible to prevent the operation from being disabled due to a shortage of the refrigerant. As a result, two contradictory problems, that is, downsizing of the device and expansion of the operation range, can be simultaneously achieved.

【0030】また、抽気装置の不凝縮ガスを貯留するタ
ンクに溜まった不凝縮ガスを、吸収液の濃度に基づいて
機内に戻す手段を備えるようにした請求項2の吸収冷凍
機によれば、タンク内に溜まった不凝縮ガスを機内に戻
すことで蒸発器における冷媒の蒸発が簡単に抑えられ
る。
According to the second aspect of the present invention, there is provided an absorption refrigerator having means for returning the non-condensable gas accumulated in the tank for storing the non-condensable gas of the bleeding device to the inside of the apparatus based on the concentration of the absorbing liquid. By returning the non-condensable gas accumulated in the tank to the inside of the device, the evaporation of the refrigerant in the evaporator can be easily suppressed.

【0031】したがって、蒸発器から吸収器に供給する
冷媒蒸気の量を減らし、吸収液による冷媒の吸収作用を
抑える操作が、請求項1の吸収冷凍機より速やかに行え
るので、請求項1の吸収冷凍機の作用効果と同等以上の
作用効果が得られる。
Therefore, the operation of reducing the amount of the refrigerant vapor supplied from the evaporator to the absorber and suppressing the absorption of the refrigerant by the absorbing liquid can be performed more quickly than the absorption refrigerator of the first aspect. Operational effects equal to or higher than those of the refrigerator can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施形態の構成を示す説明図である。FIG. 1 is an explanatory diagram illustrating a configuration of a first embodiment.

【図2】第1の実施形態の吸収冷凍機における制御例を
示す説明図である。
FIG. 2 is an explanatory diagram showing a control example in the absorption refrigerator of the first embodiment.

【図3】第2の実施形態の構成を示す説明図である。FIG. 3 is an explanatory diagram showing a configuration of a second embodiment.

【図4】第3の実施形態の構成を示す説明図である。FIG. 4 is an explanatory diagram illustrating a configuration of a third embodiment.

【符号の説明】[Explanation of symbols]

1 吸収器 2 吸収液ポンプ 3 吸収液管 4 冷却水管 5 蒸発器 6 冷媒ポンプ 7 冷水管 10 抽気装置 11 エゼクター 12 気液分離部 13 本体部 14 吸収液導入管 15 吸収液戻し管 16 流量制御弁 17 抽気管 18 不凝縮ガスタンク 19 パラジウムセル 20 濃度センサ 21 制御器 22 開閉弁 23 ガス戻し管 DESCRIPTION OF SYMBOLS 1 Absorber 2 Absorbent pump 3 Absorbent pipe 4 Cooling water pipe 5 Evaporator 6 Refrigerant pump 7 Cold water pipe 10 Extraction device 11 Ejector 12 Gas-liquid separation part 13 Main body part 14 Absorbent liquid introduction pipe 15 Absorbent liquid return pipe 16 Flow control valve 17 Bleed tube 18 Non-condensable gas tank 19 Palladium cell 20 Concentration sensor 21 Controller 22 On-off valve 23 Gas return tube

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 機内の不凝縮ガスを抽気する抽気装置を
備えた吸収冷凍機において、吸収液の濃度に基づいて抽
気装置の能力を制御する手段を備えたことを特徴とする
吸収冷凍機。
1. An absorption refrigerator having an extraction device for extracting non-condensable gas in the device, comprising: means for controlling the capacity of the extraction device based on the concentration of the absorbing liquid.
【請求項2】 機内の不凝縮ガスを抽気する抽気装置を
備えた吸収冷凍機において、抽気装置の不凝縮ガスを貯
留するタンクに溜まった不凝縮ガスを吸収液の濃度に基
づいて機内に戻す手段を備えたことを特徴とする吸収冷
凍機。
2. An absorption refrigerator having an extraction device for extracting non-condensable gas in the device, wherein the non-condensable gas stored in a tank for storing the non-condensable gas in the extraction device is returned to the device based on the concentration of the absorbing liquid. An absorption refrigerator comprising means.
JP2000084576A 2000-03-24 2000-03-24 Absorption refrigerating machine Pending JP2001263878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000084576A JP2001263878A (en) 2000-03-24 2000-03-24 Absorption refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000084576A JP2001263878A (en) 2000-03-24 2000-03-24 Absorption refrigerating machine

Publications (1)

Publication Number Publication Date
JP2001263878A true JP2001263878A (en) 2001-09-26

Family

ID=18601036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000084576A Pending JP2001263878A (en) 2000-03-24 2000-03-24 Absorption refrigerating machine

Country Status (1)

Country Link
JP (1) JP2001263878A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101729891B1 (en) * 2016-03-14 2017-04-24 엘지전자 주식회사 Absorption refigerating regenerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101729891B1 (en) * 2016-03-14 2017-04-24 엘지전자 주식회사 Absorption refigerating regenerator

Similar Documents

Publication Publication Date Title
JP5369112B2 (en) Gasoline vapor recovery device
JP2001263878A (en) Absorption refrigerating machine
JP5653490B2 (en) Gasoline vapor recovery device
KR100383363B1 (en) Absorption type refrigerating apparatus
JP4390681B2 (en) Absorption refrigerator
JPH0447226B2 (en)
JP3021474B2 (en) Non-condensable gas discharge device of absorption refrigerator
JP2011047522A (en) Absorption refrigerating machine
CN220689430U (en) Flash tank and multi-split heat pump air conditioning system
JP2001041614A (en) Absorption refrigerating machine
JP2005291564A (en) Hydrogen gas discharge device
JP2006214597A (en) Regenerator in ammonia absorption type refrigerator
WO2008127236A1 (en) A method and system for extending a turndown ratio of an absorption chiller
JP2017110864A (en) Refrigeration cycle device
JPS62138663A (en) Absorption refrigerator
JPS604045Y2 (en) Cavitation prevention device for absorption liquid pump
JPH0728536Y2 (en) Gas extraction device
JPH0730974B2 (en) Extraction device for absorption refrigerator
JPH024182A (en) Non-condensed gas extracting device for absorption type refrigerating machine
JP3435614B2 (en) Gas bleeding device for absorption refrigerator
JPS5828907B2 (en) Absorption chiller bleed device
JP3036755B2 (en) Absorption refrigerator
JP3241498B2 (en) Absorption refrigerator
JP2008261570A (en) Hydrogen gas treatment device in absorption-type refrigerating device
JPH06159851A (en) Absorption type freezer