JP2001262268A - High strength low alloy heat resistant steel - Google Patents
High strength low alloy heat resistant steelInfo
- Publication number
- JP2001262268A JP2001262268A JP2000306617A JP2000306617A JP2001262268A JP 2001262268 A JP2001262268 A JP 2001262268A JP 2000306617 A JP2000306617 A JP 2000306617A JP 2000306617 A JP2000306617 A JP 2000306617A JP 2001262268 A JP2001262268 A JP 2001262268A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- content
- contained
- strength
- low alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、耐焼戻し脆化お
よび耐応力除去焼きなまし割れ性(以下、耐SR割れ性
と記す)に優れ、かつ400℃以上の高温におけるクリ
ープ強度が高い耐熱鋼に係わり、さらに詳しくはボイ
ラ、化学工業および原子力などの分野における熱交換器
や配管、耐熱バルブおよび接続継手等の用途、特に加工
後の応力緩和熱処理や溶接後の熱処理が必要な用途に好
適な低合金耐熱鋼に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant steel having excellent resistance to temper embrittlement and stress relieving annealing cracking (hereinafter referred to as SR cracking resistance) and high creep strength at a high temperature of 400 ° C. or higher. More specifically, low alloys suitable for applications such as heat exchangers and pipes, heat-resistant valves and connecting joints in the fields of boilers, chemical industry and nuclear power, especially those requiring stress relaxation heat treatment after processing and heat treatment after welding Heat resistant steel.
【0002】[0002]
【従来の技術】400℃以上の高温で使用される耐熱鋼
には、(1)Cr含有量が数%の低Crフェライト鋼、
(2)Cr含有量が9〜12%の高Crフェライト鋼、
(3)オーステナイト鋼等に大別される。どのような耐
熱鋼を使用するかは、温度や圧力等の使用環境および経
済性を考慮して適宜決定される。2. Description of the Related Art Heat-resistant steels used at a high temperature of 400 ° C. or higher include (1) low Cr ferrite steels having a Cr content of several percent,
(2) High Cr ferritic steel having a Cr content of 9 to 12%,
(3) It is roughly classified into austenitic steel and the like. The type of heat-resistant steel to be used is appropriately determined in consideration of the use environment such as temperature and pressure and the economic efficiency.
【0003】これらの耐熱鋼のなかで、炭素鋼や低Cr
フェライト鋼は、高Crフェライト鋼やオーステナイト
鋼に比べて格段に安価で、熱膨張率が小さく、かつ熱伝
導性が優れていることが特徴である。このような炭素鋼
および低合金鋼の代表例としてJISで規格化されてい
る、STBA12(0.45/0.65Mo)、STBA22(0.8
/1.25Cr-0.45/0.65Mo)、STBA23(1/1.5Cr-0.45/0.
65Mo)、STBA24(1.9/2.6Cr-0.87/1.13Mo)、等が
知られている。[0003] Among these heat-resistant steels, carbon steel and low Cr
Ferritic steels are characterized by being significantly less expensive, having a lower coefficient of thermal expansion, and having better thermal conductivity than high Cr ferritic steels and austenitic steels. STBA12 (0.45 / 0.65Mo) and STBA22 (0.8 standardized by JIS as typical examples of such carbon steel and low alloy steel).
/1.25Cr-0.45/0.65Mo), STBA23 (1 / 1.5Cr-0.45 / 0.
65Mo) and STBA24 (1.9 / 2.6Cr-0.87 / 1.13Mo) are known.
【0004】高温強度は、耐圧部材の設計上極めて重要
であり、使用温度によらず高強度であることが望まし
い。特に、ボイラ、化学工業および原子力用として用い
られている耐熱耐圧鋼管では、素材の高温強度に応じて
管の肉厚が決定される。[0004] High temperature strength is extremely important in designing a pressure-resistant member, and it is desirable that the strength be high regardless of the operating temperature. In particular, in a heat-resistant and pressure-resistant steel pipe used for boilers, chemical industries and nuclear power, the wall thickness of the pipe is determined according to the high-temperature strength of the material.
【0005】このように所望の高強度を得るため、低C
rフェライト鋼においては、多くの場合、析出強化が利
用される。すなわち、析出強化元素であるV、Nbおよ
びTi等を添加し、微細な炭窒化物を析出させることに
より高温強度が得られる。In order to obtain a desired high strength as described above, low C
In r-ferritic steels, precipitation strengthening is often used. That is, high temperature strength can be obtained by adding a precipitation strengthening element such as V, Nb and Ti to precipitate fine carbonitrides.
【0006】このような低Crフェライト鋼は例えば、
特開昭57−131349号、特開昭57−13135
0号、特開昭59−226152号、特開平8−158
022号等の各公報により多数の提案がされ、実用化も
されている。[0006] Such low Cr ferritic steel is, for example,
JP-A-57-131349, JP-A-57-13135
0, JP-A-59-226152, JP-A-8-158
A number of proposals have been made in each gazette such as No. 022 and the like, and practical applications have been made.
【0007】しかし、高強度鋼の場合、粒内の強度が高
くなるため、相対的に粒界強度が弱くなり、焼戻し脆化
がおこりやすくなったり、応力除去焼きなまし時に粒界
割れを伴うSR割れを生ずる場合がある。このため、構
造物の安全性を確保するために、母材の組織制御、溶接
方法、熱処理時の昇温と降温速度、熱処理温度および熱
処理時間等に細かい制約が設けられることが多く、施工
上必ずしも取り扱いやすいとはいえない。However, in the case of high-strength steel, since the strength within the grains is high, the grain boundary strength is relatively weak, and tempering embrittlement is likely to occur, and SR cracking accompanied by grain boundary cracking during stress relief annealing. May occur. For this reason, in order to ensure the safety of the structure, there are often detailed restrictions on the structure control of the base metal, the welding method, the heating and cooling rates during heat treatment, the heat treatment temperature and the heat treatment time, etc. It is not always easy to handle.
【0008】低合金鋼の焼戻し脆化改善方法として、例
えば特開昭55−6458号公報に開示されているよう
に、鋼中のSb、AsおよびP等の不純物元素量を制限
する方法や、特開昭61−16419号公報に開示され
ているように、AlN等の窒化物を利用して、母材の粗
粒化を抑制する方法等が提案されている。As a method of improving temper embrittlement of low alloy steel, for example, as disclosed in Japanese Patent Application Laid-Open No. 55-6458, a method of limiting the amount of impurity elements such as Sb, As and P in steel, As disclosed in JP-A-61-16419, a method has been proposed in which a nitride such as AlN is used to suppress coarsening of a base material.
【0009】しかしながら、製鋼技術が向上し不純物元
素量が十分に低減できるようになった現在においても、
なお問題は解決されていないこと、また窒化物が低温靱
性や耐食性の悪化原因となり、その析出量が制限される
こと等から、さらに本質的な対策が望まれている。そし
て、特にCr含有量の少ない低合金鋼において、この問
題は深刻である。[0009] However, even now that steelmaking technology has been improved and the amount of impurity elements can be sufficiently reduced,
In addition, since the problem has not been solved, and nitrides cause deterioration of low-temperature toughness and corrosion resistance, and the amount of precipitation is limited, a more essential measure is desired. This problem is particularly serious in low alloy steels having a low Cr content.
【0010】[0010]
【発明が解決しようとする課題】本発明の課題は、40
0℃以上の高温におけるクリープ強度の高い高強度低合
金鋼であっても耐焼戻し脆化および耐SR割れ性に優れ
た鋼を提供することにある。The problem to be solved by the present invention is that
An object of the present invention is to provide a steel excellent in temper embrittlement resistance and SR crack resistance even in a high-strength low-alloy steel having a high creep strength at a high temperature of 0 ° C. or higher.
【0011】[0011]
【課題を解決するための手段】本発明者は、低合金鋼の
焼戻し脆化およびSR割れの要因を明らかにする目的で
実験を繰り返した結果、以下の知見を得た。Means for Solving the Problems The present inventor has obtained the following findings as a result of repeating experiments for the purpose of clarifying the causes of temper embrittlement and SR cracking of low alloy steel.
【0012】a)低合金鋼の焼戻し脆化およびSR割れ
は、マトリックス中の固溶Mo量を0.1%以上に保持
することにより軽減される。A) Temper embrittlement and SR cracking of low alloy steel are reduced by maintaining the amount of solid solution Mo in the matrix at 0.1% or more.
【0013】b)鋼にMoを添加した場合、Moは次の
各形態をとる。すなわち、鋼中のMoは、(1)M23C
6型炭化物、M7C3型炭化物、M6C型炭化物の一部とし
て析出、(2)セメンタイト中に固溶、(3)Mo2C
型炭化物として析出、(4)MC型析出物の一部として
析出、(5)析出せずにマトリックス中に固溶する、の
いずれかである。ここで、MはFe,Cr,Mo,W,
V,Nbなどの金属元素の総称であり、「各炭化物の一
部として析出する」とはMの一部がMo原子で置換され
ることを意味する。したがって、化学組成の違いによっ
て、Moの形態が変化するので、Moの含有総量が0.
1%以上であっても、炭化物として析出する量が多けれ
ば、マトリックス中に固溶する量は0.1%未満とな
る。B) When Mo is added to steel, Mo takes the following forms. That is, Mo in steel is (1) M 23 C
6 type carbide, M 7 C 3 type carbide, precipitated as a part of M 6 C type carbide, (2) solid solution in cementite, (3) Mo 2 C
(4) precipitated as a part of MC type precipitate, and (5) solid solution in the matrix without being precipitated. Here, M is Fe, Cr, Mo, W,
It is a general term for metal elements such as V and Nb, and "precipitates as a part of each carbide" means that a part of M is replaced by Mo atom. Therefore, the form of Mo changes depending on the difference in the chemical composition, so that the total content of Mo is 0.1%.
Even if it is 1% or more, if the amount of precipitation as a carbide is large, the amount of solid solution in the matrix will be less than 0.1%.
【0014】c)低合金鋼においては、CrおよびVの
添加により固溶Mo量が増加し、C量の増量およびW添
加により固溶Mo量が減少する。C) In low alloy steel, the amount of dissolved Mo increases with the addition of Cr and V, and decreases with the increase of the amount of C and the addition of W.
【0015】d)固溶Mo量を0.1%以上に保持する
ためには、下記式で示される指数Mが0.1以上になる
ように成分設計する必要がある。D) In order to keep the amount of solid solution Mo at 0.1% or more, it is necessary to design the components so that the index M represented by the following formula becomes 0.1 or more.
【0016】M=(0.08Cr-0.1W+0.03/C+0.04+0.855V)×
(Mo+0.5√Mo)×0.65 以上の知見に基づき、低合金鋼を構成する元素中、C
r、V、WおよびC量と固溶Mo量との関係で整理し、
かつ高温強度および低温靱性などの性能を高めるための
成分設計をおこない、耐焼戻し脆化および耐SR割れ性
に優れた高強度低合金鋼を得るに至った。本発明の要旨
は以下の通りである。 (1)質量%で、C:0.01〜0.25% Mo:0.1〜2.5% V:0.01〜0.5% Cr:0.05〜3% N:0.01%以下 を含み、かつ下記(1)式で表される指数Mが0.1以
上である高強度低合金耐熱鋼。M = (0.08Cr-0.1W + 0.03 / C + 0.04 + 0.855V) ×
(Mo + 0.5√Mo) × 0.65 Based on the above findings, among the elements constituting low alloy steel, C
Arranged in relation to the amount of r, V, W and C and the amount of solid solution Mo,
In addition, by designing components for enhancing performance such as high-temperature strength and low-temperature toughness, a high-strength low-alloy steel excellent in temper embrittlement resistance and SR crack resistance has been obtained. The gist of the present invention is as follows. (1) In mass%, C: 0.01 to 0.25% Mo: 0.1 to 2.5% V: 0.01 to 0.5% Cr: 0.05 to 3% N: 0.01 %, And an index M represented by the following formula (1) is 0.1 or more.
【0017】 M=(0.08Cr+0.03/C+0.04+0.855V)×(Mo+0.5√Mo)×0.65 ・・・(1) ここで、元素記号は各元素の含有量(質量%)を示す。 (2)さらに、質量%でW:0.05〜3%を含み、か
つ下式(2)式で表される指数Mが0.1以上である上
記(1)に記載の高強度低合金耐熱鋼。M = (0.08Cr + 0.03 / C + 0.04 + 0.855V) × (Mo + 0.5√Mo) × 0.65 (1) Here, the element symbol indicates the content (% by mass) of each element. Show. (2) The high-strength low alloy according to the above (1), further containing W: 0.05 to 3% by mass% and having an index M represented by the following formula (2) of 0.1 or more. Heat resistant steel.
【0018】 M=(0.08Cr-0.1W+0.03/C+0.04+0.855V)×(Mo+0.5√Mo)×0.65 ・・・(2) (3)質量%で、Ti:0.001〜0.05%、N
b:0.005〜0.1%の1種または2種を含む上記
(1)または(2)に記載の高強度低合金耐熱鋼。M = (0.08Cr-0.1W + 0.03 / C + 0.04 + 0.855V) × (Mo + 0.5√Mo) × 0.65 (2) (3) In mass%, Ti: 0.001 to 0.001 0.05%, N
b: The high-strength low-alloy heat-resistant steel according to the above (1) or (2), containing one or two kinds of 0.005 to 0.1%.
【0019】[0019]
【発明の実施の形態】本発明の耐熱鋼の化学組成を限定
した理由について以下に詳しく説明する。なお、以下の
説明において、化学組成の含有量の%表示はすべて質量
%を意味する。BEST MODE FOR CARRYING OUT THE INVENTION The reasons for limiting the chemical composition of the heat-resistant steel of the present invention will be described in detail below. In the following description, all percentages of the content of the chemical composition mean mass%.
【0020】C:0.01〜0.25% Cは、オーステナイト安定化元素として組織を安定化す
る。また、本発明鋼はマルテンサイト、ベイナイト、フ
ェライトまたはこれらを2種以上含む混合組織である
が、C含有量はこれらの組織のバランス制御のためにも
重要である。さらに、V、Nb、TiおよびZr等の析
出強化型の元素を含む場合には、これらの元素とMX型
微細炭化物を形成し、高温強度の向上に寄与する。ただ
し、C含有量が0.01%未満では上記の効果が得られ
なく、また焼入性が低下して強度と靱性を損なう。一
方、0.25%を超えると、炭化物の析出量が増えてM
oの固溶量が確保できなくなり、焼戻し脆化やSR割れ
を起こしやすくなる。したがって、C含有量は0.01
〜0.25%とした。好ましくは、0.03〜0.20
%、さらに好ましくは0.05〜0.2%である。C: 0.01 to 0.25% C stabilizes the structure as an austenite stabilizing element. Further, the steel of the present invention is martensite, bainite, ferrite or a mixed structure containing two or more thereof, and the C content is also important for controlling the balance of these structures. Further, when precipitation strengthening elements such as V, Nb, Ti, and Zr are contained, these elements form MX-type fine carbides and contribute to improvement in high-temperature strength. However, if the C content is less than 0.01%, the above effects cannot be obtained, and the hardenability is reduced, and the strength and toughness are impaired. On the other hand, if it exceeds 0.25%, the amount of carbide precipitation increases and M
The solid solution amount of o cannot be secured, and tempering embrittlement and SR cracking are likely to occur. Therefore, the C content is 0.01
0.20.25%. Preferably, 0.03 to 0.20
%, More preferably 0.05 to 0.2%.
【0021】Mo:0.1〜2.5% Moは、本発明鋼において最重要元素で、マトリックス
中のMo固溶量を0.1%以上確保することにより、耐
焼戻し脆性および耐SR割れ性が改善される。さらに、
Moは固溶強化の作用を有しており、強度の向上に寄与
する。また、Mo2C 炭化物やMX型炭化物などの微細
析出物を形成するため、析出強化作用も有する。しか
し、含有量が0.1%未満ではマトリックス中のMoの
固溶量が不十分で、耐焼戻し脆性および耐SR割れ性の
改善に寄与しない。一方、2.5%を超えて過剰に含有
させると、M23C6やM6C等の粗大な炭化物の析出量が
増加し、靱性やクリープ強度に悪影響を与える。したが
って、Moの含有量は0.1〜2.5%とした。好まし
くは0.15〜1%、さらに好ましくは0.25〜0.
75%である。Mo: 0.1 to 2.5% Mo is the most important element in the steel of the present invention. By securing the solid solution amount of Mo in the matrix of 0.1% or more, the resistance to tempering embrittlement and SR cracking is improved. Is improved. further,
Mo has an effect of solid solution strengthening, and contributes to improvement in strength. Further, since fine precipitates such as Mo 2 C carbide and MX type carbide are formed, they also have a precipitation strengthening effect. However, when the content is less than 0.1%, the solid solution amount of Mo in the matrix is insufficient, and does not contribute to improvement in temper embrittlement resistance and SR crack resistance. On the other hand, if the content exceeds 2.5%, the amount of coarse carbides such as M 23 C 6 and M 6 C increases, which adversely affects toughness and creep strength. Therefore, the content of Mo is set to 0.1 to 2.5%. Preferably, it is 0.15 to 1%, more preferably 0.25 to 0.1%.
75%.
【0022】V:0.01〜0.5% Vは、M23C6型炭化物の析出を抑制し、Moの固溶量
を増加させる。さらに、VはMX型の微細炭窒化物を形
成し、高強度化に寄与する。しかし、0.01%未満で
は、これらの効果は得られない。一方、0.5%を超え
て含有させると、MX型の炭窒化物が粗大化して、かえ
って強度と靱性を損なう。したがって、V含有量は0.
01〜0.5%とする。好ましくは、0.03〜0.2
%、さらに好ましくは0.05〜0.15%である。V: 0.01 to 0.5% V suppresses the precipitation of M 23 C 6 type carbide and increases the amount of Mo dissolved. Further, V forms MX-type fine carbonitrides and contributes to high strength. However, if the content is less than 0.01%, these effects cannot be obtained. On the other hand, when the content exceeds 0.5%, the MX-type carbonitride coarsens, and rather impairs the strength and toughness. Therefore, the V content is 0.1.
01 to 0.5%. Preferably, 0.03-0.2
%, More preferably 0.05 to 0.15%.
【0023】Cr:0.05〜3% Crは、固溶Moの増加に寄与し、さらに耐酸化性と高
温耐食性を改善するため不可欠な元素である。Cr含有
量が0.05%未満ではこれらの効果は得られない。一
方、その含有量が3%を超えると経済性が低下して低合
金鋼の利点が少なくなる、したがってCr含有量は0.
05〜3%とする。好ましいCrの下限値は0.5%、
さらに好ましくは1%である。Cr: 0.05-3% Cr is an element that contributes to the increase of solid solution Mo and is indispensable for improving oxidation resistance and high-temperature corrosion resistance. If the Cr content is less than 0.05%, these effects cannot be obtained. On the other hand, if the content exceeds 3%, the economic efficiency is reduced and the advantage of the low alloy steel is reduced, so that the Cr content is less than 0.1%.
05 to 3%. A preferred lower limit of Cr is 0.5%,
More preferably, it is 1%.
【0024】上記の合金成分の他に、必要に応じて下記
の(1)〜(10)のグループの内から選ばれた1または2グ
ループ以上の元素を含有させてもよく、不純物として含
まれるPとSの含有量は、それぞれ、質量%で、0.0
3%以下、0.015%以下であることが好ましい。In addition to the above alloy components, if necessary, one or two or more elements selected from the following groups (1) to (10) may be contained. The contents of P and S are respectively 0.0% by mass.
It is preferably at most 3% and at most 0.015%.
【0025】(1)W:0.05〜3% (2)N:0.01%以下 (3)Ti:0.001〜0.05%、Nb:0.005
〜0.1%の1種または 2種 (4)Cu:0.01〜0.5%、Ni:0.01〜0.
5%、Co:0.01〜 0.5%のうちから選ばれ
た1種または2種以上 (5)Ta:0.002〜0.1%,Zr:0.001〜
0.1%の1種または2 種 (6)B:0.0001〜0.01% (7)Al:0.001〜0.05% (8)Si:0.01〜1% (9)Mn:0.01〜1% (10)Ca:0.0001〜0.01%、Mg:0.00
01〜0.01%の1種または2種 以下、上記の諸元素について説明する。(1) W: 0.05 to 3% (2) N: 0.01% or less (3) Ti: 0.001 to 0.05%, Nb: 0.005
(1) Cu: 0.01 to 0.5%, Ni: 0.01 to 0.5%
5%, one or more selected from Co: 0.01 to 0.5% (5) Ta: 0.002 to 0.1%, Zr: 0.001 to
One or two kinds of 0.1% (6) B: 0.0001 to 0.01% (7) Al: 0.001 to 0.05% (8) Si: 0.01 to 1% (9) Mn: 0.01-1% (10) Ca: 0.0001-0.01%, Mg: 0.00
One or two kinds of 01 to 0.01% The above various elements will be described below.
【0026】W:0.05〜3% Wは、必要により含有させる元素で、含有させれば固溶
強化に寄与し、より高温のクリープ強度向上に有効であ
る。この効果は、0.05%以上の添加で得られる。し
かし、3%を超えて含有させると、マトリックス中のM
oの固溶量が減少する上に、長時間使用中に粗大なM6
C 型析出物を形成して、クリープ強度や靱性を損な
う。したがって、Wを含有させる場合は0.01〜3%
とするのが好ましい。さらに好ましくは、0.05〜2
%、さらに好ましくは0.1〜1.5%である。W: 0.05 to 3% W is an element to be contained if necessary. If W is contained, it contributes to solid solution strengthening and is effective for improving the creep strength at higher temperatures. This effect can be obtained by adding 0.05% or more. However, when the content exceeds 3%, M
In addition to the decrease in the solid solution amount of o, coarse M 6
It forms C-type precipitates and impairs creep strength and toughness. Therefore, when W is contained, 0.01 to 3%
It is preferred that More preferably, 0.05 to 2
%, More preferably 0.1 to 1.5%.
【0027】N:0.01%以下 Nは必要により含有させる元素で、含有させれば微細な
窒化物を形成してクリープ強度の向上、結晶粒細粒化に
よる靱性改善に寄与する。含有させる場合は、0.00
1%以上が好ましい。一方、0.01%を超えると窒化
物が粗大化して靱性が著しく劣化する。好ましくは0.
001〜0.008%、より好ましくは0.003〜
0.007%である。N: 0.01% or less N is an element to be contained if necessary. If N is contained, it forms a fine nitride and contributes to improvement in creep strength and improvement in toughness by grain refinement. If contained, 0.00
1% or more is preferable. On the other hand, if the content exceeds 0.01%, the nitride coarsens and the toughness is remarkably deteriorated. Preferably 0.
001 to 0.008%, more preferably 0.003 to
0.007%.
【0028】Ti:0.001〜0.05%、Nb:
0.005〜0.1% TiおよびNbは必要により1種以上含有させる元素
で、Tiを含有させればNと結合して微細な窒化物Ti
Nを形成して結晶粒の粗粒化を防止し、靱性の向上、焼
戻し脆化やSR割れ抑制に有効である。しかしながら、
0.05%を超えて含有させると、粗大な窒化物を形成
してかえって靱性を劣化させるため、Ti含有量は0.
001〜0.05%とするのが好ましい。さらに好まし
くは、0.003〜0.02%、さらに好ましくは0.
005〜0.012%である。Ti: 0.001-0.05%, Nb:
0.005 to 0.1% Ti and Nb are one or more elements to be contained as necessary. If Ti is contained, it combines with N to form fine nitride Ti.
It forms N to prevent coarsening of crystal grains, and is effective for improving toughness, suppressing temper embrittlement and suppressing SR cracking. However,
If the content exceeds 0.05%, coarse nitrides are formed and the toughness is rather deteriorated.
It is preferably set to 001 to 0.05%. More preferably, it is 0.003 to 0.02%, and more preferably, 0.1 to 0.02%.
005 to 0.012%.
【0029】Nbを含有させればN、Cと結合して微細
な炭窒化物を形成する。さらに、NbはTiと複合して
含有させれば、複合析出した(Nb、Ti)(N、C)
は広い温度範囲に渡って微細、かつ安定であるため結晶
粒粗大化防止に有効である。しかしながら、0.005
%未満ではこれらの効果が得られない。一方、0.1%
を超えると粗大な炭窒化物を形成してかえって靱性を劣
化させるため、Nb含有量は0.005〜0.1%とす
るのが好ましい。さらに好ましくは、0.1〜0.08
%、さらに好ましくは0.02〜0.06%である。When Nb is contained, it combines with N and C to form fine carbonitrides. Further, if Nb is contained in a complex with Ti, complex precipitation (Nb, Ti) (N, C)
Is fine and stable over a wide temperature range, which is effective in preventing crystal grain coarsening. However, 0.005
%, These effects cannot be obtained. On the other hand, 0.1%
If the Nb is more than Nb, coarse carbonitrides are formed and the toughness is rather deteriorated. Therefore, the Nb content is preferably set to 0.005 to 0.1%. More preferably, 0.1 to 0.08
%, More preferably 0.02 to 0.06%.
【0030】Cu、Ni、Co:これらの元素は必要に
より含有させる元素で、含有させればいずれの元素もオ
ーステナイト安定化に寄与する元素であり、かつ固溶強
化作用を有するので、クリープ強度の向上および長時間
使用時でのクリープ強度の低下防止に有効である。これ
らの効果は、いずれの元素も0.01%で得られる。し
かし、いずれの元素も0.5%を超えて含有させると高
温クリープ強度が低下する。また、経済性の観点からも
過剰添加は好ましくない。したがって、含有させる場合
のこれらの元素量は、いずれの元素も0.01〜0.5
%とするのがよい。いずれの元素も、好ましい範囲は
0.02〜0.3%で、さらに好ましくは0.1〜0.
25%である。Cu, Ni, Co: These elements are elements to be contained as necessary, and if contained, all of them are elements contributing to stabilization of austenite and have a solid solution strengthening action. It is effective in improving and preventing a decrease in creep strength during long-term use. These effects can be obtained at 0.01% for each element. However, when any of the elements is contained in excess of 0.5%, the high-temperature creep strength decreases. Further, from the viewpoint of economic efficiency, excessive addition is not preferable. Therefore, when these elements are contained, the content of each element is 0.01 to 0.5.
%. The preferred range of each element is 0.02 to 0.3%, more preferably 0.1 to 0.
25%.
【0031】なお、これらの元素はいずれか1種のみま
たは2種以上の複合で含有させることができる。また、
Niについては靱性、Cuについては熱伝導性を向上さ
せる作用もある。These elements can be contained alone or in a combination of two or more. Also,
Ni also has an effect of improving toughness and Cu has an effect of improving thermal conductivity.
【0032】Ta、Zr これらの元素は必要により含有させる元素で、含有させ
れば高温で炭窒化物を形成し、結晶粒の粗大化抑制寄与
する。このため、高温での熱処理を必要とする場合な
ど、必要に応じて含有させてもよく、その効果はTa:
0.002%以上、Zr:0.001%以上で顕著にな
る。しかし、いずれの元素も0.1%を超えて含有させ
ると、粗大な析出物を形成し、かえって靱性を劣化させ
る。したがって、含有させる場合のこれらの元素量はT
a:0.002〜0.1%。Zr:0.001〜0.1
%である。より好ましい範囲はTa:0.005〜0.
07%、Zr:0.003〜0.05%、さらに好まし
い範囲はTa:0.01〜0.02%、Zr:0.00
5〜0.012%である。Ta, Zr These elements are elements to be contained as necessary, and if they are contained, they form carbonitrides at a high temperature and contribute to suppression of coarsening of crystal grains. For this reason, when heat treatment at a high temperature is required, it may be contained as necessary.
It becomes remarkable at 0.002% or more and Zr: 0.001% or more. However, when each element is contained in excess of 0.1%, coarse precipitates are formed and the toughness is rather deteriorated. Therefore, the content of these elements when contained is T
a: 0.002 to 0.1%. Zr: 0.001-0.1
%. A more preferred range is Ta: 0.005 to 0.5.
07%, Zr: 0.003 to 0.05%, more preferably, Ta: 0.01 to 0.02%, Zr: 0.00
5 to 0.012%.
【0033】B:Bは必要により含有させる元素で、含
有させれば焼入性の向上による安定した強度の確保に有
効な元素である。この効果は、0.0001%以上で得
られる。しかし、0.1%を超えて含有させると炭化物
を粗大化させて強度低下や靱性低下の原因となる。した
がって、含有させる場合のB量は0.0001〜0.1
%とするのがよい。好ましい範囲は0.0005〜0.
015%、さらに好ましい範囲は0.002〜0.00
5%である。B: B is an element to be contained as necessary, and if contained, is an element effective for securing stable strength by improving hardenability. This effect is obtained at 0.0001% or more. However, when the content exceeds 0.1%, the carbide is coarsened, which causes a decrease in strength and a decrease in toughness. Therefore, when contained, the amount of B is 0.0001 to 0.1.
%. The preferred range is from 0.0005 to 0.5.
015%, more preferably 0.002 to 0.00
5%.
【0034】Al:Alは脱酸剤として使用した場合に
残留する元素である。含有させる場合、この効果は0.
001%以上で得られる。しかし、0.05%を超えて
含有させるとクリープ強度と加工性を損なう。したがっ
て、含有させる場合のAl含有量は0.001〜0.0
5%とするのがよい。好ましい範囲は0.0015〜
0.02%、より好ましい範囲は0.002〜0.01
5%である。なお、本発明でいうAlとは、酸可溶Al
(sol.Al)のことである。Al: Al is an element remaining when used as a deoxidizing agent. If included, this effect is 0.1%.
001% or more. However, when the content exceeds 0.05%, creep strength and workability are impaired. Therefore, when the Al content is 0.001 to 0.0
It is good to make it 5%. The preferred range is 0.0015 to
0.02%, more preferably 0.002 to 0.01
5%. In the present invention, Al means acid-soluble Al
(Sol. Al).
【0035】Si:Siは、脱酸剤と有効な元素あり、
含有させると鋼の耐水蒸気酸化特性を高める元素でもあ
る。これらの効果は0.01%以上で得られる。しか
し、1%を超えて含有させると靱性が著しく低下し、ク
リープ強度に対しても有害である。したがって、含有さ
せる場合のSi量は0.01〜1%とするのがよい。好
ましい範囲は0.1〜0.6%、より好ましい範囲は
0.15〜0.45%である。Si: Si is a deoxidizing agent and an effective element,
It is also an element that enhances the steam oxidation resistance of steel when contained. These effects can be obtained at 0.01% or more. However, when the content exceeds 1%, the toughness is remarkably reduced, and is harmful to the creep strength. Therefore, the content of Si when it is contained is preferably 0.01 to 1%. A preferred range is 0.1 to 0.6%, and a more preferred range is 0.15 to 0.45%.
【0036】Mn:Mnは必要により含有させる元素
で、含有させれば溶製時の脱硫および脱酸効果によって
熱間加工性を向上させる他、焼入性を向上させる。これ
らの効果は0.01%以上で得られる。しかし、1%を
超えて含有させるとクリープ強化に有効な微細な炭化物
の安定性を損ない、高温長時間のクリープ強度が低下す
る。したがって、含有させる場合のMn量は0.01〜
1%とするのがよい。望ましい範囲は0.05〜0.6
5%、より望ましい範囲は0.1〜0.5%である。Mn: Mn is an element to be contained as required. If contained, Mn improves hot workability by the desulfurization and deoxidation effects at the time of melting, and also improves hardenability. These effects can be obtained at 0.01% or more. However, when the content exceeds 1%, the stability of fine carbides effective for creep strengthening is impaired, and the creep strength at high temperature and long time decreases. Therefore, when contained, the Mn content is 0.01 to
It is better to be 1%. Desirable range is 0.05 to 0.6
5%, more preferably 0.1 to 0.5%.
【0037】Ca、Mg:Ca、Mgは必要により含有
させる元素で、含有させれば介在物を低減させ、鋳造性
の向上に寄与する他、焼戻脆化や溶接割れを誘因するS
を固定し、靱性の向上にも寄与する元素である。その効
果は0.0001以上で顕著になる。しかし、0.01
%を超えて含有させると、炭化物や硫化物が増加し、か
えって靱性および強度を損なう。したがって、含有させ
る場合のCa、Mgの量はいずれも0.0001〜0.
01%とするのがよい。好ましい範囲は0.0002〜
0.005%、より好ましい範囲は0.0005〜0.
0035%である。Ca, Mg: Ca and Mg are elements to be contained as necessary, and if contained, reduce inclusions and contribute to improvement of castability, as well as temper embrittlement and welding cracks.
And an element that also contributes to improving toughness. The effect becomes remarkable at 0.0001 or more. However, 0.01
If it is contained in excess of%, carbides and sulfides increase, and on the contrary, toughness and strength are impaired. Therefore, when contained, the amounts of Ca and Mg are both 0.0001 to 0.
It is better to be 01%. The preferred range is 0.0002 to
0.005%, a more preferred range is from 0.0005 to 0.5.
0035%.
【0038】指数M:0.1以上 マトリックス中のMo固溶量を0.1%以上に保持する
ためには、下式の指数(M)が0.1以上になるように
C、Cr、V、Moおよび必要により含有させたWを下
記式にしたがって制御する必要がある。Index M: 0.1 or more In order to maintain the Mo solid solution amount in the matrix at 0.1% or more, C, Cr, It is necessary to control V, Mo, and W contained as necessary according to the following formula.
【0039】M=(0.08Cr-0.1W+0.03/C+0.04+0.855V)×
(Mo+0.5√Mo)×0.65 ここで、元素記号は各元素の含有量(質量%)を示す。M = (0.08Cr-0.1W + 0.03 / C + 0.04 + 0.855V) ×
(Mo + 0.5√Mo) × 0.65 Here, the element symbol indicates the content (% by mass) of each element.
【0040】Mが0.1未満の場合は、固溶Mo量の
0.1%以上が保証されず、耐焼戻し脆化や耐SR割れ
性の改善効果は認められない。Mの上限は特に規定する
必要はなく、Mo含有量0.1〜2.5%の範囲内で高
ければ高い方がよい。好ましくは0.2%以上である。When M is less than 0.1, 0.1% or more of the amount of solid solution Mo is not guaranteed, and no effect of improving temper embrittlement resistance and SR crack resistance is recognized. It is not necessary to particularly define the upper limit of M, and the higher the Mo content is in the range of 0.1 to 2.5%, the better. It is preferably at least 0.2%.
【0041】[0041]
【実施例】150kg真空誘導溶解炉にて、表1に示す
化学組成の23種の鋼を溶解し、得られたインゴットを
熱間鍛造後、熱間圧延にて30mm厚の鋼板とした。こ
の鋼板について、950〜1050℃の範囲で焼きなら
し処理をおこない、700〜760℃の範囲で焼戻処理
をおこなった。焼戻条件は、いずれもビッカース硬度が
200±10の範囲内に入るように調整した。EXAMPLES In a 150 kg vacuum induction melting furnace, 23 kinds of steels having the chemical compositions shown in Table 1 were melted, and the obtained ingots were hot forged and then hot rolled to form steel plates having a thickness of 30 mm. This steel sheet was subjected to a normalizing process in a range of 950 to 1050 ° C, and a tempering process in a range of 700 to 760 ° C. The tempering conditions were all adjusted so that the Vickers hardness was within the range of 200 ± 10.
【0042】[0042]
【表1】 焼戻後の鋼板から、シャルピー衝撃試験片、鉄研式y型
拘束溶接割れ試験片およびクリープ破断試験片を採取
し、以下の条件でシャルピー衝撃試験による延性−脆性
遷移温度の測定、鉄研式y型拘束溶接割れ試験による耐
SR割れ性の評価、およびクリープ試験による500℃
×7000時間の強度を測定した。[Table 1] From the steel sheet after tempering, a Charpy impact test specimen, an iron-strength y-type restraint weld crack specimen and a creep rupture specimen were sampled, and a ductile-brittle transition temperature was measured by a Charpy impact test under the following conditions. Evaluation of SR crack resistance by y-type constrained welding crack test, and 500 ° C by creep test
× 7000 hours strength was measured.
【0043】(1)クリープ破断試験 試験片直径:6mm 標点間距離:30mm 500℃で最長10000時間の試験をおこない、50
0℃×7000時間の平均クリープ破断強度を求めた。(1) Creep rupture test Specimen diameter: 6 mm Distance between gauge points: 30 mm A test was conducted at 500 ° C. for a maximum of 10,000 hours, and
The average creep rupture strength at 0 ° C. × 7000 hours was determined.
【0044】(2)シャルピー衝撃試験 試験温度:−80℃〜+80℃ (3)鉄研式y型拘束溶接割れ試験 試験片:30mm厚×150mm幅×200mm長 スリット長さ:80mm 溶接法:被覆アーク溶接 溶接後、昇温速度100℃/h、保持温度700℃、保
持時間5hの条件で焼きなまし処理を施した後、JIS
Z3158 に準拠して断面割れ率を測定し、耐SR
割れ性を評価した。これらの試験結果を表2に示す。(2) Charpy impact test Test temperature: -80 ° C to + 80 ° C (3) Iron laboratory type y-type restraint welding crack test Test piece: 30 mm thickness x 150 mm width x 200 mm length Slit length: 80 mm Welding method: coated arc welding After welding, heating rate is 100 After performing an annealing treatment under the conditions of ° C / h, holding temperature of 700 ° C, and holding time of 5 hours, JIS
The section cracking rate was measured in accordance with Z3158, and the SR resistance was measured.
The breakability was evaluated. Table 2 shows the test results.
【0045】[0045]
【表2】 表2の記号A鋼はC含有量およびM値が、B鋼はMo含
有量とM値、C鋼はMo含有量、D鋼はW含有量、E鋼
はCr、V含有量とM値、F鋼はV含有量とM値、G鋼
はV含有量が本発明の範囲外にある比較鋼である。表2
から明らかなように、比較鋼はいずれも焼戻後の靱性が
不芳である。また、A、B、D、E、FおよびG鋼にお
いて耐SR割れ性に劣っていた。[Table 2] In Table 2, symbol A steel has C content and M value, steel B has Mo content and M value, steel C has Mo content, steel D has W content, steel E has Cr, V content and M value. , F steel is a comparative steel having V content and M value, and G steel is a comparative steel having V content outside the range of the present invention. Table 2
As is clear from the above, all of the comparative steels have poor toughness after tempering. Further, the A, B, D, E, F and G steels were inferior in SR crack resistance.
【0046】これに対し、本発明鋼においては、いずれ
もM値が0.2以上であり、焼戻後の延性−脆性遷移温
度が−30℃以下と、良好な靱性を示した。さらに、鉄
研式y型拘束溶接割れ試験にてSR割れが生じなかっ
た。On the other hand, in the steels of the present invention, the M value was 0.2 or more, and the ductility-brittle transition temperature after tempering was -30 ° C. or less, indicating good toughness. In addition, no SR cracking occurred in the Tekken y-type restraint welding crack test.
【0047】500℃×7000時間の平均クリープ強
度は、250MPaであり、クリープ特性も良好であっ
た。The average creep strength at 500 ° C. for 7000 hours was 250 MPa, and the creep characteristics were also good.
【0048】図1および図2は、表2に示した試験結果
に基づく、M値と靱性および耐SR割れ性との関係を示
す。FIGS. 1 and 2 show the relationship between the M value and the toughness and SR crack resistance based on the test results shown in Table 2.
【0049】[0049]
【発明の効果】本発明の耐熱合金は、焼戻脆化および溶
接後のSR割れが発生することなく、400℃以上の高
温でのクリープ強度が高く、高温で長時間曝される構造
材、さらには溶接や加工後の残留応力除去熱処理が必要
な構造材部材に適しており、施工面でも多くの長所を有
する。The heat-resistant alloy of the present invention has a high creep strength at a high temperature of 400 ° C. or higher without causing temper embrittlement and SR cracking after welding, and is a structural material exposed to a high temperature for a long time. Furthermore, it is suitable for structural material members requiring heat treatment for removing residual stress after welding and working, and has many advantages in terms of construction.
【図1】固溶Mo係数Mと焼戻後の靱性との関係を示す
図である。FIG. 1 is a diagram showing a relationship between a solid solution Mo coefficient M and toughness after tempering.
【図2】固溶Mo係数MとSR割れ感受性との関係を示
す図である。FIG. 2 is a graph showing a relationship between a solid solution Mo coefficient M and susceptibility to SR cracking.
Claims (3)
上であることを特徴とする高強度低合金耐熱鋼。 M=(0.08Cr+0.03/C+0.04+0.855V)×(Mo+0.5√Mo)×0.65 ・・・(1) ここで、元素記号は各元素の含有量(質量%)を示す。C: 0.01 to 0.25% Mo: 0.1 to 2.5% V: 0.01 to 0.5% Cr: 0.05 to 3% N: 0 0.11% or less, and the index M represented by the following formula (1) is 0.1 or more: M = (0.08Cr + 0.03 / C + 0.04 + 0.855V) × (Mo + 0.5√Mo) × 0.65 (1) Here, the element symbol indicates the content (% by mass) of each element.
み、かつ下式(2)式で表される指数Mが0.1以上で
あることを特徴とする請求項1に記載の高強度低合金耐
熱鋼。 M=(0.08Cr-0.1W+0.03/C+0.04+0.855V)×(Mo+0.5√Mo)×0.65 ・・・(2)2. The method according to claim 1, wherein the mass M further includes W: 0.05 to 3%, and an index M represented by the following formula (2) is 0.1 or more. High strength low alloy heat resistant steel as described. M = (0.08Cr-0.1W + 0.03 / C + 0.04 + 0.855V) × (Mo + 0.5√Mo) × 0.65 (2)
%、Nb:0.005〜0.1%の1種または2種を含
むことを特徴とする請求項1または2に記載の高強度低
合金耐熱鋼。(3) Ti: 0.001 to 0.05 in mass%.
The high-strength low-alloy heat-resistant steel according to claim 1 or 2, comprising one or two of Nb: 0.005 to 0.1%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000306617A JP3565155B2 (en) | 2000-01-13 | 2000-10-05 | High strength low alloy heat resistant steel |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000-4767 | 2000-01-13 | ||
JP2000004767 | 2000-01-13 | ||
JP2000306617A JP3565155B2 (en) | 2000-01-13 | 2000-10-05 | High strength low alloy heat resistant steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001262268A true JP2001262268A (en) | 2001-09-26 |
JP3565155B2 JP3565155B2 (en) | 2004-09-15 |
Family
ID=26583450
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000306617A Expired - Lifetime JP3565155B2 (en) | 2000-01-13 | 2000-10-05 | High strength low alloy heat resistant steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3565155B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022509978A (en) * | 2018-11-29 | 2022-01-25 | ポスコ | Chromium molybdenum steel sheet with excellent creep strength and its manufacturing method |
JP7502623B2 (en) | 2019-08-13 | 2024-06-19 | 日本製鉄株式会社 | Low alloy heat-resistant steel and steel pipes |
-
2000
- 2000-10-05 JP JP2000306617A patent/JP3565155B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022509978A (en) * | 2018-11-29 | 2022-01-25 | ポスコ | Chromium molybdenum steel sheet with excellent creep strength and its manufacturing method |
EP3889302A4 (en) * | 2018-11-29 | 2022-06-01 | Posco | Chromium-molybdenum steel plate having excellent creep strength and method for manufacturing same |
JP7232910B2 (en) | 2018-11-29 | 2023-03-03 | ポスコ カンパニー リミテッド | Chromium-molybdenum steel sheet with excellent creep strength and its manufacturing method |
JP7502623B2 (en) | 2019-08-13 | 2024-06-19 | 日本製鉄株式会社 | Low alloy heat-resistant steel and steel pipes |
Also Published As
Publication number | Publication date |
---|---|
JP3565155B2 (en) | 2004-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4803174B2 (en) | Austenitic stainless steel | |
JP4561834B2 (en) | Low alloy steel | |
JP5685198B2 (en) | Ferritic-austenitic stainless steel | |
JPH0621323B2 (en) | High strength and high chrome steel with excellent corrosion resistance and oxidation resistance | |
JPH05345949A (en) | Heat resistant low cr ferritic steel excellent in toughness and creep strength | |
JPH04268040A (en) | Heat resisting low alloy steel excellent in creep strength and toughness | |
KR102628769B1 (en) | HIGH-Mn STEEL AND MANUFACTURING METHOD THEREFOR | |
JP4816642B2 (en) | Low alloy steel | |
JP2970955B2 (en) | High chromium ferritic heat resistant steel with excellent copper checking resistance | |
EP1103626A1 (en) | HIGH Cr FERRITIC HEAT RESISTANCE STEEL | |
JP7485929B2 (en) | Low alloy heat-resistant steel and manufacturing method thereof | |
JP2908228B2 (en) | Ferritic steel welding material with excellent resistance to hot cracking | |
JP6540111B2 (en) | Ferritic steel | |
JP3570288B2 (en) | High Cr martensitic heat resistant steel with excellent hot workability | |
JP3434180B2 (en) | Ferritic heat-resistant steel with excellent creep characteristics in the weld heat affected zone | |
JP3565155B2 (en) | High strength low alloy heat resistant steel | |
JP3387145B2 (en) | High Cr ferritic steel with excellent high temperature ductility and high temperature strength | |
JP3355711B2 (en) | High Cr ferritic heat resistant steel with excellent high temperature strength and toughness | |
JP3572152B2 (en) | Low Cr ferritic cast steel with excellent high temperature strength and weldability | |
JP7538401B2 (en) | Low alloy heat resistant steel | |
JP2002241903A (en) | HIGH Cr FERRITIC HEAT RESISTANT STEEL | |
JP3396372B2 (en) | Low Cr ferritic steel with excellent high temperature strength and weldability | |
JP3392639B2 (en) | Low Cr ferritic steel with excellent weldability and high temperature strength | |
JP2001234276A (en) | Cr-Mo STEEL HAVING HIGH TOUGHNESS AND EXCELLENT IN REHEAT CRACKING RESISTANCE | |
JPH0639659B2 (en) | High strength high chromium steel with excellent oxidation resistance and weldability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20031125 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20031224 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040220 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040315 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20040322 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040518 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040531 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3565155 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090618 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100618 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100618 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110618 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110618 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120618 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130618 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130618 Year of fee payment: 9 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130618 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |