JP2001262223A - METHOD FOR PRODUCING HIGH PURITY Fe-Cr ALLOY - Google Patents

METHOD FOR PRODUCING HIGH PURITY Fe-Cr ALLOY

Info

Publication number
JP2001262223A
JP2001262223A JP2000077514A JP2000077514A JP2001262223A JP 2001262223 A JP2001262223 A JP 2001262223A JP 2000077514 A JP2000077514 A JP 2000077514A JP 2000077514 A JP2000077514 A JP 2000077514A JP 2001262223 A JP2001262223 A JP 2001262223A
Authority
JP
Japan
Prior art keywords
alloy
mass
heat treatment
atmosphere
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000077514A
Other languages
Japanese (ja)
Other versions
JP4646086B2 (en
Inventor
Ryuji Hirota
龍二 広田
Hiroshi Morikawa
広 森川
Takashi Yamauchi
隆 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2000077514A priority Critical patent/JP4646086B2/en
Publication of JP2001262223A publication Critical patent/JP2001262223A/en
Application granted granted Critical
Publication of JP4646086B2 publication Critical patent/JP4646086B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a high purity Fe-Cr alloy the C content of which is reduced to <=0.003% by decarburizing annealing by controlling the dew point Dp of the atmosphere and heat treating temperature T. SOLUTION: When subjecting an Fe-Cr alloy sheet containing >=0.03 mass % C to decarburizing annealing in a hydrogen atmosphere or in a hydrogen- nitrogen atmosphere, heat treating temperature T( deg.C) is held within the range of 700 to 1,200 deg.C, and the following inequality is satisfied between the dew point Dp( deg.C) of the atmosphere and the heat treating temperature T to reduce the C content to <=0.003 mass %: 0.0625T-86.9>Dp>-0.04T-46. In this way, the formation of an oxidized film checking decarburizing reaction is suppressed, and the diffusing and oxidizing reaction of C in the steel is promoted, thus, decarburizing can be performed to a level of extra-low carbon of <=0.003%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、脱炭焼鈍によりC含有
量を0.003質量%まで低減した高純度Fe−Cr合
金の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-purity Fe--Cr alloy having a C content reduced to 0.003 mass% by decarburizing annealing.

【0002】[0002]

【従来の技術】高純度Fe−Cr合金、特に極低炭素高
純度Fe−Cr合金は、耐食性,機械的特性,磁気特性
に優れた材料である。高純度Fe−Cr合金は、一般的
には精錬プロセス、具体的には転炉で粗脱炭した後,真
空脱ガスで目標炭素濃度まで脱炭する転炉−真空脱ガス
プロセスで製造されている。精錬プロセス以外にも、F
e−Cr合金を水素雰囲気下で850〜1200℃の温
度に5分〜20時間保持することによりC量を0.01
5質量%以下に下げる方法(特開昭49−63618号
公報),Fe−Cr合金を水素雰囲気下で850〜12
00℃の温度に5分〜20時間保持することによりC量
及びN量を0.01質量%以下に下げる方法(特開昭5
0−79419号公報)等の雰囲気熱処理プロセスを利
用した方法も知られている。
2. Description of the Related Art A high-purity Fe-Cr alloy, particularly an ultra-low carbon high-purity Fe-Cr alloy, is a material having excellent corrosion resistance, mechanical properties and magnetic properties. High-purity Fe-Cr alloys are generally produced by a refining process, specifically, a converter-vacuum degassing process in which coarse decarburization is performed in a converter and then decarburization is performed to a target carbon concentration by vacuum degassing. I have. In addition to the refining process, F
By keeping the e-Cr alloy at a temperature of 850 to 1200 ° C. in a hydrogen atmosphere for 5 minutes to 20 hours, the C content is reduced to 0.01.
A method of reducing the content to 5% by mass or less (Japanese Patent Application Laid-Open No. 49-63618).
A method of lowering the C and N contents to 0.01% by mass or less by maintaining the temperature at 00 ° C. for 5 minutes to 20 hours (Japanese Patent Laid-Open No.
No. 0-79419) is also known.

【0003】[0003]

【発明が解決しようとする課題】転炉−真空脱ガスプロ
セスでは、目標炭素濃度まで脱炭するために真空脱ガス
時に長時間の脱炭処理が必要とされ、著しい作業効率の
低下及び製造コストの増加を招く。他方、従来の雰囲気
熱処理プロセスではC量の低減に限度があり、特開昭4
9−63618号公報の方法では最低0.005質量
%,特開昭50−79419号公報の方法では最低0.
004質量%に低減されているに過ぎない。ところが、
耐食性,機械的特性,磁気特性等の向上には、C量を少
なくとも0.003質量%以下に低減する必要がある。
たとえば、磁束密度B1は、C量の減少に伴って増加す
る傾向が示し、C量0.003質量%以下で急激に増加
する(図1)。C量と磁束密度B1との関係からみる
と、従来の雰囲気熱処理プロセスでは十分に高純度化で
きないことが判る。
In the converter-vacuum degassing process, a long-time decarburization treatment is required at the time of vacuum degassing in order to decarbonize to a target carbon concentration, which significantly reduces the working efficiency and production cost. Increase. On the other hand, in the conventional atmosphere heat treatment process, there is a limit to the reduction of C content.
In the method of JP-A-9-63618, at least 0.005% by mass, and in the method of JP-A-50-79419, at least 0.
It is only reduced to 004% by mass. However,
In order to improve corrosion resistance, mechanical properties, magnetic properties, and the like, it is necessary to reduce the amount of C to at least 0.003% by mass or less.
For example, the magnetic flux density B 1 tends to increase as the C amount decreases, and rapidly increases when the C amount is 0.003% by mass or less (FIG. 1). Viewed from the relationship between the C content and flux density B 1, in the conventional atmospheric heat treatment process seen it may not be sufficiently high purity.

【0004】[0004]

【課題を解決するための手段】本発明は、このような問
題を解消すべく案出されたものであり、熱処理雰囲気の
酸素ポテンシャルをFe−Cr合金表面に脱炭反応を阻
害する酸化皮膜が生成しないレベルに維持することによ
り、C含有量を0.003質量%以下に低減し、耐食
性,機械的特性及び磁気特性に優れた高純度Fe−Cr
合金を得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been devised in order to solve such a problem. An oxide film which inhibits the decarburization reaction on the surface of the Fe--Cr alloy by changing the oxygen potential of the heat treatment atmosphere to an oxygen film is provided. By maintaining it at a level that does not form, the C content is reduced to 0.003% by mass or less, and high-purity Fe—Cr having excellent corrosion resistance, mechanical properties, and magnetic properties.
The purpose is to obtain an alloy.

【0005】本発明の製造方法は、その目的を達成する
ため、0.03質量%以上のCを含むFe−Cr合金板
を水素雰囲気中又は水素−窒素雰囲気中で脱炭焼鈍する
際、熱処理温度T(℃)を700〜1200℃の範囲に保
ち、雰囲気の露点DP(℃)及び熱処理温度Tの間に次式
の関係を成立させ、C量を0.003質量%以下に低減
することを特徴とする。0.0625T−86.9>DP>−0.04T−
46
[0005] In order to achieve the object, the production method of the present invention is characterized in that, when decarburizing annealing a Fe-Cr alloy plate containing 0.03 mass% or more of C in a hydrogen atmosphere or a hydrogen-nitrogen atmosphere, heat treatment is performed. The temperature T (° C.) is maintained in the range of 700 to 1200 ° C., and the following relationship is established between the dew point D P (° C.) of the atmosphere and the heat treatment temperature T, and the C content is reduced to 0.003% by mass or less. It is characterized by the following. 0.0625T−86.9> D P > −0.04T−
46

【0006】また、次式の関係を満足するようにFe−
Cr合金板の板厚t(mm)及び熱処理保持時間H
(時)を設定することが好ましい。 96≧H≧a・t+b (9≧t≧1.55・lnT-9.79のとき) 96≧H≧a・(1.55・lnT-9.79)+b (t<1.55・lnT-9.79のとき) a=82.92−10.9・lnT, b=157.41−23.1・lnT
Further, Fe-
Plate thickness t (mm) of Cr alloy plate and heat treatment holding time H
It is preferable to set (hour). 96 ≧ H ≧ a · t + b (when 9 ≧ t ≧ 1.55 · lnT-9.79) 96 ≧ H ≧ a · (1.55 · lnT-9.79) + b (when t <1.55 · lnT-9.79) a = 82.92−10.9 · lnT, b = 157.41−23.1 · lnT

【0007】[0007]

【作用】水素雰囲気又は水素−窒素雰囲気中での脱炭
は、鋼中Cと雰囲気の酸素又は水蒸気との固相/気相反
応により進行することから、雰囲気の露点が高いほど促
進される。したがって、脱炭高純度化のためには雰囲気
の露点を制御することが重要である。本発明者等は、こ
の雰囲気の露点及び熱処理温度が脱炭反応に及ぼす影響
を調査・研究した結果、露点DP(℃)及び熱処理温度
T(℃)との間にDP>−0.04×T−46の関係が
成立しているとき、図2に示すように鋼中のCが酸化領
域となり脱炭反応が進行することを見出した。ところ
が、Crの酸化物が生成される領域では、生成したクロ
ム酸化物により脱炭反応が妨げられる。Crの還元領域
は、露点DP及び熱処理温度TがDP<0.0625T−
86.9を満足する領域である。
The decarburization in a hydrogen atmosphere or a hydrogen-nitrogen atmosphere proceeds by a solid-phase / gas-phase reaction between C in steel and oxygen or water vapor in the atmosphere, and therefore is promoted as the dew point of the atmosphere increases. Therefore, it is important to control the dew point of the atmosphere for high decarburization. The present inventors, as a result of the dew point and a heat treatment temperature of the atmosphere is to investigate and study the effect on the decarburization reaction, the dew point D P (° C.) and a heat treatment temperature D P between T (℃)> -0. When the relationship of 04 × T-46 was established, it was found that C in the steel became an oxidized region and the decarburization reaction proceeded as shown in FIG. However, in a region where a Cr oxide is generated, the generated chromium oxide hinders the decarburization reaction. In the Cr reduction region, the dew point D P and the heat treatment temperature T are D P <0.0625T−
This is an area satisfying 86.9.

【0008】したがって、Fe−Cr合金を効率よく脱
炭するため、露点DPと熱処理温度Tとの間にDP>−
0.04T−46及びDP<0.0625T−86.9
を満足させる。脱炭反応は熱処理温度Tによる影響も受
け、700℃未満の熱処理温度Tでは拡散反応が遅く脱
炭反応が起こりにくくなる。逆に1200℃を超える熱
処理温度Tでは、高温に耐えうる熱処理炉の構築が困難
になる。
Accordingly, in order to efficiently decarburize the Fe—Cr alloy, the difference between the dew point D P and the heat treatment temperature T is D P > −
0.04 T-46 and D P <0.0625T-86.9
To satisfy. The decarburization reaction is also affected by the heat treatment temperature T. At a heat treatment temperature T of less than 700 ° C., the diffusion reaction is slow and the decarburization reaction hardly occurs. Conversely, if the heat treatment temperature T exceeds 1200 ° C., it becomes difficult to construct a heat treatment furnace that can withstand high temperatures.

【0009】Fe−Cr合金の脱炭反応は,鋼中Cの拡
散によっても影響を受ける。鋼中Cの拡散は,熱処理温
度Tが高く板厚t(mm)が薄いほど促進される。初期
C含有量が0.030質量%のFe−13%Cr合金を
水素雰囲気中で熱処理した後にC含有量が0.003質
量%以下になる板厚t及び熱処理保持時間H(時間)の
範囲を調査した。その結果、図3に見られるように熱処
理温度Tが高いほど、C含有量が0.003質量%以下
になる板厚t及び熱処理保持時間Hの範囲が広がってい
た。薄い板厚tほどC含有量の低減に有利に働くが、板
厚tがある値を下回るとC含有量が0.003質量%を
下回る熱処理温度Tはほとんど変化しなくなるので、こ
の部分については直線で近似した。
[0009] The decarburization reaction of an Fe-Cr alloy is also affected by the diffusion of C in steel. The diffusion of C in steel is promoted as the heat treatment temperature T increases and the plate thickness t (mm) decreases. The range of the sheet thickness t and the heat treatment holding time H (hour) at which the C content becomes 0.003% by mass or less after the Fe-13% Cr alloy having the initial C content of 0.030% by mass is heat-treated in a hydrogen atmosphere. investigated. As a result, as shown in FIG. 3, the higher the heat treatment temperature T, the wider the range of the sheet thickness t and the heat treatment holding time H at which the C content becomes 0.003% by mass or less. The thinner the thickness t, the more advantageous the reduction of the C content. However, if the thickness t falls below a certain value, the heat treatment temperature T at which the C content falls below 0.003% by mass hardly changes. It was approximated by a straight line.

【0010】図3の関係は、回帰計算によって図4に示
すように一般化される。熱処理保持時間Hは、長時間に
なると生産性,経済性を低下させることから上限を96
時間に設定した。板厚tは、Fe−Cr合金の巻出し及
び脱炭された高純度Fe−Cr合金の巻取りを考慮し、
上限を9mmに設定した。この条件下でC含有量:0.
003質量%以下を満足する熱処理保持時間Hは、図4
の斜線領域、すなわち 96≧H≧a・t+b (9≧t≧1.55・lnT-9.79のとき) 96≧H≧a・(1.55・lnT-9.79)+b (t<1.55・lnT-9.79のとき) a=82.92−10.9・lnT, b=157.41−23.1・lnT
The relationship shown in FIG. 3 is generalized by regression calculation as shown in FIG. The upper limit of the heat treatment holding time H is set to 96 since a long time decreases productivity and economic efficiency.
Set to time. The sheet thickness t takes into account the unwinding of the Fe-Cr alloy and the winding of the decarburized high-purity Fe-Cr alloy,
The upper limit was set to 9 mm. Under these conditions, the C content: 0.
The heat treatment holding time H satisfying 003% by mass or less is shown in FIG.
96 ≥ H ≥ at + b (when 9 ≥ t ≥ 1.55 lnT-9.79) 96 ≥ H ≥ a-(1.55 lnT-9.79) + b (t <1.55 lnT-9.79 A) = 82.92−10.9 · lnT, b = 157.41−23.1 · lnT

【0011】本発明に従って脱炭焼鈍されるFe−Cr
合金は、Cr:8.0〜30.0質量%及びC:0.1
0質量%以下を含むFe−Cr合金である。8.0質量
%以下のCr含有量では必要とする耐食性が得られず、
逆に30.0質量%を超えるCr含有量では靭性及び製
造性が低下する。また、C含有量が0.10質量%を超
えると、Cを0.003質量%以下に低減するための熱
処理時間が長くなり、生産性が低下する。
[0011] Fe-Cr decarburized annealing according to the present invention
The alloy contains Cr: 8.0 to 30.0% by mass and C: 0.1
Fe-Cr alloy containing 0% by mass or less. If the Cr content is less than 8.0% by mass, the required corrosion resistance cannot be obtained.
Conversely, if the Cr content exceeds 30.0% by mass, toughness and manufacturability decrease. On the other hand, if the C content exceeds 0.10% by mass, the heat treatment time for reducing C to 0.003% by mass or less becomes longer, and the productivity decreases.

【0012】[0012]

【実施例】Cr:13.12質量%,C:0.030質
量%,Si:0.38質量%,Mn:0.38質量%,
P:0.028質量%,S:0.01質量%を含むFe
−Cr合金30kgを真空溶解し、鍛造,熱延,熱延板
焼鈍,表面研削,冷延,仕上げ焼鈍,酸洗の工程を経て
各種板厚のFe−Cr合金板を製造した。
Examples: Cr: 13.12% by mass, C: 0.030% by mass, Si: 0.38% by mass, Mn: 0.38% by mass,
Fe containing 0.028% by mass of P and 0.01% by mass of S
30 kg of a Cr alloy was melted in vacuum, and Fe-Cr alloy sheets of various thicknesses were manufactured through the steps of forging, hot rolling, hot rolling annealing, surface grinding, cold rolling, finish annealing, and pickling.

【0013】得られた各Fe−Cr合金板を水素雰囲気
中で熱処理し、熱処理されたFe−Cr合金板のC含有
量を分析した。熱処理雰囲気とC含有量との関係を示す
表1にみられるように、本発明で規定する条件を満足す
る雰囲気熱処理が施された試験番号1〜16は、何れも
C量が0.003質量%以下に低減されていた。これに
対し、熱処理温度T及び露点DPが本発明で規定した範
囲を外れる試験番号17〜20では、C含有量が全く低
減しなかった。板厚tに対して熱処理保持時間Hが短す
ぎる試験番号21〜25では、脱炭後のC含有量が0.
003質量%を上回っていた。また、熱処理温度Tが低
すぎる試験番号26や露点DPが低すぎる試験番号27
では、C含有量がほとんど低減していなかった。
Each of the obtained Fe—Cr alloy sheets was heat-treated in a hydrogen atmosphere, and the C content of the heat-treated Fe—Cr alloy sheet was analyzed. As can be seen from Table 1 showing the relationship between the heat treatment atmosphere and the C content, Test Nos. 1 to 16 which were subjected to the atmosphere heat treatment satisfying the conditions specified in the present invention all had a C content of 0.003 mass. % Or less. In contrast, in Test No. 17 to 20 out of the range of heat treatment temperature T and the dew point D P is defined in the of the invention, C content was not reduced at all. In Test Nos. 21 to 25 in which the heat treatment holding time H was too short with respect to the plate thickness t, the C content after decarburization was 0.1%.
003% by mass. Further, Test Nos heat treatment temperature T is too low test No. 26 and the dew point D P is too low 27
In the above, the C content was hardly reduced.

【0014】 [0014]

【0015】[0015]

【発明の効果】以上に説明したように、本発明において
は、Fe−Cr合金を雰囲気熱処理で脱炭するとき、雰
囲気の熱処理温度及び露点を管理することにより、0.
003質量%以下の極低炭素レベルまでの脱炭を可能に
している。このようにして得られる高純度Fe−Cr合
金は、優れた耐食性,機械的特性及び磁気特性を活用
し、建築用,自動車用,高耐食用,高加工用,高磁気特
性用,電磁用等、種々の分野で使用される。また、精錬
プロセスのように長時間の処理を必要としないため、生
産性にも優れている。
As described above, in the present invention, when the Fe—Cr alloy is decarburized by the atmosphere heat treatment, the decarburization temperature is controlled by controlling the atmosphere heat treatment temperature and dew point.
It enables decarburization to an extremely low carbon level of 003% by mass or less. The high-purity Fe-Cr alloy obtained in this way makes use of excellent corrosion resistance, mechanical properties and magnetic properties, and is used for construction, automobile, high corrosion resistance, high processing, high magnetic properties, electromagnetic properties, etc. Used in various fields. In addition, since it does not require a long-time treatment unlike the refining process, it is excellent in productivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 Fe−Cr合金の磁束密度B1に及ぼすC含
有量の影響を表したグラフ
FIG. 1 is a graph showing the effect of the C content on the magnetic flux density B 1 of an Fe—Cr alloy.

【図2】 Fe−Cr合金の脱炭焼鈍が可能な熱処理温
度及び熱処理雰囲気の露点の範囲を示すグラフ
FIG. 2 is a graph showing a heat treatment temperature and a dew point range of a heat treatment atmosphere at which decarburizing annealing of an Fe—Cr alloy is possible.

【図3】 種種の熱処理温度において焼鈍後にFe−C
r合金のC含有量を0.003質量%以下にすることが
可能な板厚及び熱処理保持時間の範囲を示したグラフ
FIG. 3. Fe—C after annealing at various heat treatment temperatures
Graph showing the range of plate thickness and heat treatment holding time in which the C content of the r alloy can be reduced to 0.003% by mass or less.

【図4】 Fe−Cr合金のC含有量を0.003質量
%以下にすることが可能な板厚及び熱処理保持時間の範
囲を示したグラフ
FIG. 4 is a graph showing a range of a sheet thickness and a heat treatment holding time in which the C content of the Fe—Cr alloy can be reduced to 0.003% by mass or less.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 0.03質量%以上のCを含むFe−C
r合金板を水素雰囲気中又は水素−窒素雰囲気中で脱炭
焼鈍する際、熱処理温度T(℃)を700〜1200℃の
範囲に保ち、雰囲気の露点DP(℃)及び熱処理温度Tの
間に次式の関係を成立させ、C量を0.003質量%以
下に低減することを特徴とする高純度Fe−Cr合金の
製造方法。 0.0625T−86.9>DP>−0.04T−46
1. Fe—C containing 0.03% by mass or more of C
When the r-alloy plate is decarburized and annealed in a hydrogen atmosphere or a hydrogen-nitrogen atmosphere, the heat treatment temperature T (° C.) is maintained in the range of 700 to 1200 ° C., and the dew point D P (° C.) of the atmosphere and the heat treatment temperature T are maintained. A method for producing a high-purity Fe-Cr alloy, wherein the relationship of the following formula is satisfied, and the C content is reduced to 0.003 mass% or less. 0.0625T−86.9> D P > −0.04T−46
【請求項2】 Fe−Cr合金板の板厚t(mm)及び
熱処理保持時間H(時)が次式を満足する条件下でFe
−Cr合金板を脱炭焼鈍する請求項1記載の高純度Fe
−Cr合金の製造方法。 96≧H≧a・t+b (9≧t≧1.55・lnT-9.79のとき) 96≧H≧a・(1.55・lnT-9.79)+b (t<1.55・lnT-9.79のとき) a=82.92−10.9・lnT, b=157.41−23.1・lnT
2. The condition that the thickness t (mm) of the Fe—Cr alloy plate and the heat treatment holding time H (hour) satisfy the following equation:
The high purity Fe according to claim 1, wherein the -Cr alloy plate is decarburized and annealed.
-A method for producing a Cr alloy. 96 ≧ H ≧ a · t + b (when 9 ≧ t ≧ 1.55 · lnT-9.79) 96 ≧ H ≧ a · (1.55 · lnT-9.79) + b (when t <1.55 · lnT-9.79) a = 82.92−10.9 · lnT, b = 157.41−23.1 · lnT
JP2000077514A 2000-03-21 2000-03-21 Method for producing high purity Fe-Cr alloy Expired - Lifetime JP4646086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000077514A JP4646086B2 (en) 2000-03-21 2000-03-21 Method for producing high purity Fe-Cr alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000077514A JP4646086B2 (en) 2000-03-21 2000-03-21 Method for producing high purity Fe-Cr alloy

Publications (2)

Publication Number Publication Date
JP2001262223A true JP2001262223A (en) 2001-09-26
JP4646086B2 JP4646086B2 (en) 2011-03-09

Family

ID=18595070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000077514A Expired - Lifetime JP4646086B2 (en) 2000-03-21 2000-03-21 Method for producing high purity Fe-Cr alloy

Country Status (1)

Country Link
JP (1) JP4646086B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4963618A (en) * 1972-10-23 1974-06-20
JPS5079419A (en) * 1973-11-19 1975-06-27
JPS50131812A (en) * 1974-01-29 1975-10-18
JPS56102518A (en) * 1980-01-18 1981-08-17 Nisshin Steel Co Ltd Annealing method for steel
JPS56146820A (en) * 1980-04-18 1981-11-14 Nisshin Steel Co Ltd Annealing method for hot rolled steel strip with mill scale
JPS61207509A (en) * 1985-03-08 1986-09-13 Sumitomo Special Metals Co Ltd Production of alloy for sealing soft glass

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4963618A (en) * 1972-10-23 1974-06-20
JPS5079419A (en) * 1973-11-19 1975-06-27
JPS50131812A (en) * 1974-01-29 1975-10-18
JPS56102518A (en) * 1980-01-18 1981-08-17 Nisshin Steel Co Ltd Annealing method for steel
JPS56146820A (en) * 1980-04-18 1981-11-14 Nisshin Steel Co Ltd Annealing method for hot rolled steel strip with mill scale
JPS61207509A (en) * 1985-03-08 1986-09-13 Sumitomo Special Metals Co Ltd Production of alloy for sealing soft glass

Also Published As

Publication number Publication date
JP4646086B2 (en) 2011-03-09

Similar Documents

Publication Publication Date Title
JP4823719B2 (en) Method for producing grain-oriented electrical steel sheet with extremely excellent magnetic properties
RU2527827C2 (en) Production of random-orientation electric steel with high magnetic induction
JP2003096520A (en) Method of producing high magnetic flux density grain oriented silicon steel sheet having excellent film property and high magnetic field core loss
US4560423A (en) Process for producing a non-oriented electromagnetic steel sheet having excellent magnetic properties
JPH10298653A (en) Manufacture of grain oriented silicon steel sheet with extremely low iron loss
CN110066908B (en) Production method for improving edge grain state of high-magnetic-induction oriented silicon steel
JP3496067B2 (en) Method for manufacturing mirror-oriented unidirectional electrical steel sheet
JP5008949B2 (en) Method for producing grain-oriented electrical steel sheets with excellent productivity
JPH05311323A (en) Dual-phase steel plate having high strength and high workability and production thereof
JP3008003B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP3275712B2 (en) High silicon steel sheet excellent in workability and method for producing the same
JP4646086B2 (en) Method for producing high purity Fe-Cr alloy
JP3890790B2 (en) High silicon steel sheet
JP7486436B2 (en) Manufacturing method for grain-oriented electrical steel sheet
JP2779696B2 (en) Manufacturing method of grain-oriented high silicon steel sheet
JP2001192787A (en) Grain oriented silicon steel sheet excellent in magnetic property, and its manufacturing method
JP4161403B2 (en) Method for producing grain-oriented electrical steel sheet
JP4691621B2 (en) Method for producing high-purity Fe-Cr alloy
EP1657321A1 (en) Material for shadow mask, process for producing the same, shadow mask from the shadow mask material and picture tube including the shadow mask
JPS5834531B2 (en) Method for manufacturing non-oriented silicon steel sheet with excellent magnetic properties
JPH10324923A (en) Wire rod for steel wire
JP3265946B2 (en) Method for producing high silicon steel sheet with excellent workability
JP3019600B2 (en) Method for producing high silicon steel sheet having excellent magnetic and mechanical properties by diffusion infiltration treatment
JPH0693329A (en) Production of cold rolled steel sheet excellent in baking hardenability
WO2020149348A1 (en) Method for producing unidirectional electromagnetic steel sheet

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070307

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4646086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

EXPY Cancellation because of completion of term
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370