JPH0693329A - Production of cold rolled steel sheet excellent in baking hardenability - Google Patents

Production of cold rolled steel sheet excellent in baking hardenability

Info

Publication number
JPH0693329A
JPH0693329A JP27101092A JP27101092A JPH0693329A JP H0693329 A JPH0693329 A JP H0693329A JP 27101092 A JP27101092 A JP 27101092A JP 27101092 A JP27101092 A JP 27101092A JP H0693329 A JPH0693329 A JP H0693329A
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
rolled steel
decarburization
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP27101092A
Other languages
Japanese (ja)
Inventor
Masayuki Kobayashi
雅之 小林
Kiyotaka Tsunemi
清孝 恒見
Mikio Nishino
幹雄 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP27101092A priority Critical patent/JPH0693329A/en
Publication of JPH0693329A publication Critical patent/JPH0693329A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To improve the baking hardenability of a steel sheet, at the time of subjecting a cold rolled steel sheet of low carbon or medium carbon to decarburizing annealing by open coil annealing equipment, by executing the decarburizing annealing for specified time in accordance with the C content, thickness, surface are or the like of the cold rolled steel sheet. CONSTITUTION:At the time of subjecting the cold rolled steel sheet having a compsn. contg., by weight, 0.03 to 0.30% C, <0.8% Si, <0.40% Mn, <0.05% P, <0.020% S, <0.008% N and 0.020 to 0.100% Al to decarburizing annealing by open coil annealing equipment, when the sheet thickness of the cold rolled steel sheet is defined as Gmm as well as the surface area as Smm<2> and the carbon content as solid solution in the steel sheet is regulated to specified extra low one by the decarburizing annealing, the annealing is executed for (t) time in the formula I in the case of S<=1.5X10<9>mm<2> and in the formula II in the case of S>1.5X10<9>mm<2>, by which the C in the steel sheet is removed into 50 to 200ppm to improve its baking hardenability. Furthermore, in the formulae I and II, the ranges of 0.40 to 7.00 C1, 0.70 to 1.00 C2, 0.10 to 0.50 C3, 0 to 0.30 C4, 0.80 to 2.00 C5 and 1.00 to 1.50 C6 are regulated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、必要とする焼付け硬化
性が脱炭焼鈍により付与された冷延鋼板を製造する方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a cold-rolled steel sheet to which the necessary bake hardenability has been imparted by decarburizing annealing.

【0002】[0002]

【従来の技術】自動車用鋼板として使用される冷延鋼板
には、パネル等の所定形状に成形した後で焼付け塗装に
よって降伏強度が上昇する、いわゆる焼付け硬化性が要
求される。焼付け硬化性は、図1に示すように、フェラ
イト中の固溶炭素含有量によって定まる。そして、鋼板
製品において降伏点伸びの回復に起因するストレッチャ
ーストレインの発生を考慮して、3〜6kgf/mm2
が適正な焼付け硬化性とされている。焼付け硬化性をこ
の範囲に収めるために、図1に示した関係から、固溶炭
素量を4〜11ppmに調整することが必要とされる。
2. Description of the Related Art Cold-rolled steel sheets used as automobile steel sheets are required to have so-called bake hardenability, in which the yield strength is increased by baking coating after forming into a predetermined shape such as a panel. The bake hardenability is determined by the content of solute carbon in ferrite, as shown in FIG. Then, in consideration of occurrence of stretcher strain due to recovery of elongation at yield in steel sheet products, 3 to 6 kgf / mm 2
Is said to have appropriate bake hardenability. In order to keep the bake hardenability within this range, it is necessary to adjust the amount of solute carbon to 4 to 11 ppm from the relationship shown in FIG.

【0003】フェライト中の固溶炭素量を4〜11pp
mのレベルに維持する方法としては、連続焼鈍設備を用
いる方法及びオープンコイル焼鈍設備を用いる方法があ
る。連続焼鈍では脱炭が不可能のため、オープンコイル
焼鈍設備を用いた脱炭焼鈍が採用されている。連続焼鈍
設備による場合、製鋼段階でC量を20〜50ppmに
低下させた極低炭素鋼にTi,Nb等の炭化物形成元素
を適量添加し、Cを再結晶温度近傍までは安定なTi
C,NbC等の炭化物としておく。そして、連続焼鈍時
の焼鈍温度を再結晶温度以上とし、TiC,NbC等の
炭化物を溶解(分解)させ、その後に溶解したCとT
i,Nb等の炭化物形成元素が再結合しないように20
℃/秒以上の冷却速度で急冷することにより、固溶C量
を4〜11ppmの範囲に調整している。たとえば、特
開平2−111841号公報では、製鋼段階でC,N,
S,Ti,Nb等を厳格に管理して極低炭素鋼を製造
し、添加されたTi,Nb等により鋼中に存在する余分
なCを炭化物として固定し、焼付け硬化性に有効な固溶
炭素量を目標値に維持することが紹介されている。
The amount of solid solution carbon in ferrite is 4 to 11 pp.
As a method for maintaining the m level, there are a method using continuous annealing equipment and a method using open coil annealing equipment. Since decarburization cannot be performed by continuous annealing, decarburization annealing using open coil annealing equipment is used. In the case of continuous annealing equipment, an appropriate amount of carbide forming elements such as Ti and Nb is added to an ultra-low carbon steel having a C content reduced to 20 to 50 ppm in the steelmaking stage, and C is stable until near the recrystallization temperature.
Carbides such as C and NbC are set. Then, the annealing temperature at the time of continuous annealing is set to the recrystallization temperature or higher, the carbides such as TiC and NbC are dissolved (decomposed), and then the dissolved C and T
To prevent carbides forming elements such as i and Nb from recombining, 20
By rapidly cooling at a cooling rate of not less than C / sec, the amount of dissolved C is adjusted to the range of 4 to 11 ppm. For example, in Japanese Unexamined Patent Publication No. 2-111841, C, N,
S, Ti, Nb, etc. are strictly controlled to produce an ultra-low carbon steel, and the added Ti, Nb, etc. fix excess C existing in the steel as a carbide, which is a solid solution effective for bake hardenability. It is introduced to maintain the carbon content at the target value.

【0004】オープンコイル焼鈍設備による場合、製鋼
段階でC量を50〜200ppmに低下させた極低炭素
鋼の冷延鋼板をオープンコイル焼鈍設備で再結晶温度以
上に加熱した後、60〜100℃/時の冷却速度で冷却
している。この方法では、C量が50〜200ppmと
低いことから析出サイトとなる炭化物が少なく、冷却過
程においてFe3 C等の炭化物が十分に析出しない。そ
のため、4〜11ppmの適量に固溶炭素をを残存させ
ることができる。
In the case of the open coil annealing equipment, the cold rolled steel sheet of ultra-low carbon steel whose C content is reduced to 50 to 200 ppm in the steel making stage is heated to a recrystallization temperature or higher in the open coil annealing equipment, and then 60 to 100 ° C. It is cooling at a cooling rate of / hour. In this method, since the amount of C is as low as 50 to 200 ppm, there are few carbides as precipitation sites, and carbides such as Fe 3 C do not sufficiently precipitate during the cooling process. Therefore, the solid solution carbon can be left in an appropriate amount of 4 to 11 ppm.

【0005】[0005]

【発明が解決しようとする課題】製鋼段階で極低炭素鋼
とした冷延鋼板を連続焼鈍設備やオープンコイル焼鈍設
備における焼鈍によって焼付け硬化性を付与する方法で
は、製鋼段階での脱炭に時間がかかり、コストの上昇を
招く。特に、炭素量が20〜50ppmの極低炭素鋼に
Ti,Nb等の炭化物形成元素を添加し、固溶炭素量を
制御するとき、Ti,Nb等がC以外の元素であるN,
S等とも結合するため、固溶炭素量を4〜11ppmの
目標範囲に管理するには、製鋼段階でC,Ti,Nb,
N,S等の含有量を厳格に制御することが必要とされ、
困難な操業が強いられる。本発明は、このような問題を
解消すべく案出されたものであり、低炭素又は中炭素冷
延鋼板にオープンコイル焼鈍設備で脱炭焼鈍を施し、鋼
中炭素量を50〜200ppmに調整することにより、
焼鈍前の鋼中炭素量に拘らず、必要とする焼付け硬化性
を冷延鋼板に付与することを目的とする。
In the method of imparting the bake hardenability to the cold-rolled steel sheet which has been made into an extremely low carbon steel at the steelmaking stage by annealing in the continuous annealing equipment or the open coil annealing equipment, it takes time to decarburize at the steelmaking step. It causes a cost increase. In particular, when a carbide forming element such as Ti or Nb is added to an ultra-low carbon steel having a carbon content of 20 to 50 ppm to control the amount of solid solution carbon, Ti, Nb or the like is an element other than C, N,
Since it also binds to S and the like, in order to control the amount of solute carbon in the target range of 4 to 11 ppm, C, Ti, Nb,
It is necessary to strictly control the content of N, S, etc.,
Difficult operations are forced. The present invention has been devised to solve such a problem, in which low carbon or medium carbon cold-rolled steel sheet is subjected to decarburization annealing with an open coil annealing equipment to adjust the carbon content in the steel to 50 to 200 ppm. By doing
The purpose is to impart the necessary bake hardenability to a cold rolled steel sheet regardless of the carbon content in the steel before annealing.

【0006】[0006]

【課題を解決するための手段】本発明の製造方法は、そ
の目的を達成するため、C:0.03〜0.30重量
%,Si:0.80重量%以下,Mn:0.40重量%
以下,P:0.05重量%以下,S:0.020重量%
以下,N:0.008重量%以下,Al:0.020〜
0.100重量%を含有する冷延鋼板に対し、焼鈍時の
脱炭時間をt(時),鋼板の板厚をG(mm),鋼板の
表面積をS(mm2)とするとき、 S≦1.5×109 mm2 の場合、 t=C1 ×(G×C2 +C3)2 +C4 ・・・・(1) S>1.5×109 mm2 の場合、 t=C1 ×(G×C2 +C3)2 +C5 /G−C6 ・・・・(2) で表される式(1)又は式(2)にG及びC1 〜C6
代入して求められた脱炭時間tで、オープンコイル焼鈍
設備を使用して鋼中炭素が50〜200ppmになるよ
うに脱炭焼鈍を施すことを特徴とする。
In order to achieve the object, the manufacturing method of the present invention has C: 0.03 to 0.30% by weight, Si: 0.80% by weight or less, Mn: 0.40% by weight. %
Below, P: 0.05% by weight or less, S: 0.020% by weight
Hereinafter, N: 0.008% by weight or less, Al: 0.020 to
For a cold-rolled steel sheet containing 0.100% by weight, when the decarburization time during annealing is t (hours), the thickness of the steel sheet is G (mm), and the surface area of the steel sheet is S (mm 2 ), S When ≦ 1.5 × 10 9 mm 2 , t = C 1 × (G × C 2 + C 3 ) 2 + C 4 (1) When S> 1.5 × 10 9 mm 2 , t = Substituting G and C 1 to C 6 into the formula (1) or formula (2) represented by C 1 × (G × C 2 + C 3 ) 2 + C 5 / G−C 6 ... (2) It is characterized in that decarburization annealing is performed so that carbon in steel becomes 50 to 200 ppm by using an open coil annealing equipment at the decarburization time t obtained as described above.

【0007】ここで、係数及び定数C1 〜C6 は理論及
び多数の実績から予め把握されている値である。係数C
1 及び定数C3 は、脱炭焼鈍前の鋼中炭素濃度に応じて
定まる値であり、C1 は0.40〜7.00の範囲に、
3 は0.10〜0.50の範囲にある。係数C2 ,定
数C4 及び定数C6 は、脱炭焼鈍後の目標範囲鋼中炭素
濃度に応じて定まる値であり、C2 は0.70〜1.0
0の範囲に、C4 は0〜0.30の範囲に、C6 は1.
00〜1.50の範囲にある。定数C5 は、脱炭焼鈍重
量に応じて定まる値であり、0.80〜2.00の範囲
にある。
Here, the coefficients and constants C 1 to C 6 are values that have been grasped in advance from theory and many actual results. Coefficient C
1 and the constant C 3 are values determined according to the carbon concentration in the steel before decarburization annealing, and C 1 is in the range of 0.40 to 7.00,
C 3 is in the range of 0.10 to 0.50. The coefficient C 2 , the constant C 4, and the constant C 6 are values determined according to the carbon concentration in the target range steel after decarburization annealing, and C 2 is 0.70 to 1.0.
0, C 4 is in the range of 0 to 0.30, C 6 is 1.
It is in the range of 00 to 1.50. The constant C 5 is a value determined according to the decarburization annealing weight and is in the range of 0.80 to 2.00.

【0008】[0008]

【作 用】本発明者等の研究により、オープンコイル焼
鈍設備で焼鈍された冷延鋼板の焼付け硬化性は、炭素含
有量との間に図2に示した関係を持っていることが判っ
た。図2の場合、Si:0.01重量%以下,Mn:
0.10〜0.20重量%,P:0.010〜0.02
0重量%の冷延鋼板を、オープンコイル焼鈍設備におい
て680〜710℃の温度で焼鈍し、冷却速度80〜1
00℃/時で冷却した。なお、図2における焼付け硬化
性は、170℃に20分保持する熱処理前後の引張り試
験における降伏応力の差で表した。この炭素含有量は、
固溶炭素含有量の測定と異なり、比較的容易に求めるこ
とができる。そして、脱炭焼鈍時の焼鈍時間や脱炭温
度,脱炭雰囲気等の条件を変えることによって、炭素含
有量を目標値に調整することが容易に行われ、目標とす
る焼付け硬化性を得ることが可能である。これに対し、
製鋼段階における成分調整によって目標とする焼付け硬
化性を得ようとすると、前述したようにC量の他にT
i,Nb,S,N等の含有量も厳格に管理することを余
儀なくされる。その結果、困難な操業を強いられる。
[Operation] According to the study by the present inventors, it was found that the bake hardenability of the cold rolled steel sheet annealed by the open coil annealing equipment has the relationship shown in Fig. 2 with the carbon content. . In the case of FIG. 2, Si: 0.01 wt% or less, Mn:
0.10 to 0.20% by weight, P: 0.010 to 0.02
A 0% by weight cold rolled steel sheet was annealed at a temperature of 680 to 710 ° C. in an open coil annealing equipment, and a cooling rate was 80 to 1
Cooled at 00 ° C / hr. The bake hardenability in FIG. 2 is represented by the difference in yield stress in the tensile test before and after the heat treatment of holding at 170 ° C. for 20 minutes. This carbon content is
Unlike the measurement of the solid solution carbon content, it can be determined relatively easily. Then, the carbon content can be easily adjusted to the target value by changing the conditions such as the annealing time, the decarburizing temperature, the decarburizing atmosphere during the decarburizing annealing, and obtaining the target bake hardenability. Is possible. In contrast,
In order to obtain the target bake hardenability by adjusting the composition in the steelmaking stage, as described above, in addition to the C content, T
The contents of i, Nb, S, N, etc. must be strictly controlled. As a result, it is difficult to operate.

【0009】所定の焼付け硬化性が得られる50〜20
0ppmに炭素含有量を下げることは、オープンコイル
焼鈍により十分可能である。また、炭素含有量は、脱炭
時間,脱炭温度,脱炭雰囲気等の脱炭条件を変えること
によって、50〜200pmの範囲の任意の値に調整す
ることができる。この範囲に炭素含有量が調整された焼
鈍後の鋼板は、炭素含有量との関係で焼付け硬化性を変
化させる。脱炭焼鈍は、オープンコイル焼鈍設備を使用
し、冷延鋼板を600℃以上の高温に加熱することによ
って行われる。脱炭雰囲気は、水蒸気を混入したAXガ
スを使用する。水蒸気の混入量は、脱炭反応を円滑に行
わせる上から、雰囲気の露点が30〜60℃の範囲に維
持されるように調整することが好ましい。露点が30℃
より低い乾燥雰囲気では、C+H2 O→CO+H2 の脱
炭反応速度が小さく、長時間の高温加熱が必要とされ
る。また、露点が60℃を超えるとき、H2 O/H2
が高く、酸化性雰囲気となるため、鋼板表面が酸化し易
くなる。
50 to 20 with which a predetermined bake hardenability can be obtained
Reducing the carbon content to 0 ppm is fully possible by open coil annealing. The carbon content can be adjusted to any value within the range of 50 to 200 pm by changing the decarburizing conditions such as decarburizing time, decarburizing temperature and decarburizing atmosphere. The steel sheet after annealing whose carbon content is adjusted to this range changes the bake hardenability in relation to the carbon content. The decarburization annealing is performed by using an open coil annealing equipment and heating the cold rolled steel sheet to a high temperature of 600 ° C or higher. As the decarburizing atmosphere, AX gas mixed with water vapor is used. The amount of water vapor mixed is preferably adjusted so that the dew point of the atmosphere is maintained in the range of 30 to 60 ° C. in order to smoothly carry out the decarburization reaction. Dew point is 30 ℃
In a lower dry atmosphere, the decarburization reaction rate of C + H 2 O → CO + H 2 is small, and long-time high temperature heating is required. Further, when the dew point exceeds 60 ° C., the H 2 O / H 2 ratio is high and an oxidizing atmosphere is created, so that the steel sheet surface is easily oxidized.

【0010】脱炭温度は、脱炭反応開始温度600℃以
上、好ましくは700〜800℃に設定する。この脱炭
温度が600℃より低いとき、脱炭反応が進行しない
か、或いは長時間の脱炭が必要となる。また、800℃
を超える脱炭温度では、脱炭反応の進行状態を予測する
ことが困難になり、炭素含有量を高精度に制御すること
が困難になる。炭素含有量50〜200ppmまで脱炭
するための時間は、脱炭前の鋼板における初期炭素量,
板厚,表面積,重量等によって変わる。たとえば、初期
炭素含有量0.03重量%,板厚0.7mm,コイル重
量7トンの冷延鋼板を、露点50℃の脱炭焼鈍雰囲気ガ
スを供給量68Nm3 /時で導入しながら、脱炭焼鈍後
の目標炭素含有量を200ppmに設定した条件下で脱
炭焼鈍するとき、鋼板表面積が1.5×109 mm2
り小さいため、脱炭時間tは次式に従って求められ
る。 t=C1 ×(G×C2 +C3)2 +C4 =0.43×(0.7×0.77+0.49)2 =0.46(時間) ・・・・
The decarburization temperature is set to a decarburization reaction initiation temperature of 600 ° C or higher, preferably 700 to 800 ° C. When the decarburization temperature is lower than 600 ° C., the decarburization reaction does not proceed or long-time decarburization is required. Also, 800 ℃
If the decarburization temperature exceeds, it becomes difficult to predict the progress of the decarburization reaction, and it becomes difficult to control the carbon content with high accuracy. The time for decarburization to a carbon content of 50 to 200 ppm depends on the initial carbon amount in the steel sheet before decarburization,
It depends on the plate thickness, surface area, weight, etc. For example, a cold-rolled steel sheet having an initial carbon content of 0.03% by weight, a sheet thickness of 0.7 mm, and a coil weight of 7 tons is degassed while introducing a decarburizing annealing atmosphere gas with a dew point of 50 ° C. at a supply rate of 68 Nm 3 / hour. When decarburizing and annealing under the condition that the target carbon content after charcoal annealing is set to 200 ppm, the steel sheet surface area is smaller than 1.5 × 10 9 mm 2 , so the decarburizing time t is obtained according to the following equation. t = C 1 × (G × C 2 + C 3 ) 2 + C 4 = 0.43 × (0.7 × 0.77 + 0.49) 2 = 0.46 (hours) ...

【0011】また、初期炭素含有量を0.30重量%,
コイル重量を15トン,目標炭素含有量を50ppmに
替えた場合には、鋼板表面積が1.5×109 mm2
り大きくなるため、脱炭焼鈍時間tは次式に従って求
められる。 t=C1 ×(G×C2 +C3)2 +C5 /G−C6 =6.62×(0.7×1.0+0.11)2 +1.87/0.7−1.11 =5.90(時間) ・・・・
The initial carbon content is 0.30% by weight,
When the coil weight is changed to 15 tons and the target carbon content is changed to 50 ppm, the steel sheet surface area becomes larger than 1.5 × 10 9 mm 2 , so the decarburization annealing time t is obtained according to the following equation. t = C 1 × (G × C 2 + C 3) 2 + C 5 / G-C 6 = 6.62 × (0.7 × 1.0 + 0.11) 2 + 1.87 / 0.7-1.11 = 5.90 (hours)

【0012】何れの式又はで求められた時間で脱炭
焼鈍を行っても、それぞれ目標炭素含有量200pp
m,50ppmまで脱炭焼鈍することが可能である。脱
炭焼鈍された鋼板は、炭素含有量が低下していることか
ら優れた加工性を呈する。たとえば、脱炭焼鈍後の鋼板
をプレス成形するとき、プレス型に対する馴染が良く、
プレス型から外したときのスプリングバックがないた
め、形状特性の良好な製品となる。そして、プレス成形
後に焼付け塗装した状態では、高い降伏強度が得られ
る。しかも、鋼種の如何によらず脱炭焼鈍で所定の焼付
け硬化性が付与されるため、汎用性の高い製法である。
Even if decarburization annealing is carried out for any time period obtained by any of the formulas or, the target carbon content is 200 pp.
It is possible to decarburize and anneal up to m, 50 ppm. The decarburized and annealed steel sheet exhibits excellent workability due to the reduced carbon content. For example, when press-forming a steel sheet after decarburization annealing, it is well suited to the press die,
Since there is no springback when removed from the press mold, the product has good shape characteristics. High yield strength can be obtained in a state where baking is applied after press molding. Moreover, since it has a predetermined bake hardenability provided by decarburization annealing regardless of the type of steel, it is a highly versatile manufacturing method.

【0013】本発明で使用される冷延鋼板は、製鋼段階
でC,Ti,Nb,N,S等の含有量を厳格に制御する
必要がなく、しかも脱炭焼鈍を従来の工程と同じオープ
ンコイル焼鈍設備で行うことができる。そのため、製造
コストを従来に比較して大幅に低下させることが可能と
なる。Cは、脱炭焼鈍によって50〜200ppmの範
囲に調整できる元素である。しかし、脱炭前の鋼板にお
ける初期炭素含有量が多すぎると長時間の脱炭が必要と
なり、しかも長時間の脱炭に伴ってSi,Mn等の選択
酸化元素が酸化し、酸化物が濃縮した表面層が形成され
易くなる。他方、C含有量が低い鋼板を出発材料として
使用することは、本発明に従った脱炭焼鈍のメリットを
少なくし、長時間の製鋼脱炭が必要とされる。この点
で、脱炭焼鈍前の冷延鋼板のC含有量を、0.03〜
0.30重量%としている。
In the cold-rolled steel sheet used in the present invention, it is not necessary to strictly control the contents of C, Ti, Nb, N, S, etc. in the steelmaking stage, and decarburization annealing is performed in the same manner as in the conventional process. It can be performed in a coil annealing facility. Therefore, the manufacturing cost can be significantly reduced as compared with the conventional one. C is an element that can be adjusted to a range of 50 to 200 ppm by decarburization annealing. However, if the initial carbon content in the steel sheet before decarburization is too high, long-term decarburization is required, and further, the long-term decarburization oxidizes selective oxidizing elements such as Si and Mn, and oxides are concentrated. The formed surface layer is easily formed. On the other hand, the use of a steel sheet having a low C content as a starting material reduces the merit of decarburization annealing according to the present invention, and requires long-term steelmaking decarburization. At this point, the C content of the cold rolled steel sheet before decarburization annealing is 0.03 to
It is set to 0.30% by weight.

【0014】Siは、焼付け硬化性を向上させると共に
鋼の強度を向上させる上で有効な元素である。しかし、
脱炭焼鈍時に選択酸化し易く、酸化皮膜の形成に起因し
て鋼板表面を変色させる原因となる。そこで、Si含有
量の上限を0.80重量%に規定した。Mnは、鋼の強
度を向上させる上で有効な元素であるが、添加量が増加
するに応じ低炭素鋼の焼付け硬化性を低下させる傾向を
呈する。また、Siと同様に、酸化皮膜の形成に起因し
て鋼板表面を変色させる原因となる。そこで、Mn含有
量の上限を0.40重量%に規定した。
Si is an element effective in improving the bake hardenability and the strength of the steel. But,
Selective oxidation is likely to occur during decarburization annealing, which causes discoloration of the steel sheet surface due to the formation of an oxide film. Therefore, the upper limit of the Si content is defined as 0.80% by weight. Mn is an element effective in improving the strength of steel, but tends to decrease the bake hardenability of low carbon steel as the amount of addition increases. Further, like Si, it causes discoloration of the steel sheet surface due to the formation of an oxide film. Therefore, the upper limit of the Mn content is defined as 0.40% by weight.

【0015】Pは、鋼の強度及び焼付け硬化性を向上さ
せる有効な元素である。しかし、P含有量の増加に応じ
て、スポット溶接性,耐二次加工割れ性等の性質が低下
する傾向が強く現れる。そのため、P含有量を、0.0
5重量%以下に規制した。Sは、鋼中に含まれる不純物
元素であって、焼付け硬化性に有効な作用を呈する。し
かし、S含有量が多量になると熱間脆化を生じるため、
S含有量の上限を0.020重量%に設定した。Al
は、脱酸剤として使用される元素であり、十分な脱酸を
行うために0.020重量%以上が必要である。しか
し、多量のAl含有量は鋼の表面性状に悪影響を及ぼす
ので、その上限を0.100重量%に設定した。Nは、
鋼中の平衡溶解度が高く、焼付け硬化性の向上に有効に
作用する。しかし、多量のNが固溶した鋼では常温時効
が起こり易く、延性の低下やストレッチャーストレイン
等が発生する欠陥を招く。そのため、N含有量を0.0
08重量%以下に規制し、全量をAlN析出物として固
定する。
P is an effective element for improving the strength and bake hardenability of steel. However, as the P content increases, properties such as spot weldability and secondary work crack resistance tend to deteriorate. Therefore, the P content is 0.0
It was regulated to 5% by weight or less. S is an impurity element contained in steel and has an effective effect on bake hardenability. However, when the S content becomes large, hot embrittlement occurs,
The upper limit of the S content was set to 0.020% by weight. Al
Is an element used as a deoxidizing agent, and 0.020% by weight or more is necessary to perform sufficient deoxidizing. However, since a large amount of Al content adversely affects the surface properties of steel, its upper limit was set to 0.100% by weight. N is
It has a high equilibrium solubility in steel and effectively acts to improve bake hardenability. However, in a steel in which a large amount of N is dissolved, normal temperature aging is likely to occur, which causes defects such as reduction in ductility and stretcher strain. Therefore, the N content is 0.0
The amount is regulated to 08% by weight or less, and the whole amount is fixed as an AlN precipitate.

【0016】[0016]

【実施例】【Example】

実施例1:脱炭焼鈍前の初期炭素含有量が異なる板厚
0.72mmの冷延鋼板を、それぞれ異なった目標炭素
含有量まで脱炭焼鈍したときの脱炭時間,脱炭後の鋼中
炭素含有量の実績及び式(1),(2)における係数及
び定数C1 〜C6 の値を、表1に示す。なお、脱炭焼鈍
は、脱炭温度が700℃で、ガス組成がN2 :22体積
%,H2 :67体積%及びH2 O:11体積%の雰囲気
ガスを供給量68Nm3 /時で供給する条件下で行っ
た。
Example 1: Decarburization time when decarburizing and annealing a cold-rolled steel sheet having a plate thickness of 0.72 mm with different initial carbon content before decarburizing and annealing to different target carbon contents, in steel after decarburizing Table 1 shows the actual results of the carbon content, the coefficients in the equations (1) and (2), and the values of the constants C 1 to C 6 . In the decarburization annealing, the decarburization temperature was 700 ° C., the gas composition was N 2 : 22% by volume, H 2 : 67% by volume and H 2 O: 11% by volume at a supply amount of 68 Nm 3 / hour. It was carried out under the conditions of supply.

【0017】[0017]

【表1】 [Table 1]

【0018】係数及び定数C1 〜C6 は、脱炭される鋼
材のサイズや脱炭条件によって予め把握されている値で
ある。これら係数及び定数C1 〜C6 を式(1)及び式
(2)に代入して脱炭時間tを求め、この脱炭時間tだ
け冷延鋼板に脱炭焼鈍を施すとき、表1に示すように目
標炭素含有量に極めて高い精度で一致した炭素含有量実
績値となることが判る。オープンコイル焼鈍設備におけ
る脱炭焼鈍によって鋼中炭素含有量を制御した冷延鋼板
及び脱炭反応を伴わない焼鈍を施した冷延鋼板につい
て、各成分の含有量と焼付け硬化性との関係を表2に示
す。なお、脱炭焼鈍及び脱炭反応を伴わない焼鈍として
は、焼鈍温度を700℃に設定し、冷却速度60〜80
℃/秒で焼鈍材を冷却する条件を採用した。また、焼付
け硬化性は、170℃に20分保持する熱処理前後の引
張り試験値における降伏応力の差で表した。表2から明
らかなように、オープンコイル設備で冷延鋼板の炭素含
有量を50〜200ppmの範囲まで脱炭焼鈍したと
き、良好な焼付け硬化性が得られていることが判る。
The coefficients and constants C 1 to C 6 are values that are known in advance depending on the size of the steel material to be decarburized and decarburizing conditions. Substituting these coefficients and constants C 1 to C 6 into the equations (1) and (2) to obtain the decarburization time t, and when performing decarburization annealing on the cold-rolled steel sheet for this decarburization time t, Table 1 As shown in the figure, it can be seen that the actual carbon content value matches the target carbon content with extremely high accuracy. For cold-rolled steel sheets whose carbon content in steel is controlled by decarburization annealing in an open coil annealing facility and cold-rolled steel sheets that have been annealed without decarburization, the relationship between the content of each component and bake hardenability is shown. 2 shows. As the decarburization annealing and the annealing not accompanied by the decarburization reaction, the annealing temperature is set to 700 ° C. and the cooling rate is 60 to 80.
The condition of cooling the annealed material at ° C / sec was adopted. The bake hardenability was represented by the difference in yield stress in the tensile test values before and after the heat treatment of holding at 170 ° C. for 20 minutes. As is clear from Table 2, when the carbon content of the cold-rolled steel sheet is decarburized and annealed by the open coil equipment to a range of 50 to 200 ppm, good bake hardenability is obtained.

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【発明の効果】以上に説明したように、本発明によると
き、焼鈍前の冷延鋼板における初期炭素含有量に拘ら
ず、脱炭焼鈍により鋼中の炭素含有量を必要とする焼付
け硬化性が得られる値に制御することができる。また、
脱炭焼鈍後の炭素含有量実績値は、目標炭素含有量に高
い精度で一致している。そのため、製鋼段階で厳格な成
分調整をする必要がなく、安価な製造コストで焼付け硬
化性に優れた製品が得られる。
As described above, according to the present invention, regardless of the initial carbon content in the cold-rolled steel sheet before annealing, the bake hardenability that requires the carbon content in the steel by decarburization annealing is It can be controlled to the value obtained. Also,
The actual value of carbon content after decarburization annealing matches the target carbon content with high accuracy. Therefore, it is not necessary to strictly adjust the components in the steelmaking stage, and a product having excellent bake hardenability can be obtained at a low manufacturing cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】 従来知られている固溶炭素量と焼付け硬化性
との関係を表したグラフ
FIG. 1 is a graph showing a relationship between a conventionally known amount of solute carbon and bake hardenability.

【図2】 本発明者等が見出した焼鈍材の炭素含有量と
焼付け硬化性との関係を表したグラフ
FIG. 2 is a graph showing the relationship between the carbon content and the bake hardenability of the annealed material found by the present inventors.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 C:0.03〜0.30重量%,Si:
0.80重量%以下,Mn:0.40重量%以下,P:
0.05重量%以下,S:0.020重量%以下,N:
0.008重量%以下,Al:0.020〜0.100
重量%を含有する冷延鋼板に対し、焼鈍時の脱炭時間を
t(時),鋼板の板厚をG(mm),鋼板の表面積をS
(mm2)とするとき、 S≦1.5×109 mm2 の場合、 t=C1 ×(G×C2 +C3)2 +C4 ・・・・(1) S>1.5×109 mm2 の場合、 t=C1 ×(G×C2 +C3)2 +C5 /G−C6 ・・・・(2) で表される式(1)又は式(2)にG及びC1 〜C6
代入して求められた脱炭時間tで、オープンコイル焼鈍
設備を使用して鋼中炭素が50〜200ppmになるよ
うに脱炭焼鈍を施すことを特徴とする焼付け硬化性に優
れた冷延鋼板の製造方法。
1. C: 0.03 to 0.30% by weight, Si:
0.80 wt% or less, Mn: 0.40 wt% or less, P:
0.05% by weight or less, S: 0.020% by weight or less, N:
0.008% by weight or less, Al: 0.020 to 0.100
For a cold-rolled steel sheet containing wt.%, The decarburization time during annealing is t (hours), the thickness of the steel sheet is G (mm), and the surface area of the steel sheet is S.
(Mm 2 ), when S ≦ 1.5 × 10 9 mm 2 , t = C 1 × (G × C 2 + C 3 ) 2 + C 4 (1) S> 1.5 × In the case of 10 9 mm 2 , t = C 1 × (G × C 2 + C 3 ) 2 + C 5 / G-C 6 ... (2) In the decarburization time t obtained by substituting G and C 1 to C 6 into the formula (1) or the formula (2), the carbon content in the steel becomes 50 to 200 ppm by using the open coil annealing equipment. A method for producing a cold-rolled steel sheet excellent in bake hardenability, which comprises performing decarburization annealing so that
JP27101092A 1992-09-14 1992-09-14 Production of cold rolled steel sheet excellent in baking hardenability Withdrawn JPH0693329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27101092A JPH0693329A (en) 1992-09-14 1992-09-14 Production of cold rolled steel sheet excellent in baking hardenability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27101092A JPH0693329A (en) 1992-09-14 1992-09-14 Production of cold rolled steel sheet excellent in baking hardenability

Publications (1)

Publication Number Publication Date
JPH0693329A true JPH0693329A (en) 1994-04-05

Family

ID=17494158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27101092A Withdrawn JPH0693329A (en) 1992-09-14 1992-09-14 Production of cold rolled steel sheet excellent in baking hardenability

Country Status (1)

Country Link
JP (1) JPH0693329A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997010027A1 (en) * 1995-09-12 1997-03-20 Minnesota Mining And Manufacturing Company Respirator having thermochromic fit-indicating seal
JP2010537045A (en) * 2007-08-17 2010-12-02 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフト Method for producing surface decarburized hot rolled strip
US9039846B2 (en) * 2002-03-21 2015-05-26 Usinor Cold-rolled aluminum killed steel sheet and method of manufacturing packaging from said sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997010027A1 (en) * 1995-09-12 1997-03-20 Minnesota Mining And Manufacturing Company Respirator having thermochromic fit-indicating seal
US9039846B2 (en) * 2002-03-21 2015-05-26 Usinor Cold-rolled aluminum killed steel sheet and method of manufacturing packaging from said sheet
JP2010537045A (en) * 2007-08-17 2010-12-02 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフト Method for producing surface decarburized hot rolled strip
US8449694B2 (en) 2007-08-17 2013-05-28 Thyssenkrupp Steel Europe Ag Method for producing a surface-decarburised hot-rolled strip

Similar Documents

Publication Publication Date Title
EP2025767B1 (en) Process for producing grain-oriented electrical steel sheet with high magnetic flux density
EP0152665A1 (en) A cold rolled dual-phase structure steel sheet having an excellent deep drawability and a method of manufacturing the same
US4436561A (en) Press-formable high strength dual phase structure cold rolled steel sheet and process for producing the same
JPH04154921A (en) Manufacture of high strength stainless steel strip having excellent shape
CN110066908B (en) Production method for improving edge grain state of high-magnetic-induction oriented silicon steel
JP2002060842A (en) Method for producing grain oriented silicon steel sheet having high magnetic flux density
JP2002212636A (en) Method for producing grain oriented silicon steel sheet having high magnetic flux density
JP3383017B2 (en) Method of manufacturing bake hardenable high strength cold rolled steel sheet with excellent workability
JPH0693329A (en) Production of cold rolled steel sheet excellent in baking hardenability
JPS63169331A (en) Production of chromium stainless steel strip of high strength double phase structure having excellent ductility
JPS63169334A (en) Production of chromium stainless steel strip of double phase structure having small intra-surface anisotropy and high ductility and high strength
JPH04173926A (en) Method for providing fatigue characteristic to martensitic stainless steel strip
JPH0617141A (en) Production of cold rolled steel sheet excellent in workability and shape
JPH0770635A (en) Production of cold rolled special steel surface decarburized steel strip
JPH05179357A (en) Production of cold rolled ferritic stainless steel sheet
JP2854055B2 (en) Cold-rolled steel sheet for deep drawing with excellent resistance to galling and chemical conversion
GB2069001A (en) Aluminium-plated steel sheets
JPH07150252A (en) Production of cold rolled steel sheet for porcelain enameling by continuous annealing
JPS61130423A (en) Production of cold rolled steel sheet having excellent deep drawability
JPS637337A (en) Production of steel sheet for easy opening end having excellent can openability and cap formability
JP3287488B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP2997489B2 (en) Cold drawn steel sheet for deep drawing with excellent chemical conversion property and liquid metal brittle resistance
JPH1161274A (en) Manufacture of steel sheet for extra deep drawing, excellent in baking hardenability
JPH02240215A (en) Production of thin grain-oriented magnetic steel sheet
JPH02267231A (en) Manufacture of cold rolled steel sheet having excellent deep drawability and surface properties and having less plane anisotropy

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991130