JP2001255206A - Thermal infrared photographing element - Google Patents

Thermal infrared photographing element

Info

Publication number
JP2001255206A
JP2001255206A JP2000069185A JP2000069185A JP2001255206A JP 2001255206 A JP2001255206 A JP 2001255206A JP 2000069185 A JP2000069185 A JP 2000069185A JP 2000069185 A JP2000069185 A JP 2000069185A JP 2001255206 A JP2001255206 A JP 2001255206A
Authority
JP
Japan
Prior art keywords
circuit
current
thermal
thermal infrared
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000069185A
Other languages
Japanese (ja)
Inventor
Keitaro Shigenaka
圭太郎 重中
Yoshinori Iida
義典 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000069185A priority Critical patent/JP2001255206A/en
Publication of JP2001255206A publication Critical patent/JP2001255206A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a thermal semiconductor infrared photographing element with high sensitivity. SOLUTION: A thermal infrared detecting element or a semiconductor p-n junction element whose temperature changes by absorbing infrared rays from a subject and whose resistance value changes with the temperature change, is characterized in that a direct-current component of a signal is passed through a constant current circuit 103 and the remainder component is led to an amplifying circuit 106.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は冷却装置を必要とし
ない熱型赤外線撮像素子の読出し回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a readout circuit for a thermal infrared imaging device which does not require a cooling device.

【0002】[0002]

【従来の技術】近年、冷却装置を必要としない熱型赤外
線センサとしてマイクロマシニング技術を用いた酸化バ
ナジウムのボロメータ型や、BST(Barium−S
trontium−Titanium)の焦電型のもの
が製品化されている。これらの製品は赤外線を吸収して
温度を上昇させる感熱部とこの感熱部をシリコン基板と
熱的に分離するための支持脚、画素を選択するための
X,Yのアドレス線によって構成されている。特に酸化
バナジウムのボロメータ型赤外線撮像素子は焦電型素子
と比較して感度が良く、製造方法も簡便なことから近年
多くの製品販売されている。ボロメータ型センサは温度
による抵抗変化を検出するもので、一般に抵抗温度係数
(TCR)という抵抗体の温度変化1℃における抵抗値
変化率の数値で材料性能が表現されている。しかし、そ
の値は酸化バナジウムで2%、チタンで0.2%程度で
しかない。また、外部からの赤外線入力に対する感熱素
子部の温度上昇はせいぜい数mK程度である。そのため
バイアス電圧印可によって生じる電流に対して数/10
00%程度の信号変化しか得られない。従って電流のほ
とんどが信号に関係ない直流成分であった。従来考えら
れていた読出し回路はバイアス電流を全て増幅回路に入
力するため、電流に起因する雑音が多くなり感度を悪化
させるという欠点があった。
2. Description of the Related Art In recent years, a bolometer type of vanadium oxide using a micromachining technology as a thermal infrared sensor that does not require a cooling device, or a BST (Barium-S
(Tronium-Titanium) has been commercialized. These products are composed of a heat-sensitive part that absorbs infrared rays to raise the temperature, support legs for thermally separating the heat-sensitive part from the silicon substrate, and X and Y address lines for selecting pixels. . In particular, vanadium oxide bolometer-type infrared imaging devices have been marketed in recent years because of their higher sensitivity than pyroelectric devices and simpler manufacturing methods. The bolometer-type sensor detects a change in resistance due to temperature, and generally expresses the material performance by a numerical value of a resistance change rate at a temperature change of 1 ° C. of a resistor called a temperature coefficient of resistance (TCR). However, the value is only about 2% for vanadium oxide and about 0.2% for titanium. In addition, the temperature rise of the heat-sensitive element portion with respect to an infrared input from the outside is at most about several mK. Therefore, several tenths of the current generated by the application of the bias voltage
Only a signal change of about 00% can be obtained. Therefore, most of the current was a DC component not related to the signal. The conventional readout circuit has a drawback that the noise caused by the current is increased and the sensitivity is deteriorated because all the bias current is input to the amplifier circuit.

【0003】また、CCD(Charge Coupl
ed Device)においてブルーミングと呼ばれ
る、ある画素に多くの光信号が入力され、そこで生じる
信号電荷が隣接する画素もれだす現象がある。この対策
としてオーバーフロードレインを設けて余剰電荷を捨て
る構造が知られている。しかし、この方法は原理的に信
号の上澄み部分を捨ててしまうため、熱型赤外線撮像素
子に応用した場合、信号部分を捨ててしまうこととな
る。このため熱型赤外線撮像素子に応用することはでき
なかった。
[0003] In addition, a CCD (Charge Couple) is used.
In ed device, there is a phenomenon called "blooming" in which many optical signals are input to a certain pixel, and signal charges generated there leak out to an adjacent pixel. As a countermeasure against this, there is known a structure in which an overflow drain is provided to discard excess charges. However, this method discards the supernatant portion of the signal in principle, so that when applied to a thermal infrared imaging device, the signal portion is discarded. Therefore, it could not be applied to a thermal infrared imaging device.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、上記
の問題点を解決し、高感度な熱型赤外線撮像素子を提供
することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide a high-sensitivity thermal infrared imaging device.

【0005】[0005]

【課題を解決するための手段】本発明に係る赤外線撮像
素子は、感熱素子に流れる電流を有効に分流すること、
すなわち直流成分を定電流回路にバイパスし、残りの信
号分を増幅回路に導くことを特徴とする。
An infrared imaging device according to the present invention is capable of effectively shunting a current flowing through a thermosensitive element,
That is, the DC component is bypassed to the constant current circuit, and the remaining signal is led to the amplifier circuit.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施例について説
明する。
Embodiments of the present invention will be described below.

【0007】図1は本発明の第一の実施例に係る熱型赤
外線撮像素子の一部を示す図である。画素101はそれ
ぞれ基板と熱的に分離するために形成された中空構造と
温度によって抵抗値が変化する感熱素子が形成された活
性領域からなっている。基板と感熱素子を機械的に支持
するための支持脚が2本あり、この支持脚の中には感熱
素子で生じた信号を電気処理回路に導くための電気配線
が形成されている。垂直走査回路102で列を選択し、
その列全部の画素にバイアス電圧が印可されるようにな
っており、それぞれの画素の温度は照射される赤外線に
応じて分布している。被写体の温度差1Kに対して数m
K程度の変化が期待される。その温度変化に応じて素子
に流れる電流値は分布する。しかし、抵抗温度係数A%
(一般にA<10)の感熱素子の場合、全電流のうち少
なくとも(100−A×0.001)/100は直流、
すなわち外部の温度変化で変化しない成分である。残り
の多くてもA×0.001/100は信号分である。し
たがっておよそ全電流の(100−A×0.001)/
100を定電流回路103を通してグランド104に流
し、残りのA×0.001/100の信号成分だけを電
流電圧変換回路105に通し、増幅回路106に入力す
る。増幅した信号を直接、水平走査回路107に流すか
あるいは一定時間積分して出力することもできる。ま
た、電流電圧変換回路も直接抵抗を用いて変換しても良
いが図4に示すようにコンデンサで電荷を蓄積するとさ
らに雑音を低減することが出来る。これまでは一定の抵
抗温度係数を持つ抵抗体を例に説明したが、印可電圧に
よって電流温度係数(温度による電流変化率)の変化す
る半導体pn接合に順方向バイアスした検知素子に用い
ても同様の効果は得られる。
FIG. 1 is a view showing a part of a thermal infrared imaging device according to a first embodiment of the present invention. Each of the pixels 101 has a hollow structure formed for thermal isolation from a substrate and an active region in which a thermosensitive element whose resistance value changes according to temperature is formed. There are two supporting legs for mechanically supporting the substrate and the thermal element, and electrical wiring for guiding a signal generated by the thermal element to an electric processing circuit is formed in the supporting leg. A column is selected by the vertical scanning circuit 102,
A bias voltage is applied to all the pixels in the column, and the temperature of each pixel is distributed according to the irradiated infrared rays. Several meters for 1K of temperature difference of subject
A change of about K is expected. The current value flowing through the element is distributed according to the temperature change. However, the temperature coefficient of resistance A%
In the case of a thermosensitive element (generally A <10), at least (100−A × 0.001) / 100 of the total current is DC,
That is, it is a component that does not change due to an external temperature change. At most A × 0.001 / 100 is the signal portion. Therefore, approximately (100−A × 0.001) /
100 flows to the ground 104 through the constant current circuit 103, and only the remaining signal components of A × 0.001 / 100 pass through the current-voltage conversion circuit 105 and are input to the amplification circuit 106. The amplified signal can be directly supplied to the horizontal scanning circuit 107 or integrated for a predetermined time and output. In addition, the current-voltage conversion circuit may be directly converted using a resistor. However, noise can be further reduced by accumulating charges with a capacitor as shown in FIG. Although a resistor having a constant temperature coefficient of resistance has been described above as an example, the same applies to a sensing element which is forward-biased to a semiconductor pn junction whose current temperature coefficient (current change rate due to temperature) changes according to an applied voltage. The effect is obtained.

【0008】[0008]

【発明の効果】以上述べたように本発明により、従来の
技術では得られなかった高感度な熱型赤外線撮像素子の
作製が可能になる。
As described above, according to the present invention, it is possible to manufacture a high-sensitivity thermal infrared imaging device which cannot be obtained by the conventional technology.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す図。FIG. 1 is a diagram showing one embodiment of the present invention.

【図2】従来の熱型赤外線撮像素子を示す図。FIG. 2 is a diagram showing a conventional thermal infrared imaging device.

【図3】本発明の他の一実施例を示す図。FIG. 3 is a diagram showing another embodiment of the present invention.

【図4】本発明の他の一実施例を示す図。FIG. 4 is a diagram showing another embodiment of the present invention.

【図5】本発明の他の一実施例を示す図。FIG. 5 is a diagram showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

101…画素 102…垂直走査回路 103…定電流回路 104…グランド 105…電流電圧変換回路 106…増幅回路 107…水平走査回路 108…信号出力 109…垂直アドレス線 110…水平アドレス線 201…画素 202…垂直走査回路 203…電流電圧変換回路 204…増幅回路 205…水平走査回路 206…信号出力 207…垂直アドレス線 208…水平アドレス線 301…感熱抵抗体 302…垂直走査回路 303…定電流回路 304…グランド 305…電流電圧変換回路 306…増幅回路 307…水平走査回路 308…信号出力 309…垂直アドレス線 310…水平アドレス線 311…抵抗 312…バイパス電流設定電圧 313…信号電流分流設定電圧 314…増幅回路電源電圧 315…定電流源 401…ダイオード 402…垂直走査回路 403…定電流回路 404…グランド 405…電流電圧変換回路 406…増幅回路 407…水平走査回路 408…信号出力 409…垂直アドレス線 410…水平アドレス線 411…抵抗 412…バイパス電流設定電圧 413…信号電流分流設定電圧 414…増幅回路電源電圧 415…定電流源 501…ダイオード 502…垂直走査回路 503…定電流回路 504…グランド 505…電流電圧変換回路 506…増幅回路 507…水平走査回路 508…信号出力 509…垂直アドレス線 510…水平アドレス線 511…コンデンサ 512…バイパス電流設定電圧 513…信号電流分流設定電圧 514…増幅回路電源電圧 515…定電流源 516…リセット信号 517…読出しタイミング信号 518…リセット電圧 DESCRIPTION OF SYMBOLS 101 ... Pixel 102 ... Vertical scanning circuit 103 ... Constant current circuit 104 ... Ground 105 ... Current-voltage conversion circuit 106 ... Amplification circuit 107 ... Horizontal scanning circuit 108 ... Signal output 109 ... Vertical address line 110 ... Horizontal address line 201 ... Pixel 202 ... Vertical scanning circuit 203 Current / voltage conversion circuit 204 Amplifier circuit 205 Horizontal scanning circuit 206 Signal output 207 Vertical address line 208 Horizontal address line 301 Thermal resistor 302 Vertical scanning circuit 303 Constant current circuit 304 Ground 305: current-voltage conversion circuit 306: amplifier circuit 307: horizontal scanning circuit 308 ... signal output 309 ... vertical address line 310 ... horizontal address line 311 ... resistor 312 ... bypass current setting voltage 313 ... signal current shunt setting voltage 314 ... amplifier circuit power supply Voltage 315: constant current source 401 Diode 402 Vertical scanning circuit 403 Constant current circuit 404 Ground 405 Current voltage conversion circuit 406 Amplifier circuit 407 Horizontal scanning circuit 408 Signal output 409 Vertical address line 410 Horizontal address line 411 Resistance 412 Bypass current Set voltage 413 ... Signal current shunt setting voltage 414 ... Amplifier circuit power supply voltage 415 ... Constant current source 501 ... Diode 502 ... Vertical scan circuit 503 ... Constant current circuit 504 ... Ground 505 ... Current voltage converter 506 ... Amplifier circuit 507 ... Horizontal scan Circuit 508 Signal output 509 Vertical address line 510 Horizontal address line 511 Capacitor 512 Bypass current setting voltage 513 Signal current shunt setting voltage 514 Amplifier circuit power supply voltage 515 Constant current source 516 Reset signal 517 Reading timing Faith 518 ... reset voltage

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01J 5/48 G01J 5/48 A H01L 27/14 H04N 5/33 H04N 5/33 H01L 27/14 K Fターム(参考) 2G065 AA04 AA11 AB02 BA12 BA14 BA34 BA40 BC01 CA30 DA18 2G066 BA09 BA60 BB20 CA02 4M118 AA05 AB01 BA03 CA03 CA14 CA16 DD08 FA06 FA33 HA22 HA40 5C024 AX06 CX03 HX02 HX17 HX48Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) G01J 5/48 G01J 5/48 A H01L 27/14 H04N 5/33 H04N 5/33 H01L 27/14 K F term (reference) 2G065 AA04 AA11 AB02 BA12 BA14 BA34 BA40 BC01 CA30 DA18 2G066 BA09 BA60 BB20 CA02 4M118 AA05 AB01 BA03 CA03 CA14 CA16 DD08 FA06 FA33 HA22 HA40 5C024 AX06 CX03 HX02 HX17 HX48

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 感熱素子部の温度変化で変調される電流
のうち定電流回路に流す経路と増幅回路に流す経路を設
け、その増幅回路側に流す信号だけを増幅出力すること
を特徴とする熱型赤外線撮像素子。
1. A current flowing through a constant current circuit and a path flowing through an amplifier circuit among currents modulated by a temperature change of a thermosensitive element section, and only a signal flowing through the amplifier circuit is amplified and output. Thermal infrared imaging device.
【請求項2】 感熱素子部としてpn接合を用いたこと
を特徴とする請求項1記載の熱型赤外線撮像素子。
2. The thermal infrared imaging device according to claim 1, wherein a pn junction is used as the thermal element.
【請求項3】 感熱素子部としてpn接合を順方向にバ
イアスする素子を用いることを特徴とする請求項1記載
の熱型赤外線撮像素子。
3. The thermal infrared imaging device according to claim 1, wherein an element for biasing a pn junction in a forward direction is used as the thermal element.
JP2000069185A 2000-03-13 2000-03-13 Thermal infrared photographing element Pending JP2001255206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000069185A JP2001255206A (en) 2000-03-13 2000-03-13 Thermal infrared photographing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000069185A JP2001255206A (en) 2000-03-13 2000-03-13 Thermal infrared photographing element

Publications (1)

Publication Number Publication Date
JP2001255206A true JP2001255206A (en) 2001-09-21

Family

ID=18588119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000069185A Pending JP2001255206A (en) 2000-03-13 2000-03-13 Thermal infrared photographing element

Country Status (1)

Country Link
JP (1) JP2001255206A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7087900B2 (en) 2001-09-26 2006-08-08 Kabushiki Kaisha Toshiba Solid-state infrared imager

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07297454A (en) * 1994-04-28 1995-11-10 Oki Electric Ind Co Ltd Infrared image sensor and its manufacture
JPH09284652A (en) * 1996-04-19 1997-10-31 Nec Corp Bolometer-type infrared-ray image pickup unit
JPH11150683A (en) * 1997-11-17 1999-06-02 Nec Corp Image pickup device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07297454A (en) * 1994-04-28 1995-11-10 Oki Electric Ind Co Ltd Infrared image sensor and its manufacture
JPH09284652A (en) * 1996-04-19 1997-10-31 Nec Corp Bolometer-type infrared-ray image pickup unit
JPH11150683A (en) * 1997-11-17 1999-06-02 Nec Corp Image pickup device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7087900B2 (en) 2001-09-26 2006-08-08 Kabushiki Kaisha Toshiba Solid-state infrared imager

Similar Documents

Publication Publication Date Title
US6809320B2 (en) Solid-state infrared imager
CN112740660B (en) Solid-state imaging element, control method of solid-state imaging element, and electronic apparatus
JP4257989B2 (en) Infrared detector and infrared detector array using the same
US8368789B2 (en) Systems and methods to provide reference current with negative temperature coefficient
US20090095883A1 (en) Photodetection device and method
JP3226859B2 (en) Imaging device
JP2005214639A (en) Infrared solid-state image sensor
JP2002300475A (en) Infrared sensor and method for driving the same
KR100324568B1 (en) Readout circuit in infrared imaging detector
US20020084413A1 (en) System and method for generating signals representing infrared radiation
JP2008022315A (en) Thermal infrared detection circuit
JP2001255206A (en) Thermal infrared photographing element
JP3806042B2 (en) Thermal infrared solid-state image sensor
JP3974902B2 (en) Thermal infrared detector
US8212214B2 (en) Solid-state imaging element
JP3495309B2 (en) Thermal infrared imaging device
US20040159788A1 (en) Infrared image sensor
CN213209277U (en) Focal plane infrared sensor
JP3657885B2 (en) Infrared sensor device and driving method thereof
JP3648506B2 (en) Infrared imaging device
JP3011212B1 (en) Infrared imaging device
Ishii et al. Temperature stability improvement of a QVGA uncooled infrared radiation FPA
US20230027347A1 (en) Bias circuit with improved noise performance
JP4959735B2 (en) Thermal infrared detector
JP4071122B2 (en) Thermal infrared solid-state image sensor