JP2001255125A - Optical shape measuring instrument - Google Patents

Optical shape measuring instrument

Info

Publication number
JP2001255125A
JP2001255125A JP2000064660A JP2000064660A JP2001255125A JP 2001255125 A JP2001255125 A JP 2001255125A JP 2000064660 A JP2000064660 A JP 2000064660A JP 2000064660 A JP2000064660 A JP 2000064660A JP 2001255125 A JP2001255125 A JP 2001255125A
Authority
JP
Japan
Prior art keywords
light
slit
shape
slit light
shape measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000064660A
Other languages
Japanese (ja)
Inventor
Kohei Nishikawa
晃平 西川
Masaru Akamatsu
勝 赤松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000064660A priority Critical patent/JP2001255125A/en
Publication of JP2001255125A publication Critical patent/JP2001255125A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical shape measuring instrument, capable of accurately measuring not only the bite-in shape form but also the slippage shape of a rolled material and is hard to generate measuring errors not only when an object to be measured is moved at a high speed but also when the object to be measured is twisted and vibrated, to permit an accurate shape measurment. SOLUTION: In the optical shape measuring instrument, where a plurality of slit light projectors are arranged around a object to be measured and image pickup apparatus for picking up the images of the slit lights reflected from the object to be measured are arranged around the object to be measured, the light projection positions of the adjacent slit light projectors are changed, so that the slit lights from the adjacent slit light projectors among a plurality of the slit light projectors do not overlap on the surface of the object to be measured, and a function providing a difference between the light projection times of the adjacent slit light projectors to project slit lights is provided and an optical band-pass filter or polarizing filter transmitting only one of the two slit lights from the adjacent slit light projectors from among a plurality of the slit light projectors is provided to each of the image pickup apparatuses.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光学的形状測定装
置に関する技術分野に属し、例えば棒鋼や線材等の熱間
圧延ラインにおける圧延材の寸法や断面形状を求める際
に用いる光学的形状測定装置に関する技術分野に属す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention belongs to the technical field related to an optical shape measuring device, and is an optical shape measuring device used for determining the dimensions and cross-sectional shape of a rolled material in a hot rolling line such as a bar or a wire. Belongs to the technical field.

【0002】[0002]

【従来の技術】光学的な形状測定方式の形状測定装置と
しては、図1に示すような原理の形状測定装置がある。
この原理は、図1に示す如く、多数の受光素子を有する
受光測定装置に入射する平行光線中に形状測定対象物
(以下、被測定物ともいう)を配置すると、被測定物に
よって遮断される光線の幅によって被測定物の形状を測
定することができるというものである。
2. Description of the Related Art As a shape measuring device of an optical shape measuring method, there is a shape measuring device based on the principle as shown in FIG.
This principle is based on the principle that, as shown in FIG. 1, when a shape measuring object (hereinafter also referred to as an object to be measured) is arranged in a parallel light beam incident on a light receiving and measuring device having a large number of light receiving elements, it is blocked by the object to be measured. The shape of the object to be measured can be measured by the width of the light beam.

【0003】上記光学的形状測定装置は、図2に示す如
く、平行光線出射装置と受光測定装置とが圧延材等の形
状測定対象物を挟んで離れた位置に配置されており、こ
の平行光線出射装置及び受光測定装置が被測定物の回り
を回転(公転)しつつ、被測定物の形状測定を行う(以
下、上記形状測定装置を従来装置1という)。
As shown in FIG. 2, in the above-mentioned optical shape measuring device, a parallel light emitting device and a light receiving measuring device are arranged at positions separated by a shape measuring object such as a rolled material. The emission device and the light receiving measurement device measure the shape of the object to be measured while rotating (revolving) around the object to be measured (hereinafter, the shape measuring device is referred to as a conventional device 1).

【0004】一方、図3に示すような方式の形状測定装
置がある。この形状測定装置は、図3に示す如く、レー
ザスポット光をミラーで走査するタイプのビーム走査型
レーザ変位計を圧延材等の被測定物の周囲に複数個配置
し、被測定物の表面上を走査して、被測定物の形状計測
をし、被測定物の形状測定を行うという方式のものであ
る(以下、この形状測定装置を従来装置2という)。
On the other hand, there is a shape measuring apparatus of the type shown in FIG. As shown in FIG. 3, the shape measuring apparatus includes a plurality of beam-scanning laser displacement meters of a type that scans a laser spot light with a mirror around a workpiece such as a rolled material. Is scanned to measure the shape of the object to be measured, and the shape of the object to be measured is measured (hereinafter, this shape measuring device is referred to as a conventional device 2).

【0005】[0005]

【発明が解決しようとする課題】前記従来装置1におい
ては、下記(A) 〜(C) の如き問題点がある。
The conventional apparatus 1 has the following problems (A) to (C).

【0006】(A) 被測定物によって遮断される光線の
幅、即ち、被測定物の影を受光素子で検出し、これによ
り被測定物の形状を測定するので、図4に示すような噛
み込み形状(両耳もしくは片耳)や、圧延材の寄り形状
等を正確に測定することはできない。
(A) The width of the light beam cut off by the object to be measured, that is, the shadow of the object to be measured is detected by the light receiving element, and the shape of the object to be measured is measured. It is not possible to accurately measure the inset shape (both ears or one ear), the offset shape of the rolled material, and the like.

【0007】(B) 平行光線出射装置及び受光測定装置が
被測定物の回りを回転(公転)しつつ被測定物の形状測
定を行う方式であるため、被測定物の全周計測を行うの
に時間がかかる。このため、被測定物が高速移動してい
る場合には、全周形状計測が完了するまでの間に、被測
定物が数十m移動してしまい、このため正確な瞬間断面
形状測定をすることができず、また、被測定物の捻転振
動が発生すると、正確な形状測定をすることができな
い。
(B) Since the parallel beam emitting device and the light receiving and measuring device measure the shape of the measured object while rotating (revolving) around the measured object, the entire circumference of the measured object is measured. It takes time. For this reason, when the object to be measured is moving at a high speed, the object to be measured moves by several tens of meters until the measurement of the entire circumference shape is completed, and therefore, accurate instantaneous cross-sectional shape measurement is performed. If the torsion vibration of the object to be measured occurs, accurate shape measurement cannot be performed.

【0008】(C) 平行光線出射装置及び受光測定装置の
光軸が一致している必要があるが、両者の光軸を一致さ
せる調整に時間がかかる。また、平行光線出射装置及び
受光測定装置が静止している状態で両者の光軸の一致調
整をしても、両者の回転(公転)時の遠心力の影響によ
り、両者の光軸のずれが発生して両者の光軸が一致しな
くなり易く、この光軸のずれによる測定誤差が生じ易
い。
(C) It is necessary that the optical axes of the parallel light emitting device and the light receiving and measuring device coincide with each other, but it takes time to adjust the optical axes of both devices to coincide. Further, even if the alignment of the optical axes of both the parallel light emitting device and the light receiving and measuring device is stationary while the parallel light emitting device and the light receiving and measuring device are stationary, the deviation of the optical axes of the two is caused by the centrifugal force during the rotation (revolution) of the two. This is likely to cause the optical axes of the two to become inconsistent, and measurement errors due to the deviation of the optical axes are likely to occur.

【0009】一方、前記従来装置2においては、下記
(D) の如き問題点がある。
On the other hand, in the conventional device 2,
There is a problem as shown in (D).

【0010】(D) レーザビームを走査して被測定物の形
状計測をするため、被測定物が高速移動している場合に
は、被測定物の斜め断面形状を計測することとなり、被
測定物の断面形状計測はすることができない。特に、被
測定物が捻転振動あるいは上下左右振動している場合に
は、この振動成分が形状計測誤差として計測結果に反映
され、正確な形状測定をすることができない。
(D) Since the shape of the object to be measured is measured by scanning the laser beam, when the object to be measured is moving at a high speed, the oblique cross-sectional shape of the object to be measured is measured. The cross-sectional shape of an object cannot be measured. In particular, when the object to be measured is vibrating torsionally or vibrating vertically and horizontally, the vibration component is reflected in the measurement result as a shape measurement error, and accurate shape measurement cannot be performed.

【0011】本発明はこの様な事情に着目してなされた
ものであって、その目的は、前記従来装置1及び従来装
置2の有する問題点 (A)、(B) 、(C) 、(D) を解消し、
噛み込み形状も圧延材の寄り形状も正確に測定し得、ま
た、被測定物(形状測定対象物)が高速移動している場
合も被測定物の捻転振動が発生する場合も測定誤差が生
じ難く、正確な形状測定をし得る光学的形状測定装置を
提供しようとするものである。
The present invention has been made in view of such circumstances, and its object is to solve the problems (A), (B), (C), and (C) of the conventional apparatus 1 and the conventional apparatus 2. D)
It can accurately measure both the biting shape and the skewed shape of the rolled material. Also, measurement errors occur when the object to be measured (shape measurement object) is moving at high speed or when torsion vibration of the object to be measured occurs. An object of the present invention is to provide an optical shape measuring device which is difficult and can perform accurate shape measurement.

【0012】[0012]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明に係る光学的形状測定装置は、請求項1〜
9記載の光学的形状測定装置としており、それは次のよ
うな構成としたものである。
In order to achieve the above object, an optical shape measuring apparatus according to the present invention comprises:
9 is an optical shape measuring apparatus having the following configuration.

【0013】即ち、請求項1記載の光学的形状測定装置
は、形状測定対象物の周囲に前記形状測定対象物にスリ
ット光を投光する投光器を複数個配置すると共に前記形
状測定対象物から反射されるスリット光を撮像する撮像
装置を配置した光学的形状測定装置であって、前記複数
個の投光器での隣同士の投光器からのスリット光が前記
形状測定対象物の表面上で重ならないように隣同士の投
光器の投光位置を変えて前記複数個の投光器を配置した
ことを特徴とする光学的形状測定装置である(第1発
明)。
That is, in the optical shape measuring apparatus according to the first aspect, a plurality of light projectors for projecting the slit light to the shape measuring object are arranged around the shape measuring object, and the light is reflected from the shape measuring object. An optical shape measurement device provided with an imaging device that captures slit light, so that slit light from adjacent light emitters in the plurality of light emitters does not overlap on the surface of the shape measurement target. An optical shape measuring apparatus, wherein the plurality of light projectors are arranged by changing the light projecting positions of adjacent light projectors (first invention).

【0014】請求項2記載の光学的形状測定装置は、形
状測定対象物の周囲に前記形状測定対象物にスリット光
を投光する投光器を複数個配置すると共に前記形状測定
対象物から反射されるスリット光を撮像する撮像装置を
配置した光学的形状測定装置であって、前記複数個の投
光器での隣同士の投光器からのスリット光が前記形状測
定対象物の表面上で重ならないように隣同士の投光器の
投光時間に差を設けて投光する時間差投光機能を備えた
ことを特徴とする光学的形状測定装置である(第2発
明)。
According to a second aspect of the present invention, in the optical shape measuring device, a plurality of light projectors for projecting slit light to the shape measuring object are arranged around the shape measuring object, and the light is reflected from the shape measuring object. An optical shape measurement device provided with an imaging device that captures slit light, wherein the plurality of light projectors are adjacent to each other so that slit light from adjacent light projectors does not overlap on the surface of the shape measurement object. An optical shape measuring apparatus characterized by having a time difference light projecting function of projecting light with a difference in light projecting time of the light projector (second invention).

【0015】請求項3記載の光学的形状測定装置は、形
状測定対象物の周囲に前記形状測定対象物にスリット光
を投光する投光器を複数個配置すると共に前記形状測定
対象物から反射されるスリット光を撮像する撮像装置を
配置した光学的形状測定装置であって、前記複数個の投
光器での隣同士の投光器からのスリット光の波長が相違
し、このスリット光の中の一方のスリット光のみを透過
する光学的なバンドパスフィルターを前記撮像装置の各
々に設けたことを特徴とする光学的形状測定装置である
(第3発明)。
According to a third aspect of the present invention, in the optical shape measuring device, a plurality of light projectors for projecting slit light to the shape measuring object are arranged around the shape measuring object, and the light is reflected from the shape measuring object. An optical shape measuring apparatus in which an image pickup device for picking up slit light is arranged, wherein wavelengths of slit lights from adjacent light projectors in the plurality of light projectors are different, and one of the slit lights is one of the slit lights. An optical shape measurement device, wherein an optical bandpass filter that transmits only light is provided in each of the imaging devices (third invention).

【0016】請求項4記載の光学的形状測定装置は、形
状測定対象物の周囲に前記形状測定対象物にスリット光
を投光する投光器を複数個配置すると共に前記形状測定
対象物から反射されるスリット光を撮像する撮像装置を
配置した光学的形状測定装置であって、前記複数個の投
光器での隣同士の投光器からのスリット光の直線偏光面
が直交する偏光特性になるように前記複数個の投光器を
配置し、このスリット光の直線偏光の中の一方のスリッ
ト光の直線偏光方向のみを透過する偏光フィルターを前
記撮像装置の各々に設けたことを特徴とする光学的形状
測定装置である(第4発明)。
According to a fourth aspect of the present invention, in the optical shape measuring device, a plurality of light projectors for projecting the slit light to the shape measuring object are arranged around the shape measuring object, and the light is reflected from the shape measuring object. An optical shape measurement device provided with an imaging device that captures slit light, wherein the plurality of light projectors are arranged such that a linear polarization plane of slit light from adjacent ones of the plurality of light projectors has orthogonal polarization characteristics. An optical shape measuring apparatus characterized in that each of the imaging devices is provided with a light emitting device, and a polarizing filter that transmits only the linear polarization direction of one of the slit lights in the linearly polarized light of the slit light. (4th invention).

【0017】請求項5記載の光学的形状測定装置は、前
記投光器の各々が複数本の平行スリット光を同時に投光
する請求項1、2、3又は4記載の光学的形状測定装置
である(第5発明)。請求項6記載の光学的形状測定装
置は、前記撮像装置の全てが同期してシャッター撮影す
る請求項1、3、4又は5記載の光学的形状測定装置で
ある(第6発明)。請求項7記載の光学的形状測定装置
は、前記複数個の投光器が同期してスリット光をパルス
点灯する請求項1、3、4、5又は6記載の光学的形状
測定装置である(第7発明)。請求項8記載の光学的形
状測定装置は、前記撮像装置の撮影画像内のスリット光
像の出現順序によって前記複数個の投光器の中のいずれ
の投光器から投光されたスリット光によるスリット光像
であるかを識別する請求項1、2、3、4、5、6又は
7記載の光学的形状測定装置である(第8発明)。請求
項9記載の光学的形状測定装置は、前記撮像装置の撮影
画像内で検出される複数のスリット光像から検出される
前記形状測定対象物の複数の形状測定結果を加算平均す
る請求項1、2、3、4、5、6、7又は8記載の光学
的形状測定装置である(第9発明)。
The optical shape measuring device according to the fifth aspect is the optical shape measuring device according to the first, second, third or fourth aspect, wherein each of the light projectors simultaneously emits a plurality of parallel slit lights. Fifth invention). The optical shape measuring device according to claim 6 is the optical shape measuring device according to claim 1, 3, 4, or 5, wherein all of the imaging devices synchronously perform shutter photographing (sixth invention). The optical shape measuring device according to claim 7 is the optical shape measuring device according to claim 1, 3, 4, 5, or 6, wherein the plurality of light emitters synchronously pulse-light the slit light. invention). The optical shape measuring apparatus according to claim 8, wherein the slit light image by the slit light projected from any one of the plurality of light projectors according to the appearance order of the slit light image in the captured image of the imaging device. An optical shape measuring apparatus according to claim 1, 2, 3, 4, 5, 6, or 7 for identifying whether there is any optical element (an eighth invention). The optical shape measuring device according to claim 9, wherein a plurality of shape measurement results of the shape measuring object detected from a plurality of slit light images detected in a captured image of the imaging device are averaged. An optical shape measuring apparatus according to any one of claims 2, 3, 4, 5, 6, 7, and 8 (a ninth invention).

【0018】[0018]

【発明の実施の形態】本発明は例えば次のようにして実
施する。形状測定対象物の周囲に該形状測定対象物にス
リット光を投光する投光器を複数個配置すると共に、該
形状測定対象物から反射されるスリット光を撮像する撮
像装置を配置する。このとき、前記複数個の投光器での
隣同士の投光器からのスリット光が前記形状測定対象物
の表面上で重ならないように隣同士の投光器の投光位置
を変えて(シフトさせて)前記複数個の投光器を配置す
る。そうすると、本発明の中の第1発明に係る光学的形
状測定装置が得られる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is implemented, for example, as follows. A plurality of light projectors for projecting slit light onto the shape measurement object are arranged around the shape measurement object, and an imaging device for imaging slit light reflected from the shape measurement object is arranged. At this time, the light projecting positions of the adjacent light projectors are changed (shifted) so that the slit lights from the adjacent light projectors of the plurality of light projectors do not overlap on the surface of the shape measurement object. Are placed. Then, the optical shape measuring device according to the first aspect of the present invention is obtained.

【0019】形状測定対象物の周囲に該形状測定対象物
にスリット光を投光する投光器を複数個配置すると共
に、該形状測定対象物から反射されるスリット光を撮像
する撮像装置を配置する。このとき、前記複数個の投光
器での隣同士の投光器からのスリット光が前記形状測定
対象物の表面上で重ならないように隣同士の投光器の投
光時間に差を設けて投光する時間差投光機能を備える。
そうすると、第2発明に係る光学的形状測定装置が得ら
れる。
A plurality of light projectors for projecting slit light to the shape measurement object are arranged around the shape measurement object, and an image pickup device for imaging slit light reflected from the shape measurement object is arranged. At this time, a time difference projection is performed by providing a difference in the projection time of the adjacent projectors so that the slit lights from the adjacent projectors in the plurality of projectors do not overlap on the surface of the shape measurement object. It has an optical function.
Then, the optical shape measuring device according to the second invention is obtained.

【0020】形状測定対象物の周囲に該形状測定対象物
にスリット光を投光する投光器を複数個配置すると共
に、該形状測定対象物から反射されるスリット光を撮像
する撮像装置を配置する。このとき、前記複数個の投光
器での隣同士の投光器からのスリット光の波長が相違す
るようにすると共に、このスリット光の中の一方のスリ
ット光のみを透過する光学的なバンドパスフィルターを
前記撮像装置の各々に設ける。そうすると、第3発明に
係る光学的形状測定装置が得られる。
A plurality of light projectors for projecting slit light to the shape measurement object are arranged around the shape measurement object, and an image pickup device for imaging slit light reflected from the shape measurement object is arranged. At this time, the wavelengths of the slit lights from the adjacent projectors in the plurality of projectors are set to be different from each other, and the optical bandpass filter that transmits only one of the slit lights in the slit light is used. Provided in each of the imaging devices. Then, the optical shape measuring device according to the third invention is obtained.

【0021】形状測定対象物の周囲に該形状測定対象物
にスリット光を投光する投光器を複数個配置すると共
に、該形状測定対象物から反射されるスリット光を撮像
する撮像装置を配置する。このとき、前記複数個の投光
器での隣同士の投光器からのスリット光の直線偏光面が
直交する偏光特性になるように前記複数個の投光器を配
置し、このスリット光の直線偏光の中の一方のスリット
光の直線偏光方向のみを透過する偏光フィルターを前記
撮像装置の各々に設ける。そうすると、第4発明に係る
光学的形状測定装置が得られる。
A plurality of light projectors for projecting slit light to the shape measurement object are arranged around the shape measurement object, and an image pickup device for imaging slit light reflected from the shape measurement object is arranged. At this time, the plurality of light projectors are arranged such that the linear polarization planes of the slit light beams from the adjacent light projectors in the plurality of light projectors have orthogonal polarization characteristics. A polarization filter that transmits only the linear polarization direction of the slit light is provided in each of the imaging devices. Then, the optical shape measuring device according to the fourth invention is obtained.

【0022】上記第1〜第4発明に係る光学的形状測定
装置を用いる場合、前記複数個の投光器のそれぞれから
スリット光を形状測定対象物に投光する。そうすると、
これらのスリット光はそれぞれ形状測定対象物に照射さ
れ、形状測定対象物表面で反射し、この反射されたスリ
ット光はそれぞれ撮像装置に入射し、スリット光像とし
て撮像装置により撮像される。そして、これらの撮像の
結果に基づいて形状測定対象物の形状測定を行う。
In the case where the optical shape measuring apparatus according to the first to fourth aspects of the present invention is used, slit light is projected from each of the plurality of light projectors onto a shape measuring object. Then,
Each of these slit lights is applied to the shape measuring object and is reflected on the surface of the shape measuring object, and the reflected slit lights are respectively incident on the image pickup device, and are picked up as a slit light image by the image pickup device. Then, the shape of the shape measurement object is measured based on the results of these imagings.

【0023】以下、本発明について主にその作用効果を
説明する。
Hereinafter, the function and effect of the present invention will be mainly described.

【0024】(1) 本発明に係る光学的形状測定装置にお
いては、形状測定対象物の周囲に前記形状測定対象物に
スリット光を投光する投光器を複数個配置すると共に前
記形状測定対象物から反射されるスリット光を撮像する
撮像装置を配置している。
(1) In the optical shape measuring apparatus according to the present invention, a plurality of light projectors for projecting the slit light to the shape measuring object are arranged around the shape measuring object, and the light is projected from the shape measuring object. An imaging device for imaging the reflected slit light is arranged.

【0025】従って、本発明に係る光学的形状測定装置
によれば、前記複数個の投光器のそれぞれからスリット
光を形状測定対象物に投光すると、形状測定対象物の周
囲から複数のスリット光が形状測定対象物に投光され、
これらのスリット光はそれぞれ形状測定対象物に照射さ
れ形状測定対象物表面で反射し、この反射光(反射され
たスリット光)はそれぞれ前記撮像装置に入射し、反射
スリット光像として前記撮像装置により撮像され、そし
て、これらの撮像の結果に基づいて形状測定対象物の形
状測定を行うことができる。このため、下記のような作
用効果を奏することができる。
Therefore, according to the optical shape measuring device of the present invention, when the slit light is projected from each of the plurality of light projectors onto the shape measuring object, the plurality of slit lights are emitted from the periphery of the shape measuring object. Light is projected on the shape measurement object,
Each of these slit lights is applied to the shape measuring object and reflected on the surface of the shape measuring object, and the reflected light (reflected slit light) is incident on the imaging device, and is reflected by the imaging device as a reflected slit light image. Images are captured, and the shape of the shape measurement target can be measured based on the results of these images. For this reason, the following effects can be obtained.

【0026】(2) 従来装置1では、形状測定対象物の影
を受光素子で検出して形状測定対象物の形状を測定する
ため、図4に示すような噛み込み形状や、圧延材の寄り
形状等を正確に測定することはできない。
(2) In the conventional apparatus 1, since the shape of the shape measurement object is measured by detecting the shadow of the shape measurement object with the light receiving element, the bite shape as shown in FIG. The shape and the like cannot be measured accurately.

【0027】これに対し、本発明に係る光学的形状測定
装置では、形状測定対象物の周囲から複数のスリット光
が形状測定対象物に投光され、これらのスリット光の形
状測定対象物表面からの反射光を撮像して形状測定対象
物の形状を計測することができるため、従来装置1では
測定誤差が大きく正確な測定ができない噛み込み形状も
圧延材の寄り形状も正確に測定することができる。
On the other hand, in the optical shape measuring apparatus according to the present invention, a plurality of slit lights are projected onto the shape measuring object from around the shape measuring object, and these slit lights are projected from the surface of the shape measuring object. Since the shape of the object to be measured can be measured by imaging the reflected light of the object, the conventional apparatus 1 can accurately measure both the biting shape and the rolled material leaning shape, which cannot be accurately measured due to a large measurement error. it can.

【0028】(3) 従来装置1では、平行光線出射装置及
び受光測定装置で構成される光学系を形状測定対象物の
回りを回転(公転)させつつ形状測定対象物の形状測定
を順次行い、このとき系列的に計測された測定結果を集
めて全周計測結果とするため、全周計測に時間がかか
る。このため、特に、形状測定対象物が高速移動してい
る場合には、上記光学系が形状測定対象物の周りを1周
する間に、形状測定対象物は上記光学系間を通過してい
くため、計測開始時と終了時の計測位置が大きく異な
り、形状測定対象物の長手方向に形状変化が存在する場
合には測定誤差が大きく、正確な形状測定をすることが
できない。また、形状測定対象物の捻転振動が発生する
と、正確な形状測定をすることができない。
(3) In the conventional device 1, the shape of the object to be measured is sequentially measured while rotating (revolving) the optical system constituted by the parallel light emitting device and the light receiving and measuring device around the object to be measured. At this time, it takes a long time to measure the entire circumference because the measurement results measured in a series are collected and used as the entire circumference measurement result. Therefore, particularly when the shape measuring object is moving at high speed, the shape measuring object passes between the optical systems while the optical system makes one round around the shape measuring object. For this reason, the measurement position at the start and end of the measurement is significantly different, and when there is a shape change in the longitudinal direction of the shape measurement target, the measurement error is large and accurate shape measurement cannot be performed. In addition, when torsional vibration of the shape measurement object occurs, accurate shape measurement cannot be performed.

【0029】これに対し、本発明に係る光学的形状測定
装置では、形状測定対象物の全周にわたって形状測定対
象物に複数のスリット光を同時に投光して、形状測定対
象物の断面形状を計測することができるため、形状測定
対象物が高速移動している場合も正確な形状測定をし
得、この高速移動する形状測定対象物が長手方向に形状
変化している場合でも測定誤差が生じ難く、正確な形状
測定をし得る。また、形状測定対象物の捻転振動が発生
する場合も測定誤差が生じ難く、正確な形状測定をし得
る。
On the other hand, in the optical shape measuring apparatus according to the present invention, a plurality of slit lights are simultaneously projected on the shape measuring object over the entire circumference of the shape measuring object, and the sectional shape of the shape measuring object is reduced. Because measurement can be performed, accurate shape measurement can be performed even when the shape measurement object is moving at high speed, and measurement errors occur even when the shape measurement object that moves at high speed changes shape in the longitudinal direction. Difficult and accurate shape measurement. In addition, even when torsional vibration of the shape measurement object occurs, a measurement error hardly occurs, and accurate shape measurement can be performed.

【0030】(4) 従来装置1では、光学系の回転時の遠
心力の影響により光学系の光軸のずれが発生して測定誤
差が生じ易い。これに対し、本発明に係る光学的形状測
定装置では、光学系は静止しており、このため光軸のず
れによる測定誤差が生じ難い。
(4) In the conventional apparatus 1, the optical axis of the optical system is displaced due to the centrifugal force at the time of rotation of the optical system, and a measurement error is likely to occur. On the other hand, in the optical shape measuring apparatus according to the present invention, the optical system is stationary, and therefore, a measurement error due to a shift of the optical axis hardly occurs.

【0031】(5) 従来装置2では、レーザビームを走査
させつつ形状測定対象物の形状計測をするため、形状測
定対象物が高速移動している場合には、形状測定対象物
の斜め断面形状を計測することとなり、形状測定対象物
の断面形状計測はすることができない。特に、形状測定
対象物が捻転振動あるいは上下左右振動している場合に
は、この振動成分が形状計測誤差として計測結果に反映
され、正確な形状測定をすることができない。
(5) In the conventional device 2, since the shape of the object to be measured is measured while scanning the laser beam, when the object to be measured is moving at a high speed, the oblique cross-sectional shape of the object to be measured is measured. , And the cross-sectional shape of the shape measurement object cannot be measured. In particular, when the shape measurement object is twisting or vibrating vertically and horizontally, this vibration component is reflected in the measurement result as a shape measurement error, and accurate shape measurement cannot be performed.

【0032】これに対し、本発明に係る光学的形状測定
装置では、形状測定対象物の全周にわたって形状測定対
象物に複数のスリット光を同時に投光して、形状測定対
象物の断面形状を計測し得るため、高速移動する形状測
定対象物が長手方向に形状変化している場合でも測定誤
差が生じ難く、正確な断面形状測定をし得、また、形状
測定対象物が捻転振動している場合も上下左右振動して
いる場合も測定誤差が生じ難く、正確な形状測定をし得
る。
On the other hand, in the optical shape measuring apparatus according to the present invention, a plurality of slit lights are simultaneously projected on the shape measuring object over the entire circumference of the shape measuring object, and the sectional shape of the shape measuring object is changed. Because it can be measured, even when the shape measuring object moving at high speed changes its shape in the longitudinal direction, a measurement error hardly occurs, accurate cross-sectional shape measurement can be performed, and the shape measuring object is subject to torsional vibration In both cases and when oscillating vertically and horizontally, a measurement error hardly occurs, and accurate shape measurement can be performed.

【0033】(6) 本発明に係る光学的形状測定装置で
は、従来装置1及び従来装置2とは異なり、可動部を有
していないため、光学系調整も容易であり、メンテナン
ス面での信頼性の向上がはかれる。
(6) Unlike the conventional apparatus 1 and the conventional apparatus 2, the optical shape measuring apparatus according to the present invention does not have a movable portion, so that the optical system can be easily adjusted and the reliability in terms of maintenance can be improved. Improve the performance.

【0034】(7) 本発明に係る光学的形状測定装置で
は、前記の如く、複数個の投光器によって形状測定対象
物の全周にわたって形状測定対象物に複数のスリット光
を同時に投光して、形状測定対象物の断面形状を計測す
ることができる。
(7) In the optical shape measuring device according to the present invention, as described above, a plurality of slit lights are simultaneously projected on the shape measurement object over the entire circumference of the shape measurement object by the plurality of light projectors. The cross-sectional shape of the shape measurement object can be measured.

【0035】しかし、形状測定対象物が棒鋼や線材等の
如く円柱状形状や円筒状形状を有する物体である場合、
単に、複数個の投光器によって形状測定対象物の全周に
わたって形状測定対象物に複数のスリット光を同時に投
光すると、個々の撮像装置の撮影画像内に複数の反射ス
リット光像が撮像される。この場合、撮影画像内の複数
の反射スリット光像のそれぞれがいずれの投光器から投
光されたスリット光による反射スリット光像であるのか
を正しく識別しないと、誤検出(誤った識別)による計
測誤差が発生し、正確な形状測定をすることができな
い。
However, when the object to be measured is a cylindrical or cylindrical object such as a steel bar or a wire,
Simply projecting a plurality of slit lights simultaneously onto the shape measurement object over the entire circumference of the shape measurement object using the plurality of light projectors will capture a plurality of reflection slit light images in the captured image of each imaging device. In this case, if it is not correctly identified which of the plurality of reflected slit light images in the captured image is a reflected slit light image due to the slit light projected from which projector, a measurement error due to erroneous detection (erroneous identification) is required. Occurs, and accurate shape measurement cannot be performed.

【0036】そこで、本発明に係る光学的形状測定装置
においては、前記のように形状測定対象物の周囲に前記
形状測定対象物にスリット光を投光する投光器を複数個
配置すると共に前記形状測定対象物から反射されるスリ
ット光を撮像する撮像装置を配置するようにするだけで
なく、前記複数個の投光器での隣同士の投光器からのス
リット光が前記形状測定対象物の表面上で重ならないよ
うにしている(第1発明)。即ち、本発明に係る光学的
形状測定装置の中、第1発明に係る光学的形状測定装置
においては、前記複数個の投光器での隣同士の投光器か
らのスリット光が前記形状測定対象物の表面上で重なら
ないように隣同士の投光器の投光位置を変えて前記複数
個の投光器を配置するようにしている。
Therefore, in the optical shape measuring apparatus according to the present invention, a plurality of light projectors for projecting slit light to the shape measuring object are arranged around the shape measuring object as described above, and In addition to arranging an imaging device that captures the slit light reflected from the object, the slit lights from adjacent light emitters in the plurality of light emitters do not overlap on the surface of the shape measurement object. (First invention). That is, among the optical shape measuring devices according to the present invention, in the optical shape measuring device according to the first invention, the slit light from adjacent ones of the plurality of light projectors is a surface of the shape measurement object. The plurality of light projectors are arranged by changing the light projecting positions of the adjacent light projectors so as not to overlap each other.

【0037】上記第1発明に係る光学的形状測定装置に
よれば、前記複数個の投光器での隣同士の投光器からの
スリット光が形状測定対象物の表面上で重ならないよう
にシフトさせて投光することができる。このため、少な
くとも隣同士の投光器からのスリット光による反射スリ
ット光像が個々の撮像装置の撮影画像内に同時に撮像さ
れることはなくなり、個々の撮像装置の撮影画像内に複
数の反射スリット光像が撮像されなくすることも可能で
ある。故に、形状測定対象物が円柱状形状や円筒状形状
を有する場合でも、複数のスリット光の同時投光による
計測誤差(誤検出)を低減し得、正確な形状測定をする
ことができる。
According to the optical shape measuring apparatus of the first aspect, the slit light from adjacent ones of the plurality of light projectors is shifted so as not to overlap on the surface of the shape measuring object. Can light. For this reason, at least the reflected slit light images by the slit light from the adjacent projectors are not simultaneously captured in the captured images of the individual imaging devices, and the plurality of reflected slit light images are included in the captured images of the individual imaging devices. Can be prevented from being imaged. Therefore, even when the shape measurement target has a cylindrical shape or a cylindrical shape, a measurement error (erroneous detection) due to simultaneous projection of a plurality of slit lights can be reduced, and accurate shape measurement can be performed.

【0038】(8) 第2発明に係る光学的形状測定装置に
おいては、前記の如く形状測定対象物の周囲に前記形状
測定対象物にスリット光を投光する投光器を複数個配置
すると共に前記形状測定対象物から反射されるスリット
光を撮像する撮像装置を配置するようにするだけでな
く、更に、前記複数個の投光器での隣同士の投光器から
のスリット光が前記形状測定対象物の表面上で重ならな
いように隣同士の投光器の投光時間に差を設けて投光す
る時間差投光機能を備えるようにしている。
(8) In the optical shape measuring apparatus according to the second invention, a plurality of light projectors for projecting slit light to the shape measuring object are arranged around the shape measuring object as described above, and In addition to arranging an imaging device that captures the slit light reflected from the measurement object, the slit light from adjacent ones of the plurality of light emitters may be disposed on the surface of the shape measurement object. In order to avoid overlapping, a difference in the light emission time of the adjacent light emitters is provided to provide a time difference light emission function of emitting light.

【0039】上記第2発明に係る光学的形状測定装置に
よれば、前記複数個の投光器での隣同士の投光器からの
スリット光が形状測定対象物の表面上で重ならないよう
に隣同士の投光器の投光時間に差を設けて投光すること
ができる。このため、少なくとも隣同士の投光器からの
スリット光による反射スリット光像が個々の撮像装置の
撮影画像内に同時に撮像されることはなくなり、個々の
撮像装置の撮影画像内に複数の反射スリット光像が撮像
されなくすることも可能である。故に、形状測定対象物
が円柱状形状や円筒状形状を有する場合でも、複数スリ
ット光の投光による計測誤差(誤検出)を低減し得、正
確な形状測定をすることができる。
According to the optical shape measuring apparatus according to the second aspect of the present invention, the adjacent light projectors such that the slit lights from the adjacent light projectors in the plurality of light projectors do not overlap on the surface of the shape measurement object. The light can be emitted with a difference in the light emission time. For this reason, at least the reflected slit light images by the slit light from the adjacent projectors are not simultaneously captured in the captured images of the individual imaging devices, and the plurality of reflected slit light images are included in the captured images of the individual imaging devices. Can be prevented from being imaged. Therefore, even when the shape measurement object has a cylindrical shape or a cylindrical shape, measurement errors (erroneous detection) due to the projection of the plurality of slit lights can be reduced, and accurate shape measurement can be performed.

【0040】(9) 第3発明に係る光学的形状測定装置に
おいては、前記の如く形状測定対象物の周囲に前記形状
測定対象物にスリット光を投光する投光器を複数個配置
すると共に前記形状測定対象物から反射されるスリット
光を撮像する撮像装置を配置するようにするだけでな
く、更に、前記複数個の投光器での隣同士の投光器から
のスリット光の波長が相違し、このスリット光の中の一
方のスリット光のみを透過する光学的なバンドパスフィ
ルターを前記撮像装置の各々に設けるようにしている。
(9) In the optical shape measuring apparatus according to the third invention, a plurality of light projectors for projecting slit light to the shape measuring object are arranged around the shape measuring object as described above, and In addition to disposing an imaging device that captures the slit light reflected from the measurement target, the wavelength of the slit light from adjacent ones of the plurality of light projectors is different, and this slit light Each of the imaging devices is provided with an optical bandpass filter that transmits only one of the slit lights.

【0041】上記第3発明に係る光学的形状測定装置に
よれば、前記複数個の投光器での隣同士の投光器からの
スリット光が形状測定対象物の表面上で重なっても、こ
れらの形状測定対象物表面からの反射光の中の一方の反
射光のみが前記光学的バンドパスフィルターを透過して
該バンドパスフィルターが設けられている撮像装置に入
射し、反射スリット光像として撮像装置により撮像さ
れ、他方の反射光は該撮像装置には入射せず、該撮像装
置では撮像されない。このため、少なくとも隣同士の投
光器からのスリット光による反射スリット光像が個々の
撮像装置の撮影画像内に同時に撮像されることはなくな
り、個々の撮像装置の撮影画像内に複数の反射スリット
光像が撮像されなくすることも可能である。故に、形状
測定対象物が円柱状形状や円筒状形状を有する場合で
も、複数のスリット光の同時投光による計測誤差(誤検
出)を低減し得、正確な形状測定をすることができる。
According to the optical shape measuring apparatus according to the third aspect of the present invention, even if slit light from adjacent ones of the plurality of light projectors overlaps on the surface of the shape measuring object, these shape measuring devices can be used. Only one reflected light of the reflected light from the object surface passes through the optical bandpass filter and is incident on the imaging device provided with the bandpass filter, and is captured by the imaging device as a reflected slit light image. The other reflected light does not enter the imaging device and is not imaged by the imaging device. For this reason, at least the reflected slit light images by the slit light from the adjacent projectors are not simultaneously captured in the captured images of the individual imaging devices, and the plurality of reflected slit light images are included in the captured images of the individual imaging devices. Can be prevented from being imaged. Therefore, even when the shape measurement target has a cylindrical shape or a cylindrical shape, a measurement error (erroneous detection) due to simultaneous projection of a plurality of slit lights can be reduced, and accurate shape measurement can be performed.

【0042】(10) 第4発明に係る光学的形状測定装置
においては、前記の如く形状測定対象物の周囲に前記形
状測定対象物にスリット光を投光する投光器を複数個配
置すると共に前記形状測定対象物から反射されるスリッ
ト光を撮像する撮像装置を配置するようにするだけでな
く、更に、前記複数個の投光器での隣同士の投光器から
のスリット光の直線偏光面が直交する偏光特性になるよ
うに前記複数個の投光器を配置し、このスリット光の直
線偏光の中の一方のスリット光の直線偏光方向のみを透
過する偏光フィルターを前記撮像装置の各々に設けるよ
うにしている。
(10) In the optical shape measuring apparatus according to the fourth invention, a plurality of light projectors for projecting slit light to the shape measuring object are arranged around the shape measuring object as described above, and In addition to arranging an imaging device for imaging the slit light reflected from the measurement object, furthermore, a polarization characteristic in which the linear polarization plane of the slit light from the adjacent light emitters in the plurality of light emitters is orthogonal. The plurality of light projectors are arranged so as to provide a polarizing filter that transmits only the linear polarization direction of one slit light of the linearly polarized light of the slit light in each of the imaging devices.

【0043】上記第4発明に係る光学的形状測定装置に
よれば、前記複数個の投光器での隣同士の投光器からの
スリット光が形状測定対象物の表面上で重なっても、こ
れらの形状測定対象物表面からの反射光の中の一方の反
射光のみが前記偏光フィルターを透過して該バンドパス
フィルターが設けられている撮像装置に入射し、反射ス
リット光像として撮像装置により撮像され、他方の反射
光は該撮像装置には入射せず、該撮像装置では撮像され
ない。このため、少なくとも隣同士の投光器からのスリ
ット光による反射スリット光像が個々の撮像装置の撮影
画像内に同時に撮像されることはなくなり、個々の撮像
装置の撮影画像内に複数の反射スリット光像が撮像され
なくすることも可能である。故に、形状測定対象物が円
柱状形状や円筒状形状を有する場合でも、複数のスリッ
ト光の同時投光による計測誤差(誤検出)を低減し得、
正確な形状測定をすることができる。
According to the optical shape measuring apparatus according to the fourth aspect of the present invention, even if slit light from adjacent ones of the plurality of light projectors overlaps on the surface of the shape measuring object, the shape of the plurality of light projectors can be measured. Only one reflected light of the reflected light from the object surface is transmitted through the polarizing filter and is incident on the imaging device provided with the bandpass filter, and is captured by the imaging device as a reflected slit light image. Is not incident on the imaging device and is not imaged by the imaging device. For this reason, at least the reflected slit light images by the slit light from the adjacent projectors are not simultaneously captured in the captured images of the individual imaging devices, and the plurality of reflected slit light images are included in the captured images of the individual imaging devices. Can be prevented from being imaged. Therefore, even when the shape measurement target has a columnar shape or a cylindrical shape, a measurement error (erroneous detection) due to simultaneous projection of a plurality of slit lights can be reduced,
Accurate shape measurement can be performed.

【0044】(11) 以上のように、上記第1発明、第2
発明、第3発明、第4発明に係る光学的形状測定装置に
よれば、複数のスリット光の投光による計測誤差(誤検
出)を低減し得、計測誤差が小さくて正確な形状測定を
することができる。また、噛み込み形状も圧延材の寄り
形状も正確に測定し得、また、被測定物(形状測定対象
物)が高速移動している場合も被測定物の捻転振動が発
生する場合も測定誤差が生じ難く、正確な形状測定をし
得、更に、光軸のずれによる測定誤差が生じ難くなる。
(11) As described above, the first invention and the second invention
ADVANTAGE OF THE INVENTION According to the optical shape measuring apparatus which concerns on invention, a 3rd invention, and a 4th invention, the measurement error (erroneous detection) by projection of several slit light can be reduced, and a measurement error is small and accurate shape measurement is performed. be able to. In addition, it is possible to accurately measure the biting shape and the skewed shape of the rolled material. In addition, even when the object to be measured (shape measurement object) is moving at high speed or when torsional vibration of the object to be measured occurs, the measurement error can be obtained. Is less likely to occur, accurate shape measurement can be performed, and a measurement error due to an optical axis shift is less likely to occur.

【0045】(12) 前記第1〜第4発明に係る光学的形
状測定装置において、前記投光器の各々が複数本の平行
スリット光を同時に投光するようにすると、投光器の各
々から1本のスリット光を投光する場合よりも、一回の
計測でより多くの情報(撮像結果、形状測定データ)を
得ることができ、ひいては形状測定精度をより向上させ
ることができる。更に、反射スリット光像が欠落した場
合でも、補完可能となり、信頼性の向上がはかれる(第
5発明)。
(12) In the optical shape measuring apparatus according to the first to fourth inventions, when each of the light projectors simultaneously emits a plurality of parallel slit lights, one slit from each of the light projectors is provided. More information (imaging result, shape measurement data) can be obtained by one measurement than in the case of projecting light, and the shape measurement accuracy can be further improved. Further, even when the reflection slit light image is missing, it becomes possible to complement the light image and improve the reliability (fifth invention).

【0046】(13) 前記第1、第3〜第5発明に係る光
学的形状測定装置において、前記撮像装置の全てが同期
してシャッター撮影するようにすると、形状測定対象物
が高速移動している場合に振動しても、これに起因する
測定誤差が生じ難く、高精度の形状計測が可能となる
(第6発明)。
(13) In the optical shape measuring apparatus according to the first, third to fifth aspects of the present invention, if all of the image pickup devices take shutter images in synchronization, the shape measuring object moves at high speed. Even if vibration occurs, a measurement error due to this hardly occurs, and high-precision shape measurement can be performed (sixth invention).

【0047】(14) 前記第1、第3〜第6発明に係る光
学的形状測定装置において、前記複数個の投光器が同期
してスリット光をパルス点灯するようにすると、形状測
定対象物が高速移動している場合に振動しても、これに
起因する測定誤差が生じ難く、高精度の形状計測が可能
となる(第7発明)。
(14) In the optical shape measuring apparatus according to the first, third to sixth aspects of the present invention, when the plurality of light emitters are turned on in synchronization with the pulse light of the slit light, the shape measuring object can be operated at a high speed. Even if it vibrates while it is moving, a measurement error due to this hardly occurs, and high-precision shape measurement can be performed (a seventh invention).

【0048】(15) 前記第1〜第7発明に係る光学的形
状測定装置において、前記撮像装置の撮影画像内のスリ
ット光像の出現順序によって前記複数個の投光器の中の
いずれの投光器から投光されたスリット光によるスリッ
ト光像であるかを識別することができる(第8発明)。
即ち、形状測定対象物が棒鋼や線材等である場合、長手
方向の形状が段差をもって変化することはないので、撮
像装置の撮影画像内のスリット光像の出現順序が変化す
ることはなく、このため、撮像装置の撮影画像内のスリ
ット光像が複数個の投光器の中のいずれの投光器から投
光されたスリット光によるスリット光像であるかを撮像
装置の撮影画像内のスリット光像の出現順序によって識
別することができる。
(15) In the optical shape measuring apparatus according to any one of the first to seventh aspects, any one of the plurality of projectors emits light depending on the appearance order of the slit light image in the image captured by the imaging device. It is possible to identify whether the image is a slit light image based on the illuminated slit light (eighth invention).
That is, when the shape measurement object is a steel bar, a wire, or the like, since the shape in the longitudinal direction does not change with a step, the appearance order of the slit light image in the captured image of the imaging device does not change. Therefore, the appearance of the slit light image in the photographed image of the imaging device is determined by which of the plurality of light projectors the slit light image in the photographed image of the imaging device is the slit light image due to the slit light emitted from the plurality of light projectors. Can be identified by order.

【0049】(16) また、形状測定対象物の概略形状と
形状測定対象物の周囲に配置した光学系(投光器、撮像
装置等)の配置パラメータを用いて幾何学計算を行うこ
とにより、各投光器から投光されたスリット光の反射光
が各撮像装置の撮影画像のいずれの位置に撮像されるか
を求めることができ、更に、撮影画像内でのスリット光
像検出範囲を制限することも可能である。
(16) Further, by performing geometric calculations using the schematic shape of the shape measurement object and the arrangement parameters of the optical system (light projector, imaging device, etc.) arranged around the shape measurement object, It is possible to determine where in the captured image of each imaging device the reflected light of the slit light projected from is captured, and it is also possible to limit the slit light image detection range in the captured image It is.

【0050】(17) 前記第1〜第8発明に係る光学的形
状測定装置において、前記撮像装置の撮影画像内で検出
される複数のスリット光像から検出される前記形状測定
対象物の複数の形状測定結果を加算平均するようにする
と、形状計測結果の高精度化をはかることができる。更
に、反射スリット光像が欠落した場合でも、補完可能と
なり、信頼性の向上がはかれる(第9発明)。
(17) In the optical shape measuring apparatus according to the first to eighth inventions, a plurality of the shape measuring objects detected from a plurality of slit light images detected in a photographed image of the imaging device. When the shape measurement results are added and averaged, the accuracy of the shape measurement results can be improved. Further, even if the reflection slit light image is missing, it becomes possible to complement the light image, and the reliability is improved (ninth invention).

【0051】(18) 本発明において、スリット光を投光
する投光器は、換言すれば、三次元画像計測法であるス
リット光投影法(光切断法)等において用いられるスリ
ット光源である。スリット光は、換言すれば、かかるス
リット光源(スリット光を投光する投光器)から投光
(形状測定対象物に照射)されるシート状の光であり、
シート状の参照光またはシート光あるいは光シートとも
いうことができる。
(18) In the present invention, the light projector for projecting the slit light is a slit light source used in a slit light projection method (light cutting method) or the like which is a three-dimensional image measurement method. The slit light is, in other words, a sheet-like light emitted from the slit light source (a light projector that emits the slit light) (irradiates the shape measurement target),
It can also be referred to as sheet-like reference light, sheet light, or light sheet.

【0052】本発明に係る光学的形状測定装置は、換言
すれば、光切断方式光学系の一種である。本発明に係る
光学的形状測定装置による形状測定方法は、換言すれ
ば、光切断法の一種である。撮像装置により撮像される
スリット光像は、換言すれば、光切断線像(光切断像と
もいわれる)の一種である。
The optical shape measuring apparatus according to the present invention is, in other words, a kind of optical system of the light cutting system. The shape measuring method using the optical shape measuring apparatus according to the present invention is, in other words, a kind of light cutting method. The slit light image picked up by the image pickup device is, in other words, a kind of light section line image (also called a light section image).

【0053】[0053]

【実施例】(実施例1)本発明の実施例1に係る光学的
形状測定装置を図5に示す。この光学的形状測定装置は
第1発明に係る光学的形状測定装置の実施例に該当す
る。この光学的形状測定装置について、以下説明する。
図5に示す如く、被測定対象材(形状測定対象物)の周
囲に、4個のスリット光を投光する投光器(以下、スリ
ット光投光器という)すなわちスリット光投光器1〜4
を前記形状測定対象物の中心軸にスリット光が直交する
方向に設けると共に、各スリット光と一定の角度を有す
る方向から前記形状測定対象物から反射される各スリッ
ト光(以下、光切断線ともいう)を撮像する撮像装置1
〜4を配置する。このとき、前記4個のスリット光投光
器1〜4での隣同士のスリット光投光器からのスリット
光が前記形状測定対象物の表面上で重ならないように隣
同士のスリット光投光器の投光位置をシフトさせて(変
えて)前記4個のスリット光投光器1〜4を配置する。
(Embodiment 1) FIG. 5 shows an optical shape measuring apparatus according to Embodiment 1 of the present invention. This optical shape measuring device corresponds to an embodiment of the optical shape measuring device according to the first invention. This optical shape measuring device will be described below.
As shown in FIG. 5, light projectors (hereinafter, referred to as slit light projectors) for projecting four slit lights around a material to be measured (a shape measurement object), that is, slit light projectors 1 to 4
Is provided in the direction in which the slit light is orthogonal to the central axis of the shape measuring object, and each slit light reflected from the shape measuring object from a direction having a certain angle with each slit light (hereinafter, also referred to as a light cutting line). Imaging device 1 for imaging
~ 4 are arranged. At this time, the projecting positions of the adjacent slit light projectors are set so that the slit light from the adjacent slit light projectors in the four slit light projectors 1 to 4 does not overlap on the surface of the shape measurement object. By shifting (changing), the four slit light projectors 1 to 4 are arranged.

【0054】即ち、スリット光投光器1とスリット光投
光器3により形状測定対象物の上下方向から投光される
スリット光(スリット光投光器1からのスリット光とス
リット光投光器3からのスリット光)は形状測定対象物
の表面上で重なり合わず、また、スリット光投光器2と
スリット光投光器4により形状測定対象物の左右方向か
ら投光されるスリット光(スリット光投光器2からのス
リット光とスリット光投光器4からのスリット光)は形
状測定対象物の表面上で重なり合わないが、上記形状測
定対象物の左右方向から投光されるスリット光と上記形
状測定対象物の上下方向から投光されるスリット光とは
形状測定対象物の表面上で重なり合う可能性があり、ス
リット光が形状測定対象物の表面上で重なり合った場合
には重なり発生部位において誤計測や計測精度低下が発
生するため、スリット光投光器1とスリット光投光器3
による投光位置(形状測定対象物の上下方向からの投光
位置)と、スリット光投光器2とスリット光投光器4に
よる投光位置(形状測定対象物の左右方向からの投光位
置)とをシフトさせ、スリット光が形状測定対象物の表
面上で重ならないようにする。つまり、スリット光投光
器1からのスリット光とその隣のスリット光投光器2か
らのスリット光とが形状測定対象物の表面上で重ならな
いように、また、スリット光投光器2からのスリット光
とその隣のスリット光投光器3からのスリット光とが形
状測定対象物の表面上で重ならないように、また、スリ
ット光投光器3からのスリット光とその隣のスリット光
投光器4からのスリット光とが形状測定対象物の表面上
で重ならないように、更に、スリット光投光器4からの
スリット光とその隣のスリット光投光器1からのスリッ
ト光とが形状測定対象物の表面上で重ならないように、
スリット光投光器を1〜4を配置する。
That is, the slit light (the slit light from the slit light projector 1 and the slit light from the slit light projector 3) emitted from the vertical direction of the shape measurement object by the slit light projector 1 and the slit light projector 3 are shaped. Slit light that does not overlap on the surface of the measurement object and is projected from the left and right directions of the shape measurement object by the slit light projector 2 and the slit light projector 4 (the slit light from the slit light projector 2 and the slit light projector) The slit light from No. 4 does not overlap on the surface of the shape measuring object, but the slit light emitted from the left and right directions of the shape measuring object and the slit light emitted from the vertical direction of the shape measuring object Light may overlap on the surface of the shape measurement object, and if the slit light overlaps on the surface of the shape measurement object, the overlap generation part Since the erroneous measurement and measurement accuracy decreases in occurs, the slit light projector 1 and the slit light projector 3
Position (light projection position of the shape measurement target from the vertical direction) and the light projection position of slit light projector 2 and slit light projector 4 (the light projection position of the shape measurement target from the left and right directions) The slit light is prevented from overlapping on the surface of the shape measurement object. In other words, the slit light from the slit light projector 1 and the slit light from the adjacent slit light projector 2 do not overlap on the surface of the shape measuring object, and the slit light from the slit light projector 2 and the adjacent The slit light from the slit light projector 3 and the slit light from the slit light projector 4 adjacent to the slit light from the slit light projector 3 and the slit light from the slit light projector 4 are measured so that the slit light from the slit light projector 3 does not overlap on the surface of the object to be measured. In order that the slit light from the slit light projector 4 and the slit light from the adjacent slit light projector 1 do not overlap on the surface of the shape measuring object so that they do not overlap on the surface of the object.
Slit light projectors 1 to 4 are arranged.

【0055】上記実施例1に係る光学的形状測定装置を
用いて、丸棒鋼についての形状測定を行った。その結
果、撮像装置の撮影画像内に複数のスリット光像が観察
される場合でも、各スリット光像は独立して観察するこ
とができ、複数のスリット光の投光による計測誤差(誤
検出)を生じることなく、丸棒鋼の全周形状を精度良く
計測し得、正確な形状測定をし得ることが確認された。
The shape of a round bar was measured using the optical shape measuring apparatus according to the first embodiment. As a result, even when a plurality of slit light images are observed in an image captured by the imaging device, each slit light image can be observed independently, and a measurement error due to the projection of the plurality of slit light (erroneous detection). It was confirmed that the entire peripheral shape of the round bar could be measured with high accuracy without causing any problem, and accurate shape measurement could be performed.

【0056】また、形状測定対象物の丸棒鋼が高速移動
し、それに伴い捻転振動が発生する場合についても、上
記実施例1に係る光学的形状測定装置を用いて形状測定
を行った。その結果、測定誤差が生じ難く、正確な形状
測定をし得ることが確認された。
In the case where the round steel bar as the object to be measured moves at high speed and torsional vibration occurs, the shape was measured using the optical shape measuring apparatus according to the first embodiment. As a result, it was confirmed that a measurement error hardly occurred and accurate shape measurement could be performed.

【0057】更に、噛み込み形状や圧延材の寄り形状を
有する形状測定対象物についても、上記実施例1に係る
光学的形状測定装置を用いて形状測定を行った。その結
果、上記噛み込み形状や圧延材の寄り形状の個所も正確
な形状測定をし得ることが確認された。
Further, the shape of the object to be measured having the biting shape or the skewed shape of the rolled material was measured using the optical shape measuring apparatus according to the first embodiment. As a result, it was confirmed that accurate measurement of the shape of the biting shape and the shifted shape of the rolled material was possible.

【0058】尚、図5に示す光学的形状測定装置におい
て、スリット光投光器と撮像装置で構成される光切断方
式光学系としては、図6に示す通常の光切断方式光学
系、あるいは、図7に示すシフトレンズ利用型の光切断
方式光学系を用いることができる。
In the optical shape measuring device shown in FIG. 5, the light cutting type optical system composed of the slit light projector and the image pickup device may be a normal light cutting type optical system shown in FIG. 6 or FIG. The optical system using a shift lens utilizing a light cutting system shown in FIG.

【0059】図6に示す通常の光切断方式光学系では、
形状測定の対象物に対してスリット光を投光し、スリッ
ト光平面(シート光面)から所定の角度傾いた方向から
撮像装置で形状測定対象物からの反射スリット光を観察
し、撮像装置の撮像面上で測定点Aのスリット光像(光
切断線像)Bを得る。測定点Aの三次元位置は、スリッ
ト光像Bとレンズ中心Cを結ぶ視線Lとスリット光平面
との交点座標を求めることにより、計算(把握、確認)
することができる。
In the ordinary light-section type optical system shown in FIG.
A slit light is projected on the object to be measured, and the reflected slit light from the object to be measured is observed by the imaging device from a direction inclined at a predetermined angle from the slit light plane (sheet light surface). A slit light image (light section line image) B of the measurement point A is obtained on the imaging surface. The three-dimensional position of the measurement point A is calculated (obtained and confirmed) by obtaining the coordinates of the intersection of the line of sight L connecting the slit light image B and the lens center C with the slit light plane.
can do.

【0060】図7に示すシフトレンズ利用型光切断方式
光学系では、形状測定の対象物に対してスリット光を投
光し、撮像装置で形状測定対象物からの反射スリット光
を観察し、撮像装置の撮像面上で測定点Aのスリット光
像Bを得る。この光切断方式光学系は図6に示す通常の
光切断方式光学系の場合とは異なり、レンズ光軸はスリ
ット光と直交する配置関係とし、且つ、撮像装置の撮像
面をスリット光面に対し平行に配置する。このような配
置関係とすることにより、撮像装置計測範囲内のスリッ
ト光は、常に合焦状態で且つ等分解能で計測することが
できるという特徴を有している。測定点Aの三次元位置
は、前記通常の光切断方式光学系の場合と同様に、スリ
ット光像Bとレンズ中心Cを結ぶ視線Lとスリット光平
面との交点座標を求めることにより、計算(把握、確
認)することができる。
In the optical system using a shift lens-type light cutting system shown in FIG. 7, a slit light is projected on an object to be measured, and the reflected slit light from the object to be measured is observed by an image pickup device. A slit light image B at a measurement point A is obtained on an imaging surface of the apparatus. This light-section type optical system is different from the ordinary light-section type optical system shown in FIG. 6 in that the lens optical axis is arranged so as to be orthogonal to the slit light, and the imaging surface of the imaging device is positioned with respect to the slit light surface. Place them in parallel. With such an arrangement, the slit light within the measurement range of the imaging device can be always measured in an in-focus state and at the same resolution. The three-dimensional position of the measurement point A is calculated by calculating the coordinates of the intersection of the line of sight L connecting the slit light image B and the lens center C with the slit light plane, as in the case of the above-mentioned ordinary light-section optical system. Grasp and confirm).

【0061】図5に示す光学的形状測定装置において、
スリット光投光器と撮像装置で構成される光切断方式光
学系として上記光切断方式光学系のいずれを用いる場合
も、各独立光学系ごとに計測して得られた形状測定対象
物の部分形状データを、同一の座標系に座標変換するこ
とにより、形状測定対象物の全周形状計測が可能とな
る。
In the optical shape measuring device shown in FIG.
When using any of the above-mentioned optical cutting system optical systems as the optical cutting system optical system composed of the slit light projector and the imaging device, the partial shape data of the shape measurement object obtained by measuring each independent optical system is obtained. By performing coordinate conversion to the same coordinate system, it is possible to measure the entire circumference of the shape measurement target.

【0062】(実施例2)本発明の実施例2に係る光学
的形状測定装置を図8に示す。この光学的形状測定装置
は第5発明に係る光学的形状測定装置の実施例に該当す
る。この光学的形状測定装置について、以下説明する。
図8に示すように、形状測定対象物(被測定対象材)の
周囲に、複数本の平行スリット光を投光するスリット光
投光器(以下、複数本スリット光投光器という)4個す
なわち複数本スリット光投光器1A〜4Aを前記形状測定対
象物の中心軸にスリット光が直交する方向に設けると共
に、各スリット光と一定の角度を有する方向から前記形
状測定対象物から反射される各スリット光(光切断線)
を撮像する撮像装置1〜4を配置する。このとき、前記
4個の複数本スリット光投光器1A〜4Aでの隣同士の複数
本スリット光投光器からの複数本スリット光が前記形状
測定対象物の表面上で重ならないように隣同士の複数本
スリット光投光器の投光位置をシフトさせて(変えて)
前記4個の複数本スリット光投光器1A〜4Aを配置する。
(Embodiment 2) FIG. 8 shows an optical shape measuring apparatus according to Embodiment 2 of the present invention. This optical shape measuring device corresponds to an embodiment of the optical shape measuring device according to the fifth invention. This optical shape measuring device will be described below.
As shown in FIG. 8, four slit light projectors (hereinafter, referred to as multiple slit light projectors) for projecting a plurality of parallel slit lights around a shape measurement target (measurement target material), that is, a plurality of slits are provided. The light projectors 1A to 4A are provided in a direction in which the slit light is orthogonal to the central axis of the shape measuring object, and each slit light (light) reflected from the shape measuring object from a direction having a certain angle with each slit light. Cutting line)
Are arranged. At this time, a plurality of adjacent slit light projectors in the four slit light projectors 1A to 4A are arranged such that a plurality of slit light beams from adjacent slit light projectors do not overlap on the surface of the shape measurement object. Shift (change) the light projection position of the slit light projector
The four plural slit light projectors 1A to 4A are arranged.

【0063】即ち、複数本スリット光投光器1Aと複数本
スリット光投光器3Aにより形状測定対象物の上下方向か
ら投光される複数本スリット光は形状測定対象物の表面
上で重なり合わず、また、複数本スリット光投光器2Aと
複数本スリット光投光器4Aにより形状測定対象物の左右
方向から投光される複数本スリット光は形状測定対象物
の表面上で重なり合わないが、上記形状測定対象物の左
右方向から投光される複数本スリット光と上記形状測定
対象物の上下方向から投光される複数本スリット光とは
形状測定対象物の表面上で重なり合う可能性があり、ス
リット光が形状測定対象物の表面上で重なり合った場合
には重なり発生部位において誤計測や計測精度低下が発
生するため、複数本スリット光投光器1Aと複数本スリッ
ト光投光器3Aによる投光位置(形状測定対象物の上下方
向からの投光位置)と、複数本スリット光投光器2Aと複
数本スリット光投光器4Aによる投光位置(形状測定対象
物の左右方向からの投光位置)とをシフトさせ、スリッ
ト光が形状測定対象物の表面上で重ならないようにす
る。つまり、前記実施例1でのスリット光投光器1〜4
に代えて複数本スリット光投光器1A〜4Aを用いて配置
し、光学系の配置関係等を前記実施例1の場合と同様と
した。
That is, the plural slit light projectors 1A and the plural slit light projectors 3A emitted from the vertical direction of the shape measuring object do not overlap on the surface of the shape measuring object. The multiple slit light projectors 2A and the multiple slit light projectors 4A project from the left and right directions of the shape measurement target object.The multiple slit light beams do not overlap on the surface of the shape measurement target object. The plurality of slit lights projected from the left and right directions and the plurality of slit lights projected from the top and bottom directions of the shape measurement object may overlap on the surface of the shape measurement object, and the slit light is measured for the shape. If they are overlapped on the surface of the object, erroneous measurement or reduced measurement accuracy will occur at the location where the overlap occurs, so the multiple slit light projector 1A and multiple slit light projector 3A The position (the light projecting position of the shape measuring object from the vertical direction) and the light projecting position by the multiple slit light projectors 2A and 4A (the light projecting position of the shape measuring object from the left and right direction) It is shifted so that the slit light does not overlap on the surface of the shape measurement object. That is, the slit light projectors 1 to 4 in the first embodiment are used.
Instead, a plurality of slit light projectors 1A to 4A were used to arrange the optical system, and the arrangement relationship of the optical system and the like were the same as in the first embodiment.

【0064】上記実施例2に係る光学的形状測定装置を
用いて、丸棒鋼についての形状測定を行った。その結
果、撮像装置の撮影画像内の各スリット光像を独立して
観察することができ、丸棒鋼の全周形状を精度良く計測
し得、正確な形状測定をし得ることが確認された。尚、
前記実施例1の場合よりも、一回の計測でより多くの情
報(撮像結果、形状測定データ)を得ることができ、ひ
いては形状測定精度をより向上させることができること
も確認された。
Using the optical shape measuring apparatus according to the second embodiment, the shape of a round bar was measured. As a result, it was confirmed that each slit light image in the captured image of the imaging device could be observed independently, the entire circumference shape of the round bar could be accurately measured, and accurate shape measurement could be performed. still,
It was also confirmed that more information (imaging result, shape measurement data) can be obtained by one measurement than in the case of Example 1, and that the shape measurement accuracy can be further improved.

【0065】尚、図8に示す光学的形状測定装置におい
て、スリット光投光器と撮像装置で構成される光切断方
式光学系としては、図9に示す通常レンズ配置型の光切
断方式光学系、或いは、図10に示すシフトレンズ利用型
の光切断方式光学系を用いることができる。
In the optical shape measuring device shown in FIG. 8, the light cutting type optical system composed of the slit light projector and the image pickup device is a normal lens arrangement type light cutting type optical system shown in FIG. An optical system using a shift lens and a light cutting system shown in FIG. 10 can be used.

【0066】図9に示す通常レンズ配置型の光切断方式
光学系では、形状測定の対象物に対してスリット光を投
光し、スリット光面から所定の角度傾いた方向から撮像
装置で形状測定対象物からの反射スリット光を観察し、
撮像装置の撮像面上で測定点Aのスリット光像B、測定
点A1のスリット光像B1を得る。測定点A(またはA1)の
三次元位置は、スリット光像B(またはB1)とレンズ中
心Cを結ぶ視線Lとスリット光平面との交点座標を求め
ることにより、計算(把握、確認)することができる。
In the optical system of the ordinary lens arrangement type shown in FIG. 9, a slit light is projected onto an object to be measured, and the shape is measured by an image pickup device from a direction inclined at a predetermined angle from the slit light plane. Observe the reflected slit light from the object,
Slit light image of the measurement point A on the imaging surface of the imaging device B, to obtain a slit light image B 1 of the measurement point A 1. The three-dimensional position of the measurement point A (or A 1 ) is calculated (understood and confirmed) by obtaining the coordinates of the intersection of the line of sight L connecting the slit light image B (or B 1 ) and the lens center C with the slit light plane. can do.

【0067】図10に示すシフトレンズ利用型光切断方式
光学系では、形状測定の対象物に対してスリット光を投
光し、撮像装置で形状測定対象物からの反射スリット光
を観察し、撮像装置の撮像面上で測定点Aのスリット光
像B、測定点A1のスリット光像B1を得る。この光切断方
式光学系は図9に示す通常レンズ配置型の光切断方式光
学系の場合とは異なり、レンズ光軸はスリット光と直交
する配置関係とし、且つ、撮像装置の撮像面をスリット
光面に対し平行に配置する。更に、シフトレンズ利用型
光切断方式光学系のメリットを活かすため、各複数本ス
リット光投光器から投光される各複数本スリット光は、
シフトレンズ利用型光学系の被写界深度範囲に投光する
構成とする。このような配置関係とすることにより、撮
像装置計測範囲内のスリット光は、常に合焦状態で且つ
等分解能で計測することができるという特徴を有してい
る。測定点A(またはA1)の三次元位置は、スリット光
像B(またはB1)とレンズ中心Cを結ぶ視線Lとスリッ
ト光平面との交点座標を求めることにより、計算(把
握、確認)することができる。
In the optical system using a shift lens-type light cutting system shown in FIG. 10, slit light is projected onto the object to be measured, and the imaging device observes the reflected slit light from the object to be measured and picks up the image. slit light image B of the measurement point a on the imaging surface of the device, obtain a slit light image B 1 of the measurement point a 1. This light-cutting type optical system is different from the light-cutting type optical system of the ordinary lens arrangement type shown in FIG. 9 in that the lens optical axis has an arrangement relationship orthogonal to the slit light, and the imaging surface of the image pickup device is slit light. Place it parallel to the plane. Further, in order to take advantage of the shift lens-based optical cutting system optical system, each of the plural slit lights projected from each of the plural slit light projectors is
The light is projected into the depth of field range of the optical system using the shift lens. With such an arrangement, the slit light within the measurement range of the imaging device can be always measured in an in-focus state and at the same resolution. The three-dimensional position of the measurement point A (or A 1 ) is calculated (understood and confirmed) by obtaining the coordinates of the intersection of the line of sight L connecting the slit light image B (or B 1 ) and the lens center C with the slit light plane. can do.

【0068】図8に示す光学的形状測定装置において、
複数本スリット光投光器と撮像装置で構成される光切断
方式光学系として上記光切断方式光学系のいずれを用い
る場合も、各独立光学系ごとに計測して得られた形状測
定対象物の部分形状データを、同一の座標系に座標変換
することにより、形状測定対象物の全周形状計測が可能
となる。
In the optical shape measuring device shown in FIG.
When using any of the above-described light-cutting type optical systems as the light-cutting type optical system composed of a plurality of slit light projectors and an imaging device, the partial shape of the shape measurement object obtained by measuring each independent optical system By transforming the data into the same coordinate system, it is possible to measure the entire circumference of the shape measurement target.

【0069】(実施例3)第6発明の実施例を以下説明
する。前記実施例1或いは2に係る光学的形状測定装置
において、複数(4個)のスリット光投光器からスリッ
ト光を連続点灯(連続投光)した状態で、複数(4個)
の撮像装置に対し、共通タイミングの電子シャッター駆
動信号を送り、撮像装置の全てが同期してシャッター撮
影することができるようにした。
(Embodiment 3) An embodiment of the sixth invention will be described below. In the optical shape measuring apparatus according to the first or second embodiment, a plurality (four) of slit light projectors are continuously lit (continuously emitted) from a plurality (four) of slit light projectors.
An electronic shutter drive signal at a common timing is sent to the image pickup device, so that all of the image pickup devices can perform shutter photographing in synchronization.

【0070】上記光学的形状測定装置を用いて、形状測
定を行った。その結果、形状測定対象物が高速移動した
場合に振動しても、これに起因する測定誤差が生じ難
く、高精度の形状計測が可能となり、この点において前
記実施例1(及び2)の場合よりも優れていることが確
認された。
The shape was measured using the optical shape measuring device. As a result, even when the shape measuring object vibrates when moving at a high speed, a measurement error caused by the vibration hardly occurs, and high-precision shape measurement can be performed. In this respect, in the case of the first embodiment (and 2). It was confirmed that it was superior.

【0071】(実施例4)第7発明の実施例を以下説明
する。前記実施例1或いは2に係る光学的形状測定装置
において、複数(4個)のスリット光投光器に対し、共
通タイミングのレーザ光パルス点灯信号を送り、複数
(4個)のスリット光投光器が同期してスリット光をパ
ルス点灯することができるようにした。
(Embodiment 4) An embodiment of the seventh invention will be described below. In the optical shape measuring apparatus according to the first or second embodiment, a laser light pulse lighting signal at a common timing is sent to a plurality (four) of slit light projectors, and the plurality (four) of slit light projectors are synchronized. Pulsed lighting of slit light.

【0072】上記光学的形状測定装置を用いて、形状測
定を行った。その結果、形状測定対象物が高速移動した
場合に振動しても、これに起因する測定誤差が生じ難
く、高精度の形状計測が可能となり、この点において前
記実施例1及び2の場合よりも優れていることが確認さ
れた。
The shape was measured using the optical shape measuring apparatus described above. As a result, even when the shape measuring object vibrates when moving at high speed, a measurement error due to this hardly occurs, and high-precision shape measurement can be performed. In this regard, compared to the first and second embodiments. It was confirmed that it was excellent.

【0073】(実施例5)第8発明の実施例を以下説明
する。前記実施例1或いは2に係る光学的形状測定装置
を用いて丸棒鋼についての形状測定を行った。この際、
撮像装置の撮影画像内のスリット光像の出現順序によっ
て複数個のスリット光投光器の中のいずれのスリット光
投光器から投光されたスリット光によるスリット光像で
あるかを識別することができることが確認された。
(Embodiment 5) An embodiment of the eighth invention will be described below. The shape of a round bar was measured using the optical shape measuring apparatus according to the first or second embodiment. On this occasion,
It has been confirmed that it is possible to identify which of the plurality of slit light projectors is a slit light image by the slit light projected from any of the plurality of slit light projectors based on the appearance order of the slit light images in the image captured by the imaging device. Was done.

【0074】(実施例6)第9発明の実施例を以下説明
する。前記実施例1或いは2に係る光学的形状測定装置
を用いて丸棒鋼についての形状測定を行った。この際、
撮像装置の撮影画像内で検出される複数のスリット光像
から検出される形状測定対象物の複数の形状測定結果を
加算平均するようにした。その結果、形状計測結果の高
精度化をはかることができることが確認された。
(Embodiment 6) An embodiment of the ninth invention will be described below. The shape of a round bar was measured using the optical shape measuring apparatus according to the first or second embodiment. On this occasion,
The plurality of shape measurement results of the shape measurement object detected from the plurality of slit light images detected in the image captured by the imaging device are averaged. As a result, it was confirmed that the accuracy of the shape measurement results could be improved.

【0075】(実施例7)第2発明の実施例を以下説明
する。前記実施例1或いは2に係る光学的形状測定装置
に対し、複数個のスリット光投光器での隣同士のスリッ
ト光投光器からのスリット光が形状測定対象物の表面上
で重ならないように隣同士のスリット光投光器の投光時
間に差を設けて投光する時間差投光機能を備えた。
(Embodiment 7) An embodiment of the second invention will be described below. With respect to the optical shape measuring apparatus according to the first or second embodiment, adjacent slit light projectors in a plurality of slit light projectors are arranged so that slit lights from adjacent slit light projectors do not overlap on the surface of the shape measurement object. A time difference light projection function is provided in which light is emitted with a difference in the light emission time of the slit light projector.

【0076】上記光学的形状測定装置を用いて、丸棒鋼
についての形状測定を行った。その結果、上記光学的形
状測定装置によれば、複数個のスリット光投光器での隣
同士のスリット光投光器からのスリット光が形状測定対
象物の表面上で重ならないように隣同士のスリット光投
光器の投光時間に差を設けて投光することができ、この
ため、撮像装置の撮影画像内の各スリット光像は独立し
て観察することができ、複数のスリット光の投光による
計測誤差(誤検出)を生じることなく、丸棒鋼の全周形
状を精度良く計測し得、正確な形状測定をし得ることが
確認された。
The shape of a round bar was measured using the optical shape measuring device. As a result, according to the optical shape measuring device, the adjacent slit light projectors such that the slit light from the adjacent slit light projectors in the plurality of slit light projectors do not overlap on the surface of the shape measurement object. Can be projected with a difference in the light projection time of each slit light, so that each slit light image in the captured image of the imaging device can be observed independently, and the measurement error due to the projection of the plurality of slit light It was confirmed that the entire circumferential shape of the round bar could be accurately measured without causing (erroneous detection) and accurate shape measurement could be performed.

【0077】また、形状測定対象物の丸棒鋼が高速移動
し、それに伴い捻転振動が発生する場合についても、上
記実施例7に係る光学的形状測定装置を用いて形状測定
を行った。その結果、測定誤差が生じ難く、正確な形状
測定をし得ることが確認された。
In the case where the round bar as the object to be measured moves at a high speed and torsional vibration is generated, the shape is measured using the optical shape measuring apparatus according to the seventh embodiment. As a result, it was confirmed that a measurement error hardly occurred and accurate shape measurement could be performed.

【0078】更に、噛み込み形状や圧延材の寄り形状を
有する形状測定対象物についても、上記実施例7に係る
光学的形状測定装置を用いて形状測定を行った。その結
果、上記噛み込み形状や圧延材の寄り形状の個所も正確
な形状測定をし得ることが確認された。
Further, the shape of an object to be measured having a biting shape or a skewed shape of a rolled material was measured using the optical shape measuring apparatus according to the seventh embodiment. As a result, it was confirmed that accurate measurement of the shape of the biting shape and the shifted shape of the rolled material was possible.

【0079】(実施例8)第3発明の実施例を以下説明
する。前記実施例1或いは2に係る光学的形状測定装置
において、複数個のスリット光投光器での隣同士のスリ
ット光投光器からのスリット光の波長が相違するように
し、このスリット光の中の一方のスリット光のみを透過
する光学的なバンドパスフィルターを撮像装置の各々に
設けた。
(Embodiment 8) An embodiment of the third invention will be described below. In the optical shape measuring apparatus according to the first or second embodiment, the wavelengths of the slit lights from the adjacent slit light projectors in the plurality of slit light projectors are made different, and one of the slit lights in the slit light is used. An optical bandpass filter that transmits only light was provided in each of the imaging devices.

【0080】上記光学的形状測定装置を用いて、丸棒鋼
についての形状測定を行った。その結果、上記光学的形
状測定装置によれば、複数個のスリット光投光器での隣
同士のスリット光投光器からのスリット光が形状測定対
象物の表面上で重なっても、これらの形状測定対象物表
面からの反射光の中の一方の反射光のみが前記光学的バ
ンドパスフィルターを透過して該バンドパスフィルター
が設けられている撮像装置に入射し、反射スリット光像
として撮像装置により撮像され、他方の反射光は該撮像
装置には入射せず、該撮像装置では撮像されず、このた
め、複数のスリット光の同時投光による計測誤差(誤検
出)を低減し得、正確な形状測定をすることができるこ
とが確認された。
Using the above-mentioned optical shape measuring device, the shape of a round bar was measured. As a result, according to the optical shape measuring device, even if the slit lights from the adjacent slit light projectors in the plurality of slit light projectors overlap on the surface of the shape measuring object, these shape measuring objects Only one reflected light of the reflected light from the surface passes through the optical bandpass filter, enters the imaging device provided with the bandpass filter, and is imaged by the imaging device as a reflected slit light image, The other reflected light does not enter the imaging device and is not imaged by the imaging device. Therefore, a measurement error (erroneous detection) due to simultaneous projection of a plurality of slit lights can be reduced, and accurate shape measurement can be performed. It was confirmed that it could be done.

【0081】また、形状測定対象物の丸棒鋼が高速移動
し、それに伴い捻転振動が発生する場合についても、上
記実施例8に係る光学的形状測定装置を用いて形状測定
を行った。その結果、測定誤差が生じ難く、正確な形状
測定をし得ることが確認された。
Also, in the case where the round bar as the object to be measured moves at a high speed and torsional vibration is generated, the shape is measured using the optical shape measuring apparatus according to the eighth embodiment. As a result, it was confirmed that a measurement error hardly occurred and accurate shape measurement could be performed.

【0082】更に、噛み込み形状や圧延材の寄り形状を
有する形状測定対象物についても、上記実施例8に係る
光学的形状測定装置を用いて形状測定を行った。その結
果、上記噛み込み形状や圧延材の寄り形状の個所も正確
な形状測定をし得ることが確認された。
Further, the shape of an object to be measured having a biting shape or a skewed shape of a rolled material was measured using the optical shape measuring apparatus according to the eighth embodiment. As a result, it was confirmed that accurate measurement of the shape of the biting shape and the shifted shape of the rolled material was possible.

【0083】(実施例9)第4発明の実施例を以下説明
する。前記実施例1或いは2に係る光学的形状測定装置
において、複数個のスリット光投光器での隣同士のスリ
ット光投光器からのスリット光の直線偏光面が直交する
偏光特性になるように複数個のスリット光投光器を配置
し、このスリット光の直線偏光の中の一方のスリット光
の直線偏光方向のみを透過する偏光フィルターを撮像装
置の各々に設けた。
(Embodiment 9) An embodiment of the fourth invention will be described below. In the optical shape measuring apparatus according to the first or second embodiment, the plurality of slits are arranged such that the linear polarization planes of the slit lights from adjacent slit light projectors in the plurality of slit light projectors have orthogonal polarization characteristics. A light projector was arranged, and a polarizing filter that transmits only the linear polarization direction of one of the slit lights of the slit light was provided in each of the imaging devices.

【0084】上記光学的形状測定装置を用いて、丸棒鋼
についての形状測定を行った。その結果、上記光学的形
状測定装置によれば、複数個のスリット光投光器での隣
同士のスリット光投光器からのスリット光が形状測定対
象物の表面上で重なっても、これらの形状測定対象物表
面からの反射光の中の一方の反射光のみが前記偏光フィ
ルターを透過して該バンドパスフィルターが設けられて
いる撮像装置に入射し、反射スリット光像として撮像装
置により撮像され、他方の反射光は該撮像装置には入射
せず、該撮像装置では撮像されず、このため、複数のス
リット光の同時投光による計測誤差(誤検出)を低減し
得、正確な形状測定をすることができることが確認され
た。
Using the above-mentioned optical shape measuring device, the shape of a round bar was measured. As a result, according to the optical shape measuring device, even if the slit lights from the adjacent slit light projectors in the plurality of slit light projectors overlap on the surface of the shape measuring object, these shape measuring objects Only one reflected light of the reflected light from the surface passes through the polarizing filter and is incident on the imaging device provided with the bandpass filter, and is imaged by the imaging device as a reflected slit light image, and the other reflected light is reflected. Light does not enter the imaging device and is not imaged by the imaging device. Therefore, measurement errors (erroneous detection) due to simultaneous projection of a plurality of slit lights can be reduced, and accurate shape measurement can be performed. It was confirmed that it was possible.

【0085】また、形状測定対象物の丸棒鋼が高速移動
し、それに伴い捻転振動が発生する場合についても、上
記実施例9に係る光学的形状測定装置を用いて形状測定
を行った。その結果、測定誤差が生じ難く、正確な形状
測定をし得ることが確認された。
Also, in the case where the round bar as the object to be measured moves at high speed and torsional vibration occurs, the shape was measured using the optical shape measuring apparatus according to the ninth embodiment. As a result, it was confirmed that a measurement error hardly occurred and accurate shape measurement could be performed.

【0086】更に、噛み込み形状や圧延材の寄り形状を
有する形状測定対象物についても、上記実施例9に係る
光学的形状測定装置を用いて形状測定を行った。その結
果、上記噛み込み形状や圧延材の寄り形状の個所も正確
な形状測定をし得ることが確認された。
Further, with respect to the shape measuring object having a biting shape or a skewed shape of the rolled material, the shape was measured using the optical shape measuring apparatus according to the ninth embodiment. As a result, it was confirmed that accurate measurement of the shape of the biting shape and the shifted shape of the rolled material was possible.

【0087】[0087]

【発明の効果】本発明に係る光学的形状測定装置によれ
ば、計測誤差が小さくて正確な形状測定をすることがで
き、また、噛み込み形状も圧延材の寄り形状も正確に測
定することができ、更に、形状測定対象物が高速移動し
ている場合も被測定物の捻転振動が発生する場合も測定
誤差が生じ難くて正確な形状測定をし得るようになる。
更には、光軸のずれによる測定誤差が生じ難くなる。
According to the optical shape measuring apparatus of the present invention, it is possible to accurately measure a shape with a small measurement error, and to accurately measure a biting shape and a rolling shape of a rolled material. In addition, even when the shape measuring object is moving at high speed or when the to-be-measured object generates torsional vibration, a measurement error hardly occurs and accurate shape measurement can be performed.
Further, a measurement error due to a shift of the optical axis hardly occurs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 従来の光学的形状測定方式の原理の概要を示
す図である。
FIG. 1 is a diagram showing an outline of the principle of a conventional optical shape measuring method.

【図2】 従来の光学的形状測定装置の一例(従来装置
1)の概要を示す模式図である。
FIG. 2 is a schematic diagram showing an outline of an example of a conventional optical shape measuring device (conventional device 1).

【図3】 従来のレーザビーム走査型形状測定装置の一
例(従来装置2)の概要を示す模式図である。
FIG. 3 is a schematic view showing an outline of an example of a conventional laser beam scanning type shape measuring device (conventional device 2).

【図4】 従来の光学的形状測定装置では正確な形状測
定をすることができない噛み込み形状の一例を示す模式
図である。
FIG. 4 is a schematic diagram showing an example of a biting shape that cannot be accurately measured by a conventional optical shape measuring device.

【図5】 本発明の実施例1に係る光学的形状測定装置
の概要を示す模式図である。
FIG. 5 is a schematic diagram illustrating an outline of an optical shape measuring apparatus according to the first embodiment of the present invention.

【図6】 通常の光切断方式光学系の一例の概要を示す
模式図である。
FIG. 6 is a schematic view showing an outline of an example of a normal light-section optical system.

【図7】 シフトレンズ利用型の光切断方式光学系の概
要を示す模式図である。
FIG. 7 is a schematic diagram showing an outline of a light-cutting type optical system using a shift lens.

【図8】 本発明の実施例2に係る光学的形状測定装置
の概要を示す模式図である。
FIG. 8 is a schematic diagram illustrating an outline of an optical shape measuring apparatus according to a second embodiment of the present invention.

【図9】 通常レンズ配置型の光切断方式光学系の一例
の概要を示す模式図である。
FIG. 9 is a schematic diagram showing an outline of an example of a light-cutting type optical system of a normal lens arrangement type.

【図10】 シフトレンズ利用型の光切断方式光学系の
一例の概要を示す模式図である。
FIG. 10 is a schematic diagram showing an outline of an example of a light-cutting type optical system using a shift lens.

フロントページの続き Fターム(参考) 2F065 AA49 AA52 AA53 BB12 BB15 DD06 DD14 FF01 FF02 FF09 FF49 GG08 GG23 HH05 JJ03 JJ05 JJ19 JJ26 LL10 LL22 LL30 LL34 MM14 NN08 QQ42Continued on the front page F term (reference) 2F065 AA49 AA52 AA53 BB12 BB15 DD06 DD14 FF01 FF02 FF09 FF49 GG08 GG23 HH05 JJ03 JJ05 JJ19 JJ26 LL10 LL22 LL30 LL34 MM14 NN08 QQ42

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 形状測定対象物の周囲に前記形状測定対
象物にスリット光を投光する投光器を複数個配置すると
共に前記形状測定対象物から反射されるスリット光を撮
像する撮像装置を配置した光学的形状測定装置であっ
て、前記複数個の投光器での隣同士の投光器からのスリ
ット光が前記形状測定対象物の表面上で重ならないよう
に隣同士の投光器の投光位置を変えて前記複数個の投光
器を配置したことを特徴とする光学的形状測定装置。
1. A plurality of light projectors for projecting slit light onto the shape measurement object are arranged around the shape measurement object, and an imaging device for imaging slit light reflected from the shape measurement object is arranged. An optical shape measuring device, wherein changing the light projecting position of adjacent light projectors so that slit light from adjacent light projectors in the plurality of light projectors does not overlap on the surface of the shape measurement object. An optical shape measuring device comprising a plurality of light projectors.
【請求項2】 形状測定対象物の周囲に前記形状測定対
象物にスリット光を投光する投光器を複数個配置すると
共に前記形状測定対象物から反射されるスリット光を撮
像する撮像装置を配置した光学的形状測定装置であっ
て、前記複数個の投光器での隣同士の投光器からのスリ
ット光が前記形状測定対象物の表面上で重ならないよう
に隣同士の投光器の投光時間に差を設けて投光する時間
差投光機能を備えたことを特徴とする光学的形状測定装
置。
2. A plurality of light projectors for projecting slit light onto the shape measurement object are arranged around the shape measurement object, and an imaging device for imaging slit light reflected from the shape measurement object is arranged. An optical shape measurement device, wherein a difference is provided in the light emission time of adjacent light emitters so that slit light from adjacent light emitters in the plurality of light emitters does not overlap on the surface of the shape measurement object. An optical shape measuring device having a time difference light projecting function of projecting light.
【請求項3】 形状測定対象物の周囲に前記形状測定対
象物にスリット光を投光する投光器を複数個配置すると
共に前記形状測定対象物から反射されるスリット光を撮
像する撮像装置を配置した光学的形状測定装置であっ
て、前記複数個の投光器での隣同士の投光器からのスリ
ット光の波長が相違し、このスリット光の中の一方のス
リット光のみを透過する光学的なバンドパスフィルター
を前記撮像装置の各々に設けたことを特徴とする光学的
形状測定装置。
3. A plurality of light projectors for projecting slit light onto the shape measurement object are arranged around the shape measurement object, and an imaging device for imaging slit light reflected from the shape measurement object is arranged. An optical shape measuring device, wherein the wavelengths of slit lights from adjacent light projectors in the plurality of light projectors are different, and an optical bandpass filter that transmits only one of the slit lights in the slit light. Is provided in each of the imaging devices.
【請求項4】 形状測定対象物の周囲に前記形状測定対
象物にスリット光を投光する投光器を複数個配置すると
共に前記形状測定対象物から反射されるスリット光を撮
像する撮像装置を配置した光学的形状測定装置であっ
て、前記複数個の投光器での隣同士の投光器からのスリ
ット光の直線偏光面が直交する偏光特性になるように前
記複数個の投光器を配置し、このスリット光の直線偏光
の中の一方のスリット光の直線偏光方向のみを透過する
偏光フィルターを前記撮像装置の各々に設けたことを特
徴とする光学的形状測定装置。
4. A plurality of light projectors for projecting slit light onto the shape measurement object are arranged around the shape measurement object, and an imaging device for imaging slit light reflected from the shape measurement object is arranged. An optical shape measuring apparatus, wherein the plurality of light projectors are arranged such that linear polarization planes of slit light from adjacent light projectors in the plurality of light projectors have orthogonal polarization characteristics. An optical shape measuring device, wherein a polarizing filter that transmits only the linear polarization direction of one slit light in the linearly polarized light is provided in each of the imaging devices.
【請求項5】 前記投光器の各々が複数本の平行スリッ
ト光を同時に投光する請求項1、2、3又は4記載の光
学的形状測定装置。
5. The optical shape measuring apparatus according to claim 1, wherein each of the light projectors simultaneously emits a plurality of parallel slit lights.
【請求項6】 前記撮像装置の全てが同期してシャッタ
ー撮影する請求項1、3、4又は5記載の光学的形状測
定装置。
6. The optical shape measuring device according to claim 1, wherein all of the image pickup devices synchronously perform shutter photographing.
【請求項7】 前記複数個の投光器が同期してスリット
光をパルス点灯する請求項1、3、4、5又は6記載の
光学的形状測定装置。
7. The optical shape measuring apparatus according to claim 1, wherein the plurality of light emitters synchronously pulse light slit light.
【請求項8】 前記撮像装置の撮影画像内のスリット光
像の出現順序によって前記複数個の投光器の中のいずれ
の投光器から投光されたスリット光によるスリット光像
であるかを識別する請求項1、2、3、4、5、6又は
7記載の光学的形状測定装置。
8. A method according to claim 1, wherein said plurality of light emitters are used to determine which one of the plurality of light projectors is a slit light image based on the appearance order of the slit light images in the image captured by the imaging device. The optical shape measuring device according to 1, 2, 3, 4, 5, 6, or 7.
【請求項9】 前記撮像装置の撮影画像内で検出される
複数のスリット光像から検出される前記形状測定対象物
の複数の形状測定結果を加算平均する請求項1、2、
3、4、5、6、7又は8記載の光学的形状測定装置。
9. The method according to claim 1, wherein a plurality of shape measurement results of the shape measurement object detected from a plurality of slit light images detected in an image captured by the imaging device are averaged.
The optical shape measuring apparatus according to 3, 4, 5, 6, 7, or 8.
JP2000064660A 2000-03-09 2000-03-09 Optical shape measuring instrument Pending JP2001255125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000064660A JP2001255125A (en) 2000-03-09 2000-03-09 Optical shape measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000064660A JP2001255125A (en) 2000-03-09 2000-03-09 Optical shape measuring instrument

Publications (1)

Publication Number Publication Date
JP2001255125A true JP2001255125A (en) 2001-09-21

Family

ID=18584330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000064660A Pending JP2001255125A (en) 2000-03-09 2000-03-09 Optical shape measuring instrument

Country Status (1)

Country Link
JP (1) JP2001255125A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329628A (en) * 2005-05-23 2006-12-07 Hitachi Zosen Corp Measuring method of deformation amount in structure
JP2008157834A (en) * 2006-12-26 2008-07-10 Kanazawa Univ Thickness measuring method and measuring device of transparent layer
JP2010048579A (en) * 2008-08-19 2010-03-04 Omron Corp Optical measurement device and method
JP2010169404A (en) * 2009-01-20 2010-08-05 Mitsubishi Cable Ind Ltd Method for measuring long body with projection
JP2012032271A (en) * 2010-07-30 2012-02-16 Kobe Steel Ltd Measuring apparatus
JP2012093268A (en) * 2010-10-28 2012-05-17 Aida Engineering Co Ltd Circularity measurement system and pipe-making device with the same
JP2013130535A (en) * 2011-12-22 2013-07-04 Nippon Telegr & Teleph Corp <Ntt> Three-dimensional shape measurement system
JP2014048226A (en) * 2012-09-03 2014-03-17 Kobe Steel Ltd Shape inspection device of bar steel, and shape inspection method of bar steel
WO2014162666A1 (en) 2013-04-01 2014-10-09 株式会社神戸製鋼所 Shape measuring device
JP2014228383A (en) * 2013-05-22 2014-12-08 株式会社神戸製鋼所 Protrusion detecting method, protrusion detecting device, and method for rolling bar steel material
US9116504B2 (en) 2010-09-07 2015-08-25 Dai Nippon Printing Co., Ltd. Scanner device and device for measuring three-dimensional shape of object
US9851580B2 (en) 2010-09-07 2017-12-26 Dai Nippon Printing Co., Ltd. Projection type image display apparatus
US10802444B2 (en) 2010-09-07 2020-10-13 Dai Nippon Printing Co., Ltd. Illumination apparatus using a coherent light source
WO2021256930A1 (en) * 2020-06-18 2021-12-23 Singa Ip B.V. Device and method for determining the three-dimensional geometry of an individual object
WO2024111352A1 (en) * 2022-11-22 2024-05-30 Jfeスチール株式会社 Surface shape measurement device and surface shape measurement method

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329628A (en) * 2005-05-23 2006-12-07 Hitachi Zosen Corp Measuring method of deformation amount in structure
JP2008157834A (en) * 2006-12-26 2008-07-10 Kanazawa Univ Thickness measuring method and measuring device of transparent layer
JP2010048579A (en) * 2008-08-19 2010-03-04 Omron Corp Optical measurement device and method
JP2010169404A (en) * 2009-01-20 2010-08-05 Mitsubishi Cable Ind Ltd Method for measuring long body with projection
JP2012032271A (en) * 2010-07-30 2012-02-16 Kobe Steel Ltd Measuring apparatus
US10523902B2 (en) 2010-09-07 2019-12-31 Dai Nippon Printing Co., Ltd. Scanner device and device for measuring three-dimensional shape of object
US10051243B2 (en) 2010-09-07 2018-08-14 Dai Nippon Printing Co., Ltd. Scanner device and device for measuring three-dimensional shape of object
US11953857B2 (en) 2010-09-07 2024-04-09 Dai Nippon Printing Co., Ltd. Illumination apparatus using a coherent light source
US10802444B2 (en) 2010-09-07 2020-10-13 Dai Nippon Printing Co., Ltd. Illumination apparatus using a coherent light source
US10156732B2 (en) 2010-09-07 2018-12-18 Dai Nippon Printing Co., Ltd. Projection type image display apparatus
US9116504B2 (en) 2010-09-07 2015-08-25 Dai Nippon Printing Co., Ltd. Scanner device and device for measuring three-dimensional shape of object
EP3064895A1 (en) 2010-09-07 2016-09-07 Dai Nippon Printing Co., Ltd. Linear illumination device
US9851580B2 (en) 2010-09-07 2017-12-26 Dai Nippon Printing Co., Ltd. Projection type image display apparatus
JP2012093268A (en) * 2010-10-28 2012-05-17 Aida Engineering Co Ltd Circularity measurement system and pipe-making device with the same
JP2013130535A (en) * 2011-12-22 2013-07-04 Nippon Telegr & Teleph Corp <Ntt> Three-dimensional shape measurement system
JP2014048226A (en) * 2012-09-03 2014-03-17 Kobe Steel Ltd Shape inspection device of bar steel, and shape inspection method of bar steel
WO2014162666A1 (en) 2013-04-01 2014-10-09 株式会社神戸製鋼所 Shape measuring device
JP2014228383A (en) * 2013-05-22 2014-12-08 株式会社神戸製鋼所 Protrusion detecting method, protrusion detecting device, and method for rolling bar steel material
WO2021256930A1 (en) * 2020-06-18 2021-12-23 Singa Ip B.V. Device and method for determining the three-dimensional geometry of an individual object
NL2025856B1 (en) * 2020-06-18 2022-02-17 Singa Ip B V Device and method for determining the three-dimensional geometry of an individual object
WO2024111352A1 (en) * 2022-11-22 2024-05-30 Jfeスチール株式会社 Surface shape measurement device and surface shape measurement method

Similar Documents

Publication Publication Date Title
JP2001255125A (en) Optical shape measuring instrument
TWI460394B (en) Three-dimensional image measuring apparatus
RU2466352C2 (en) Method of measuring three-dimensional geometry of log (versions) and apparatus for realising said method (versions)
US20070204684A1 (en) Wheel and tire assembly and method of dynamically measuring topological parameters of the inside surface of the pertinent portion of the tire
EP2813809A1 (en) Device and method for measuring the dimensions of an objet and method for producing an item using said device
JP2008241643A (en) Three-dimensional shape measuring device
JP5782786B2 (en) Shape measuring device
JP2510786B2 (en) Object shape detection method and apparatus
JP2007093412A (en) Three-dimensional shape measuring device
KR900006577B1 (en) Checking device of shape
JP2003042734A (en) Method and apparatus for measurement of surface shape
JP2002022424A (en) Three-dimensional measuring apparatus
JP2010014505A (en) Three-dimensional shape measuring apparatus and three-dimensional shape measurement method
JP6152395B2 (en) Optical detection system
JP2001311612A (en) Shape input device
JP6362058B2 (en) Test object measuring apparatus and article manufacturing method
KR20040071532A (en) Three-dimensional image measuring apparatus
JP4787012B2 (en) Cross-sectional shape measuring apparatus and cross-sectional shape measuring method
JPS63314403A (en) Detecting apparatus for inclination and distance of flat surface
JP2004020536A (en) Three-dimensional shape measuring apparatus
JP2016080517A (en) Surface inspection device
JP3848586B2 (en) Surface inspection device
JPH06258040A (en) Laser displacement meter
JP3099875B2 (en) Scanning apparatus for multiple laser beams and method for adjusting scanning position of laser beams
JP4402849B2 (en) Surface shape measuring method and surface shape measuring apparatus