JP2001255039A - Heat exchanger for cooling - Google Patents

Heat exchanger for cooling

Info

Publication number
JP2001255039A
JP2001255039A JP2000066776A JP2000066776A JP2001255039A JP 2001255039 A JP2001255039 A JP 2001255039A JP 2000066776 A JP2000066776 A JP 2000066776A JP 2000066776 A JP2000066776 A JP 2000066776A JP 2001255039 A JP2001255039 A JP 2001255039A
Authority
JP
Japan
Prior art keywords
tubes
tube
tank
heat exchanger
exchange medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000066776A
Other languages
Japanese (ja)
Other versions
JP3700144B2 (en
Inventor
Soichi Kato
宗一 加藤
Mutsumi Fukushima
睦 福島
Muneo Sakurada
宗夫 桜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Thermal Systems Japan Corp
Original Assignee
Zexel Valeo Climate Control Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zexel Valeo Climate Control Corp filed Critical Zexel Valeo Climate Control Corp
Priority to JP2000066776A priority Critical patent/JP3700144B2/en
Priority to PCT/JP2000/008617 priority patent/WO2001067010A1/en
Publication of JP2001255039A publication Critical patent/JP2001255039A/en
Application granted granted Critical
Publication of JP3700144B2 publication Critical patent/JP3700144B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0391Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits a single plate being bent to form one or more conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F13/222Means for preventing condensation or evacuating condensate for evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/14Collecting or removing condensed and defrost water; Drip trays

Abstract

PROBLEM TO BE SOLVED: To prevent condensate from reaching the lee side of a heat exchanger for cooling due to wind pressure and flying therefrom to the lee side by draining condensate produced on the surface of tubes or fins efficiently downward. SOLUTION: The heat exchanger 1 for cooling comprising a plurality of tubes 14, 15 having an inner passage 20 for heat exchange medium juxtaposed in the direction of ventilation, fins 16 being laid alternately with the tubes 14, 15, and tanks 2, 3 disposed at least on one side of the tubes 14, 15 wherein a drain path 25 is provided by spacing apart the tubes 14, 15 from each other.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、例えば車両用の
空調装置等に用いられるエバポレータ等の冷却用熱交換
器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling heat exchanger such as an evaporator used for an air conditioner for a vehicle.

【0002】[0002]

【従来の技術】車両用空調装置の冷凍サイクルを構成す
る冷却用熱交換器としては、特開平11−218368
号公報に示されるように、成形プレートを対面接合して
なる複数の冷媒通路を備えたチューブと、このチューブ
の冷媒通路と連通するタンクと、前記タンクと交互に積
層されるコルゲート状のフィンとを有するものが一般的
である。そして、このチューブ内を流れる冷媒が蒸発す
ることで、当該チューブが冷却され、このチューブやフ
ィンを介してチューブ間を通過する空気を冷却する一方
で、空気中の水分が凝縮してチューブやフィンの表面に
凝縮水が発生する。
2. Description of the Related Art A cooling heat exchanger constituting a refrigeration cycle of a vehicle air conditioner is disclosed in JP-A-11-218368.
As shown in the publication, a tube provided with a plurality of refrigerant passages formed by face-to-face bonding of a forming plate, a tank communicating with the refrigerant passage of the tube, and a corrugated fin alternately stacked with the tank. Is generally used. Then, the refrigerant flowing in the tubes evaporates, thereby cooling the tubes, and cooling the air passing between the tubes through the tubes and the fins, while condensing the moisture in the air to form the tubes and the fins. Condensed water is generated on the surface of

【0003】この凝縮水が通風方向上流側の送風機から
の風により冷却用熱交換器から飛水し、車室内にまで凝
縮水が達してしまうなどの不具合を生ずる。このため、
上記特許出願公開公報に係る冷媒蒸発器も、通風方向下
流側端と通風方向上流側端とにそれぞれチューブ長手方
向に沿って延びる溝部を有する他、通風方向の略中央部
位においても、チューブの冷媒通路間の仕切り部を凹状
に窪ませることによって形成された当該チューブの長手
方向に沿って延びる排水溝を設けて、凝縮水がチューブ
表面を伝わって通風方向下流側に移動しないようになっ
ている。
The condensed water flies from the cooling heat exchanger due to the wind from the blower on the upstream side in the ventilation direction, causing problems such as the condensed water reaching the vehicle interior. For this reason,
The refrigerant evaporator according to the above patent application publication also has a groove extending along the tube longitudinal direction at the downstream end in the ventilation direction and the upstream end in the ventilation direction. A drain groove formed along the longitudinal direction of the tube is formed by recessing the partition between the passages so as to prevent condensed water from traveling along the tube surface and moving downstream in the ventilation direction. .

【0004】[0004]

【発明が解決しようとする課題】しかしながら、本願出
願人は、コストの削減などの見地から、2枚の成形プレ
ートを対面接合して形成されるチューブではなく、一枚
のブレージングシートをロールホーミング、プレス加工
等により形成されるチューブを専ら用いるようなってき
ている。そして、上記ロールホーミング等の加工により
形成されたチューブのうち一の熱交換媒体通路のみを備
えたものを通風方向に複数並設し且つフィンと交互に複
数段積層してなる熱交換器を開発している。
However, from the viewpoint of cost reduction and the like, the applicant of the present application has proposed that a single brazing sheet be roll-homed instead of a tube formed by joining two molded plates face to face. Tubes formed by press working or the like have been used exclusively. And, among the tubes formed by the processing such as the roll homing, etc., a heat exchanger having only one heat exchange medium passage is developed in which a plurality of tubes are arranged in parallel in the ventilation direction and alternately stacked with fins in a plurality of stages. are doing.

【0005】このような熱交換器でも、近年環境問題等
から機能を向上させ、更に小型化、軽量化が求められて
いる。特に、より薄幅な熱交換器が車両レイアウト上求
められるようになってきており、また、性能確保のた
め、フィンピッチが小さくなる傾向があり、凝縮水の滞
留による目詰まりが大きな問題となり、通気抵抗が従来
のものに比べて上昇してしまう。このため、冷却用熱交
換器の熱交換媒体能力の向上のためにも排水性の向上が
大きなテーマとなる。
[0005] In recent years, such heat exchangers have been required to be improved in function due to environmental problems and to be further reduced in size and weight. In particular, a thinner heat exchanger is required in the vehicle layout, and the fin pitch tends to be smaller in order to ensure performance, and clogging due to stagnation of condensed water becomes a major problem. The ventilation resistance is increased as compared with the conventional one. For this reason, improvement of drainage is also a major theme for improving the heat exchange medium capacity of the cooling heat exchanger.

【0006】そこで、この発明は、チューブやフィンの
表面に生じた凝縮水を下方に効率良く排水することを可
能とした冷却用熱交換器を提供することを目的とする。
Accordingly, an object of the present invention is to provide a cooling heat exchanger that can efficiently drain condensed water generated on the surfaces of tubes and fins downward.

【0007】[0007]

【課題を解決するための手段】しかして、この発明に係
る冷却用熱交換器は、内部に熱交換媒体通路を有すると
共に通風方向に複数並設されたチューブと、このチュー
ブと交互に積層されるフィンと、前記チューブの一方端
に配されたタンクとで少なくとも構成され、前記チュー
ブとチューブとの間に間隔を開けることで排水路が設け
られたことを特徴とする(請求項1)。但し、内部が仕
切り部により複数の熱交換媒体通路に区画されたチュー
ブと、このチューブと交互に積層されるフィンと、前記
チューブの一方端に配されたタンクとで少なくとも構成
され、前記熱交換媒体通路と熱交換媒体通路とを区画す
る仕切り部に前記チューブの積層方向に貫通する排水路
が設けられたものとしても良い(請求項2)。このよう
な構成によれば、フィンやチューブに生じた凝縮水は、
風圧によりチューブ表面上を風下側に移動していくが、
チューブ間に形成された排水路又はチューブに形成され
た排水路により、凝縮水は冷却用熱交換器の最風下側ま
で移動するのを妨げられ、排水路の端部で下方に落下し
て排水される。
SUMMARY OF THE INVENTION A cooling heat exchanger according to the present invention has a plurality of tubes having a heat exchange medium passage therein and arranged in the ventilation direction, and the tubes are alternately laminated. Fins and a tank disposed at one end of the tube, and a drainage channel is provided by providing an interval between the tubes (claim 1). However, the heat exchange medium includes at least a tube partitioned into a plurality of heat exchange medium passages by partitions, fins alternately stacked with the tube, and a tank disposed at one end of the tube. A drainage passage penetrating in the stacking direction of the tubes may be provided in a partition section that divides the medium passage and the heat exchange medium passage (claim 2). According to such a configuration, the condensed water generated on the fins and tubes is
It moves downwind on the tube surface due to wind pressure,
The drainage channel formed between the tubes or the drainage channel formed in the tube prevents condensed water from moving to the leeward side of the cooling heat exchanger, and falls down at the end of the drainage channel to drain. Is done.

【0008】また、内部に熱交換媒体通路を有する一又
は二以上のチューブと、このチューブと交互に積層され
るフィンと、前記チューブの一方端に配されたタンクと
で少なくとも構成され、チューブ又はチューブ間に当該
チューブの積層方向に開放された排水路を設けると共
に、前記フィンにルーバを形成し、このフィンの通風方
向中央はルーバが形成されない部位とし、このルーバが
形成されない部位の通風方向幅を、前記チューブの排水
路の通風方向側幅よりもその寸法が小さくなるようにし
たことを特徴とする(請求項3)。このようなルーバと
排水路との配置により排水路間にルーバの一端が臨むた
め、前記排水路より風上側の凝縮水がフィン上を風圧に
より風下側に移動してきても、排水路間に位置する前記
ルーバがガイドとなって排水路側に移動して当該排水路
から下方に排水することが可能となるので、冷却用熱交
換器の排水性の向上を一層図ることができる。
[0008] Further, at least one or more tubes having a heat exchange medium passage therein, fins alternately stacked with the tubes, and a tank disposed at one end of the tubes are provided. A drainage channel is provided between the tubes and opened in the stacking direction of the tubes, and a louver is formed in the fin. The center of the fin in the airflow direction is a portion where no louver is formed. The dimension of the tube is smaller than the width of the drainage passage in the ventilation direction (claim 3). Due to such an arrangement of the louver and the drainage channel, one end of the louver faces between the drainage channels, so that even if condensed water on the windward side of the drainage channel moves on the fins to the leeward side due to wind pressure, the position between the drainage channels. Since the louver serves as a guide and moves to the drain channel side to drain the water downward from the drain channel, the drainage of the cooling heat exchanger can be further improved.

【0009】尚、この冷却用熱交換器は、一枚のブレー
ジングシートを加工してチューブを形成するものであっ
て、前記チューブが短手方向に沿った側に巻き締め構造
を有する場合には、この巻き締め構造が通風方向の上流
側となるように配列されている(請求項4)。このよう
なチューブの配置とすることで、巻き締め構造によりチ
ューブの風上側が肉厚となるので、風上側から飛ばされ
てきたごみ等が付着して生ずる腐食に対する耐食性を向
上させることができ、チューブの寿命を長くすることが
可能となる。
In this cooling heat exchanger, a single brazing sheet is processed to form a tube. When the tube has a winding structure on the side along the short direction, The winding structure is arranged on the upstream side in the ventilation direction (Claim 4). By adopting such a tube arrangement, the windward side of the tube becomes thicker due to the winding structure, so that it is possible to improve the corrosion resistance against corrosion caused by the attachment of dust and the like blown from the windward side, It is possible to extend the life of the tube.

【0010】また、前記タンクは、通風方向に並列した
熱交換媒体の入口側部と出口側部とを備え、前記入口側
部と出口側部とは前記チューブの熱交換媒体通路を介し
て連通されるものとし(請求項5)、これに伴い、前記
タンクは、前記入口側部と前記出口側部とを間隔を開け
て配置すると共に、この入口側部と出口側部とを連接す
る連接部を有し、この連接部にチューブの長手方向に貫
通する排水路が設けられたものとしても良い(請求項
6)。このような構成によれば、チューブ間の排水路又
はチューブの排水路の端部で下方に落下した凝縮水は、
更にこのタンクの排水路により冷却用熱交換器外へ排水
されるので、冷却用熱交換器の排水性の向上を図ること
ができる。
The tank has an inlet side and an outlet side of the heat exchange medium arranged in parallel in the ventilation direction, and the inlet side and the outlet side communicate with each other through a heat exchange medium passage of the tube. Accordingly, the tank arranges the inlet side portion and the outlet side portion at an interval and connects the inlet side portion and the outlet side portion. The connecting portion may be provided with a drainage passage penetrating in the longitudinal direction of the tube. According to such a configuration, the condensed water that has dropped downward at the end of the drainage passage between the tubes or the drainage passage of the tube,
Further, since the water is drained out of the cooling heat exchanger through the drainage passage of the tank, the drainage of the cooling heat exchanger can be improved.

【0011】さらに、この冷却用熱交換器は、前記タン
クのみを有する片タンク型としてもよいが、前記タンク
が配された側と反対側に、前記タンクの入口側部と連通
する熱交換媒体通路から前記タンクの出口側部と連通す
る熱交換媒体通路への熱交換媒体の折り返しを可能とす
るタンクを有する(請求項7)両タンク型としても良
い。そして、片タンク型又は両タンク型の一方若しくは
双方において、前記タンクは押出成形により一体的に形
成されるようにしても良い(請求項8)。これにより、
出入口タンクにおいて入口側部と出口側部とで直接に熱
交換媒体がバイパスすることがなく、また一方が開口し
た断面が略U字状の深絞りタンク部とこの開口を閉塞す
るエンドプレートとを接合してタンクを形成する場合に
接合不良により隙間から熱交換媒体が外部に漏洩する不
具合も回避できる。さらに、接合部分に生じたピンホー
ル等のろう付け不良部分に凝縮水が浸入して発生する凍
結破壊等の不具合も回避することができる。
Further, the cooling heat exchanger may be a single tank type having only the tank, but a heat exchange medium communicating with an inlet side of the tank is provided on a side opposite to a side where the tank is disposed. It is also possible to use a two-tank type having a tank that allows the heat exchange medium to be turned back from the passage to the heat exchange medium passage communicating with the outlet side of the tank. In one or both of the single tank type and the double tank type, the tank may be integrally formed by extrusion molding. This allows
In the entrance / exit tank, the heat exchange medium is not directly bypassed between the entrance side and the exit side, and one of the openings has a substantially U-shaped deep drawing tank section and an end plate that closes this opening. In the case where the tank is formed by joining, it is possible to avoid a problem in which the heat exchange medium leaks from the gap to the outside due to poor joining. Further, it is possible to avoid problems such as freezing and destruction caused by infiltration of condensed water into a poor brazing portion such as a pinhole generated at a joint portion.

【0012】[0012]

【発明の実施の形態】以下、この発明の実施の形態を図
面により説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】図1から図5に示される冷却用熱交換器1
は、例えば車両に用いられる両タンク型の積層型エバポ
レータであり、長手方向一端に設けられたタンク2と、
このタンク2とは反対側の一端に設けられたタンク3
と、このタンク2とタンク3とに接続してこのタンク2
とタンク3とを連通させるチューブ14,15と、この
チューブ14,15と交互に複数段積層されるコルゲー
ト状のフィン16と、積層方向の両側に配されるエンド
プレート17、17とで構成された2パス方式のもので
ある。
The cooling heat exchanger 1 shown in FIGS. 1 to 5
Is a double tank type evaporator used for a vehicle, for example, and a tank 2 provided at one end in a longitudinal direction;
A tank 3 provided at one end opposite to the tank 2
And connected to this tank 2 and tank 3
Tubes 14 and 15 for communicating the tank and the tank 3, corrugated fins 16 alternately stacked on the tubes 14 and 15 in a plurality of stages, and end plates 17 and 17 arranged on both sides in the stacking direction. It is a two-pass system.

【0014】このうち、タンク2、タンク3は、図1に
示されるように、前記チューブ14,15と接続するた
めのチューブ接続孔4が形成されたアルミニウム合金製
の筒状体5と下記する閉塞部材6とからなるもので、筒
状体5は押出成形により一体に形成される。このような
構成により、例えば一方が開口した略椀状の深絞りタン
ク部材とこの開口部を閉塞する閉塞部材とでなる従来の
タンクのように深絞りタンク部材と閉塞部材との接合不
良によりタンク側部の隙間から熱交換媒体が漏洩するこ
とがなくなる。また、接合部分に生じたピンホール等の
ろう付け不良部分に凝縮水が浸入して発生する凍結破壊
等の不具合も回避することができる。
The tanks 2 and 3 are, as shown in FIG. 1, a cylindrical body 5 made of an aluminum alloy and having a tube connection hole 4 for connecting to the tubes 14 and 15, which will be described below. The tubular member 5 is formed integrally with the closing member 6 by extrusion molding. With such a configuration, for example, as in a conventional tank including a substantially bowl-shaped deep drawing tank member having one opening and a closing member that closes the opening, the tank is formed due to poor joining between the deep drawing tank member and the closing member. The heat exchange medium does not leak from the side gap. In addition, it is possible to avoid problems such as freezing and destruction caused by infiltration of condensed water into a poor brazing portion such as a pinhole generated at a joint portion.

【0015】そして、タンク2は、その両側の開口が各
一枚の閉塞板6により閉塞された熱交換媒体の折り返し
を可能とする折返タンクとなっているが、タンク3は、
図2及び図3に示されるように、筒状体5の内部中央を
チューブ10の積層方向に沿って延びる2つの隔壁7,
7により入口側部8、出口側部9に完全に分離されてい
ると共に入口側部8と出口側部9との間には連接部10
が設けられた出入口タンクとなっており、入口側部8,
出口側部9の両側開口は、各二枚の閉塞板6を筒状体5
に設けた取付孔11から挿嵌して閉塞される。
[0015] The tank 2 is a folded tank that allows the heat exchange medium whose openings on both sides thereof are closed by one closing plate 6 to be folded.
As shown in FIGS. 2 and 3, two partition walls 7, extending in the center of the inside of the tubular body 5 along the stacking direction of the tubes 10,
7, the inlet side 8 and the outlet side 9 are completely separated from each other, and a connecting part 10 is provided between the inlet side 8 and the outlet side 9.
Is an entrance / exit tank provided with an entrance side part 8,
Openings on both sides of the outlet side 9 are formed by connecting the two closing plates 6 to the cylindrical body 5.
And is closed by being inserted from the mounting hole 11 provided in the.

【0016】このタンク3の隔壁7,7は、押出成形に
より筒状体5と一体に形成されるもので、これにより、
隔壁が別部材でタンク内周面との接合不良によりその隙
間から入口側部と出口側部とで直接に熱交換媒体がバイ
パスして熱交換器の性能が劣化することがなくなる。ま
た、入口側部8の端部側には入口側パイプ12が、出口
側部9の端部側には出口側パイプ13が連接されてい
る。
The partition walls 7, 7 of the tank 3 are formed integrally with the tubular body 5 by extrusion molding.
The partition is a separate member, and the heat exchange medium is not directly bypassed at the inlet side and the outlet side from the gap due to poor joining with the tank inner peripheral surface, and the performance of the heat exchanger is not deteriorated. An inlet pipe 12 is connected to an end of the inlet 8, and an outlet pipe 13 is connected to an end of the outlet 9.

【0017】尚、冷却用熱交換器1は、水が常時付着す
る状態に置かれる関係上、タンク2、3の表面には、亜
鉛(Zn)を後から溶射する方法又は二層押し出しで押
し出した状態で表面に亜鉛を含有した層を形成する方法
などにより、犠牲層を形成して耐食性を向上させていれ
る。
Since the cooling heat exchanger 1 is placed in a state where water always adheres thereto, the surfaces of the tanks 2 and 3 are extruded by a method of spraying zinc (Zn) later or by two-layer extrusion. The sacrificial layer is formed to improve the corrosion resistance by, for example, a method of forming a layer containing zinc on the surface in a state where the zinc is contained.

【0018】これに対し、チューブ14,15は、図4
に示されるように、一枚のブレージングシートをロール
ホーミング又はプレス加工により複数段階にて折り曲げ
たもので、通風方向の沿った一対の平坦面18,18
と、風下側に位置し積層方向に沿って延びる平坦面19
とで囲まれた一の熱交換媒体通路20を有している。そ
して、チューブ14,15の風上側は、その一端にはそ
の端部近傍を巻き締めてなる巻き締め部21が形成さ
れ、他端には巻き締め部21の基端側と当接される当接
部22及びこれに連接し前記熱交換媒体通路20の下流
側開口を閉じる閉塞部23とが形成されることで巻き締
め構造となっている。
On the other hand, the tubes 14 and 15 are
As shown in FIG. 3, a single brazing sheet is bent in a plurality of stages by roll homing or press working, and a pair of flat surfaces 18, 18 along the ventilation direction are formed.
And a flat surface 19 located on the leeward side and extending along the laminating direction.
And one heat exchange medium passage 20 surrounded by On the windward side of the tubes 14 and 15, a tightening portion 21 formed by winding the vicinity of the end portion is formed at one end, and the other end of the tube 14 and 15 is in contact with the base end side of the tightening portion 21. The contact portion 22 and a closing portion 23 connected to the contact portion 22 and closing the downstream opening of the heat exchange medium passage 20 are formed to form a winding structure.

【0019】このように、巻き締め構造を構成する巻き
締め部21,当接部22及び閉塞部23が風上側となる
ようにチューブ14,15を並設することにより、チュ
ーブ14,15の風上側が肉厚となっているので、風上
側から飛ばされてきたごみ等が付着して生ずる腐食に対
する耐食性を向上させることができ、チューブ14,1
5の寿命を長くすることが可能となる。
As described above, by arranging the tubes 14 and 15 side by side so that the winding portion 21, the contact portion 22 and the closing portion 23 constituting the winding structure are on the windward side, the wind of the tubes 14 and 15 is increased. Since the upper side is thick, it is possible to improve the corrosion resistance against corrosion caused by the attachment of dust and the like blown off from the windward side.
5 can be extended.

【0020】尚、各熱交換媒体通路20内には、熱交換
媒体の攪拌性をよくするために、図4及び図5に示され
るようにインナーフィン24が収められても良く、ま
た、図示しないが、通風方向に対し垂直方向となる面の
内側に複数のビードを形成するようにしても良い。さら
にまた、チューブ14,15は、押出成形又は二枚の成
形プレートを対面接合させて形成したものとしても良
く、更に押出成形による場合には、複数の熱交換媒体通
路を有したものとしても良い。
Each heat exchange medium passage 20 may be provided with an inner fin 24 as shown in FIGS. 4 and 5 in order to improve the agitation of the heat exchange medium. However, a plurality of beads may be formed inside a plane perpendicular to the ventilation direction. Further, the tubes 14 and 15 may be formed by extrusion molding or by joining two molding plates face-to-face. In the case of extrusion molding, the tubes 14 and 15 may have a plurality of heat exchange medium passages. .

【0021】ところで、チューブ14の下流側端とチュ
ーブ15の上流側端とは、当接しておらず、図3に示さ
れるように、チューブ14の表面上を風圧によりその風
下側端に流れきた凝縮水がチューブ15に達する前に下
方に落下可能な適宜な寸法で、チューブ14とチューブ
15との間隔を空けることにより、排水路25を設けて
いる。
By the way, the downstream end of the tube 14 and the upstream end of the tube 15 are not in contact with each other, and have flowed on the surface of the tube 14 to the leeward end by wind pressure as shown in FIG. The drainage channel 25 is provided by leaving an interval between the tube 14 and the tube 15 with an appropriate size such that the condensed water can drop downward before reaching the tube 15.

【0022】そして、フィン16は、図4及び図5に示
されるように、熱交換能力を向上させるために、その一
部をチューブの積層方向に切り起こしたルーバ26が形
成されている。この場合に、フィン16の通風方向中央
のルーバ26が形成されない部位の幅(LW)は、図5
に示されるように、前記チューブ14,15間の排水路
25の通風方向幅(SW)よりもその寸法が小さくなっ
ている。
As shown in FIGS. 4 and 5, the fin 16 has a louver 26 which is partially cut and raised in the tube stacking direction in order to improve the heat exchange capacity. In this case, the width (LW) of the portion of the fin 16 where the louver 26 is not formed at the center in the ventilation direction is shown in FIG.
As shown in the figure, the size of the drainage passage 25 between the tubes 14 and 15 is smaller than the width (SW) in the ventilation direction.

【0023】また、タンク3の入口側部8と出口側部9
とを連接する連接部10には、図2及び図3に示される
ように、チューブ14,15の長手方向に当該連接部1
0を貫通した排水孔27が形成されている。
The inlet side 8 and the outlet side 9 of the tank 3
As shown in FIGS. 2 and 3, the connecting portion 10 is connected to the connecting portion 10 in the longitudinal direction of the tubes 14 and 15.
0 is formed.

【0024】以上のような構成とすることにより、図6
に示されるように、チューブ14の表面上を風圧により
流れてきた凝縮水は、想像線に示されるように更に下流
側のチューブ15に移動し、ひいては冷却用熱交換器1
の通風方向下流側に飛水することなく、実線に示される
ように、チューブ14の通風方向下流側端部、即ち排水
路25の端で下方に落下する。また、前記排水路25よ
り風上側の凝縮水がフィン16上を風圧により風下側に
移動してきても、排水路25内に位置する前記ルーバ2
6がガイドとなって排水路25端側に移動して当該排水
路から下方に排水される。そして、これらの下方に落下
した凝縮水は、タンク3の入口側部8と出口側部9とを
連接する連接部10に形成された排水孔27から冷却用
熱交換器1の外部に排水されるので、冷却用熱交換器1
の凝縮水の排水性を向上させることができる。
With the above configuration, FIG.
As shown in FIG. 2, the condensed water that has flowed on the surface of the tube 14 by wind pressure moves to the tube 15 further downstream as shown by the imaginary line, and consequently the heat exchanger 1 for cooling.
As shown by the solid line, the tube 14 falls downward at the downstream end of the tube 14, that is, at the end of the drainage channel 25, without flying downstream. Even if the condensed water on the leeward side of the drainage channel 25 moves on the fin 16 to the leeward side due to the wind pressure, the louver 2 located in the drainage channel 25 may be used.
6 serves as a guide, moves to the end of the drainage channel 25, and is drained downward from the drainage channel. The condensed water that has fallen downwards is drained to the outside of the cooling heat exchanger 1 from a drain hole 27 formed in a connecting portion 10 that connects the inlet side portion 8 and the outlet side portion 9 of the tank 3. Therefore, the cooling heat exchanger 1
Drainage of condensed water can be improved.

【0025】冷却用熱交換器1のチューブの構成及び排
水路の構成は、これまで説明してきたものに限定されな
い。以下、異なる構成のチューブを用いた冷却用熱交換
器1について図7及び図8を用いて説明する。但し、先
の実施形態と同様の構成については同一の符号を付して
その説明を省略する。
The configuration of the tube and the configuration of the drainage channel of the cooling heat exchanger 1 are not limited to those described above. Hereinafter, the cooling heat exchanger 1 using tubes having different configurations will be described with reference to FIGS. 7 and 8. However, the same components as those in the previous embodiment are denoted by the same reference numerals, and description thereof will be omitted.

【0026】図7に示されるチューブ28は、一枚のブ
レージングシートをロールホーミング又はプレス加工に
より複数段階にて折り曲げ、風下側に位置し積層方向に
沿って延びる平坦面19を設け、通風方向の上流側は前
記巻き締め構造を設けると共に、その通風方向の中央で
も接合して仕切部29を形成にすることにより、2つの
熱交換媒体通路20、20を有するものである。そし
て、仕切り部29には、当該仕切り部29をチューブ2
8の積層方向に貫通した排水路30が形成されている。
The tube 28 shown in FIG. 7 is formed by bending a single brazing sheet in a plurality of stages by roll homing or pressing, and is provided with a flat surface 19 located on the leeward side and extending along the laminating direction. The upstream side has two heat exchange medium passages 20, 20 by providing the above-mentioned winding-up structure and joining it at the center in the ventilation direction to form a partition portion 29. Then, the partition 29 is attached to the tube 2
A drainage channel 30 penetrating in the stacking direction of No. 8 is formed.

【0027】このような構成とすることにより、図8に
示されるように、チューブ28の風上側に位置する熱交
換媒体通路20の側面上を風圧により下流側に流れてき
た凝縮水は、想像線に示されるように更に風下側の熱交
換媒体通路20の側面上に移動し、ひいては冷却用熱交
換器1の通風方向下流側に飛水することなく、実線に示
されるように、チューブ28の排水路30の端で下方に
落下させることが可能であるため、冷却用熱交換器1の
凝縮水の排水性を向上させることができる。尚、この冷
却用熱交換器1においても、フィン16の通風方向中央
のルーバ26が形成されない部位の幅(LW)は、図5
に示されるように、前記チューブ14,15間の排水路
30の通風方向幅(SW)よりもその寸法が小さくなる
ようにしても良く、これにより凝縮水の排水性が更に向
上する。
With such a configuration, as shown in FIG. 8, the condensed water flowing downstream on the side surface of the heat exchange medium passage 20 located on the windward side of the tube 28 by wind pressure is imagined. As shown by the solid line, the tube 28 moves further on the side surface of the heat exchange medium passage 20 on the leeward side, and does not fly downstream of the cooling heat exchanger 1 in the ventilation direction. Of the condensed water of the cooling heat exchanger 1 can be improved. In this cooling heat exchanger 1 as well, the width (LW) of the portion of the fin 16 where the louver 26 is not formed at the center in the ventilation direction is shown in FIG.
As shown in (2), the size of the drainage passage 30 between the tubes 14 and 15 may be made smaller than the width (SW) in the ventilation direction, whereby the drainage of condensed water is further improved.

【0028】最後に、上述してきたように、チューブ1
4とチューブ15との間に排水路25を設け、また、チ
ューブ28の熱交換媒体通路20,20の仕切り部29
に排水路30を設けた構成とすることにより、熱交換器
をチューブの長手方向が非鉛直方向(例えば水平方向)
に配置する必要がある場合でも、これら排水路25,3
0は凝縮水の下方への排水機能を果たすことができる。
このため、種々な場所に様々な非鉛直方向の角度で配置
が可能となり、熱交換器としての汎用性が高くなってい
る。尚、この場合には、図示しないがエンドプレート1
7に前記排水路25,30の位置と対応した位置に当該
エンドプレート17を積層方向に貫通した排水路を設け
ることが望ましい。
Finally, as described above, the tube 1
A drain passage 25 is provided between the tube 4 and the tube 15, and a partition 29 of the heat exchange medium passages 20, 20 of the tube 28 is provided.
In the configuration in which the drainage channel 30 is provided, the longitudinal direction of the tube of the heat exchanger is non-vertical (for example, horizontal).
Even if it is necessary to place these drains 25, 3
0 can fulfill the function of draining down the condensed water.
For this reason, it becomes possible to arrange at various places at various angles in the non-vertical direction, and the versatility as a heat exchanger is enhanced. In this case, although not shown, the end plate 1
It is desirable to provide a drainage passage at the position corresponding to the position of the drainage passage 25 in the end plate 17 in the stacking direction.

【0029】[0029]

【発明の効果】以上のように、請求項1及び請求項2に
記載された発明によれば、フィンやチューブに生じた凝
縮水は、風圧によりチューブ表面上を風下側に移動して
いくが、チューブ間に形成された排水路又はチューブに
形成された排水路により、凝縮水は冷却用熱交換器の最
風下側端まで移動するのを妨げられ、排水路の端部で下
方に落下して排水されるので、冷却用熱交換器の下流側
に集まる凝縮水の量が減少し目詰まりや飛水するおそれ
を少なくしている。
As described above, according to the first and second aspects of the present invention, the condensed water generated in the fins and the tube moves downwind on the tube surface by the wind pressure. The condensed water is prevented from moving to the lowermost end of the cooling heat exchanger by the drainage channel formed between the tubes or the tube, and falls down at the end of the drainage channel. As a result, the amount of condensed water that collects on the downstream side of the cooling heat exchanger is reduced, thereby reducing the risk of clogging and flying.

【0030】また、請求項3に記載された発明によれ
ば、フィンのルーバと排水路との配置により排水路間に
ルーバの一端が臨むため、前記排水路より風上側の凝縮
水がフィン上を風圧により風下側に移動してきても、排
水路間に位置するルーバがガイドとなって排水路側に移
動して当該排水路から下方に排水することが可能となる
ので、冷却用熱交換器の排水性の向上を一層図ることが
できる。また、凝縮水がフィン表面上に滞留し難くなる
ので、冷却用熱交換器の小型化を図りつつその性能を確
保するためフィンピッチを小さくしても、凝縮水の滞留
による目詰まりを抑制することもできる。
According to the third aspect of the present invention, one end of the louver faces between the drainage channels due to the arrangement of the louvers and the drainage channels of the fins. Even if the louver is moved to the leeward side by wind pressure, the louver located between the drainage channels serves as a guide and moves to the drainage channel side to be able to drain down from the drainage channel. The drainage performance can be further improved. Also, since the condensed water hardly stays on the fin surface, even if the fin pitch is reduced to secure the performance while miniaturizing the cooling heat exchanger, the clogging due to the condensed water staying is suppressed. You can also.

【0031】そして、請求項4に記載された発明によれ
ば、チューブの巻き締め部が通風方向の上流側となるよ
うに配置することで、この巻き締め部によりチューブの
上流側が肉厚となるので、風上側から飛ばされてきたご
み等が付着して生ずる腐食に対する耐食性を向上させる
ことができ、チューブの寿命を長くすることが可能とな
る。
According to the fourth aspect of the present invention, by arranging the tube to be fastened in the upstream direction in the ventilation direction, the upstream portion of the tube is thickened by the wound portion. Therefore, it is possible to improve the corrosion resistance against corrosion caused by the attachment of dust and the like blown off from the windward side, and to extend the life of the tube.

【0032】また、請求項5及び請求項6に記載された
発明によれば、チューブ間の排水路又はチューブの排水
路の端部で下方に落下した凝縮水は、更にこのタンクの
排水路により冷却用熱交換器外へ排水されるので、冷却
用熱交換器の排水性の向上を図ることができる。
According to the fifth and sixth aspects of the present invention, the condensed water that has fallen downward at the end of the drainage passage between the tubes or the drainage passage of the tube is further discharged by the drainage passage of the tank. Since the water is drained out of the cooling heat exchanger, the drainage of the cooling heat exchanger can be improved.

【0033】更にまた、請求項8に記載された発明によ
れば、出入口タンクにおいて入口側部と出口側部とで直
接に熱交換媒体がバイパスすることがなく、また一方が
開口した断面が略U字状の深絞りタンク部とこの開口を
閉塞するエンドプレートとを接合してタンクを形成する
場合に接合不良により隙間から熱交換媒体が外部に漏洩
する不具合も回避できる。また、接合部分に生じたピン
ホール等のろう付け不良部分に凝縮水が浸入して発生す
る凍結破壊等の不具合も回避することもできる。
Further, according to the invention described in claim 8, the heat exchange medium does not directly bypass between the entrance side and the exit side in the entrance / exit tank, and the cross section of which one side is opened is substantially equal. When the tank is formed by joining the U-shaped deep drawing tank portion and the end plate that closes this opening, it is possible to avoid the problem that the heat exchange medium leaks from the gap to the outside due to poor joining. In addition, it is possible to avoid problems such as freezing and destruction caused by infiltration of condensed water into a poor brazing portion such as a pinhole generated at a joint portion.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、この発明に係る冷却用熱交換器の構成
を示す斜視図である。
FIG. 1 is a perspective view showing a configuration of a cooling heat exchanger according to the present invention.

【図2】図2は、同上のタンクの構成を示す一部断面図
である。
FIG. 2 is a partial cross-sectional view showing a configuration of the above tank.

【図3】図3は、図2に示されるタンクの断面を正面か
ら見た状態を示す説明図である。
FIG. 3 is an explanatory diagram showing a state in which a cross section of the tank shown in FIG. 2 is viewed from the front.

【図4】図4は、通風方向に並列された2つのチューブ
及びフィンの配列及び排水路の構成を示す説明図であ
る。
FIG. 4 is an explanatory diagram showing an arrangement of two tubes and fins arranged in parallel in a ventilation direction and a configuration of a drainage channel.

【図5】図5は、チューブ間の排水路とフィンのルーバ
との位置関係を示す説明図である。
FIG. 5 is an explanatory diagram showing a positional relationship between drainage channels between tubes and louvers of fins.

【図6】図6は、図4に示す排水路の構成とすることに
より、凝縮水が下流側に位置するチューブに達せす、排
水路の端で下方に落下する状態を示す説明図である。
FIG. 6 is an explanatory diagram showing a state in which condensed water reaches a tube located on the downstream side and falls downward at an end of the drainage channel by adopting the configuration of the drainage channel shown in FIG. 4; .

【図7】図7は、2つの熱交換器を有するチューブ及び
フィンの配列及び排水路の構成を示す説明図である。
FIG. 7 is an explanatory view showing an arrangement of tubes and fins having two heat exchangers and a configuration of a drainage channel.

【図8】図8は、図7に示す排水路の構成とすることに
より、凝縮水が下流側に位置する熱交換媒体通路の側面
に達せす、排水路の端で下方に落下する状態を示す説明
図である。
8 shows a state in which the condensed water reaches the side surface of the heat exchange medium passage located on the downstream side by the configuration of the drainage channel shown in FIG. 7 and drops downward at the end of the drainage channel. FIG.

【符号の説明】[Explanation of symbols]

1 冷却用熱交換器 2 タンク 3 タンク 4 チューブ接続孔 5 筒状体 6 閉塞部材 7 隔壁 8 入口側部 9 出口側部 10 連接部 11 取付孔 12 入口側パイプ 13 出口側パイプ 14 チューブ 15 チューブ 16 フィン 17 エンドプレート 18 平坦面 19 平坦面 20 熱交換媒体通路 21 巻き締め部 22 当接部 23 閉塞部 24 インナーフィン 25 排水路 26 ルーバ 27 排水孔 28 チューブ 29 仕切り部 30 排水路 DESCRIPTION OF SYMBOLS 1 Cooling heat exchanger 2 Tank 3 Tank 4 Tube connection hole 5 Cylindrical body 6 Closure member 7 Partition wall 8 Inlet side 9 Outlet side 10 Connecting part 11 Mounting hole 12 Inlet side pipe 13 Outlet side pipe 14 Tube 15 Tube 16 Fin 17 End plate 18 Flat surface 19 Flat surface 20 Heat exchange medium passage 21 Winding portion 22 Contact portion 23 Closure portion 24 Inner fin 25 Drainage channel 26 Louver 27 Drainage hole 28 Tube 29 Partitioning portion 30 Drainage channel

───────────────────────────────────────────────────── フロントページの続き (72)発明者 桜田 宗夫 埼玉県大里郡江南町大字千代字東原39番地 株式会社ゼクセル江南工場内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Muneo Sakurada 39, Higashihara, Chiyo, Odai-gun, Osato-gun, Saitama Pref.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 内部に熱交換媒体通路を有すると共に通
風方向に複数並設されたチューブと、このチューブと交
互に積層されるフィンと、前記チューブの一方端に配さ
れたタンクとで少なくとも構成され、前記チューブとチ
ューブとの間に間隔を開けることで排水路が設けられた
ことを特徴とする冷却用熱交換器。
At least one of a plurality of tubes having a heat exchange medium passage therein and arranged in parallel in a ventilation direction, fins alternately stacked with the tubes, and a tank disposed at one end of the tubes. A cooling heat exchanger, wherein a drainage channel is provided by providing an interval between the tubes.
【請求項2】 内部が仕切り部により複数の熱交換媒体
通路に区画されたチューブと、このチューブと交互に積
層されるフィンと、前記チューブの一方端に配されたタ
ンクとで少なくとも構成され、前記熱交換媒体通路と熱
交換媒体通路とを区画する仕切り部に前記チューブの積
層方向に貫通する排水路が設けられたことを特徴とする
冷却用熱交換器。
2. A system comprising at least a tube having an interior partitioned into a plurality of heat exchange medium passages by a partition, fins alternately stacked with the tube, and a tank disposed at one end of the tube. A cooling heat exchanger, wherein a drainage passage penetrating in a stacking direction of the tubes is provided in a partition section that divides the heat exchange medium passage and the heat exchange medium passage.
【請求項3】 内部に熱交換媒体通路を有する一又は二
以上のチューブと、このチューブと交互に積層されるフ
ィンと、前記チューブの一方端に配されたタンクとで少
なくとも構成され、チューブ又はチューブ間に当該チュ
ーブの積層方向に開放された排水路を設けると共に、前
記フィンにルーバを形成し、このフィンの通風方向中央
はルーバが形成されない部位とし、このルーバが形成さ
れない部位の通風方向幅を、前記チューブの排水路の通
風方向側幅よりもその寸法が小さくなるようにしたこと
を特徴とする冷却用熱交換器。
3. At least one or more tubes having a heat exchange medium passage therein, fins alternately stacked with the tubes, and a tank disposed at one end of the tubes. A drainage channel is provided between the tubes and opened in the stacking direction of the tubes, and a louver is formed in the fin. The center of the fin in the airflow direction is a portion where no louver is formed. Characterized in that the size of the tube is smaller than the width of the tube in the ventilation direction of the drainage channel.
【請求項4】 前記チューブが短手方向に沿った側に巻
き締め構造を有する場合には、この巻き締め構造が通風
方向の上流側となるように配列されていることを特徴と
する請求項1、2又は3に記載の冷却用熱交換器。
4. When the tube has a winding structure on a side along the lateral direction, the tube is arranged such that the winding structure is on the upstream side in the ventilation direction. 4. The cooling heat exchanger according to 1, 2, or 3.
【請求項5】 前記タンクは、通風方向に並列した熱交
換媒体の入口側部と出口側部とを備え、前記入口側部と
出口側部とは前記チューブの熱交換媒体通路を介して連
通されることを特徴とする請求項1、2又は3に記載の
冷却用熱交換器。
5. The tank has an inlet side and an outlet side of a heat exchange medium arranged in parallel in a ventilation direction, and the inlet side and the outlet side communicate with each other via a heat exchange medium passage of the tube. The cooling heat exchanger according to claim 1, wherein the heat exchanger is used.
【請求項6】 前記タンクは、前記入口側部と前記出口
側部とを間隔を開けて配置すると共に、この入口側部と
出口側部とを連接する連接部を有し、この連接部にチュ
ーブの長手方向に貫通する排水路が設けられたことを特
徴とする請求項1、2又は3に記載の冷却用熱交換器。
6. The tank has a connecting portion that connects the inlet side portion and the outlet side portion with an interval between the inlet side portion and the outlet side portion, and has a connecting portion connecting the inlet side portion and the outlet side portion. The heat exchanger for cooling according to claim 1, 2 or 3, wherein a drainage passage penetrating in a longitudinal direction of the tube is provided.
【請求項7】 前記タンクが配された側と反対側に、前
記タンクの入口側部と連通する熱交換媒体通路から前記
タンクの出口側部と連通する熱交換媒体通路への熱交換
媒体の折り返しを可能とするタンクを有することを特徴
とする請求項5又は6に記載の冷却用熱交換器。
7. A heat exchange medium from a heat exchange medium passage communicating with an inlet side of the tank to a heat exchange medium passage communicating with an outlet side of the tank on a side opposite to a side where the tank is disposed. The cooling heat exchanger according to claim 5, further comprising a tank that can be turned back.
【請求項8】 前記タンクは押出成形により一体的に形
成されることを特徴とする請求項1、2、3、5、6又
は7に記載の冷却用熱交換器。
8. The cooling heat exchanger according to claim 1, wherein the tank is integrally formed by extrusion molding.
JP2000066776A 2000-03-10 2000-03-10 Heat exchanger for cooling Expired - Lifetime JP3700144B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000066776A JP3700144B2 (en) 2000-03-10 2000-03-10 Heat exchanger for cooling
PCT/JP2000/008617 WO2001067010A1 (en) 2000-03-10 2000-12-06 Heat exchanger for cooling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000066776A JP3700144B2 (en) 2000-03-10 2000-03-10 Heat exchanger for cooling

Publications (2)

Publication Number Publication Date
JP2001255039A true JP2001255039A (en) 2001-09-21
JP3700144B2 JP3700144B2 (en) 2005-09-28

Family

ID=18586079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000066776A Expired - Lifetime JP3700144B2 (en) 2000-03-10 2000-03-10 Heat exchanger for cooling

Country Status (2)

Country Link
JP (1) JP3700144B2 (en)
WO (1) WO2001067010A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006038429A (en) * 2004-07-30 2006-02-09 Calsonic Kansei Corp Evaporator
WO2006064823A1 (en) * 2004-12-16 2006-06-22 Showa Denko K.K. Evaporator
WO2006070918A1 (en) * 2004-12-28 2006-07-06 Showa Denko K.K. Evaporator
JP2006194576A (en) * 2004-12-16 2006-07-27 Showa Denko Kk Evaporator
WO2008041698A1 (en) * 2006-10-03 2008-04-10 Showa Denko K.K. Heat exchanger
KR100901629B1 (en) 2008-02-27 2009-06-08 주식회사 두원공조 Evaporator
CN105066518A (en) * 2015-08-04 2015-11-18 广东美的制冷设备有限公司 Double-row parallel flow evaporator and air conditioning device with evaporator
US20160201990A1 (en) * 2015-01-09 2016-07-14 Trane International Inc. Heat exchanger

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160054075A1 (en) * 2013-04-10 2016-02-25 Carrier Corporation Folded tube multiple bank heat exchange unit
DE102017218810A1 (en) * 2017-10-20 2019-04-25 Mahle International Gmbh Collection box of a heat exchanger
CN110345799A (en) * 2018-04-08 2019-10-18 浙江盾安热工科技有限公司 Flat tube component and heat exchanger comprising the flat tube component

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5820863Y2 (en) * 1978-08-09 1983-05-02 昭和アルミニウム株式会社 Evaporator
JPS58214783A (en) * 1982-06-09 1983-12-14 Mitsubishi Electric Corp Heat exchanger
JPH0410530Y2 (en) * 1984-09-04 1992-03-16

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4547205B2 (en) * 2004-07-30 2010-09-22 カルソニックカンセイ株式会社 Evaporator
JP2006038429A (en) * 2004-07-30 2006-02-09 Calsonic Kansei Corp Evaporator
WO2006064823A1 (en) * 2004-12-16 2006-06-22 Showa Denko K.K. Evaporator
JP2006194576A (en) * 2004-12-16 2006-07-27 Showa Denko Kk Evaporator
US8037929B2 (en) 2004-12-16 2011-10-18 Showa Denko K.K. Evaporator
WO2006070918A1 (en) * 2004-12-28 2006-07-06 Showa Denko K.K. Evaporator
US7726389B2 (en) 2004-12-28 2010-06-01 Showa Denko K.K. Evaporator
WO2008041698A1 (en) * 2006-10-03 2008-04-10 Showa Denko K.K. Heat exchanger
JP5087549B2 (en) * 2006-10-03 2012-12-05 株式会社ケーヒン・サーマル・テクノロジー Heat exchanger
US8371366B2 (en) 2006-10-03 2013-02-12 Showa Denko K.K. Heat exchanger
KR100901629B1 (en) 2008-02-27 2009-06-08 주식회사 두원공조 Evaporator
US20160201990A1 (en) * 2015-01-09 2016-07-14 Trane International Inc. Heat exchanger
CN105783338A (en) * 2015-01-09 2016-07-20 特灵国际有限公司 Heat exchanger
US10161685B2 (en) * 2015-01-09 2018-12-25 Trane International Inc. Heat exchanger with partitioned inlet header for enhanced flow distribution and refrigeration system using the heat exchanger
CN105783338B (en) * 2015-01-09 2020-11-06 特灵国际有限公司 Heat exchanger
CN105066518A (en) * 2015-08-04 2015-11-18 广东美的制冷设备有限公司 Double-row parallel flow evaporator and air conditioning device with evaporator

Also Published As

Publication number Publication date
WO2001067010A1 (en) 2001-09-13
JP3700144B2 (en) 2005-09-28

Similar Documents

Publication Publication Date Title
JP4810203B2 (en) Heat exchanger
JP4122578B2 (en) Heat exchanger
EP0625679B1 (en) Cooling unit and drain case for air conditioners
EP0947792B1 (en) Refrigerant evaporator and manufacturing method for the same
JP4599245B2 (en) Heat exchanger
US7231966B2 (en) Evaporator for refrigerating cycle
JP2006132920A (en) Heat exchanger
JP2008116102A (en) Heat exchanger for cooling
JP3580942B2 (en) Flat tubes for heat exchangers and heat exchangers equipped with the tubes
JP2001059690A (en) Heat exchanger
JP4786234B2 (en) Heat exchanger
JP5009413B2 (en) Heat exchanger and air conditioner equipped with the same
JPH09280754A (en) Heat exchanger
JP2001255039A (en) Heat exchanger for cooling
JP2007147273A (en) Refrigerant evaporator
JP2001289535A (en) Heat exchanger
JP3214874B2 (en) Heat exchanger
JP3849492B2 (en) Laminate heat exchanger
JP2001235296A (en) Heat exchanger
JP2002318090A (en) Duplex heat exchanger
JP4048629B2 (en) Heat exchanger
JP2001255040A (en) Heat exchanger for cooling
JPH0624710Y2 (en) Heat exchanger
JP6975656B2 (en) Evaporator with cold storage function
JP2001221590A (en) Heat exchanger

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050630

R150 Certificate of patent or registration of utility model

Ref document number: 3700144

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term