JP2001251059A - Insulating material for multilayer printed wiring board and multilayer printed wiring board using the same - Google Patents

Insulating material for multilayer printed wiring board and multilayer printed wiring board using the same

Info

Publication number
JP2001251059A
JP2001251059A JP2000058700A JP2000058700A JP2001251059A JP 2001251059 A JP2001251059 A JP 2001251059A JP 2000058700 A JP2000058700 A JP 2000058700A JP 2000058700 A JP2000058700 A JP 2000058700A JP 2001251059 A JP2001251059 A JP 2001251059A
Authority
JP
Japan
Prior art keywords
printed wiring
insulating material
wiring board
multilayer printed
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000058700A
Other languages
Japanese (ja)
Inventor
Shinichiro Yamagata
紳一郎 山形
Kenji Kawamoto
憲治 河本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2000058700A priority Critical patent/JP2001251059A/en
Publication of JP2001251059A publication Critical patent/JP2001251059A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide insulating material for a multilayer printed wiring board wherein clear, uniform and fine anchors can be formed and insulating resin having spreadability is main component. SOLUTION: In the insulating material, hardened substance fine powder wherein thermosetting resin which can be roughened to acid or oxidizing agent and silica filler are uniformly dispersed and then hardened is dispersed in matrix which is hard to dissolve in the acid or oxidizing agent. It is preferable that polyether sulfone is used as the matrix.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、無電解めっき性及
び塗布性がともに優れた多層プリント配線板用絶縁材料
に関するものであり、特に基板と無電解めっき膜との密
着性に優れた無電解めっきに適合したファインパターン
の多層プリント配線板、半導体パッケージ用インターポ
ーザーの絶縁材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulating material for a multilayer printed wiring board having excellent electroless plating properties and coating properties, and more particularly to an electroless plating material having excellent adhesion between a substrate and an electroless plating film. The present invention relates to a multilayer printed wiring board having a fine pattern suitable for plating and an insulating material for an interposer for a semiconductor package.

【0002】[0002]

【従来の技術】近年、エレクトロニクス分野における進
歩に伴い電子機器の小型化及び高速化が進められてお
り、このためICやLSI を直接実装するパッケージにおい
てもファインパターンによる高密度化及び高い信頼性が
求められる。
2. Description of the Related Art In recent years, with the progress in the electronics field, electronic devices have been reduced in size and speed, and therefore, even in packages for directly mounting ICs and LSIs, high density and high reliability by fine patterns have been required. Desired.

【0003】従来、LSI などを実装したパッケージにお
いて、LSI とインターポーザ(実装基板)との熱膨張率
の差によって、接合境界にクラックなどが発生するなど
して、電気的信頼性が不十分であるという問題点が存在
した。
Conventionally, in a package on which an LSI or the like is mounted, electrical reliability is insufficient due to a crack or the like at a junction boundary due to a difference in thermal expansion coefficient between the LSI and an interposer (mounting substrate). There was a problem.

【0004】そこで、インターポーザにシリカフィラー
を添加することによりインターポーザの熱膨張率を減少
させ、実装物と被実装物との線膨張率の差を減少させる
ことが試行されてきた。また、過酷な耐久性試験により
インターポーザ自身にもクラックが発生することが問題
となり、実装基板に用いる絶縁材料の靱性を改善させる
ことも課題となっていた。
Therefore, attempts have been made to reduce the thermal expansion coefficient of the interposer by adding a silica filler to the interposer, thereby reducing the difference in linear expansion coefficient between the mounted object and the mounted object. In addition, cracks also occur in the interposer itself due to a severe durability test, and improving the toughness of an insulating material used for a mounting substrate has also been a problem.

【0005】近年、絶縁性のエポキシ樹脂の改良として
樹脂成分にポリエーテルスルホンのような熱可塑性樹脂
とエポキシを混合系とすることで、樹脂に靱性を付与す
る技術が開発されている(Keizo Yamanaka and Takashi
Inoue, Polymer, vol.30, P662(1989) 参照)。
In recent years, a technique has been developed to improve the insulating epoxy resin by imparting toughness to the resin by using a mixed system of a thermoplastic resin such as polyether sulfone and epoxy as a resin component (Keizo Yamanaka). and Takashi
Inoue, Polymer, vol. 30, p. 662 (1989)).

【0006】2 種類の樹脂を混合してなる上記ポリエー
テルスルホン変性エポキシ樹脂は、エポキシ単独のもの
に比べて、樹脂の靱性が向上する。この理由は、あたか
もお互いに連結しあって規則正しく分散した状態の構造
であり、いわゆるエポキシ樹脂とポリエーテルスルホン
との共連続構造を形成するからである。
[0006] The polyethersulfone-modified epoxy resin obtained by mixing two types of resins has improved toughness as compared with the epoxy-only resin. The reason for this is that the structures are in a state of being connected to each other and dispersed regularly, and form a so-called co-continuous structure of epoxy resin and polyether sulfone.

【0007】近年、このような樹脂基板は軽量かつ安価
であることから高密度プリント配線板だけでなく、半導
体ベアチップ実装用基板としても使われるようになって
きており、要求される導体パターンの微細化はますます
進む傾向にある。このため密着強度を得るための表面ア
ンカーの凹凸を大きくすると、細線の導体回路の均一
性、信頼性が損なわれ、細線化と密着強度を両立できな
いことが問題となっていた。
In recent years, such a resin substrate has been used not only as a high-density printed wiring board but also as a substrate for mounting a semiconductor bare chip since it is lightweight and inexpensive. Is becoming more and more advanced. For this reason, if the unevenness of the surface anchor for obtaining the adhesion strength is increased, the uniformity and reliability of the thin wire conductor circuit are impaired, and there has been a problem that the thinning and the adhesion strength cannot be achieved at the same time.

【0008】一方で多層プリント配線板用にこれらの靱
性が改良された絶縁材料を応用するため、前記熱可塑性
マトリクスとしてポリエーテルスルホンとエポキシ樹脂
とシリカフィラーを混合し同時硬化させた場合、シリカ
フィラーは優先的にエポキシリッチ相に取り込まれ、ポ
リエーテルスルホンリッチ相にはほとんど取り込まれな
い。すなわち、ポリエーテルスルホンとエポキシ樹脂の
みからなる相分離構造に比較して、シリカフィラーを加
えたときの相分離構造は極めていびつになる。
On the other hand, in order to apply these insulating materials having improved toughness to a multilayer printed wiring board, when a polyether sulfone, an epoxy resin and a silica filler are mixed and cured simultaneously as the thermoplastic matrix, Is preferentially incorporated into the epoxy-rich phase and hardly incorporated into the polyethersulfone-rich phase. That is, the phase separation structure when the silica filler is added becomes extremely distorted compared to the phase separation structure composed of only the polyether sulfone and the epoxy resin.

【0009】したがって、硬化させた樹脂を酸化剤によ
り粗化する場合に、酸化剤によって粗化されやすいシリ
カフィラーの分散性が均一でないために、樹脂の粗化面
は大きな粗化斑を有することになる。すなわち、基板と
無電解めっき膜との密着強度ついても斑が生じるだけで
なく、粗化面が荒れすぎて高密度実装に必要な導体層を
ファインラインで形成できないことが問題となってい
る。
Therefore, when the cured resin is roughened with an oxidizing agent, the roughened surface of the resin has large uneven spots because the dispersibility of the silica filler which is easily roughened by the oxidizing agent is not uniform. become. That is, not only unevenness occurs in the adhesion strength between the substrate and the electroless plating film, but also the roughened surface is too rough to form a conductor layer required for high-density mounting with a fine line.

【0010】[0010]

【発明が解決しようとする課題】本発明は、シリカフィ
ラーの分散性が均一であるため、樹脂の粗化面の形成が
良好となり、基板と無電解めっき膜との密着強度に優
れ、かつ、高密度実装に必要な導体層をファインライン
で形成することができる多層プリント配線板用絶縁材料
及びそれを用いた多層プリント配線板を提供することを
目的とする。
According to the present invention, since the dispersibility of the silica filler is uniform, the formation of a roughened surface of the resin is improved, the adhesion strength between the substrate and the electroless plating film is excellent, and An object of the present invention is to provide an insulating material for a multilayer printed wiring board, which can form a conductor layer required for high-density mounting on a fine line, and a multilayer printed wiring board using the same.

【0011】[0011]

【課題を解決するための手段】発明者は、上記の如き問
題点克服のために鋭意研究した結果、請求項1では酸あ
るいは酸化剤に対して粗化可能な熱硬化性樹脂とシリカ
フィラーをあらかじめ均一に分散させ硬化してなる硬化
物微粉末を、酸あるいは酸化剤に対して難溶性となる特
性を有する熱可塑性樹脂マトリクスに分散させたことを
特徴とする多層プリント配線板用絶縁材料である。さら
に請求項2は前記熱硬化性樹脂が少なくとも多官能エポ
キシ化合物と硬化剤からなることを特徴とする請求項1
に記載の多層プリント配線板用絶縁材料である。請求項
3は前記熱可塑性樹脂マトリクスにポリエーテルスルホ
ンを用いることを特徴とする請求項1 または2 に記載の
プリント配線板絶縁材料である。請求項4は前記硬化物
微粉末が絶縁材料の全固形分に対して55重量%から85重
量%の割合で混合されてなることを特徴とする請求項1
〜3 に記載の多層プリント配線板絶縁材料である。請求
項5は前記硬化物微粉末を構成するシリカの割合が5 〜
40重量%であることを特徴とする請求項1 〜4 に記載す
る多層プリント配線板用絶縁材料である。請求項6は前
記硬化物微粉末の平均粒径が0.5 μm 〜6 μmであるこ
とを特徴とする請求項1 〜5 に記載する多層プリント配
線板用絶縁材料である。請求項7は請求項1〜6のいず
れか1 つに記載する絶縁材料を用いたことを特徴とする
多層プリント配線板である。
Means for Solving the Problems The inventors of the present invention have made intensive studies to overcome the above-mentioned problems, and as a result, claim 1 shows that a thermosetting resin and a silica filler which can be roughened with respect to an acid or an oxidizing agent are used. An insulating material for a multilayer printed wiring board, characterized in that a finely divided cured product powder that is uniformly dispersed and cured in advance is dispersed in a thermoplastic resin matrix having a property of being hardly soluble in an acid or an oxidizing agent. is there. In a preferred embodiment, the thermosetting resin comprises at least a polyfunctional epoxy compound and a curing agent.
3. The insulating material for a multilayer printed wiring board according to item 1. A third aspect of the present invention is the printed wiring board insulating material according to the first or second aspect, wherein polyether sulfone is used for the thermoplastic resin matrix. According to a fourth aspect of the present invention, the cured product fine powder is mixed at a ratio of 55 to 85% by weight based on the total solid content of the insulating material.
4. The multilayer printed wiring board insulating material according to any one of 1. to 3. It is preferable that the ratio of silica constituting the fine powder of the cured product is 5 to 5.
5. The insulating material for a multilayer printed wiring board according to claim 1, wherein the content is 40% by weight. A sixth aspect of the present invention is the insulating material for a multilayer printed wiring board according to any one of the first to fifth aspects, wherein the average particle size of the fine powder of the cured product is 0.5 μm to 6 μm. A seventh aspect of the present invention is a multilayer printed wiring board using the insulating material according to any one of the first to sixth aspects.

【0012】[0012]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明の多層プリント配線板は、シリカフィラーを熱硬
化性樹脂であるエポキシ樹脂にあらかじめ分散し、硬化
してなる耐熱性樹脂微粉末を所望の粒径に作製すること
により、靱性強化のための熱可塑性樹脂マトリックスで
あるポリエーテルスルホンと均一な膜を形成させること
ができ、あわせて酸化剤などにより微細な表面粗化状態
が形成可能なすぐれた多層プリント配線板用絶縁材料を
得るものである。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The multilayer printed wiring board of the present invention has a silica filler previously dispersed in an epoxy resin which is a thermosetting resin, and by preparing a heat-resistant resin fine powder obtained by curing to a desired particle size, for enhancing toughness. It is intended to obtain an excellent insulating material for a multilayer printed wiring board which can form a uniform film with a polyether sulfone which is a thermoplastic resin matrix and can form a fine surface roughened state by an oxidizing agent. .

【0013】本発明で述べる熱硬化性樹脂とはウレタン
系樹脂、ポリイミド樹脂など種々なものが挙げられる
が、比較的安価であること、絶縁性、めっき特性に優れ
ることから多官能エポキシ化合物と硬化剤からなるエポ
キシ樹脂の硬化物が特に望ましい。
The thermosetting resin described in the present invention includes various resins such as a urethane resin and a polyimide resin. However, it is relatively inexpensive and has excellent insulating properties and plating properties. A cured product of an epoxy resin composed of an agent is particularly desirable.

【0014】本発明で述べる多官能エポキシ化合物とは
例えばフェノールノボラック型エポキシ樹脂、クレゾー
ルノボラック型エポキシ樹脂、DPP ノボラック型エポキ
シ樹脂、ビフェニル型エポキシ樹脂、シクロペンタジエ
ニル型エポキシ樹脂、ビフェニルノボラック型エポキシ
樹脂、トリスヒドロキシフェニルメタン型エポキシ樹
脂、テトラフェニロールエタン型エポキシ樹脂、ジシク
ロペンタジエンフェノール型エポキシ樹脂、ナフタレン
型エポキシ樹脂、トリス(グリシジルフェニル)メタ
ン、テトラグリジジルジアミノジフェニルメタン、トリ
グリシジルパラアミノフェノール、トリグリシジルメタ
アミノフェノール、テトラグリシジルメタキシリレンジ
アミン、テトラグリシジルビスアミノメチルシクロヘキ
サンなどの種々の多官能グリシジルアミン型エポキシ化
合物、2,2',4,4'-テトラグリドキシビフェニルなど、ま
た、多官能脂環式エポキシ類化合物類、たとえばフェノ
ールノボラック型エポキシ樹脂、クレゾールノボラック
型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビ
スフェノールF型エポキシ樹脂、ビスフェノールS型エ
ポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルノ
ボラック型エポキシ樹脂、トリスヒドロキシフェニルメ
タン型エポキシ樹脂、テトラフェニロールエタン型エポ
キシ樹脂、ジシクロペンタジエンフェノール型エポキシ
樹脂等の芳香族環を含むエポキシ類化合物の水素添加化
合物、脂環式エポキシ樹脂やシクロヘキセンオキシドの
各種誘導体などがあげられ、これらを単独もしくは混合
して用いることができる。
The polyfunctional epoxy compounds described in the present invention include, for example, phenol novolak type epoxy resin, cresol novolak type epoxy resin, DPP novolak type epoxy resin, biphenyl type epoxy resin, cyclopentadienyl type epoxy resin, biphenyl novolak type epoxy resin , Trishydroxyphenylmethane type epoxy resin, tetraphenylolethane type epoxy resin, dicyclopentadienephenol type epoxy resin, naphthalene type epoxy resin, tris (glycidylphenyl) methane, tetraglycidyldiaminodiphenylmethane, triglycidylparaaminophenol, triglycidyl Various polyfunctional such as metaaminophenol, tetraglycidyl metaxylylenediamine, tetraglycidylbisaminomethylcyclohexane Glycidylamine type epoxy compounds, 2,2 ', 4,4'-tetraglydoxybiphenyl and the like, and polyfunctional alicyclic epoxy compounds such as phenol novolak type epoxy resin, cresol novolak type epoxy resin, bisphenol A type Epoxy resin, bisphenol F epoxy resin, bisphenol S epoxy resin, biphenyl epoxy resin, biphenyl novolak epoxy resin, trishydroxyphenylmethane epoxy resin, tetraphenylolethane epoxy resin, dicyclopentadiene phenol epoxy resin, etc. And hydrogenated compounds of epoxy compounds containing an aromatic ring, alicyclic epoxy resins, and various derivatives of cyclohexene oxide. These can be used alone or in combination.

【0015】本発明で述べる硬化剤としては一般的なエ
ポキシ硬化剤と知られている物を使用することが出来
る。たとえばアミン系硬化剤、フェノール樹脂系硬化
剤、クレゾール樹脂系硬化剤、イミダゾール系硬化剤、
各種アミン系硬化剤やカルボン酸類、カルボン酸無水物
類等の各種カルボキシル化合物類などが挙げられ、特に
限定するものではない。
As the curing agent described in the present invention, those known as general epoxy curing agents can be used. For example, amine curing agents, phenolic resin curing agents, cresol resin curing agents, imidazole curing agents,
Examples include various amine-based curing agents and various carboxyl compounds such as carboxylic acids and carboxylic anhydrides, and are not particularly limited.

【0016】本発明で述べるシリカフィラーとは湿式
法、乾式法などで合成された各種合成シリカや珪石を破
砕した破砕シリカ、一度溶融させた溶融シリカなど種々
なものを用いることができる。特に高密度配線が要求さ
れる場合、これらのシリカの粒径としては5 μm以下の
ものが特に望ましい。
As the silica filler described in the present invention, various kinds of silica such as various synthetic silicas synthesized by a wet method, a dry method, crushed silica obtained by crushing silica, and fused silica once melted can be used. In particular, when high-density wiring is required, it is particularly desirable that the silica has a particle diameter of 5 μm or less.

【0017】本発明で述べる熱可塑性樹脂とはポリエス
テル、ポリエーテル、ポリフェニレンエーテル、ポリイ
ミド、ポリアミド、ポリイミドアミド、ポリスルホン、
ポリアラミドなどの種々の耐熱性樹脂が挙げられるが、
樹脂の耐熱性の指標であるガラス転位点、力学的特性、
絶縁性、溶媒への溶解性などの種々の点でポリエーテル
スルホンが特に望ましい。
The thermoplastic resin described in the present invention includes polyester, polyether, polyphenylene ether, polyimide, polyamide, polyimideamide, polysulfone,
Various heat-resistant resins such as polyaramid,
Glass transition point, mechanical properties, which are indicators of heat resistance of resin,
Polyethersulfone is particularly desirable in various points such as insulation and solubility in a solvent.

【0018】本発明で述べる硬化物微粉末と熱可塑性樹
脂マトリックスの割合は、硬化物微粉末が絶縁材料の全
固形分に対して55重量%から85重量%の範囲で混合され
ることが特に望ましい。この理由として55重量%以下で
あると酸化剤によって粗化されない成分が多くなること
から導体パターンの十分なめっき強度が得られない。ま
た、85重量%以上であると熱可塑性樹脂の添加により改
善される靱性効果に乏しく、基板クラックなどの問題が
生じる。
The proportion of the cured product fine powder and the thermoplastic resin matrix described in the present invention is particularly preferably such that the cured product fine powder is mixed in the range of 55 to 85% by weight based on the total solid content of the insulating material. desirable. The reason for this is that if the content is less than 55% by weight, the components which are not roughened by the oxidizing agent increase, so that sufficient plating strength of the conductor pattern cannot be obtained. On the other hand, when the content is 85% by weight or more, the toughness effect improved by the addition of the thermoplastic resin is poor, and problems such as substrate cracks occur.

【0019】本発明で述べる硬化物微粉末に含有するシ
リカフィラーの割合は5 〜40重量%であることが望まし
い。この理由としてシリカフィラーの割合が5 重量%以
下であればエポキシ樹脂リッチのため酸化剤などによる
表面粗化工程において十分な粗化効果が得にくく、また
40重量%以上であれば硬化物微粒子が脆くなり、信頼性
の点で問題が生じる。
The proportion of the silica filler contained in the fine powder of the cured product described in the present invention is desirably 5 to 40% by weight. The reason for this is that if the proportion of the silica filler is 5% by weight or less, it is difficult to obtain a sufficient roughening effect in the surface roughening step using an oxidizing agent or the like because the resin is rich in epoxy resin.
If the content is 40% by weight or more, the fine particles of the cured product become brittle, which causes a problem in reliability.

【0020】本発明で述べる硬化物微粉末の平均粒径は
約0.5 〜6 μm程度の範囲にあることが望ましい。この
理由として0.5 μm以下であれば表面粗化工程後の粗化
面のアンカー効果に乏しく、めっき強度が低下する恐れ
があり、また、6 μm以上であれば十分なアンカー効果
は得られるものの粗化表面が荒れすぎ、導体パターンの
細線化に問題が生じる。
The average particle size of the fine powder of the cured product described in the present invention is preferably in the range of about 0.5 to 6 μm. The reason for this is that if the thickness is 0.5 μm or less, the anchoring effect of the roughened surface after the surface roughening step is poor, and the plating strength may be reduced. The roughened surface is too rough, which causes a problem in thinning the conductor pattern.

【0021】本発明で述べる硬化物微粉末を得る方法と
しては、適当な溶剤と多官能エポキシ化合物、硬化剤を
溶解させた混合液に、シリカフィラーを十分に分散させ
て硬化後、粉砕器等により所望の粒径まで粉砕して得る
ことができる。また、多官能エポキシと硬化剤が溶解し
ない貧溶媒と、これらの混合物を激しく攪拌した状態で
硬化させた後、溶媒を取り除き乾燥させることによって
得る方法などもある。
As a method for obtaining the fine powder of the cured product described in the present invention, a silica filler is sufficiently dispersed in a mixed solution in which a suitable solvent, a polyfunctional epoxy compound and a curing agent are dissolved, and the mixture is cured. To obtain a desired particle size. In addition, there is a method in which a poor solvent in which a polyfunctional epoxy and a curing agent are not dissolved, and a method in which a mixture of these is cured with vigorous stirring, and then the solvent is removed and dried.

【0022】さらに、上記絶縁性樹脂組成物中には、必
要に応じて、エポキシ基硬化促進剤、熱重合禁止剤、可
塑剤、レベリング剤、消泡剤、紫外線吸収剤、難燃化剤
等の添加剤や着色用顔料等を添加することが可能であ
る。
The insulating resin composition may further contain an epoxy group curing accelerator, a thermal polymerization inhibitor, a plasticizer, a leveling agent, a defoaming agent, an ultraviolet absorber, a flame retardant, etc., if necessary. It is possible to add an additive or a coloring pigment.

【0023】次に本発明の絶縁材料を用いた多層プリン
ト配線板の製造方法について具体的に説明する。
Next, a method for manufacturing a multilayer printed wiring board using the insulating material of the present invention will be specifically described.

【0024】本発明はまず導体回路を形成した基板上
に、上記の絶縁層を形成することにより始まる。
The present invention starts by forming the above-mentioned insulating layer on a substrate on which a conductor circuit is formed.

【0025】本発明に使用する基板としては、例えばプ
ラスチック基板、セラミック基板、金属基板、フィルム
基板等を使用することができ、具体的にはガラスエポキ
シ基板、ビスマレイミドートリアジン基板、アラミド繊
維不織布基板、液晶ポリマー基板、アルミニウム基板、
鉄基板、ポリイミド基板等を使用することができる。
As the substrate used in the present invention, for example, a plastic substrate, a ceramic substrate, a metal substrate, a film substrate and the like can be used. Specifically, a glass epoxy substrate, a bismaleimide-triazine substrate, an aramid fiber non-woven substrate , Liquid crystal polymer substrate, aluminum substrate,
An iron substrate, a polyimide substrate, or the like can be used.

【0026】導体回路を形成した基板に前記樹脂絶縁層
を形成する方法としては、例えば上記絶縁性樹脂組成物
をローラーコート法、ディップコート法、スプレイコー
ト法、スピナーコート法、カーテンコート法、スロット
コート法、スクリーン印刷法等の各種手段により塗布す
る方法、あるいは前記混合液をフィルム状に加工した、
樹脂フィルムを貼付する方法を適用することができる。
また、本発明における前記樹脂絶縁層の好適な厚さは、
通常20〜1 0000μm 程度であるが、特に高い絶縁性
が要求される場合にはそれ以上に厚くすることもでき
る。
As a method of forming the resin insulating layer on the substrate on which the conductor circuit is formed, for example, a roller coating method, a dip coating method, a spray coating method, a spinner coating method, a curtain coating method, a slot coating method, and the like are used. Coating method, a method of applying by various means such as screen printing method, or the mixed solution was processed into a film,
A method of attaching a resin film can be applied.
Further, the preferred thickness of the resin insulating layer in the present invention is:
Usually, it is about 20 to 10000 μm, but it is possible to increase the thickness more particularly when high insulating properties are required.

【0027】導体回路を形成した基板に上記絶縁性材料
を塗布したのち、乾燥および熱硬化させることにより、
樹脂絶縁層を形成する。
After applying the insulating material to the substrate on which the conductive circuit is formed, the substrate is dried and thermally cured to obtain
A resin insulating layer is formed.

【0028】多層プリント配線板は、前記樹脂絶縁層の
表面を酸あるいは酸化剤を用いて粗面化処理した後、無
電解めっき及び電解めっきを施すことにより、導体回路
を形成することにより製造される。この無電解めっきの
方法としては、例えば、無電解銅めっき、無電解ニッケ
ルめっき、無電解金めっき、無電解銀めっき、無電解錫
めっきのいずれか少なくとも一種であることが好適であ
る。なお、前記無電解めっきを施した上にさらに異なる
種類の無電解あるいは電解めっきを行ったり、はんだを
コートすることができる。
The multilayer printed wiring board is manufactured by forming a conductive circuit by subjecting the surface of the resin insulating layer to a surface roughening treatment using an acid or an oxidizing agent, and then performing electroless plating and electrolytic plating. You. As a method of the electroless plating, for example, it is preferable to use at least one of electroless copper plating, electroless nickel plating, electroless gold plating, electroless silver plating, and electroless tin plating. In addition to the above-mentioned electroless plating, different types of electroless or electrolytic plating can be further performed, or solder can be coated.

【0029】また、必要に応じて本発明の絶縁材料をあ
らかじめ銅箔に半硬化の状態で塗布し、銅張り積層板と
して用いることもできる。
Further, if necessary, the insulating material of the present invention can be applied to a copper foil in a semi-cured state in advance and used as a copper-clad laminate.

【0030】なお、本発明の絶縁性樹脂組成物を用い
て、従来知られたプリント配線板について行われている
種々の方法で導体回路を形成することができ、例えば、
基板に無電解及び電解めっきを施してから、回路をエッ
チングする方法や、無電解めっきを施す際に直接回路を
形成する方法などを適用することができる。本発明の樹
脂組成物により絶縁層を形成することにより、無電解め
っき膜を信頼性良く形成させた多層プリント配線板を容
易にかつ安価に提供することができる。
It is to be noted that a conductive circuit can be formed using the insulating resin composition of the present invention by various methods conventionally used for printed wiring boards.
A method of etching a circuit after performing electroless and electrolytic plating on a substrate, a method of directly forming a circuit when performing electroless plating, and the like can be applied. By forming an insulating layer using the resin composition of the present invention, a multilayer printed wiring board having an electroless plated film formed with high reliability can be provided easily and at low cost.

【0031】[0031]

【実施例】以下、本発明の絶縁材料を用いて多層プリン
ト配線板を製造する実施例について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment for manufacturing a multilayer printed wiring board using the insulating material of the present invention will be described below.

【0032】[実施例1]まず、耐熱性エポキシ樹脂(T
MH/ 住友化学工業社製商品名)97.2重量部、シリカフィ
ラー51.8重量部、フェノール樹脂( 日本化薬社製)47.9
重量部をγ- ブチロラクトン溶媒に加えて、ペイントシ
ェイカーにて1時間混合した。次に乾燥オーブンを用い
て180 ℃2 時間加熱硬化処理を行い、硬化物を得た。こ
の硬化物を粗粉砕し、その後、液体窒素で凍結させなが
ら、超音速ジェット粉砕機を用いて微粉砕し、さらに風
力分級機を使用して分級し、平均粒径約2μmのエポキ
シ樹脂微粉末を得た。
Example 1 First, a heat-resistant epoxy resin (T
MH / Sumitomo Chemical Co., Ltd. product name) 97.2 parts by weight, silica filler 51.8 parts by weight, phenolic resin (Nippon Kayaku Co., Ltd.) 47.9
The parts by weight were added to the γ-butyrolactone solvent and mixed for 1 hour with a paint shaker. Next, a heat curing treatment was performed at 180 ° C. for 2 hours using a drying oven to obtain a cured product. The cured product is coarsely pulverized, and then finely pulverized using a supersonic jet pulverizer while being frozen with liquid nitrogen, and further classified using an air classifier, to obtain an epoxy resin fine powder having an average particle size of about 2 μm. I got

【0033】この微粉末を196.9 重量部、ポリエーテル
スルホン(住友化学工業社製)62.2重量部、硬化触媒2E
4MZ(東京化成工業社製)9.7重量部をγ- ブチロラクトン
溶媒に加えて、撹拌及び脱泡し、絶縁材料塗工液を得
た。
196.9 parts by weight of this fine powder, 62.2 parts by weight of polyether sulfone (manufactured by Sumitomo Chemical Co., Ltd.), curing catalyst 2E
9.7 parts by weight of 4MZ (manufactured by Tokyo Chemical Industry Co., Ltd.) was added to a γ-butyrolactone solvent, and the mixture was stirred and defoamed to obtain a coating liquid for an insulating material.

【0034】次に、黒化処理を施した銅張りガラスエポ
キシ基板に、この絶縁材料塗工液をスピンコーターにて
約50μm の厚さに塗布し、乾燥オーブンを用いて180 ℃
2 時間加熱硬化処理を行い、樹脂絶縁層を形成した。上
記樹脂絶縁層を形成した基板を通常のプリント基板の銅
めっき工程にて厚さ約18μm の銅めっきを施し、プリン
ト配線板を得た。密着強度はJIS-C6481 に基づき1cm 幅
パターンの90度剥離試験をよって調べた。また、同様の
樹脂絶縁層形成方法により厚さ50μm の樹脂絶縁層フィ
ルム試料を作製し、動的粘弾性測定装置DMA によりガラ
ス転移点Tgを測定した。また、細線パターンの導体回路
形状の観察として、めっき導体層をL/S=20/20
μmにパターンニングしパターンのエッジ形状を光学顕
微鏡にて観察した。さらにコア層とビルトアップ層のそ
れぞれに直径約10mmの対向電極パターンを設け、P
CT試験器により121℃、85%、20Vの条件で絶
縁信頼性の試験をおこなった。これらの結果を表1に示
した。
Next, this insulating material coating solution is applied to a blackened glass-epoxy substrate with a spin coater to a thickness of about 50 μm, and then dried at 180 ° C. using a drying oven.
Heat curing treatment was performed for 2 hours to form a resin insulating layer. The substrate on which the resin insulating layer was formed was subjected to copper plating with a thickness of about 18 μm in a normal copper plating step of a printed circuit board, to obtain a printed wiring board. The adhesion strength was examined by a 90-degree peel test of a 1 cm wide pattern based on JIS-C6481. Further, a resin insulating layer film sample having a thickness of 50 μm was prepared by the same resin insulating layer forming method, and the glass transition point Tg was measured by a dynamic viscoelasticity measuring apparatus DMA. In order to observe the conductor circuit shape of the fine wire pattern, the plating conductor layer was set to L / S = 20/20.
The pattern was patterned to μm, and the edge shape of the pattern was observed with an optical microscope. Further, a counter electrode pattern having a diameter of about 10 mm is provided on each of the core layer and the built-up layer.
An insulation reliability test was performed using a CT tester under the conditions of 121 ° C., 85%, and 20 V. The results are shown in Table 1.

【0035】[0035]

【表1】 [Table 1]

【0036】[実施例2]まず、エポキシ樹脂(E5050/
油化シェル社製商品名)114.7 重量部、シリカフィラー
51.8重量部、フェノール樹脂( 日本化薬社製)30.4重量
部をγ- ブチロラクトン溶媒に加えて、ペイントシェイ
カーにて1時間混合したのち、乾燥オーブンを用いて18
0 ℃2 時間加熱硬化処理を行い、硬化物を得た。この硬
化物を粗粉砕し、その後、液体窒素で凍結させながら、
超音速ジェット粉砕機を用いて微粉砕し、さらに風力分
級機を使用して分級し、エポキシ樹脂微粉末を得た。
Example 2 First, an epoxy resin (E5050 /
Yuka Shell Co., Ltd.) 114.7 parts by weight, silica filler
51.8 parts by weight and 30.4 parts by weight of a phenol resin (manufactured by Nippon Kayaku Co., Ltd.) were added to a γ-butyrolactone solvent, mixed for 1 hour with a paint shaker, and then dried in a drying oven for 18 hours.
Heat curing treatment was performed at 0 ° C for 2 hours to obtain a cured product. While coarsely pulverizing this cured product, and then freezing with liquid nitrogen,
Fine pulverization was performed using a supersonic jet pulverizer, and further classification was performed using an air classifier to obtain an epoxy resin fine powder.

【0037】この微粉末を196.9 重量部、ポリエーテル
スルホン(住友化学工業社製)62.2重量部、硬化触媒2E
4MZ(東京化成工業社製)11.5 重量部をγ- ブチロラクト
ン溶媒に加えて、撹拌及び脱泡し、絶縁材料塗工液を得
た。
196.9 parts by weight of this fine powder, 62.2 parts by weight of polyether sulfone (manufactured by Sumitomo Chemical Co., Ltd.), curing catalyst 2E
11.5 parts by weight of 4MZ (manufactured by Tokyo Chemical Industry Co., Ltd.) was added to a γ-butyrolactone solvent, and the mixture was stirred and defoamed to obtain an insulating material coating liquid.

【0038】次に、絶縁材料塗工液を用いて、実施例1
と同様な方法でプリント配線板を得た。
Next, in Example 1, an insulating material coating liquid was used.
A printed wiring board was obtained in the same manner as described above.

【0039】[実施例3]まず、耐熱性エポキシ樹脂(E
OCN103S/日本化薬社製商品名)97.1重量部、シリカフィ
ラー51.8重量部、フェノール樹脂( 日本化薬社製)48.1
重量部をγ- ブチロラクトンに加えて、ペイントシェイ
カーにて1時間混合したのち、乾燥オーブンを用いて18
0 ℃2 時間加熱硬化処理を行い、硬化物を得た。この硬
化物を粗粉砕し、その後、液体窒素で凍結させながら、
超音速ジェット粉砕機を用いて微粉砕し、さらに風力分
級機を使用して分級し、エポキシ樹脂微粉末を得た。
Example 3 First, a heat-resistant epoxy resin (E
97.1 parts by weight of OCN103S / Nippon Kayaku Co., Ltd., 51.8 parts by weight of silica filler, 48.1 phenolic resin (Nippon Kayaku)
Add parts by weight to γ-butyrolactone, mix for 1 hour with a paint shaker, and then use a drying oven for 18 hours.
Heat curing treatment was performed at 0 ° C for 2 hours to obtain a cured product. While coarsely pulverizing this cured product, and then freezing with liquid nitrogen,
Fine pulverization was performed using a supersonic jet pulverizer, and further classification was performed using an air classifier to obtain an epoxy resin fine powder.

【0040】この微粉末を197 重量部、ポリエーテルス
ルホン(住友化学工業社製)62.2重量部、触媒2E4MZ(東
京化成工業社製)9.7重量部をγ- ブチロラクトンに加え
て、撹拌及び脱泡し、絶縁材料を得た。
197 parts by weight of this fine powder, 62.2 parts by weight of polyether sulfone (manufactured by Sumitomo Chemical Co., Ltd.) and 9.7 parts by weight of catalyst 2E4MZ (manufactured by Tokyo Chemical Industry Co., Ltd.) were added to γ-butyrolactone, followed by stirring and defoaming. Then, an insulating material was obtained.

【0041】次に、絶縁材料を用いて、実施例1 と同様
な方法でプリント配線板を得た。
Next, a printed wiring board was obtained in the same manner as in Example 1 using an insulating material.

【0042】[比較例1]耐熱性エポキシ樹脂(E5050/
油化シェル社製商品名) 114.7 重量部、ポリエーテルス
ルホン(住友化学工業社製)62.2重量部、シリカフィラ
ー51.8重量部、フェノール樹脂( 日本化薬社製)30.4重
量部、触媒2E4MZ(東京化成工業社製)11.5重量部をγ-
ブチロラクトンに加えて、ペイントシェイカーにて1時
間混合したのち、乾燥オーブンを用いて180 ℃2 時間加
熱硬化処理を行い、硬化物を得た。
Comparative Example 1 A heat-resistant epoxy resin (E5050 /
114.7 parts by weight, 62.2 parts by weight of polyether sulfone (manufactured by Sumitomo Chemical Co., Ltd.), 51.8 parts by weight of silica filler, 30.4 parts by weight of phenol resin (manufactured by Nippon Kayaku Co., Ltd.), catalyst 2E4MZ (Tokyo Chemical 11.5 parts by weight of γ-
After mixing for 1 hour with a paint shaker in addition to butyrolactone, the mixture was heat-cured at 180 ° C. for 2 hours using a drying oven to obtain a cured product.

【0043】次に、絶縁材料を用いて、実施例1 と同様
な方法でプリント配線板を得た。
Next, a printed wiring board was obtained in the same manner as in Example 1 using an insulating material.

【0044】実施例1 〜3 において得られた絶縁材料に
おける粗化面は均一であったが、比較例1において得ら
れた絶縁材料の粗化面は粗化斑を有していた。
The roughened surface of the insulating material obtained in Examples 1 to 3 was uniform, but the roughened surface of the insulating material obtained in Comparative Example 1 had roughened spots.

【0045】実施例1 〜3 、比較例1 で得られた絶縁材
料における、絶縁層と導電層との接着強度を表すピール
強度を測定した結果を表1に示す。
Table 1 shows the results of measuring the peel strength indicating the adhesive strength between the insulating layer and the conductive layer in the insulating materials obtained in Examples 1 to 3 and Comparative Example 1.

【0046】実施例1と比較例1 は組成が等しいが、実
施例1 におけるピール強度の方が、比較例1におけるそ
れよりも、優れていることがわかる。このことから、シ
リカフィラーが均一に分散されていることによって、明
確なアンカーが容易に形成され、絶縁層と導電層との接
着強度に優れた絶縁材料を得ることができたと言える。
Although the compositions of Example 1 and Comparative Example 1 are the same, it can be seen that the peel strength of Example 1 is superior to that of Comparative Example 1. From this, it can be said that, by uniformly dispersing the silica filler, a clear anchor was easily formed, and an insulating material having excellent adhesive strength between the insulating layer and the conductive layer could be obtained.

【0047】発明者らは、シリカフィラーとエポキシと
ポリエーテルスルホンの混合方法を変化させて研究した
結果、シリカフィラーを絶縁材料に均一に分散させるた
めには、あらかじめシリカフィラーをエポキシに均一に
分散させた微粉末を、ポリエーテルスルホンに分散させ
て硬化させることが好適であることを見出したのであ
る。
The inventors of the present invention have conducted studies by changing the mixing method of silica filler, epoxy and polyethersulfone. As a result, in order to uniformly disperse the silica filler in the insulating material, the silica filler was uniformly dispersed in the epoxy beforehand. It has been found that it is preferable to disperse the cured fine powder in polyethersulfone and cure it.

【0048】すなわち、あらかじめシリカフィラーをエ
ポキシに均一に分散させた微粉末をポリエーテルスルホ
ンに分散させることにより、シリカフィラーがポリエー
テルスルホンリッチ相に入りにくく、エポキシ相に入り
やすいことを阻止し、シリカフィラーを絶縁材料全体に
均一に分散させることを見出したものである。
That is, by dispersing a fine powder in which a silica filler is uniformly dispersed in an epoxy in advance in a polyethersulfone, it is possible to prevent the silica filler from entering a polyethersulfone-rich phase and easily entering an epoxy phase. It has been found that the silica filler is uniformly dispersed throughout the insulating material.

【0049】[0049]

【発明の効果】本発明は以上の如き構成であるから、前
記の如き従来の多層プリント配線板の有する問題点を解
消し、高耐熱性で、かつ銅線密着性等の信頼性の高い多
層プリント配線板を容易にかつ安価に、また環境に多大
な負担を与えることなく製造することができる多層プリ
ント配線板用絶縁性樹脂組成物を提供することができ
る。
As described above, the present invention solves the above-mentioned problems of the conventional multilayer printed wiring board, and has a high heat resistance and a highly reliable multilayer such as copper wire adhesion. The present invention can provide an insulating resin composition for a multilayer printed wiring board, which can easily and inexpensively produce a printed wiring board without imposing a great burden on the environment.

フロントページの続き Fターム(参考) 4J002 CD022 CD042 CD052 CD062 CD072 CD132 CF001 CH001 CH071 CL001 CL061 CM041 CN031 DJ016 FA082 FD150 GQ01 5E346 AA02 AA12 CC09 CC32 CC55 DD03 DD13 DD25 EE13 EE19 GG22 GG27 HH11 HH31 Continued from the front page F-term (reference) 4J002 CD022 CD042 CD052 CD062 CD072 CD132 CF001 CH001 CH071 CL001 CL061 CM041 CN031 DJ016 FA082 FD150 GQ01 5E346 AA02 AA12 CC09 CC32 CC55 DD03 DD13 DD25 EE13 EE19 GG22 GG27 HH11H31

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】酸あるいは酸化剤に対して粗化可能な熱硬
化性樹脂とシリカフィラーをあらかじめ均一に分散させ
硬化してなる硬化物微粉末を、酸あるいは酸化剤に対し
て難溶性となる特性を有する熱可塑性樹脂マトリクスに
分散させたことを特徴とする多層プリント配線板用絶縁
材料。
1. A fine powder of a cured product obtained by uniformly dispersing and curing a thermosetting resin and a silica filler which can be roughened with respect to an acid or an oxidizing agent beforehand becomes hardly soluble in an acid or an oxidizing agent. An insulating material for a multilayer printed wiring board, wherein the insulating material is dispersed in a thermoplastic resin matrix having characteristics.
【請求項2】前記熱硬化性樹脂が少なくとも多官能エポ
キシ化合物と硬化剤からなることを特徴とする請求項1
に記載の多層プリント配線板用絶縁材料。
2. The thermosetting resin according to claim 1, wherein said thermosetting resin comprises at least a polyfunctional epoxy compound and a curing agent.
4. The insulating material for a multilayer printed wiring board according to the above.
【請求項3】前記熱可塑性樹脂マトリクスにポリエーテ
ルスルホンを用いることを特徴とする請求項1または2
に記載のプリント配線板絶縁材料。
3. The thermoplastic resin matrix according to claim 1, wherein polyether sulfone is used.
2. The printed wiring board insulating material according to 1.
【請求項4】前記硬化物微粉末が絶縁材料の全固形分に
対して55重量%から85重量%の割合で混合されてなるこ
とを特徴とする請求項1〜3に記載の多層プリント配線
板絶縁材料。
4. The multilayer printed wiring according to claim 1, wherein said hardened material fine powder is mixed at a ratio of 55% by weight to 85% by weight based on the total solid content of the insulating material. Board insulation material.
【請求項5】前記硬化物微粉末を構成するシリカの割合
が5 〜40重量%であることを特徴とする請求項1〜4に
記載する多層プリント配線板用絶縁材料。
5. The insulating material for a multilayer printed wiring board according to claim 1, wherein the proportion of silica constituting the fine powder of the cured product is 5 to 40% by weight.
【請求項6】前記硬化物微粉末の平均粒径が0.5 μm 〜
6 μmであることを特徴とする請求項1〜5に記載する
多層プリント配線板用絶縁材料。
6. The fine powder of the cured product has an average particle size of 0.5 μm or less.
The insulating material for a multilayer printed wiring board according to claim 1, wherein the thickness is 6 μm.
【請求項7】請求項1〜6のいずれか1つに記載する絶
縁材料を用いたことを特徴とする多層プリント配線板。
7. A multilayer printed wiring board using the insulating material according to any one of claims 1 to 6.
JP2000058700A 2000-03-03 2000-03-03 Insulating material for multilayer printed wiring board and multilayer printed wiring board using the same Pending JP2001251059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000058700A JP2001251059A (en) 2000-03-03 2000-03-03 Insulating material for multilayer printed wiring board and multilayer printed wiring board using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000058700A JP2001251059A (en) 2000-03-03 2000-03-03 Insulating material for multilayer printed wiring board and multilayer printed wiring board using the same

Publications (1)

Publication Number Publication Date
JP2001251059A true JP2001251059A (en) 2001-09-14

Family

ID=18579259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000058700A Pending JP2001251059A (en) 2000-03-03 2000-03-03 Insulating material for multilayer printed wiring board and multilayer printed wiring board using the same

Country Status (1)

Country Link
JP (1) JP2001251059A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097346A (en) * 2000-09-27 2002-04-02 Sumitomo Bakelite Co Ltd Epoxy resin composition for interposer, prepreg and copper-clad laminated sheet using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097346A (en) * 2000-09-27 2002-04-02 Sumitomo Bakelite Co Ltd Epoxy resin composition for interposer, prepreg and copper-clad laminated sheet using the same

Similar Documents

Publication Publication Date Title
KR100476285B1 (en) Through-Hole Wiring Board
US9236169B2 (en) Electromagnetic wave shielding structure and method for fabricating the same
EP0651602B1 (en) Conductive paste compound for via hole filling, printed circuit board which uses the conductive paste, and method of manufacturing the same
KR101736516B1 (en) Multilayered wiring board and method for manufacturing multilayered wiring board
JP5200405B2 (en) Multilayer wiring board and semiconductor package
JPWO2002044274A1 (en) Liquid thermosetting resin composition, printed wiring board and method for producing the same
TW511437B (en) Insulating resin composition for multilayer printed wiring board, multilayer printed wiring board using it, and process for manufacturing the same
JP2003045228A (en) Conductive paste
JP2002038022A (en) Insulating resin composition for multilayer printed wiring board, multilayer printed wiring board using the same, and production method using the same
JP2008094993A (en) Adhesive composition for semiconductor, semiconductor device using the same and method for producing semiconductor device
JP2000239636A (en) Curable conductive paste
JPS61276875A (en) Adhesive for electroless plating and production of wiring board using said adhesive
JP2001323249A (en) Adhesive for circuit connection
JP2009212101A (en) Member for multilayer wiring board and method of manufacturing multilayer wiring board
JP2003077337A (en) Conductive paste component and printed wiring board
JP2001251059A (en) Insulating material for multilayer printed wiring board and multilayer printed wiring board using the same
JP3513636B2 (en) Composite conductive powder, conductive paste, electric circuit and method for producing electric circuit
JP2002371190A (en) Electrical insulating resin composition for multilayer printed wiring board, multilayer printed wiring board using the same, and method for producing the board using the same
JPH11339559A (en) Anisotropic conductive adhesive
JP2005220341A (en) Filler, wiring board using the same, and producing method for the wiring board
JP2002204078A (en) Multilayer circuit board and semiconductor integrated circuit device
JP2004335764A (en) Dielectric film and method for manufacturing the same
JP2007077354A (en) Prepreg and copper-clad laminate using the same
JP3312199B2 (en) Resin composition for insulating layer for build-up on printed wiring board and multilayer wiring board
JP2002164661A (en) Printed wiring board, and insulating resin composition therefor